WO2012042835A1 - Film capacitor and method for producing film capacitor - Google Patents

Film capacitor and method for producing film capacitor Download PDF

Info

Publication number
WO2012042835A1
WO2012042835A1 PCT/JP2011/005412 JP2011005412W WO2012042835A1 WO 2012042835 A1 WO2012042835 A1 WO 2012042835A1 JP 2011005412 W JP2011005412 W JP 2011005412W WO 2012042835 A1 WO2012042835 A1 WO 2012042835A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metallized
metallized film
fuse
capacitor
Prior art date
Application number
PCT/JP2011/005412
Other languages
French (fr)
Japanese (ja)
Inventor
啓右 大塚
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2012042835A1 publication Critical patent/WO2012042835A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/015Special provisions for self-healing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/01Form of self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose

Definitions

  • the present invention relates to a film capacitor and a method for manufacturing the film capacitor, and particularly relates to one manufactured by pre-healing.
  • This film may have an insulation defect due to foreign matters adhering during production, wrinkling of the film, bumping of molten deposited metal, or the like. Since the film capacitor using the metallized film having such an insulation defect cannot ensure insulation at the insulation defect portion, it may be short-circuited by a slight voltage application.
  • Patent Document 1 in the manufacturing process of the film capacitor, a high voltage is applied to the metallized film, and the metal around the insulation defect portion having a low electrical resistance is melted by discharge breakdown. It is known to provide a removal process (so-called pre-healing process).
  • Patent Document 2 in the film capacitor, when the film is short-circuited due to dielectric breakdown or the like during use, there is a security mechanism that ensures safety by fusing (disconnecting) the fuse portion formed in the deposited metal.
  • fusing disconnecting
  • JP-A-4-85806 Japanese Patent Laid-Open No. 7-45466
  • a coating method is known as a method for producing the above-described dielectric film.
  • a polymer material or a high dielectric constant material is dissolved in a solvent to form a paint, and the applied paint is dried to produce the film.
  • a high dielectric constant material in the film may become non-uniform, so that there may be a defective portion where the electric resistance becomes a medium resistance in a part of the film. Thereby, the insulation of a metallized film falls.
  • the defect portion has a medium resistance, it is difficult for current to flow through the defect portion in the conventional pre-healing process, and the metal around the defect portion cannot be removed by discharge breakdown. When the applied voltage is increased, there is a problem that the film breaks down and is completely short-circuited.
  • the defective portion has a medium resistance
  • a leakage current is generated from the defective portion during use. Therefore, even if a fuse is formed on the vapor-deposited metal, the current cannot be concentrated on the fuse, so that the fuse cannot be blown.
  • the conventional method of pre-healing or forming a fuse has a problem that it is impossible to take measures against a defective portion of the medium resistance existing in a part of the film.
  • the present invention has been made in view of such a point, and an object of the present invention is to ensure insulation of a film capacitor in which a defective portion of medium resistance occurs in a part of the film.
  • the first invention is a method of manufacturing a film capacitor having a metallized film (11) having a metal film (14) formed on at least one surface of a film member (12).
  • the metal film (14) is electrically divided by the slits (17, 18) between the plurality of divided films (14a, 14b) and the divided films (14a, 14b).
  • a forming process, a pre-healing process, and a fusing process are performed.
  • a metal film (14) is formed on at least one surface of the film member (12).
  • the metal film (14) is electrically divided by the slits (17, 18) to form a plurality of divided films (14a, 14b), and the divided films (14a, 14b) are electrically connected.
  • a fuse part (19) to be formed is formed to form a metallized film (11).
  • the metallized film (11) may have an insulation defect portion (41) which is a low electric resistance portion and a defect portion (42) which is an electric resistance portion within a predetermined range.
  • a defective portion formed in a predetermined range of electric resistance in the metallized film (11) by applying a predetermined voltage to a region corresponding to one divided film (14a) of the metallized film (11) Short-circuit (42) by dielectric breakdown.
  • the predetermined voltage is applied in a state where the defective portion (42) is short-circuited, current concentrates on the fuse portion (19), and the fuse portion (19) is melted.
  • the fuse part (19) is melted, one divided film (14a) in which the fuse part (19) is formed is separated from the other divided film (14b). Thereby, the insulation of a metallized film (11) is ensured.
  • the fusing process is performed simultaneously with the pre-healing process or before or after the pre-healing process.
  • the fusing step is performed by applying the predetermined voltage to the metallized film (11) to thereby form a metal film (14) around the insulating defect (41). ) Is removed at the same time.
  • the pre-healing step and the fusing step are performed simultaneously.
  • a predetermined voltage is applied to a region corresponding to one divided film (14a) of the metallized film (11) to form an electric resistance in a predetermined range in the film member (12).
  • the defective part (42) is shorted by dielectric breakdown.
  • the current concentrates in the fuse part (19) and the fuse part (19) is blown, while the metal part (11) exists.
  • the metal film (14) around the insulating defect (41) is removed by discharge breakdown.
  • the fuse part (19) is melted, one divided film (14a) is cut off from the other divided film (14b).
  • the fuse part (19) is melted and the metal film (14) around the insulating defect part (41) is removed, so that the insulating property of the metallized film (11) is ensured.
  • the film member (12) is made of a high glass transition point material.
  • the metallized film (11) is configured using a film member (12) made of a high glass transition point material.
  • the insulation defect portion (41) having a relatively small size is dielectrically broken to cause a permanent short circuit, and the insulation defect portion
  • the predetermined voltage is applied in a state where (41) is short-circuited, current concentrates on the fuse portion (19) and the fuse portion (19) is melted.
  • the fuse part (19) is melted, one divided film (14a) in which the fuse part (19) is formed is separated from the other divided film (14b). Thereby, the insulation of a metallized film (11) is ensured.
  • an applied voltage of the metallized film (11) in the pre-healing step or the fusing step is configured as an AC voltage.
  • an AC voltage is applied to the metallized film (11) in the pre-healing process or the fusing process.
  • the charge in the film member (12) may be polarized and the charged charge may remain.
  • the charges in the film member (12) are not polarized. For this reason, charged charges do not remain in the metallized film (11), so that problems such as wrinkles do not occur in the subsequent process.
  • the film member (12) of the metallized film (11) is formed by a coating method.
  • the film member (12) is formed by a coating method.
  • a film is manufactured by melting a polymer material or a high dielectric constant material in a solvent to form a paint, and drying the applied paint. For this reason, the concentration of the high dielectric material varies greatly depending on the position in the film. Thereby, in the film, there may be a defect portion formed in a predetermined range of electric resistance in a portion where the concentration of the high dielectric material is relatively thin.
  • the defective part (42) formed in the electric resistance within a predetermined range can be short-circuited by dielectric breakdown, so that the fuse part (19) can be blown.
  • one division film (14a) in which the fuse part (19) is formed is cut off from the other division film (14b), and insulation of the metallized film (11) is ensured.
  • a sixth invention includes a film member (12) and a metallized film (11) having a metal film (14) formed on at least one surface of the film member (12), and the metallized film (11 ) Is a film capacitor formed by winding.
  • the metallized film (11) includes a plurality of divided films (14a, 14b) in which the metal film (14) is electrically divided by slits (17, 18), and the divided films (14a, 14b). And a fuse portion (19) that can be blown by short-circuiting a defective portion (42) formed in an electric resistance within a predetermined range in the metallized film (11). .
  • the metallized film (11) is configured by forming a metal film (14) on at least one surface of the film member (12). Further, the metal film (14) of the metallized film (11) is electrically divided by the slits (17, 18) to form divided films (14a, 14b).
  • the metallized film (11) may have an insulation defect portion (41) which is a low electric resistance portion and a defect portion (42) which is an electric resistance portion within a predetermined range.
  • the part (42) breaks down and shorts.
  • the predetermined voltage is applied in a state where the defective portion (42) is short-circuited, current is concentrated in the fuse portion (19), and the fuse portion (19) is melted.
  • the metallized film (11) does not have a defect portion (42) formed in an electric resistance within a predetermined range, the metallized film (11) has a fuse portion (19). .
  • the metal film (14) around the insulating defect portion (41) is destroyed by discharge while being formed to have an electric resistance within a predetermined range.
  • the fuse portion (19) can be blown by short-circuiting the defective portion (42) to be formed.
  • the metal film (14) around the insulating defect portion (41) can be removed, while the divided film (14a) having the defect portion (42) can be separated.
  • the insulating properties of the film capacitor can be ensured even when the insulation defect portion (41) or the defect portion (42) is formed on the metallized film (11).
  • a predetermined voltage is applied to the metallized film (11) in the fusing step that is performed simultaneously with the pre-healing step. For this reason, while the metal film (14) around the insulation defect part (41) is removed by discharge breakdown, the defect part (42) can be short-circuited to blow the fuse part (19). Thereby, a fusing process and a pre-healing process can be performed simultaneously.
  • the fuse part (19) in which the insulation defect part (41) is formed by the fusing process can be blown. That is, even if an insulation defect portion (41) that is too small to be removed by the pre-healing process is formed, the insulation of the metallized film (11) can be ensured by fusing the fuse portion (19). Thereby, the insulation of the film capacitor using the film member (12) can be ensured by the high glass transition point material.
  • the fourth invention since an alternating voltage is applied to the metallized film (11) in the fusing process or the pre-healing process, it is possible to prevent the polarization of charges in the film member (12). As a result, it is possible to prevent the charged charges from remaining on the metallized film (11), so that problems such as wrinkles in the subsequent steps can be reliably prevented.
  • a defective portion (42) may exist inside the film member (12).
  • the defective part (42) can be short-circuited by dielectric breakdown by the fusing process. Thereby, the current can be concentrated and the fuse portion (19) can be blown, so that the divided film (14a) having the defective portion (42) can be separated. As a result, the insulation of the film capacitor can be ensured even when the insulating defect portion (41) or the defective portion (42) is formed on the metallized film (11).
  • the fuse part (19) since the fuse part (19) is formed, the fuse part (19) can be blown by a fusing process. Thereby, even when a defective part (42) exists in a metallized film (11), the insulation of a film capacitor is securable.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration of a film capacitor according to an embodiment.
  • FIG. 2 is a cross-sectional view showing a state in which two metallized films according to the embodiment are overlapped.
  • FIG. 3 is a schematic cross-sectional view illustrating the configuration of the voltage application device according to the embodiment.
  • FIG. 4 is a schematic perspective view illustrating the configuration of the voltage application device according to the embodiment.
  • FIG. 5 is a schematic cross-sectional view showing the state of the metallized film before the pre-healing step performed simultaneously with the fusing step according to the embodiment.
  • FIG. 6 is a schematic cross-sectional view showing the state of the metallized film after the pre-healing process performed simultaneously with the fusing process according to the embodiment.
  • FIG. 7 is a schematic perspective view showing a state of the metallized film before the fusing process according to the embodiment.
  • FIG. 8 is a schematic perspective view showing a state of the metallized film after the
  • the film capacitor (1) has a metallicon electrode (23, 23) at both ends of a capacitor element (10) wound around a winding core (13).
  • a metallicon electrode 23, 23
  • it is used for a smoothing capacitor between an inverter circuit and a converter circuit.
  • the film capacitor (1) includes a capacitor element (10), a core (13) around which the capacitor element (10) is wound, and two metallicon electrodes ( 23, 23), an external terminal (21) electrically connected to each of the metallicon electrodes (23), an insulating cover (24) disposed so as to cover the outer peripheral surface of the capacitor element (10), And a sealing resin (22) for sealing the external terminal (21).
  • FIG. 2 is a cross-sectional view showing a state in which a pair of metallized films (11, 11) are overlapped.
  • the capacitor element (10) is composed of a pair of metallized films (11, 11) in which a metal film (14) is formed on one side of a strip-shaped film (12). It is comprised so that it may be wound around the outer periphery of a core (13).
  • the film (12) has a thickness of about 3 to 10 ⁇ m and constitutes a film member according to the present invention.
  • the film (12) is configured as a belt-like film made of, for example, a PVDF-based dielectric film.
  • the film (12) is manufactured by a so-called coating method in which a polymer material or the PVDF-based high dielectric material is dissolved in a solvent to form a paint, and the applied paint is dried. For this reason, in the film (12), the concentration of the high dielectric material varies greatly depending on its position. As a result, there may be a portion in the film (12) where the concentration of the high dielectric material is relatively low. Moreover, a local insulation defect part (local insulation defect part) may be formed in a film (12). The low-concentration portion and the local insulation defect portion of the high dielectric material are portions where the electric resistance is relatively formed to a medium resistance. As shown in FIGS. The part is a defective part (42).
  • the range of the electrical resistance of the defective portion (42) is, for example, although the defective portion (42) is shorted due to dielectric breakdown by applying a voltage of 300 V to the metallized film (11).
  • This is an electric resistance range in which the metal film (14) around the defective portion (42) is not melted and removed, and constitutes a predetermined range according to the present invention.
  • the metallized film (11) has an insulation defect (41) due to foreign matters adhering at the time of manufacture, wrinkles of the film, bumping of the molten deposited metal, or the like. Sometimes.
  • This insulation defect part (41) is a part formed in a relatively low electric resistance inside the film (12) constituting the metallized film (11).
  • the metal film (14) is a thin film formed by vapor-depositing a metal foil such as aluminum.
  • the metal film (14) has a thickness of about 50 to 400 mm.
  • aluminum is used as the metal film (14).
  • the material of the metal film (14) is not limited to this, and a metal material such as zinc can be used.
  • the metallized film (11) has a side margin (15) for connecting a fuse mechanism (16) for preventing a short circuit due to a dielectric breakdown and a metallicon electrode (23, 23). ).
  • the side margin (15) is formed on one side in the width direction of one side of each film (12). Moreover, although not shown in figure, a pair of metallized films (11, 11) are piled up in the state which mutually shifted about 1 mm in the left-right direction. Metallicon electrodes (23, 23) to be described later are in contact with this 1 mm wide region.
  • the side margin (15) is a region of the surface of the film (12) where the metal film (14) is not coated.
  • the side margin (15) is provided between a metallicon electrode (23, 23), which will be described later, and a metal film (14) to electrically insulate both members.
  • the side margin (15) is formed with a width of 2 to 3 mm from one end to the other end in the width direction of one side of the metallized film (11).
  • the fuse mechanism (16) is for ensuring the insulation of the metallized film (11) even if a defective part (42) occurs in the film (12) of the metallized film (11). It is. That is, the film capacitor (1) prevents a short circuit failure by the fuse mechanism (16).
  • the fuse mechanism (16) includes a split slit (17) for dividing the metal film (14) into a plurality of split films (14a, 14b) and a pair of fuse slits (18, 18) for forming the fuse (19) It consists of and.
  • the split slit (17) and the fuse slit (18) constitute a slit according to the present invention.
  • the core (13) is made of a cylindrical resin member. Note that a metal core portion may be provided inside the cylindrical core (13). In this case, the core is connected to the external terminal (21) via the metallicon electrode (23), and heat generated in the pair of metallized films (11) is transferred from the core to the metallicon electrode (23) and the external terminal. It is discharged to the outside via (21).
  • the metallicon electrode (23) is provided at both ends in the axial direction of the capacitor element (10) which is wound around the winding core (13) and formed in a substantially cylindrical shape.
  • Each of the metallicon electrodes (23) is formed by spraying a metal on the axial end portion of the capacitor element (10) and protrudes from the axial end portion of the capacitor element (10). 11 and 11) are electrically connected to each other.
  • the external terminal (21) is electrically connected to the metallicon electrode (23) at a position corresponding to the core (13) at the base end. These external terminals (21) extend outward in the radial direction of the metallicon electrode (23), and their tips protrude outward from the sealing resin (22) and are connected to the substrate (26) and the like. .
  • the insulating cover (24) is a cylindrical member obtained by rolling a sheet-like member made of a resin material along the outer peripheral surface of the cylindrical capacitor element (10).
  • the insulating cover (24) is provided so as to cover the entire capacitor element (10).
  • the insulating cover (24) is disposed so as to cover the outer peripheral side of the capacitor element (10).
  • the insulating cover (24) is not limited to this, and the capacitor element (10) is sealed with sealing resin. It may be configured to be directly sealed in (22).
  • the sealing resin (22) is provided so as to seal the outer peripheral side of the insulating cover (24), the base end portions of the metallicon electrode (23) and the external terminal (21). That is, the sealing resin (22) is provided so as to cover the entire components of the film capacitor (1) except for the front end side of the external terminal (21).
  • the voltage application device (30) is configured to remove the metallized film (11) from an upstream roller (not shown) around which one metallized film (11) is wound in a roll shape. Pulled out and wound up by a downstream roller (not shown), applied a predetermined voltage to the metallized film (11) in the middle of its conveyance, and around the insulation defect (41) present in the metallized film (11) While removing the deposited metal, the defective portion (42) is short-circuited by dielectric breakdown.
  • a metal film (14) that is uniformly continuous in the length direction is deposited on one surface (the upper surface in FIG. 3) of the metallized film (11).
  • a voltage application unit (32) for applying a voltage to the metallized film (11) is disposed in the conveyance path between the upstream roller and the downstream roller.
  • the voltage application unit (32) is configured to apply insulation to the metallized film (11) by applying a predetermined voltage to the metallized film (11) from the power source (34) via the voltage application roller (33). While removing the vapor deposition metal around the defective portion (41), the defective portion (42) is dielectrically broken to blow the fuse (19).
  • the voltage application unit (32) includes a voltage application roller (33), a grounding roller (35), and a power supply unit (34).
  • the voltage application roller (33) is disposed upstream of the ground roller (35) in the transport direction, and its outer peripheral surface is pressed against the metallized film (11) from below to provide metallization.
  • the film (11) is in contact with the non-formed surface (non-deposition surface) of the metal film (14).
  • the grounding roller (35) is provided with its outer peripheral surface pressed against the metallized film (11) from above, with respect to the metal film (14) formation surface (vapor deposition surface) of the metallized film (11). Are arranged so as to contact each other.
  • the power supply unit (34) is configured as a DC power supply.
  • the power supply unit (34) is configured to apply a DC voltage of about 300 V to the metallized film (11) from the voltage application roller (33) as an example. This applied voltage of about 300 V constitutes a predetermined voltage according to the present invention.
  • the voltage applied from the voltage application roller (33) to the metallized film (11) is not limited to 300V, and can be set to an appropriate voltage depending on the thickness of the film and the dielectric strength. However, by increasing the applied voltage, the fuse (19) is melted even if the metallized film (11) is completely short-circuited due to dielectric breakdown or thermal breakdown, so that the insulation of the metallized film (11) can be ensured. Therefore, it is preferable to set the applied voltage higher.
  • a voltage of about 300 V from the power supply unit (34) is applied to the non-formed surface (non-deposition surface) of the metal film (14) of the metallized film (11). Since the pre-healing voltage is a high voltage, it is preferable from the viewpoint of safety to apply a voltage to the non-formed surface (non-deposition surface) of the metal film (14).
  • mask processing is performed to form side margins (15), split slits (17), and fuse slits (18) on a wide roll original film having a width of 600 mm.
  • This mask process is performed using an oil mask or a tape mask.
  • aluminum (Al) is vapor-deposited on the roll film original with a vacuum vapor deposition machine to form a metal film (14).
  • the metallized film (11) is completed by cutting a roll film original fabric.
  • a pre-healing process and a fusing process are performed.
  • the pre-healing step and the fusing step are performed using a voltage application device (30).
  • the fusing process is performed simultaneously with the pre-healing process, but the fusing process may be performed before or after the pre-healing process.
  • a voltage of about 300 V is applied from the power supply unit (34) to the non-formed surface (non-deposition surface) of the metal film (14) of the metallized film (11). That is, the fusing process and the pre-healing process are performed simultaneously by applying a single voltage.
  • the current value at which the fuse (19) is blown refers to the average value of the current when the fuse (19) part is blown by conduction, and is generally in the range of 10 to 1000 milliamperes.
  • this metallized film (11) is stacked and wound on a winding core (13) through a winding machine. Connect the metallicon electrodes (23, 23) to both ends of the wound capacitor element (10) in the width direction, attach the external terminals (21) and the insulating cover (24), and cover with the sealing resin (22) This completes the film capacitor (1).
  • the insulation defect portion of the metallized film (11) in five of the ten samples is manufactured without performing the forming process, the fusing process, and the pre-healing process of the present embodiment.
  • an insulation defect part (41) and a defect part (42) do not exist in a metallized film (11).
  • the metal film (14) around the insulating defect portion (41) is discharged and destroyed while the defect portion (42) is short-circuited.
  • the fuse part (19) can be blown.
  • the metal film (14) around the insulating defect portion (41) can be removed, while the divided film (14a) in which the defect portion (42) is formed can be separated.
  • the insulation of the film capacitor can be ensured.
  • 300V is applied to the metallized film (11) in the fusing process performed simultaneously with the pre-healing process. For this reason, while the metal film (14) around the insulation defect part (41) is removed by discharge breakdown, the defect part (42) can be short-circuited to blow the fuse part (19). Thereby, a fusing process and a pre-healing process can be performed simultaneously.
  • a defective portion (42) may exist in the film (12) formed by the coating method.
  • the defective part (42) can be short-circuited by dielectric breakdown by the fusing process.
  • the fuse (19) can be blown, the divided film (14a) in which the defective portion (42) is formed can be cut off.
  • an insulation defect part (41) or a defect part (42) is formed in the metallized film (11), the insulation of the film capacitor can be ensured.
  • the fuse (19) since the fuse (19) is formed, the fuse (19) can be blown by a fusing process. Thereby, even when a defect part (42) exists in a metallized film (11), the insulation of a film capacitor is securable.
  • the present invention may be configured as follows with respect to the above embodiment.
  • a PVDF dielectric film is used as the material of the film (12), but the material of the film (12) is not limited to this.
  • a material of the film (12) a material having a high glass transition point can be used.
  • the film formed of the material having a high glass transition point has a smaller insulating defect than a film made of another material (hereinafter, referred to as a local insulating defect), and therefore is locally insulated by pre-healing.
  • the metal film around the defective portion cannot be removed.
  • the fuse in the part where the local insulation defect part is formed by the fusing process can be blown.
  • the fuse can be blown, so that the insulation of the film capacitor using a film made of a high glass transition point material can be used. Sex can be secured.
  • a DC voltage is used as a voltage to be applied to the metallized film (11) in the fusing process or the pre-healing process.
  • the present invention is not limited to this, and an AC voltage is applied. It may be.
  • the present invention is useful for film capacitors and film capacitor manufacturing methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

This method for producing a film capacitor is provided with: a formation step for forming a metallized film (11) having a plurality of divided films (14a, 14b), wherein a metal film (14) is electrically divided by slits (17, 18), and a fuse (19) that electrically connects between the divided films (14a, 14b); a pre-healing step for eliminating the metal film (14) at the periphery of insulating blemishes (41) present on the metallized film (11) by applying voltage to the metallized film (11); and a fusing step for, at the same time as the pre-healing step, applying a predetermined voltage to the metallized film (11) that short-circuits the blemished portions (42) of the metallized film (11) and that flows a current that can melt the fuse (19).

