JP6649096B2 - Film capacitors, connected capacitors, inverters and electric vehicles - Google Patents
Film capacitors, connected capacitors, inverters and electric vehicles Download PDFInfo
- Publication number
- JP6649096B2 JP6649096B2 JP2016012510A JP2016012510A JP6649096B2 JP 6649096 B2 JP6649096 B2 JP 6649096B2 JP 2016012510 A JP2016012510 A JP 2016012510A JP 2016012510 A JP2016012510 A JP 2016012510A JP 6649096 B2 JP6649096 B2 JP 6649096B2
- Authority
- JP
- Japan
- Prior art keywords
- pair
- film
- core
- short
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Inverter Devices (AREA)
Description
本発明は、フィルムコンデンサ、連結型コンデンサ、インバータおよび電動車輌に関するものである。 The present invention relates to a film capacitor, a connection type capacitor, an inverter, and an electric vehicle.
フィルムコンデンサは、例えば、ポリプロピレン樹脂をフィルム化した誘電体フィルムと、この誘電体フィルムの表面に蒸着によって形成された電極膜とを有する金属化フィルムを、金属製の巻芯に巻回してコンデンサ本体(以下、本体という)が構成されており(例えば、特許文献1を参照)、この本体の軸長方向の両端部には、メタリコンで形成された端子電極がそれぞれ設けられている。 A film capacitor is formed, for example, by winding a metallized film having a dielectric film made of a polypropylene resin into a film and an electrode film formed by vapor deposition on the surface of the dielectric film around a metal core, and forming a capacitor body. (Hereinafter referred to as a main body) (for example, refer to Patent Document 1), and terminal electrodes formed of metallikon are provided at both ends in the axial direction of the main body.
このようなフィルムコンデンサでは、金属製巻芯は、抜き取らずにそのまま使用される。金属製巻芯は、良好な熱伝導を有し熱的強度や機械的強度が高いことから、放熱性に優れ比較的高温で使用しても金属化フィルムの緩みや変形が少なく、大口径の巻芯の使用も容易であり、硬度の高い金属化フィルムを巻き取ることもできるものであった。 In such a film capacitor, the metal core is used without being extracted. Since the metal core has good heat conduction and high thermal and mechanical strength, it excels in heat dissipation and does not loosen or deform the metallized film even when used at relatively high temperatures. The use of the core was easy, and the metallized film having high hardness could be wound.
また、近年のフィルムコンデンサにおいては、生産効率や材料ロスの低減を目的として、フィルムコンデンサ1素子当たりの容量・サイズの大型化が進んでいる。また、省スペース化を目的として、偏平加工により小判形の断面を有するフィルムコンデンサが多く用いられている。このような小判型のフィルムコンデンサには、通常、円筒型の巻芯が使用され、巻芯を抜き取らずに素子とともに偏平加工がおこなわれる。 Further, in recent film capacitors, for the purpose of reducing production loss and material loss, the capacity and size per film capacitor have been increasing. For the purpose of saving space, a film capacitor having an oval cross section by flattening is often used. In such an oval film capacitor, a cylindrical core is usually used, and flattening is performed together with the element without removing the core.
しかしながら、偏平加工を行う上で、金属製巻芯は機械的強度が高すぎて加工が極めて困難であり、偏平加工時にフィルムを痛めてしまう可能性が高かった。特に円筒型の巻芯を用いた場合、巻芯が局所的に折れ曲がってフィルムが緩み、フィルム間に空隙が生じることがあった。このようにフィルム間に空隙がある状態で、外部電極としてメタリコン電極を形成すると、メタリコンが空隙に侵入してショートが発生するという課題があった。 However, in performing the flattening process, the metal core is extremely difficult to process because the mechanical strength is too high, and there is a high possibility that the film will be damaged during the flattening process. In particular, when a cylindrical core is used, the core may be locally bent to loosen the film, and a gap may be formed between the films. When a metallikon electrode is formed as an external electrode in a state where there is a gap between the films as described above, there is a problem that the metallikon invades the gap and a short circuit occurs.
本発明は上記の課題に鑑みなされたもので、絶縁性の高いフィルムコンデンサ、連結型コンデンサと、それを用いたインバータおよび電動車輌を提供することを目的とする。 The present invention has been made in view of the above problems, and has as its object to provide a film capacitor and a connection type capacitor having high insulating properties, and an inverter and an electric vehicle using the same.