Description

フィルムコンデンサ及びフィルムコンデンサの製造方法Film capacitor and film capacitor manufacturing method
  本発明は、フィルムコンデンサ及びフィルムコンデンサの製造方法に関し、特に、プレヒーリングによって製造されたものに係るものである。 The present invention relates to a film capacitor and a method for manufacturing the film capacitor, and particularly relates to one manufactured by pre-healing.
  従来、表面にアルミニウム、または亜鉛等の金属を蒸着した誘電体のフィルム(金属化フィルム)を多層に重ねて構成されたフィルムコンデンサが知られている。 Conventionally, there has been known a film capacitor in which a dielectric film (metallized film) in which a metal such as aluminum or zinc is deposited on a surface is laminated in multiple layers.
  このフィルムは、製造時に付着する異物、フィルムのしわ、または溶融した蒸着金属の突沸等を原因として絶縁欠陥が生じることがある。このような絶縁欠陥を有する金属化フィルムを用いたフィルムコンデンサは、絶縁欠陥部分で絶縁性が確保できないため、わずかな電圧印加によって短絡状態となることがある。 This film may have an insulation defect due to foreign matters adhering during production, wrinkling of the film, bumping of molten deposited metal, or the like. Since the film capacitor using the metallized film having such an insulation defect cannot ensure insulation at the insulation defect portion, it may be short-circuited by a slight voltage application.
  このような問題に対して、特許文献1に示すように、フィルムコンデンサの製造工程において、金属化フィルムに高電圧を印加し、電気抵抗の低い絶縁欠陥部の周辺の金属を放電破壊によって溶融させて取り除く工程(いわゆるプレヒーリング工程)を設けることが知られている。 To solve such a problem, as shown in Patent Document 1, in the manufacturing process of the film capacitor, a high voltage is applied to the metallized film, and the metal around the insulation defect portion having a low electrical resistance is melted by discharge breakdown. It is known to provide a removal process (so-called pre-healing process).
  また、特許文献2に示すように、フィルムコンデンサでは、使用時の絶縁破壊等によりフィルムが短絡した場合、蒸着金属に形成したヒューズ部分を溶断(断路)することで安全性を確保する保安機構が知られている。 Moreover, as shown in Patent Document 2, in the film capacitor, when the film is short-circuited due to dielectric breakdown or the like during use, there is a security mechanism that ensures safety by fusing (disconnecting) the fuse portion formed in the deposited metal. Are known.
特開平4-85806号公報JP-A-4-85806 特開平7-45466号公報Japanese Patent Laid-Open No. 7-45466
  ところで、上述した誘電体のフィルムを製造する方法として塗工法が知られている。この塗工法によるフィルム製造では、ポリマー材料や高誘電率材料を溶剤に熔解させて塗料にし、塗布した塗料を乾燥させることでフィルムを製造している。そして、フィルム製造では、フィルム中の高誘電率材料が不均一となること等により、フィルム内の一部で電気抵抗が中抵抗となる欠陥部分が存在することがある。これにより、金属化フィルムの絶縁性が低下する。 Incidentally, a coating method is known as a method for producing the above-described dielectric film. In film production by this coating method, a polymer material or a high dielectric constant material is dissolved in a solvent to form a paint, and the applied paint is dried to produce the film. In film production, a high dielectric constant material in the film may become non-uniform, so that there may be a defective portion where the electric resistance becomes a medium resistance in a part of the film. Thereby, the insulation of a metallized film falls.
  しかしながら、上記欠陥部分は中抵抗であるため、従来のプレヒーリング工程では、上記欠陥部分に電流が流れにくく、該欠陥部分の周辺の金属を放電破壊によって除去することができず、また、プレヒーリングの印加電圧を上げると、フィルムが絶縁破壊して完全に短絡してしまうという問題があった。 However, since the defect portion has a medium resistance, it is difficult for current to flow through the defect portion in the conventional pre-healing process, and the metal around the defect portion cannot be removed by discharge breakdown. When the applied voltage is increased, there is a problem that the film breaks down and is completely short-circuited.
  一方、上記欠陥部分は中抵抗であるため、従来の蒸着金属にヒューズが形成されたフィルムコンデンサでは、使用時において欠陥部分から漏れ電流が発生する。したがって、、蒸着金属にヒューズを形成しても、該ヒューズに電流が集中しないため、ヒューズを溶断することができない。これにより、フィルムコンデンサの使用時に、欠陥部分を流れる電流が電気抵抗によって発熱し、フィルムが溶けるという問題があった。つまり、従来のプレヒーリング、またはヒューズの形成による方法では、フィルムの一部に存在する中抵抗の欠陥部分に対する対策ができないという問題があった。 On the other hand, since the defective portion has a medium resistance, in a conventional film capacitor in which a fuse is formed on a vapor-deposited metal, a leakage current is generated from the defective portion during use. Therefore, even if a fuse is formed on the vapor-deposited metal, the current cannot be concentrated on the fuse, so that the fuse cannot be blown. As a result, when the film capacitor is used, there is a problem that the current flowing through the defective portion generates heat due to the electric resistance and the film is melted. In other words, the conventional method of pre-healing or forming a fuse has a problem that it is impossible to take measures against a defective portion of the medium resistance existing in a part of the film.
  本発明は、斯かる点に鑑みてなされたものであり、フィルムの一部に中抵抗の欠陥部分が発生したフィルムコンデンサの絶縁性を確保することを目的とする。 The present invention has been made in view of such a point, and an object of the present invention is to ensure insulation of a film capacitor in which a defective portion of medium resistance occurs in a part of the film.
  第1の発明は、フィルム部材(12)の少なくとも一方の面に金属膜(14)が形成された金属化フィルム(11)を有するフィルムコンデンサの製造方法である。そして、上記第1の発明は、上記金属膜(14)がスリット(17,18)によって電気的に分割される複数の分割膜(14a,14b)と、該分割膜(14a,14b)の間を電気的に接続させるヒューズ部(19)とを有する金属化フィルム(11)を形成する形成工程と、上記金属化フィルム(11)に電圧を印加し、該金属化フィルム(11)に存在する絶縁欠陥部(41)の周辺の上記金属膜(14)を除去するプレヒーリング工程と、上記プレヒーリング工程と同時、または該プレヒーリング工程の前もしくは後に、上記金属化フィルム(11)に、該金属化フィルム(11)における所定範囲の電気抵抗に形成される欠陥部分(42)を短絡させると共に、上記ヒューズ部(19)の溶断可能な電流が流れるように所定電圧を印加する溶断工程とを備えている。 The first invention is a method of manufacturing a film capacitor having a metallized film (11) having a metal film (14) formed on at least one surface of a film member (12). In the first invention, the metal film (14) is electrically divided by the slits (17, 18) between the plurality of divided films (14a, 14b) and the divided films (14a, 14b). Forming a metallized film (11) having a fuse part (19) to electrically connect the metallized film (11), and applying a voltage to the metallized film (11) to exist in the metallized film (11) A pre-healing step for removing the metal film (14) around the insulation defect portion (41), and simultaneously with the pre-healing step, or before or after the pre-healing step, the metallized film (11), A fusing step of short-circuiting a defective portion (42) formed in an electric resistance in a predetermined range in the metallized film (11) and applying a predetermined voltage so that a fusing current of the fuse portion (19) flows. I have.
  上記第1の発明では、フィルムコンデンサの製造において、形成工程と、プレヒーリング工程と、溶断工程とが行われる。 In the first invention, in the production of the film capacitor, a forming process, a pre-healing process, and a fusing process are performed.
  形成工程では、まず、フィルム部材(12)の少なくとも一方の面に金属膜(14)を形成する。そして、この金属膜(14)をスリット(17,18)によって電気的に分割して複数の分割膜(14a,14b)を形成し、該分割膜(14a,14b)の間を電気的に接続させるヒューズ部(19)を形成して金属化フィルム(11)を形成する。 In the forming step, first, a metal film (14) is formed on at least one surface of the film member (12). The metal film (14) is electrically divided by the slits (17, 18) to form a plurality of divided films (14a, 14b), and the divided films (14a, 14b) are electrically connected. A fuse part (19) to be formed is formed to form a metallized film (11).
  ここで、金属化フィルム(11)には、低電気抵抗部分である絶縁欠陥部(41)と、所定範囲の電気抵抗部分である欠陥部分(42)とが存在する場合がある。 Here, the metallized film (11) may have an insulation defect portion (41) which is a low electric resistance portion and a defect portion (42) which is an electric resistance portion within a predetermined range.
  次に、プレヒーリング工程では、金属化フィルム(11)に対して電圧を印加し、金属化フィルム(11)に存在する絶縁欠陥部(41)の周辺の金属膜(14)を放電破壊させて除去する。これにより、金属化フィルム(11)の絶縁性が確保される(自己回復)。 Next, in the pre-healing process, a voltage is applied to the metallized film (11), and the metal film (14) around the insulation defect (41) present in the metallized film (11) is discharged and destroyed. Remove. Thereby, the insulation of a metallized film (11) is ensured (self-recovery).
  溶断工程では、金属化フィルム(11)の一の分割膜(14a)に対応する領域に対し、所定の電圧を印加して金属化フィルム(11)における所定範囲の電気抵抗に形成される欠陥部分(42)を絶縁破壊させて短絡させる。上記欠陥部分(42)が短絡した状態で、上記所定の電圧を印加すると、ヒューズ部(19)に対して電流が集中して該ヒューズ部(19)が溶断する。ヒューズ部(19)が溶断すると、該ヒューズ部(19)が形成された一の分割膜(14a)が他の分割膜(14b)から切り離される。これにより、金属化フィルム(11)の絶縁性が確保される。 In the fusing process, a defective portion formed in a predetermined range of electric resistance in the metallized film (11) by applying a predetermined voltage to a region corresponding to one divided film (14a) of the metallized film (11) Short-circuit (42) by dielectric breakdown. When the predetermined voltage is applied in a state where the defective portion (42) is short-circuited, current concentrates on the fuse portion (19), and the fuse portion (19) is melted. When the fuse part (19) is melted, one divided film (14a) in which the fuse part (19) is formed is separated from the other divided film (14b). Thereby, the insulation of a metallized film (11) is ensured.
  上記溶断工程は、プレヒーリング工程と同時、またはプレヒーリング工程の前もしくは後に行われる。 The fusing process is performed simultaneously with the pre-healing process or before or after the pre-healing process.
  第2の発明は、上記第1の発明において、上記溶断工程は、上記金属化フィルム(11)に対して上記所定電圧を印加することで上記絶縁欠陥部(41)の周辺の金属膜(14)を除去するプレヒーリング工程が同時に行われる。 In a second aspect based on the first aspect, the fusing step is performed by applying the predetermined voltage to the metallized film (11) to thereby form a metal film (14) around the insulating defect (41). ) Is removed at the same time.
  上記第2の発明では、プレヒーリング工程と溶断工程とが同時に行われる。 In the second invention, the pre-healing step and the fusing step are performed simultaneously.
  具体的に、溶断工程では、金属化フィルム(11)の一の分割膜(14a)に対応する領域に対し、所定の電圧を印加してフィルム部材(12)における所定範囲の電気抵抗に形成される欠陥部分(42)を絶縁破壊させて短絡させる。上記欠陥部分(42)が短絡した状態で、上記所定の電圧を印加すると、ヒューズ部(19)に電流が集中して該ヒューズ部(19)が溶断する一方、金属化フィルム(11)に存在する絶縁欠陥部(41)の周辺の金属膜(14)が放電破壊して除去される。上記ヒューズ部(19)が溶断すると、一の分割膜(14a)が他の分割膜(14b)から切り離される。これらにより、ヒューズ部(19)が溶断し、且つ絶縁欠陥部(41)の周辺の金属膜(14)が除去されることで金属化フィルム(11)の絶縁性が確保される。 Specifically, in the fusing process, a predetermined voltage is applied to a region corresponding to one divided film (14a) of the metallized film (11) to form an electric resistance in a predetermined range in the film member (12). The defective part (42) is shorted by dielectric breakdown. When the predetermined voltage is applied while the defective part (42) is short-circuited, the current concentrates in the fuse part (19) and the fuse part (19) is blown, while the metal part (11) exists. The metal film (14) around the insulating defect (41) is removed by discharge breakdown. When the fuse part (19) is melted, one divided film (14a) is cut off from the other divided film (14b). As a result, the fuse part (19) is melted and the metal film (14) around the insulating defect part (41) is removed, so that the insulating property of the metallized film (11) is ensured.
  第3の発明は、上記第1または第2の発明において、上記フィルム部材(12)は、高ガラス転移点材料で構成されている。 According to a third invention, in the first or second invention, the film member (12) is made of a high glass transition point material.
  上記第3の発明では、高ガラス転移点材料からなるフィルム部材(12)を用いて金属化フィルム(11)が構成されている。 In the third aspect of the invention, the metallized film (11) is configured using a film member (12) made of a high glass transition point material.
  ここで、高ガラス転移点材料からなるフィルムは、絶縁欠陥部が小さく形成されるため、従来のプレヒーリング工程を行うと、金属膜の除去面積も小さくなり、金属化フィルムの絶縁不良が生じることがあった。しかしながら、プレヒーリングの印加電圧を上げると、絶縁破壊によって金属化フィルムが永久短絡してしまうという問題があった。つまり、高ガラス転移点材料からなるフィルムを用いた金属化フィルムに対するプレヒーリングは、自己回復性が低いという課題があった。 Here, since a film made of a high glass transition point material has a small insulating defect portion, when the conventional pre-healing process is performed, the removal area of the metal film is also reduced, resulting in poor insulation of the metallized film. was there. However, when the applied voltage for pre-healing is increased, there is a problem that the metallized film is permanently short-circuited due to dielectric breakdown. That is, pre-healing for a metallized film using a film made of a high glass transition point material has a problem of low self-healing properties.
  本発明では、高ガラス転移点材料からなるフィルム部材(12)に対して溶断工程を行うと、比較的小さい大きさの絶縁欠陥部(41)は絶縁破壊して永久短絡し、上記絶縁欠陥部(41)が短絡した状態で、上記所定電圧が印加されると、ヒューズ部(19)に電流が集中して該ヒューズ部(19)が溶断する。上記ヒューズ部(19)が溶断すると、該ヒューズ部(19)が形成された一の分割膜(14a)が他の分割膜(14b)から切り離される。これにより、金属化フィルム(11)の絶縁性が確保される。 In the present invention, when the fusing process is performed on the film member (12) made of the high glass transition point material, the insulation defect portion (41) having a relatively small size is dielectrically broken to cause a permanent short circuit, and the insulation defect portion When the predetermined voltage is applied in a state where (41) is short-circuited, current concentrates on the fuse portion (19) and the fuse portion (19) is melted. When the fuse part (19) is melted, one divided film (14a) in which the fuse part (19) is formed is separated from the other divided film (14b). Thereby, the insulation of a metallized film (11) is ensured.
  第4の発明は、上記第1~第3の発明の何れか1つにおいて、上記プレヒーリング工程または溶断工程における上記金属化フィルム(11)の印加電圧は、交流電圧に構成されている。 According to a fourth invention, in any one of the first to third inventions, an applied voltage of the metallized film (11) in the pre-healing step or the fusing step is configured as an AC voltage.
  上記第4の発明では、プレヒーリング工程または溶断工程において、金属化フィルム(11)に交流電圧を印加する。 In the fourth invention, an AC voltage is applied to the metallized film (11) in the pre-healing process or the fusing process.
  ここで、金属化フィルムに直流電圧を印加すると、フィルム部材(12)内の電荷が分極して帯電電荷が残留することがある。しかしながら、交流電圧を印加すると、フィルム部材(12)内の電荷が分極することがない。このため、金属化フィルム(11)に帯電電荷が残留することがないため、後工程で、しわ等の問題が生じない。 Here, when a DC voltage is applied to the metallized film, the charge in the film member (12) may be polarized and the charged charge may remain. However, when an AC voltage is applied, the charges in the film member (12) are not polarized. For this reason, charged charges do not remain in the metallized film (11), so that problems such as wrinkles do not occur in the subsequent process.
  第5の発明は、上記第1~第4の発明の何れか1つにおいて、上記金属化フィルム(11)のフィルム部材(12)は、塗工法によって形成されている。 According to a fifth invention, in any one of the first to fourth inventions, the film member (12) of the metallized film (11) is formed by a coating method.
  上記第5の発明では、フィルム部材(12)を塗工法により形成している。 In the fifth invention, the film member (12) is formed by a coating method.
  ここで、塗工法では、ポリマー材料や高誘電率材料を溶剤に熔解させて塗料にし、塗布した塗料を乾燥させることでフィルムを製造している。このため、フィルムの内部において、高誘電体材料の濃度が位置によって大きく異なる。これにより、フィルム内には、高誘電体材料の濃度が比較的薄い部分に所定範囲の電気抵抗に形成される欠陥部分が存在することがある。 Here, in the coating method, a film is manufactured by melting a polymer material or a high dielectric constant material in a solvent to form a paint, and drying the applied paint. For this reason, the concentration of the high dielectric material varies greatly depending on the position in the film. Thereby, in the film, there may be a defect portion formed in a predetermined range of electric resistance in a portion where the concentration of the high dielectric material is relatively thin.
  しかしながら、本発明では、溶断工程を行うことで、所定範囲の電気抵抗に形成される欠陥部分(42)を絶縁破壊により短絡させてヒューズ部(19)を溶断することができる。これにより、ヒューズ部(19)が形成された一の分割膜(14a)が他の分割膜(14b)から切り離されて金属化フィルム(11)の絶縁性が確保される。 However, in the present invention, by performing the fusing process, the defective part (42) formed in the electric resistance within a predetermined range can be short-circuited by dielectric breakdown, so that the fuse part (19) can be blown. Thereby, one division film (14a) in which the fuse part (19) is formed is cut off from the other division film (14b), and insulation of the metallized film (11) is ensured.
  第6の発明は、フィルム部材(12)と、該フィルム部材(12)の少なくとも一方の面に金属膜(14)が形成された金属化フィルム(11)とを備え、該金属化フィルム(11)を巻回して形成されるフィルムコンデンサである。そして、上記金属化フィルム(11)は、上記金属膜(14)がスリット(17,18)によって電気的に分割された複数の分割膜(14a,14b)と、該分割膜(14a,14b)の間を電気的に接続すると共に、上記金属化フィルム(11)における所定範囲の電気抵抗に形成される欠陥部分(42)を短絡させることによって溶断可能なヒューズ部(19)とを備えている。 A sixth invention includes a film member (12) and a metallized film (11) having a metal film (14) formed on at least one surface of the film member (12), and the metallized film (11 ) Is a film capacitor formed by winding. The metallized film (11) includes a plurality of divided films (14a, 14b) in which the metal film (14) is electrically divided by slits (17, 18), and the divided films (14a, 14b). And a fuse portion (19) that can be blown by short-circuiting a defective portion (42) formed in an electric resistance within a predetermined range in the metallized film (11). .
  上記第6の発明では、金属化フィルム(11)は、フィルム部材(12)の少なくとも一方の面に金属膜(14)が形成されて構成されている。また、金属化フィルム(11)の金属膜(14)は、スリット(17,18)で電気的に分割されて分割膜(14a,14b)に構成されている。 In the sixth aspect of the invention, the metallized film (11) is configured by forming a metal film (14) on at least one surface of the film member (12). Further, the metal film (14) of the metallized film (11) is electrically divided by the slits (17, 18) to form divided films (14a, 14b).
  ここで、上記金属化フィルム(11)には、低電気抵抗部分である絶縁欠陥部(41)と、所定範囲の電気抵抗部分である欠陥部分(42)とが存在する場合がある。 Here, the metallized film (11) may have an insulation defect portion (41) which is a low electric resistance portion and a defect portion (42) which is an electric resistance portion within a predetermined range.
  このような場合に、金属化フィルム(11)の一の分割膜(14a)に対応する領域に対し、所定の電圧を印加してフィルム部材(12)における所定範囲の電気抵抗に形成される欠陥部分(42)が絶縁破壊されて短絡する。上記欠陥部分(42)が短絡した状態で、上記所定の電圧を印加すると、ヒューズ部(19)に電流が集中してヒューズ部(19)が溶断する。 In such a case, a defect formed in a predetermined range of electrical resistance in the film member (12) by applying a predetermined voltage to the region corresponding to one divided film (14a) of the metallized film (11) The part (42) breaks down and shorts. When the predetermined voltage is applied in a state where the defective portion (42) is short-circuited, current is concentrated in the fuse portion (19), and the fuse portion (19) is melted.
  一方、上記金属化フィルム(11)に所定範囲の電気抵抗に形成される欠陥部分(42)が存在しない場合、上記金属化フィルム(11)には、ヒューズ部(19)が存在することになる。 On the other hand, if the metallized film (11) does not have a defect portion (42) formed in an electric resistance within a predetermined range, the metallized film (11) has a fuse portion (19). .
  上記第1の発明によれば、プレヒーリング工程と溶断工程とを両方行うようにしたため、絶縁欠陥部(41)の周辺の金属膜(14)を放電破壊させる一方、所定範囲の電気抵抗に形成される欠陥部分(42)を短絡させてヒューズ部(19)を溶断することができる。これにより、絶縁欠陥部(41)の周辺の金属膜(14)を除去することができる一方、欠陥部分(42)を有する分割膜(14a)を切り離すことができる。この結果、金属化フィルム(11)に絶縁欠陥部(41)または欠陥部分(42)が形成された場合であってもフィルムコンデンサの絶縁性を確保することができる。 According to the first aspect of the invention, since both the pre-healing step and the fusing step are performed, the metal film (14) around the insulating defect portion (41) is destroyed by discharge while being formed to have an electric resistance within a predetermined range. The fuse portion (19) can be blown by short-circuiting the defective portion (42) to be formed. Thereby, the metal film (14) around the insulating defect portion (41) can be removed, while the divided film (14a) having the defect portion (42) can be separated. As a result, the insulating properties of the film capacitor can be ensured even when the insulation defect portion (41) or the defect portion (42) is formed on the metallized film (11).
  上記第2の発明では、プレヒーリング工程と同時に行われる溶断工程において、金属化フィルム(11)に所定電圧を印加している。このため、絶縁欠陥部(41)の周辺の金属膜(14)を放電破壊させて除去する一方、欠陥部分(42)を短絡させてヒューズ部(19)を溶断することができる。これにより、溶断工程とプレヒーリング工程とを同時に行うことができる。 In the second invention, a predetermined voltage is applied to the metallized film (11) in the fusing step that is performed simultaneously with the pre-healing step. For this reason, while the metal film (14) around the insulation defect part (41) is removed by discharge breakdown, the defect part (42) can be short-circuited to blow the fuse part (19). Thereby, a fusing process and a pre-healing process can be performed simultaneously.
  上記第3の発明によれば、高ガラス転移点材料によりフィルム部材(12)を構成したため、溶断工程によって絶縁欠陥部(41)が形成されるヒューズ部(19)を溶断させることができる。つまり、プレヒーリング工程では除去できない程度の小さな絶縁欠陥部(41)が形成されても、ヒューズ部(19)を溶断することで金属化フィルム(11)の絶縁性を確保することができる。これにより、高ガラス転移点材料によりフィルム部材(12)を用いたフィルムコンデンサの絶縁性を確保することができる。 According to the third aspect of the invention, since the film member (12) is made of the high glass transition point material, the fuse part (19) in which the insulation defect part (41) is formed by the fusing process can be blown. That is, even if an insulation defect portion (41) that is too small to be removed by the pre-healing process is formed, the insulation of the metallized film (11) can be ensured by fusing the fuse portion (19). Thereby, the insulation of the film capacitor using the film member (12) can be ensured by the high glass transition point material.