本発明のフィルムコンデンサは、芯体および該芯体に巻回された金属化フィルムにより構成される本体と、該本体の軸長方向の両端面に設けられた一対の端子電極と、を具備するとともに、前記芯体は、前記軸長方向に垂直な断面が、一対の直線状の第1長辺、および一対の第1短辺を備える長方形状の外周と、前記第1長辺に沿う一対の第2長辺、および該一対の第2長辺をつなぐ一対の第2短辺を備える内周と、を有する、絶縁材料からなる筒状部材を具備し、前記筒状部材は、前記第1短辺と前記第2短辺との間における肉厚が、前記第1長辺と前記第2長辺との間における肉厚よりも大きく、前記内周の内側に内部部材が配置され、該内部部材は、前記筒状部材の材料よりもヤング率が高い材料により構成されていることを特徴とする。
また、本発明のフィルムコンデンサは、芯体および該芯体に巻回された金属化フィルムにより構成される本体と、該本体の軸長方向の両端面に設けられた一対の端子電極と、を具備するとともに、前記芯体は、前記軸長方向に垂直な断面が、一対の直線状の第1長辺、および一対の第1短辺を備える長方形状の外周と、前記第1長辺に沿う一対の第2長辺、および該一対の第2長辺をつなぐ一対の第2短辺を備える内周と、を有する、絶縁材料からなる筒状部材を具備し、前記筒状部材は、前記第1短辺と前記第2短辺との間における肉厚が、前記第1長辺と前記第2長辺との間における肉厚よりも大きいとともに、前記一対の第2短辺にそれぞれ開口し、前記軸長方向に延びる一対の溝を具備し、該溝は、前記第2短辺に位置する開口部から隣接する前記第1短辺側にそれぞれ延びるとともに、該第1短辺側に底部を有することを特徴とする。
The film capacitor of the present invention includes a main body composed of a core and a metallized film wound around the core, and a pair of terminal electrodes provided on both end surfaces in the axial direction of the main body. In addition, the core body has a cross section perpendicular to the axial length direction, a rectangular outer periphery including a pair of linear first long sides and a pair of first short sides, and a pair of sections along the first long side. A second long side, and an inner periphery having a pair of second short sides connecting the pair of second long sides, comprising a tubular member made of an insulating material, wherein the tubular member is 1 is the thickness between the short sides and the second short side, the first long side and much larger than the thickness between the second long side, the inner member is disposed inside of the inner peripheral , internal member, to characterized in that the Young's modulus is formed by a high material than the material of the tubular member .
Further, the film capacitor of the present invention comprises a main body composed of a core and a metallized film wound on the core, and a pair of terminal electrodes provided on both end surfaces in the axial direction of the main body. In addition, the core body has a cross section perpendicular to the axial direction, a rectangular outer periphery including a pair of linear first long sides and a pair of first short sides, and the first long side. A pair of second long sides along the inner periphery having a pair of second short sides connecting the pair of second long sides, a cylindrical member made of an insulating material, and the cylindrical member is The thickness between the first short side and the second short side is larger than the thickness between the first long side and the second long side, and each of the pair of second short sides has An opening, a pair of grooves extending in the axial length direction, wherein the groove is an opening located on the second short side. It extends to each of the first short side adjacent, and having a bottom to the first short side.
本発明の連結型コンデンサは、上述のフィルムコンデンサを、バスバーにより複数個接
続してなることを特徴とする。
A connection type capacitor according to the present invention is characterized in that a plurality of the above-mentioned film capacitors are connected by a bus bar.
本発明のインバータは、スイッチング素子により構成されるブリッジ回路と、該ブリッジ回路に接続された容量部とを備え、前記容量部が上述のフィルムコンデンサまたは連結型コンデンサであることを特徴とする。 The inverter according to the present invention includes a bridge circuit including a switching element, and a capacitor connected to the bridge circuit, wherein the capacitor is the above-described film capacitor or connection type capacitor.
本発明の電動車輌は、電源と、該電源に接続された上述のインバータと、該インバータに接続されたモータと、該モータにより駆動する車輪と、を備えていることを特徴とする。 An electric vehicle according to the present invention includes a power supply, the above-described inverter connected to the power supply, a motor connected to the inverter, and wheels driven by the motor.
本発明によれば、絶縁性の高いフィルムコンデンサ、連結型コンデンサと、それを用いたインバータおよび電動車輌を提供することができる。 According to the present invention, it is possible to provide a film capacitor and a connection type capacitor having high insulating properties, and an inverter and an electric vehicle using the same.
図1は、フィルムコンデンサAの一実施形態の構成を模式的に示すもので、(a)は側面図、(b)は展開斜視図である。各図面には、説明を容易にするためにxyzの座標軸を付した。 1A and 1B schematically show the configuration of an embodiment of a film capacitor A, wherein FIG. 1A is a side view, and FIG. 1B is an exploded perspective view. Each drawing is provided with xyz coordinate axes for ease of explanation.