  上記第4の発明によれば、溶断工程、またはプレヒーリング工程において金属化フィルム(11)に交流電圧を印加したため、フィルム部材(12)内の電荷の分極を防止することができる。これにより、金属化フィルム(11)への帯電電荷の残留を防止することができるため、後工程での、しわ等の問題を確実に防止することができる。 According to the fourth invention, since an alternating voltage is applied to the metallized film (11) in the fusing process or the pre-healing process, it is possible to prevent the polarization of charges in the film member (12). As a result, it is possible to prevent the charged charges from remaining on the metallized film (11), so that problems such as wrinkles in the subsequent steps can be reliably prevented.
  上記第5の発明では、塗工法によりフィルム部材(12)を構成しているため、フィルム部材(12)の内部に欠陥部分(42)が存在する場合がある。しかしながら、溶断工程によって欠陥部分(42)を絶縁破壊させて短絡させることができる。これにより、電流を集中させてヒューズ部(19)を溶断することができるため、欠陥部分(42)を有する分割膜(14a)を切り離すことができる。この結果、金属化フィルム(11)に絶縁欠陥部(41)、または欠陥部分(42)が形成された場合であってもフィルムコンデンサの絶縁性を確保することができる。 In the fifth aspect, since the film member (12) is formed by the coating method, a defective portion (42) may exist inside the film member (12). However, the defective part (42) can be short-circuited by dielectric breakdown by the fusing process. Thereby, the current can be concentrated and the fuse portion (19) can be blown, so that the divided film (14a) having the defective portion (42) can be separated. As a result, the insulation of the film capacitor can be ensured even when the insulating defect portion (41) or the defective portion (42) is formed on the metallized film (11).
  上記第6の発明によれば、ヒューズ部(19)が形成されているため、溶断工程によって上記ヒューズ部(19)を溶断することができる。これにより、金属化フィルム(11)に欠陥部分(42)が存在した場合でもフィルムコンデンサの絶縁性を確保することができる。 According to the sixth aspect of the invention, since the fuse part (19) is formed, the fuse part (19) can be blown by a fusing process. Thereby, even when a defective part (42) exists in a metallized film (11), the insulation of a film capacitor is securable.
図1は、実施形態に係るフィルムコンデンサの概略構成を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a schematic configuration of a film capacitor according to an embodiment. 図2は、実施形態に係る2枚の金属化フィルムを重ね合わせた状態を示す断面図である。FIG. 2 is a cross-sectional view showing a state in which two metallized films according to the embodiment are overlapped. 図3は、実施形態に係る電圧印加装置の構成を示す概略断面図である。FIG. 3 is a schematic cross-sectional view illustrating the configuration of the voltage application device according to the embodiment. 図4は、実施形態に係る電圧印加装置の構成を示す概略斜視図である。FIG. 4 is a schematic perspective view illustrating the configuration of the voltage application device according to the embodiment. 図5は、実施形態に係る溶断工程と同時に行われるプレヒーリング工程前の金属化フィルムの状態を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing the state of the metallized film before the pre-healing step performed simultaneously with the fusing step according to the embodiment. 図6は、実施形態に係る溶断工程と同時に行われるプレヒーリング工程後の金属化フィルムの状態を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing the state of the metallized film after the pre-healing process performed simultaneously with the fusing process according to the embodiment. 図7は、実施形態に係る溶断工程前の金属化フィルムの状態を示す概略斜視図である。FIG. 7 is a schematic perspective view showing a state of the metallized film before the fusing process according to the embodiment. 図8は、実施形態に係る溶断工程後の金属化フィルムの状態を示す概略斜視図である。FIG. 8 is a schematic perspective view showing a state of the metallized film after the fusing process according to the embodiment.
  以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
  -全体構成-
  図1及び図2に示すように、本発明の実施形態に係るフィルムコンデンサ(1)は、巻芯(13)に巻回されたコンデンサ素子(10)の両端部にメタリコン電極(23,23)が設けられたものであり、例えばインバータ回路とコンバータ回路との間の平滑コンデンサ等に用いられる。
-overall structure-
As shown in FIGS. 1 and 2, the film capacitor (1) according to the embodiment of the present invention has a metallicon electrode (23, 23) at both ends of a capacitor element (10) wound around a winding core (13). For example, it is used for a smoothing capacitor between an inverter circuit and a converter circuit.
  上記フィルムコンデンサ(1)は、コンデンサ素子(10)と、該コンデンサ素子(10)が巻回される巻芯(13)と、コンデンサ素子(10)の両端部に設けられた2つのメタリコン電極(23,23)と、それらのメタリコン電極(23)にそれぞれ電気的に接続された外部端子(21)と、コンデンサ素子(10)の外周面を覆うように配置される絶縁カバー(24)と、外部端子(21)を封止するための封止樹脂(22)とを備えている。 The film capacitor (1) includes a capacitor element (10), a core (13) around which the capacitor element (10) is wound, and two metallicon electrodes ( 23, 23), an external terminal (21) electrically connected to each of the metallicon electrodes (23), an insulating cover (24) disposed so as to cover the outer peripheral surface of the capacitor element (10), And a sealing resin (22) for sealing the external terminal (21).
  図2は、一対の金属化フィルム(11,11)を重ね合わせた状態を示す断面図である。図2に示すように、上記コンデンサ素子(10)は、帯状のフィルム(12)の片面に金属膜(14)を形成した一対の金属化フィルム(11,11)を厚み方向に2枚重ね合わせてなるもので、巻芯(13)の外周に巻回されるように構成されている。 FIG. 2 is a cross-sectional view showing a state in which a pair of metallized films (11, 11) are overlapped. As shown in FIG. 2, the capacitor element (10) is composed of a pair of metallized films (11, 11) in which a metal film (14) is formed on one side of a strip-shaped film (12). It is comprised so that it may be wound around the outer periphery of a core (13).
  上記フィルム(12)は、その厚さが3~10μm程度に形成されており、本発明に係るフィルム部材を構成している。フィルム(12)は、例えばPVDF系の誘電体フィルムからなる帯状のフィルムに構成されている。 The film (12) has a thickness of about 3 to 10 μm and constitutes a film member according to the present invention. The film (12) is configured as a belt-like film made of, for example, a PVDF-based dielectric film.
  また、上記フィルム(12)は、ポリマー材料や上記PVDF系の高誘電体材料を溶剤に熔解させて塗料にし、塗布した塗料を乾燥させる、いわゆる塗工法によって製造されている。このため、フィルム(12)の内部において、高誘電体材料の濃度が、その位置によって大きく異なる。これにより、フィルム(12)内には、比較的、高誘電体材料の濃度が低く形成される部分が存在することがある。また、フィルム(12)内に局所的な絶縁欠陥部分(局所絶縁欠陥部分)が形成される場合がある。この高誘電体材料の低濃度部分や局所絶縁欠陥部分は、電気抵抗が比較的、中抵抗に形成される部分であり、図7および図8に示すように、本実施形態では、このような部分を欠陥部分(42)としている。 The film (12) is manufactured by a so-called coating method in which a polymer material or the PVDF-based high dielectric material is dissolved in a solvent to form a paint, and the applied paint is dried. For this reason, in the film (12), the concentration of the high dielectric material varies greatly depending on its position. As a result, there may be a portion in the film (12) where the concentration of the high dielectric material is relatively low. Moreover, a local insulation defect part (local insulation defect part) may be formed in a film (12). The low-concentration portion and the local insulation defect portion of the high dielectric material are portions where the electric resistance is relatively formed to a medium resistance. As shown in FIGS. The part is a defective part (42).
  尚、本実施形態では、上記欠陥部分(42)の電気抵抗の範囲は、例示として、金属化フィルム(11)に対する300Vの電圧印加によって、欠陥部分(42)が絶縁破壊して短絡するものの、欠陥部分(42)の周辺の金属膜(14)が溶融除去されないような電気抵抗の範囲であって、本発明に係る所定範囲を構成している。 In this embodiment, the range of the electrical resistance of the defective portion (42) is, for example, although the defective portion (42) is shorted due to dielectric breakdown by applying a voltage of 300 V to the metallized film (11). This is an electric resistance range in which the metal film (14) around the defective portion (42) is not melted and removed, and constitutes a predetermined range according to the present invention.
  また、金属化フィルム(11)には、図5および図6に示すように、製造時に付着する異物、フィルムのしわ、または溶融した蒸着金属の突沸等を原因として絶縁欠陥部(41)が生じることがある。この絶縁欠陥部(41)は、金属化フィルム(11)を構成するフィルム(12)の内部で比較的低い電気抵抗に形成される部分である。 Further, as shown in FIG. 5 and FIG. 6, the metallized film (11) has an insulation defect (41) due to foreign matters adhering at the time of manufacture, wrinkles of the film, bumping of the molten deposited metal, or the like. Sometimes. This insulation defect part (41) is a part formed in a relatively low electric resistance inside the film (12) constituting the metallized film (11).
  上記金属膜(14)は、アルミニウム等の金属箔を蒸着させて形成された薄膜である。金属膜(14)は、その膜厚が50Å~400Å程度に形成されている。尚、本実施形態では、金属膜(14)としてアルミニウムを材料としたが、金属膜(14)の材料は、これに限られず、亜鉛等の金属材料を用いることができる。 The metal film (14) is a thin film formed by vapor-depositing a metal foil such as aluminum. The metal film (14) has a thickness of about 50 to 400 mm. In this embodiment, aluminum is used as the metal film (14). However, the material of the metal film (14) is not limited to this, and a metal material such as zinc can be used.
  また、上記金属化フィルム(11)は、図4に示すように、絶縁破壊による短絡を防止するためのヒューズ機構(16)と、メタリコン電極(23,23)を接続するためのサイドマージン(15)とを備えている。 Further, as shown in FIG. 4, the metallized film (11) has a side margin (15) for connecting a fuse mechanism (16) for preventing a short circuit due to a dielectric breakdown and a metallicon electrode (23, 23). ).
  上記サイドマージン(15)は、上記各フィルム(12)の片面の幅方向の一端側に形成されている。また、図示はしないが、一対の金属化フィルム(11,11)は、互いを左右方向に1mm程度、ずらした状態で重ねられている。この1mmの幅の領域に後述するメタリコン電極(23,23)が接触する。上記サイドマージン(15)は、フィルム(12)の表面のうち、金属膜(14)がコーティングされていない領域である。このサイドマージン(15)は、後述するメタリコン電極(23,23)と金属膜(14)との間に設けられて両部材を電気的に絶縁するものである。サイドマージン(15)は、金属化フィルム(11)の片面の幅方向の一端から他端側に2~3mmの幅をもって形成されている。 The side margin (15) is formed on one side in the width direction of one side of each film (12). Moreover, although not shown in figure, a pair of metallized films (11, 11) are piled up in the state which mutually shifted about 1 mm in the left-right direction. Metallicon electrodes (23, 23) to be described later are in contact with this 1 mm wide region. The side margin (15) is a region of the surface of the film (12) where the metal film (14) is not coated. The side margin (15) is provided between a metallicon electrode (23, 23), which will be described later, and a metal film (14) to electrically insulate both members. The side margin (15) is formed with a width of 2 to 3 mm from one end to the other end in the width direction of one side of the metallized film (11).
  上記ヒューズ機構(16)は、金属化フィルム(11)のフィルム(12)に欠陥部分(42)が発生した場合であっても、該金属化フィルム(11)の絶縁性を確保するためのものである。つまり、フィルムコンデンサ(1)は、ヒューズ機構(16)によって短絡の故障を防止している。ヒューズ機構(16)は、金属膜(14)を複数の分割膜(14a,14b)に分割する分割スリット(17)と、ヒューズ(19)を形成するための一対のヒューズスリット(18,18)とで構成されている。尚、分割スリット(17)及びヒューズスリット(18)は、本発明に係るスリットを構成している。 The fuse mechanism (16) is for ensuring the insulation of the metallized film (11) even if a defective part (42) occurs in the film (12) of the metallized film (11). It is. That is, the film capacitor (1) prevents a short circuit failure by the fuse mechanism (16). The fuse mechanism (16) includes a split slit (17) for dividing the metal film (14) into a plurality of split films (14a, 14b) and a pair of fuse slits (18, 18) for forming the fuse (19) It consists of and. The split slit (17) and the fuse slit (18) constitute a slit according to the present invention.
  上記巻芯(13)は、円筒状の樹脂部材で構成されている。尚、この円筒状の巻芯(13)の内部には、金属製の芯部を設けてもよい。この場合、芯部は、メタリコン電極(23)を介して外部端子(21)に接続されていて、一対の金属化フィルム(11)で発生した熱を芯部からメタリコン電極(23)及び外部端子(21)を介して外部へ放出している。 The core (13) is made of a cylindrical resin member. Note that a metal core portion may be provided inside the cylindrical core (13). In this case, the core is connected to the external terminal (21) via the metallicon electrode (23), and heat generated in the pair of metallized films (11) is transferred from the core to the metallicon electrode (23) and the external terminal. It is discharged to the outside via (21).
  上記メタリコン電極(23)は、巻芯(13)に巻回されて略円柱状に形成されたコンデンサ素子(10)の軸方向両端にそれぞれ設けられている。このメタリコン電極(23)は、それぞれ、コンデンサ素子(10)の軸方向端部に金属を溶射することによって形成され、コンデンサ素子(10)の軸方向端部においてはみ出している一対の金属化フィルム(11,11)とそれぞれ電気的に導通している。 The metallicon electrode (23) is provided at both ends in the axial direction of the capacitor element (10) which is wound around the winding core (13) and formed in a substantially cylindrical shape. Each of the metallicon electrodes (23) is formed by spraying a metal on the axial end portion of the capacitor element (10) and protrudes from the axial end portion of the capacitor element (10). 11 and 11) are electrically connected to each other.
  上記外部端子(21)は、その基端部が巻芯(13)に対応する位置で、メタリコン電極(23)と電気的に接続されている。これらの外部端子(21)は、メタリコン電極(23)の径方向外方に向かって延び、その先端部が封止樹脂(22)から外方に突出して基板(26)等に接続されている。 The external terminal (21) is electrically connected to the metallicon electrode (23) at a position corresponding to the core (13) at the base end. These external terminals (21) extend outward in the radial direction of the metallicon electrode (23), and their tips protrude outward from the sealing resin (22) and are connected to the substrate (26) and the like. .
  上記絶縁カバー(24)は、樹脂材料からなるシート状の部材を、円筒状のコンデンサ素子(10)の外周面に沿うように丸めて円筒状にしたものである。この絶縁カバー(24)は、コンデンサ素子(10)の全体を覆うように設けられている。尚、コンデンサ素子(10)の外周側を覆うように絶縁カバー(24)を配設しているが、この限りではなく、絶縁カバー(24)がなく、該コンデンサ素子(10)を封止樹脂(22)で直接、封止するような構成であってもよい。 The insulating cover (24) is a cylindrical member obtained by rolling a sheet-like member made of a resin material along the outer peripheral surface of the cylindrical capacitor element (10). The insulating cover (24) is provided so as to cover the entire capacitor element (10). The insulating cover (24) is disposed so as to cover the outer peripheral side of the capacitor element (10). However, the insulating cover (24) is not limited to this, and the capacitor element (10) is sealed with sealing resin. It may be configured to be directly sealed in (22).
  上記封止樹脂(22)は、絶縁カバー(24)の外周側、メタリコン電極(23)及び外部端子(21)の基端部を封止するように設けられている。すなわち、この封止樹脂(22)は、外部端子(21)の先端側を除いて、フィルムコンデンサ(1)の構成部品全体を覆うように設けられている。 The sealing resin (22) is provided so as to seal the outer peripheral side of the insulating cover (24), the base end portions of the metallicon electrode (23) and the external terminal (21). That is, the sealing resin (22) is provided so as to cover the entire components of the film capacitor (1) except for the front end side of the external terminal (21).
      -電圧印加装置-
  図3及び図4に示すように、電圧印加装置(30)は、一の金属化フィルム(11)がロール状に巻き付けられた上流側ローラ(図示なし)から、この金属化フィルム(11)を引き出して下流側ローラ(図示なし)で巻き取り、その搬送途中で金属化フィルム(11)に対して所定電圧を印加し、金属化フィルム(11)に存在する上記絶縁欠陥部(41)の周辺の蒸着金属を除去する一方、欠陥部分(42)を絶縁破壊させて短絡させるものである。
-Voltage application device-
As shown in FIGS. 3 and 4, the voltage application device (30) is configured to remove the metallized film (11) from an upstream roller (not shown) around which one metallized film (11) is wound in a roll shape. Pulled out and wound up by a downstream roller (not shown), applied a predetermined voltage to the metallized film (11) in the middle of its conveyance, and around the insulation defect (41) present in the metallized film (11) While removing the deposited metal, the defective portion (42) is short-circuited by dielectric breakdown.
  上記金属化フィルム(11)の一方の面(図3では上側の面)には、長さ方向に一様に連続する金属膜(14)が蒸着形成されている。 A metal film (14) that is uniformly continuous in the length direction is deposited on one surface (the upper surface in FIG. 3) of the metallized film (11).
  上記上流側ローラと下流側ローラとの間の搬送経路には、金属化フィルム(11)に対して電圧を印加する電圧印加ユニット(32)が配設されている。 A voltage application unit (32) for applying a voltage to the metallized film (11) is disposed in the conveyance path between the upstream roller and the downstream roller.
  上記電圧印加ユニット(32)は、電源部(34)から電圧印加ローラ(33)を介して金属化フィルム(11)に対して所定電圧を印加することで金属化フィルム(11)に存在する絶縁欠陥部(41)の周辺の蒸着金属を除去すると共に、欠陥部分(42)を絶縁破壊させてヒューズ(19)を溶断させるものである。上記電圧印加ユニット(32)は、電圧印加ローラ(33)と接地ローラ(35)と電源部(34)とを備えている。 The voltage application unit (32) is configured to apply insulation to the metallized film (11) by applying a predetermined voltage to the metallized film (11) from the power source (34) via the voltage application roller (33). While removing the vapor deposition metal around the defective portion (41), the defective portion (42) is dielectrically broken to blow the fuse (19). The voltage application unit (32) includes a voltage application roller (33), a grounding roller (35), and a power supply unit (34).
  上記電圧印加ローラ(33)は、接地ローラ(35)よりも搬送方向の上流側に配置され、且つその外周面が金属化フィルム(11)に対して下側から押し付けられて設けられ、金属化フィルム(11)の金属膜(14)の未形成面(非蒸着面)に対して当接している。 The voltage application roller (33) is disposed upstream of the ground roller (35) in the transport direction, and its outer peripheral surface is pressed against the metallized film (11) from below to provide metallization. The film (11) is in contact with the non-formed surface (non-deposition surface) of the metal film (14).
  上記接地ローラ(35)は、その外周面が金属化フィルム(11)に対して上側から押し付けられて設けられ、金属化フィルム(11)の金属膜(14)の形成面(蒸着面)に対して当接するように配置されている。 The grounding roller (35) is provided with its outer peripheral surface pressed against the metallized film (11) from above, with respect to the metal film (14) formation surface (vapor deposition surface) of the metallized film (11). Are arranged so as to contact each other.
  上記電源部(34)は、直流電源に構成されている。上記電源部(34)は、例示として電圧印加ローラ(33)から金属化フィルム(11)に対して約300Vの直流電圧を付与するように構成されている。この約300Vの印加電圧は、本発明に係る所定電圧を構成している。 The power supply unit (34) is configured as a DC power supply. The power supply unit (34) is configured to apply a DC voltage of about 300 V to the metallized film (11) from the voltage application roller (33) as an example. This applied voltage of about 300 V constitutes a predetermined voltage according to the present invention.
  尚、電圧印加ローラ(33)から金属化フィルム(11)に印加される電圧は300Vに限られず、フィルムの厚みや絶縁耐力等によって適切な電圧に設定することができる。しかしながら、印加電圧を高めることで、金属化フィルム(11)が絶縁破壊や熱破壊によって完全に短絡してもヒューズ(19)が溶断するため、金属化フィルム(11)の絶縁性は確保できる。したがって、印加電圧は高めに設定することが好ましい。 The voltage applied from the voltage application roller (33) to the metallized film (11) is not limited to 300V, and can be set to an appropriate voltage depending on the thickness of the film and the dielectric strength. However, by increasing the applied voltage, the fuse (19) is melted even if the metallized film (11) is completely short-circuited due to dielectric breakdown or thermal breakdown, so that the insulation of the metallized film (11) can be ensured. Therefore, it is preferable to set the applied voltage higher.
  これらの構成により、金属化フィルム(11)の金属膜(14)の未形成面(非蒸着面)に対して電源部(34)からの約300Vの電圧が印加される。プレヒーリング用の電圧は高電圧であるため、金属膜(14)の未形成面(非蒸着面)に対して電圧を印加する方が安全面から好ましい。 With these configurations, a voltage of about 300 V from the power supply unit (34) is applied to the non-formed surface (non-deposition surface) of the metal film (14) of the metallized film (11). Since the pre-healing voltage is a high voltage, it is preferable from the viewpoint of safety to apply a voltage to the non-formed surface (non-deposition surface) of the metal film (14).
    -フィルムコンデンサの製造工程-
  フィルムコンデンサ(1)の製造は、まず、金属化フィルム(11)の形成工程が行われる。
-Film capacitor manufacturing process-
In the production of the film capacitor (1), first, a forming process of the metallized film (11) is performed.
  上記形成工程では、図示はしないが、600mm幅の広幅長尺のロールフィルム原反に、サイドマージン(15)、分割スリット(17)、及びヒューズスリット(18)を作るためのマスク処理を行う。このマスク処理は、オイルマスク、またはテープマスクを用いて行われる。次に、ロールフィルム原反に真空蒸着機でアルミニウム(Al)を蒸着して金属膜(14)を形成する。そして、ロールフィルム原反をカットすることで金属化フィルム(11)が完成する。 In the above forming step, although not shown, mask processing is performed to form side margins (15), split slits (17), and fuse slits (18) on a wide roll original film having a width of 600 mm. This mask process is performed using an oil mask or a tape mask. Next, aluminum (Al) is vapor-deposited on the roll film original with a vacuum vapor deposition machine to form a metal film (14). And the metallized film (11) is completed by cutting a roll film original fabric.
  次に、プレヒーリング工程及び溶断工程が行われる。このプレヒーリング工程及び溶断工程は、電圧印加装置(30)を用いて行われる。尚、本実施形態では、溶断工程は、プレヒーリング工程と同時に行われるが、溶断工程は、プレヒーリング工程の前または後に行われてもよい。 Next, a pre-healing process and a fusing process are performed. The pre-healing step and the fusing step are performed using a voltage application device (30). In this embodiment, the fusing process is performed simultaneously with the pre-healing process, but the fusing process may be performed before or after the pre-healing process.
  上記溶断工程及びプレヒーリング工程では、金属化フィルム(11)の金属膜(14)の未形成面(非蒸着面)に対して電源部(34)からの約300Vの電圧が印加される。つまり、溶断工程とプレヒーリング工程は、一回の電圧印加によって同時に行われる。 In the fusing step and the pre-healing step, a voltage of about 300 V is applied from the power supply unit (34) to the non-formed surface (non-deposition surface) of the metal film (14) of the metallized film (11). That is, the fusing process and the pre-healing process are performed simultaneously by applying a single voltage.
  図5及び図6に示すように、金属化フィルム(11)の金属膜(14)の未形成面(非蒸着面)に対して電源部(34)からの約300Vの電圧が印加されると、絶縁欠陥部(41)の周辺の金属膜(14)が放電破壊によって溶融除去される。これにより、フィルム(12)の絶縁欠陥部(41)に電流が流れることがなくなり、金属化フィルム(11)の絶縁性が確保される(プレヒーリング工程)。 As shown in FIGS. 5 and 6, when a voltage of about 300 V is applied from the power supply unit (34) to the non-formed surface (non-deposition surface) of the metal film (14) of the metallized film (11). Then, the metal film (14) around the insulating defect (41) is melted and removed by discharge breakdown. Thereby, an electric current does not flow into the insulation defect part (41) of a film (12), and the insulation of a metallized film (11) is ensured (prehealing process).