フィルムコンデンサAは、図1(b)に示すように、誘電体フィルム1a、1bの主面にそれぞれ電極膜3a、3bを備えた2種類の金属化フィルム5a、5bを積層した状態で、絶縁材料からなる芯体6に巻回してなる本体7を具備している。芯体6の軸長方向(z方向)における本体7の両端面には、それぞれ端子電極8a、8bが設けられており、端子電極8aが電極膜3aに接続し、端子電極8bが電極膜3bに接続している。 As shown in FIG. 1B, the film capacitor A is insulated with two types of metallized films 5a and 5b having electrode films 3a and 3b, respectively, on the main surfaces of dielectric films 1a and 1b. It has a main body 7 wound around a core 6 made of a material. Terminal electrodes 8a and 8b are provided on both end surfaces of the main body 7 in the axial length direction (z direction) of the core body 6, respectively. The terminal electrode 8a is connected to the electrode film 3a, and the terminal electrode 8b is connected to the electrode film 3b. Connected to.
なお、図1(b)は、理解を容易にするために、誘電体フィルム1a、1b、電極膜3a、3bの厚みを、手前ほど厚く記載している。また、図1(b)では、端子電極8a、8bの記載を省略した。 In FIG. 1B, the thicknesses of the dielectric films 1a and 1b and the electrode films 3a and 3b are described to be thicker in order to facilitate understanding. In FIG. 1B, the terminal electrodes 8a and 8b are omitted.
金属化フィルム5aは、誘電体フィルム1aの一方の面上に電極膜3aを形成したものであり、一方の面上の一部には誘電体フィルム1aが露出した露出部9aを有している。金属化フィルム5bは、誘電体フィルム1bの一方の面上に電極膜3bを形成したものであり、一方の面上の一部には誘電体フィルム1bが露出した露出部9bを有している。これらの金属化フィルム5a、5bは、図1(b)に示すように、少し幅方向(z方向)に
ずれた状態で芯体6に積層巻回されている。
The metallized film 5a is obtained by forming an electrode film 3a on one surface of a dielectric film 1a, and has an exposed portion 9a where the dielectric film 1a is exposed on a part of one surface. . The metallized film 5b is obtained by forming the electrode film 3b on one surface of the dielectric film 1b, and has an exposed portion 9b where the dielectric film 1b is exposed on a part of one surface. . As shown in FIG. 1B, these metallized films 5a and 5b are laminated and wound around the core 6 with a slight shift in the width direction (z direction).
そして、金属化フィルム5a、5bは、芯体6に積層巻回する際に加圧され、図2に示すように、誘電体フィルム1a、1b間に隙間(露出部9a、9b)がある部分S1は、これらの誘電体フィルム1a、1b同士が接合して隙間を無くし、電極膜3a、3bの軸長方向(z方向)の一方側が誘電体フィルム1a、1bで被覆され、電極膜3aと第2端子電極8bとが絶縁され、電極膜3bと第1端子電極8aとが絶縁されている。 Then, the metallized films 5a and 5b are pressurized when being laminated and wound around the core 6, and as shown in FIG. 2, portions where there are gaps (exposed portions 9a and 9b) between the dielectric films 1a and 1b. In S1, the dielectric films 1a and 1b are joined together to eliminate a gap, and one side of the electrode films 3a and 3b in the axial length direction (z direction) is covered with the dielectric films 1a and 1b. The second terminal electrode 8b is insulated, and the electrode film 3b and the first terminal electrode 8a are insulated.
また、誘電体フィルム1a、1bと電極膜3a、3bとの間に隙間がある部分S2(金属化フィルム5a、5bを幅方向(z方向)にずらした部分)は隙間が残存し、この隙間に端子電極8a、8bを構成する材料が配されることにより、端子電極8aが電極膜3aに接続され、端子電極8bが電極膜3bに接続されている。 A portion S2 (a portion where the metallized films 5a and 5b are shifted in the width direction (z direction)) where there is a gap between the dielectric films 1a and 1b and the electrode films 3a and 3b has a gap. The terminal electrode 8a is connected to the electrode film 3a, and the terminal electrode 8b is connected to the electrode film 3b by disposing the material forming the terminal electrodes 8a and 8b.