  また、同時に、金属化フィルム(11)の金属膜(14)の未形成面(非蒸着面)に対して電源部(34)からの約300Vの電圧が印加されると、図7に示すように、欠陥部分(42)を介して電流が流れる。電流が流れることで欠陥部分(42)は自己発熱し、フィルム(12)が熱破壊され、金属化フィルム(11)が完全に短絡する。このため、図7及び図8に示すように、金属化フィルム(11)に対して大きな電流が流れ、ヒューズ(19)に大きな電流が集中し、ヒューズ(19)の金属膜(14)が溶融して一対のヒューズスリット(18)の終端同士が繋がり、これにより、ヒューズ(19)が溶断される。ヒューズ(19)が溶断されると、ヒューズ(19)が形成された分割膜(14a)がその他の分割膜(14b)から切り離されるため、金属化フィルム(11)の絶縁性が確保される(溶断工程)。尚、ヒューズ(19)が溶断される電流値は、ヒューズ(19)部分が導通によって溶断するに至るときの電流の平均値をいい、一般的には、10~1000ミリアンペアの範囲になる。 At the same time, when a voltage of about 300 V from the power supply unit (34) is applied to the non-formed surface (non-deposition surface) of the metal film (14) of the metallized film (11), as shown in FIG. In addition, a current flows through the defective portion (42). When the current flows, the defective portion (42) self-heats, the film (12) is thermally destroyed, and the metallized film (11) is completely short-circuited. Therefore, as shown in FIGS. 7 and 8, a large current flows through the metallized film (11), a large current is concentrated in the fuse (19), and the metal film (14) of the fuse (19) is melted. Thus, the ends of the pair of fuse slits (18) are connected to each other, whereby the fuse (19) is melted. When the fuse (19) is blown, the divided film (14a) in which the fuse (19) is formed is cut off from the other divided films (14b), so that the insulating property of the metallized film (11) is ensured ( Fusing process). The current value at which the fuse (19) is blown refers to the average value of the current when the fuse (19) part is blown by conduction, and is generally in the range of 10 to 1000 milliamperes.
  最後に、この金属化フィルム(11)を2枚重ねにして巻回機にかけて巻芯(13)に巻回する。巻回して形成したコンデンサ素子(10)の幅方向両端にメタリコン電極(23,23)を接続し、外部端子(21)と、絶縁カバー(24)を取り付け、封止樹脂(22)で覆うことでフィルムコンデンサ(1)が完成する。 Finally, two layers of this metallized film (11) are stacked and wound on a winding core (13) through a winding machine. Connect the metallicon electrodes (23, 23) to both ends of the wound capacitor element (10) in the width direction, attach the external terminals (21) and the insulating cover (24), and cover with the sealing resin (22) This completes the film capacitor (1).
    -比較例-
  上記本実施形態による形成工程、溶断工程及びプレヒーリング工程によりフィルムコンデンサ(1)を製造した場合、10個のサンプルのうち、金属化フィルム(11)の絶縁欠陥部(41)や欠陥部分(42)に起因してフィルムコンデンサ(1)の絶縁不良が発生するものはなかった。
-Comparison example-
When the film capacitor (1) is manufactured by the formation process, the fusing process and the pre-healing process according to the present embodiment, the insulating defect part (41) and the defect part (42) of the metallized film (11) among the ten samples. ) Caused no poor insulation of the film capacitor (1).
  一方、本実施形態の形成工程、溶断工程及びプレヒーリング工程を行うことなくフィルムコンデンサ(1)を製造した場合、10個のサンプルのうち、5つにおいて、金属化フィルム(11)の絶縁欠陥部(41)や欠陥部分(42)に起因してフィルムコンデンサ(1)の絶縁不良が発生した。尚、残りの5つについては、金属化フィルム(11)中に絶縁欠陥部(41)や欠陥部分(42)が存在していない。 On the other hand, when the film capacitor (1) is manufactured without performing the forming process, the fusing process, and the pre-healing process of the present embodiment, the insulation defect portion of the metallized film (11) in five of the ten samples. The insulation failure of the film capacitor (1) occurred due to (41) and the defective part (42). In addition, about the remaining five, an insulation defect part (41) and a defect part (42) do not exist in a metallized film (11).
    -実施形態の効果-
  上記実施形態によれば、プレヒーリング工程と溶断工程とを両方行うようにしたため、絶縁欠陥部(41)の周辺の金属膜(14)を放電破壊させる一方、欠陥部分(42)を短絡させてヒューズ部(19)を溶断することができる。これにより、絶縁欠陥部(41)の周辺の金属膜(14)を除去することができる一方、欠陥部分(42)が形成された分割膜(14a)を切り離すことができる。この結果、金属化フィルム(11)に絶縁欠陥部(41)または欠陥部分(42)が形成されても、フィルムコンデンサの絶縁性を確保することができる。
-Effects of the embodiment-
According to the above embodiment, since both the pre-healing step and the fusing step are performed, the metal film (14) around the insulating defect portion (41) is discharged and destroyed while the defect portion (42) is short-circuited. The fuse part (19) can be blown. As a result, the metal film (14) around the insulating defect portion (41) can be removed, while the divided film (14a) in which the defect portion (42) is formed can be separated. As a result, even if an insulation defect part (41) or a defect part (42) is formed in the metallized film (11), the insulation of the film capacitor can be ensured.
  また、プレヒーリング工程と同時に行われる溶断工程において、金属化フィルム(11)に対して300Vを印加している。このため、絶縁欠陥部(41)の周辺の金属膜(14)を放電破壊させて除去する一方、欠陥部分(42)を短絡させてヒューズ部(19)を溶断することができる。これにより、溶断工程とプレヒーリング工程とを同時に行うことができる。 Also, 300V is applied to the metallized film (11) in the fusing process performed simultaneously with the pre-healing process. For this reason, while the metal film (14) around the insulation defect part (41) is removed by discharge breakdown, the defect part (42) can be short-circuited to blow the fuse part (19). Thereby, a fusing process and a pre-healing process can be performed simultaneously.
  さらに、本実施形態では、塗工法によりフィルム(12)を形成しているため、塗工法により形成されたフィルム(12)内に欠陥部分(42)が存在する場合がある。しかしながら、溶断工程によって欠陥部分(42)を絶縁破壊させて短絡させることができる。これにより、ヒューズ(19)を溶断することができるため、欠陥部分(42)が形成された分割膜(14a)を切り離すことができる。この結果、金属化フィルム(11)に絶縁欠陥部(41)または欠陥部分(42)が形成されても、フィルムコンデンサの絶縁性を確保することができる。 Furthermore, in this embodiment, since the film (12) is formed by the coating method, a defective portion (42) may exist in the film (12) formed by the coating method. However, the defective part (42) can be short-circuited by dielectric breakdown by the fusing process. Thereby, since the fuse (19) can be blown, the divided film (14a) in which the defective portion (42) is formed can be cut off. As a result, even if an insulation defect part (41) or a defect part (42) is formed in the metallized film (11), the insulation of the film capacitor can be ensured.
  最後に、ヒューズ(19)が形成されているため、溶断工程によって該ヒューズ(19)を溶断することができる。これにより、金属化フィルム(11)に欠陥部分(42)が存在した場合でも、フィルムコンデンサの絶縁性を確保することができる。 Finally, since the fuse (19) is formed, the fuse (19) can be blown by a fusing process. Thereby, even when a defect part (42) exists in a metallized film (11), the insulation of a film capacitor is securable.
  〈その他の実施形態〉
  本発明は、上記実施形態について、以下のような構成としてもよい。
<Other embodiments>
The present invention may be configured as follows with respect to the above embodiment.
  本実施形態では、フィルム(12)の材料としてPVDF系の誘電体フィルムを用いるようにしているが、フィルム(12)の材料は、これに限られない。また、フィルム(12)の材料としては、ガラス転移点の高い材料を用いることができ、例示として、ポリ塩化ビニル、ポリスチレン、ポリメチルメタクリレート、AS樹脂(スチレンとアクリロニトリルとを共重合した樹脂)、ポリカーボネート、ポリフェニレンオキサイド、ポリサルホン、ポリエーテルスルホン、ポリアリレート、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリアミノビスマレイミド、ナイロン46、ナイロンMXD6、ポリフェニレンサルファイド、ポリエーテルエーテルケトン等をフィルム(12)の材料として用いることができる。 In this embodiment, a PVDF dielectric film is used as the material of the film (12), but the material of the film (12) is not limited to this. In addition, as a material of the film (12), a material having a high glass transition point can be used. For example, polyvinyl chloride, polystyrene, polymethyl methacrylate, AS resin (resin obtained by copolymerizing styrene and acrylonitrile), Polycarbonate, polyphenylene oxide, polysulfone, polyethersulfone, polyarylate, polyetherimide, polyamideimide, polyimide, polyaminobismaleimide, nylon 46, nylon MXD6, polyphenylene sulfide, polyetheretherketone, etc. are used as the material of the film (12). be able to.
  ここで、上記ガラス転移点の高い材料によって構成されたフィルムは、他の材料からなるフィルムよりも絶縁欠陥部が小さく形成されるため(以下、局所絶縁欠陥部分という。)、プレヒーリングによって局所絶縁欠陥部分の周辺の金属膜を除去することができない。 Here, the film formed of the material having a high glass transition point has a smaller insulating defect than a film made of another material (hereinafter, referred to as a local insulating defect), and therefore is locally insulated by pre-healing. The metal film around the defective portion cannot be removed.
  しかしながら、高ガラス転移点材料によりフィルムを構成したため、溶断工程によって局所絶縁欠陥部分が形成される部分のヒューズを溶断させることができる。つまり、プレヒーリング工程では除去できない程度の小さな絶縁欠陥部(局所絶縁欠陥部)が形成されても、ヒューズを溶断することができため、高ガラス転移点材料によりなるフィルムを用いたフィルムコンデンサの絶縁性を確保することができる。 However, since the film is made of the high glass transition point material, the fuse in the part where the local insulation defect part is formed by the fusing process can be blown. In other words, even if a small insulation defect (local insulation defect) that cannot be removed by the pre-healing process is formed, the fuse can be blown, so that the insulation of the film capacitor using a film made of a high glass transition point material can be used. Sex can be secured.
  また、本実施形態では、溶断工程、またはプレヒーリング工程において、金属化フィルム(11)に印加する電圧として、直流電圧を用いたが、本発明は、これに限られず、交流電圧を印加するようにしてもよい。 In the present embodiment, a DC voltage is used as a voltage to be applied to the metallized film (11) in the fusing process or the pre-healing process. However, the present invention is not limited to this, and an AC voltage is applied. It may be.
  溶断工程、プレヒーリング工程において金属化フィルム(11)に交流電圧を印加すると、フィルム(12)内の電荷の分極を防止することができる。これにより、金属化フィルム(11)に帯電電荷が残留することがないため、後工程での、しわ等の問題を確実に防止することができる。 When an AC voltage is applied to the metallized film (11) in the fusing process and the pre-healing process, the polarization of charges in the film (12) can be prevented. Thereby, since a charged charge does not remain in the metallized film (11), problems such as wrinkles in a subsequent process can be surely prevented.
  尚、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 In addition, the above embodiment is an essentially preferable example, and is not intended to limit the scope of the present invention, its application, or its use.
  以上説明したように、本発明は、フィルムコンデンサ及びフィルムコンデンサの製造方法について有用である。 As described above, the present invention is useful for film capacitors and film capacitor manufacturing methods.
11     金属化フィルム
12     フィルム
14     金属膜
14a    分割膜
14b    分割膜
17     分割スリット
18     ヒューズスリット
19     ヒューズ
41     絶縁欠陥部
42     中抵抗部
DESCRIPTION OF SYMBOLS 11 Metallized film 12 Film 14 Metal film 14a Divided film 14b Divided film 17 Divided slit 18 Fuse slit 19 Fuse 41 Insulation defect part 42 Middle resistance part

Claims (6)

  1.   フィルム部材(12)の少なくとも一方の面に金属膜(14)が形成された金属化フィルム(11)を有するフィルムコンデンサの製造方法であって、
      上記金属膜(14)がスリット(17,18)によって電気的に分割される複数の分割膜(14a,14b)と、該分割膜(14a,14b)の間を電気的に接続させるヒューズ部(19)とを有する金属化フィルム(11)を形成する形成工程と、
      上記金属化フィルム(11)に電圧を印加し、該金属化フィルム(11)に存在する絶縁欠陥部(41)の周辺の上記金属膜(14)を除去するプレヒーリング工程と、
      上記プレヒーリング工程と同時、または該プレヒーリング工程の前もしくは後に、上記金属化フィルム(11)に、該金属化フィルム(11)における所定範囲の電気抵抗に形成される欠陥部分(42)を短絡させると共に、上記ヒューズ部(19)の溶断可能な電流が流れるように所定電圧を印加する溶断工程とを備えている
    ことを特徴とするフィルムコンデンサの製造方法。
    A method for producing a film capacitor having a metallized film (11) having a metal film (14) formed on at least one surface of a film member (12),
    A plurality of divided films (14a, 14b) in which the metal film (14) is electrically divided by the slits (17, 18) and a fuse portion (electrical connection between the divided films (14a, 14b)) And 19) forming a metallized film (11),
    Applying a voltage to the metallized film (11) to remove the metal film (14) around the insulation defect (41) present in the metallized film (11);
    Simultaneously with the pre-healing step or before or after the pre-healing step, the metallized film (11) is short-circuited with a defective portion (42) formed in a predetermined range of electric resistance in the metallized film (11). And a fusing step of applying a predetermined voltage so that a fusing current of the fuse portion (19) flows.
  2.   請求項1において、
      上記溶断工程は、上記金属化フィルム(11)に対して上記所定電圧を印加することで上記絶縁欠陥部(41)の周辺の金属膜(14)を除去するプレヒーリング工程が同時に行われる
    ことを特徴とするフィルムコンデンサの製造方法。
    In claim 1,
    In the fusing step, a pre-healing step of removing the metal film (14) around the insulation defect (41) by applying the predetermined voltage to the metallized film (11) is performed simultaneously. A method for producing a film capacitor.
  3.   請求項1または2において、
      上記フィルム部材(12)は、高ガラス転移点材料で構成されている
    ことを特徴とするフィルムコンデンサの製造方法。
    In claim 1 or 2,
    The method for producing a film capacitor, wherein the film member (12) is made of a high glass transition point material.
  4.   請求項1~3の何れか1つにおいて、
      上記プレヒーリング工程または溶断工程における上記金属化フィルム(11)の印加電圧は、交流電圧に構成されている
    ことを特徴とするフィルムコンデンサの製造方法。
    In any one of claims 1 to 3,
    The method for producing a film capacitor, wherein an applied voltage of the metallized film (11) in the pre-healing step or the fusing step is configured as an alternating voltage.
  5.   請求項1~4の何れか1つにおいて、
      上記金属化フィルム(11)のフィルム部材(12)は、塗工法によって形成されている
    ことを特徴とするフィルムコンデンサの製造方法。
    In any one of claims 1 to 4,
    A method for producing a film capacitor, wherein the film member (12) of the metallized film (11) is formed by a coating method.
  6.   フィルム部材(12)と、該フィルム部材(12)の少なくとも一方の面に金属膜(14)が形成された金属化フィルム(11)とを備え、該金属化フィルム(11)を巻回して形成されるフィルムコンデンサであって、
      上記金属化フィルム(11)は、上記金属膜(14)がスリット(17,18)によって電気的に分割された複数の分割膜(14a,14b)と、該分割膜(14a,14b)の間を電気的に接続すると共に、上記金属化フィルム(11)における所定範囲の電気抵抗に形成される欠陥部分(42)を短絡させることによって溶断可能なヒューズ部(19)とを備えている
    ことを特徴とするフィルムコンデンサ。
    A film member (12) and a metallized film (11) having a metal film (14) formed on at least one surface of the film member (12) are formed by winding the metallized film (11). A film capacitor,
    The metallized film (11) includes a plurality of divided films (14a, 14b) in which the metal film (14) is electrically divided by slits (17, 18) and the divided films (14a, 14b). And a fuse portion (19) that can be blown by short-circuiting a defective portion (42) formed in a predetermined range of electrical resistance in the metallized film (11). Characteristic film capacitor.
PCT/JP2011/005412 2010-09-27 2011-09-27 Film capacitor and method for producing film capacitor WO2012042835A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010215912A JP5012983B2 (en) 2010-09-27 2010-09-27 Film capacitor manufacturing method
JP2010-215912 2010-09-27

Publications (1)

Publication Number Publication Date
WO2012042835A1 true WO2012042835A1 (en) 2012-04-05

Family

ID=45892326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005412 WO2012042835A1 (en) 2010-09-27 2011-09-27 Film capacitor and method for producing film capacitor

Country Status (2)

Country Link
JP (1) JP5012983B2 (en)
WO (1) WO2012042835A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104715926A (en) * 2013-12-16 2015-06-17 西门子公司 Removing faults from a self-healing film capacitor
US10395826B2 (en) 2013-12-16 2019-08-27 Siemens Aktiengesellschaft Method of supporting a capacitor, capacitor assembly and subsea adjustable speed drive comprising the assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095604A (en) * 2002-08-29 2004-03-25 Matsushita Electric Ind Co Ltd Metallized film capacitor
JP2010010258A (en) * 2008-06-25 2010-01-14 Daikin Ind Ltd Preheeling apparatus and method of manufacturing film capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095604A (en) * 2002-08-29 2004-03-25 Matsushita Electric Ind Co Ltd Metallized film capacitor
JP2010010258A (en) * 2008-06-25 2010-01-14 Daikin Ind Ltd Preheeling apparatus and method of manufacturing film capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104715926A (en) * 2013-12-16 2015-06-17 西门子公司 Removing faults from a self-healing film capacitor
EP2884509A1 (en) * 2013-12-16 2015-06-17 Siemens Aktiengesellschaft Removing faults from a self-healing film capacitor
US9666367B2 (en) 2013-12-16 2017-05-30 Siemens Aktiengesellschaft Removing faults from a self-healing film capacitor
CN104715926B (en) * 2013-12-16 2019-01-01 西门子公司 Failure is removed from selfreparing thin film capacitor
US10395826B2 (en) 2013-12-16 2019-08-27 Siemens Aktiengesellschaft Method of supporting a capacitor, capacitor assembly and subsea adjustable speed drive comprising the assembly

Also Published As

Publication number Publication date
JP2012074413A (en) 2012-04-12
JP5012983B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
US20230253631A1 (en) Cylindrical Electrochemical Cells and Method of Manufacture
EP3358586B1 (en) Film capacitor, coupled-type capacitor, inverter, and electric vehicle
WO2006112099A1 (en) Metalized film capacitor and inverter smoothing capacitor for automobile
WO2007125986A1 (en) Film capacitor
JP5012983B2 (en) Film capacitor manufacturing method
EP1254468B1 (en) A capacitor element for a power capacitor, a power capacitor comprising such element and a metallized film for a power capacitor
JP2006286988A (en) Metallization film capacitor
CN108369862B (en) Metallized film and film capacitor
JP2024053309A (en) Method for manufacturing electrolytic capacitor and electrolytic capacitor
JP6430328B2 (en) Capacitor element manufacturing method
JPWO2018051657A1 (en) Film capacitor and method of manufacturing film capacitor
KR102063782B1 (en) Film capacitor
JP3935561B2 (en) Metallized film capacitors
WO2013011614A1 (en) Method for manufacturing film for film capacitor, film, and film capacitor
JP2010010258A (en) Preheeling apparatus and method of manufacturing film capacitor
JP2012069841A (en) Preheeling method and preheeling device for metalized film
JP2010027958A (en) Film capacitor and method of manufacturing the same
JP2010118586A (en) Apparatus and method for manufacturing film for capacitor
JP2015154027A (en) Film capacitor and manufacturing method for the same
JP2015177172A (en) Film capacitor
JP5278191B2 (en) Film capacitor
US20150187508A1 (en) Electrolytic Capacitor
WO2009139174A1 (en) Film condenser and method for producing same
JP2014060000A (en) Storage element, winding method, and winding device
JP6649096B2 (en) Film capacitors, connected capacitors, inverters and electric vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828401

Country of ref document: EP

Kind code of ref document: A1