本実施形態では、芯体6は、筒状部材6aを具備している。筒状部材6aは、図3(a)、(b)に示すように、軸長(z方向)に垂直な断面(以下、横断面という場合もある)が、一対の直線状の第1長辺11aおよび一対の第1短辺11bを備える角丸長方形状の外周11と、外周11の内側に第1長辺11aに沿う一対の第2長辺12aおよびこれらをつなぐ一対の第2短辺12bを備える内周12と、を有する。ここで、第1長辺11aに平行な方向をx方向、第1長辺11aに垂直な方向をy方向とする。 In the present embodiment, the core 6 includes a cylindrical member 6a. As shown in FIGS. 3A and 3B, the tubular member 6a has a pair of linear first lengths each having a cross section perpendicular to the axial length (z direction) (hereinafter, also referred to as a cross section). A rounded rectangular outer periphery 11 having a side 11a and a pair of first short sides 11b, a pair of second long sides 12a along the first long side 11a inside the outer periphery 11, and a pair of second short sides connecting these And an inner circumference 12 having an inner periphery 12b. Here, a direction parallel to the first long side 11a is defined as an x direction, and a direction perpendicular to the first long side 11a is defined as a y direction.
なお、筒状部材6aの横断面において、外周11のx方向の長さを長径と称し、y方向の長さを短径と称する場合がある。また、筒状部材の第1長辺11a、第2長辺12aが位置する部位を長辺部と称し、第1短辺11b、第2短辺12bが位置する部位を短辺部と称する場合がある。 In the transverse section of the cylindrical member 6a, the length of the outer periphery 11 in the x direction may be referred to as a major axis, and the length in the y direction may be referred to as a minor axis. Further, a case where a portion where the first long side 11a and the second long side 12a are located of the tubular member is referred to as a long side, and a portion where the first short side 11b and the second short side 12b are located is referred to as a short side. There is.
角丸長方形状とは、一対の長辺と一対の短辺を有し、角が丸みを帯びている長方形状を指し、換言すれば、直線状の一対の長辺を有する楕円形状である。ここでは、第1長辺11aは直線で構成され、対向する第1長辺11a同士をつなぐ第1短辺11bは弧状をなしているものとする。 The rounded rectangular shape refers to a rectangular shape having a pair of long sides and a pair of short sides and having rounded corners, in other words, an elliptical shape having a pair of linear long sides. Here, the first long side 11a is configured by a straight line, and the first short side 11b connecting the opposed first long sides 11a is in an arc shape.
第1長辺11aは、直線状とするが、わずかに外側に凸であってもよい。第1短辺11bは、直線部分を有していてもよいが、外側に凸の弧状をなす曲線、特に半円で構成されていることが望ましい。互いに対向する第1長辺11a同士は、若干の角度を有していてもよいが、平行であることが望ましい。また、対向する第1長辺11aの長さは異なっていてもよいが、同じ長さであることが望ましい。本実施形態において、外周11は内側に凹んだ部分を有していないことが重要である。 The first long side 11a is linear, but may be slightly convex outward. The first short side 11b may have a straight line portion, but is desirably formed of a curved line having an outwardly convex arc shape, particularly a semicircle. The first long sides 11a facing each other may have a slight angle, but are preferably parallel. Further, the lengths of the opposed first long sides 11a may be different, but are desirably the same length. In the present embodiment, it is important that the outer periphery 11 does not have an inwardly concave portion.
芯体6(筒状部材6a)の横断面の外周11が角丸長方形状であることにより、芯体6の局所的な折れ曲がりや金属化フィルム5a、5bの緩みが抑えられる。その結果、端子電極8a、8bの構成材料であるメタリコンが金属化フィルム5a、5b間の空隙に侵入しにくくなり、ショート率が低く絶縁性の高いフィルムコンデンサAとすることができる。 Since the outer periphery 11 of the cross section of the core body 6 (the tubular member 6a) has a rounded rectangular shape, local bending of the core body 6 and loosening of the metalized films 5a and 5b can be suppressed. As a result, the metallikon, which is a constituent material of the terminal electrodes 8a and 8b, hardly penetrates into the gap between the metallized films 5a and 5b, and the film capacitor A having a low short-circuit rate and high insulation can be obtained.
また、図3(c)に示すように、筒状部材6aは、長辺部における肉厚t1よりも、短辺部における肉厚t2が大きいものである。長辺部における肉厚t1とは、第1長辺11aと第2長辺12aとの間における肉厚であり、短辺部における肉厚t2とは第1短辺11bと第2短辺12bとの間における肉厚である。t1としては、筒状部材6aの長辺部のx方向の中央部における肉厚、t2としては、筒状部材6aの短辺部のy方向の中央部における肉厚を用いる。なお、t1として長辺部における肉厚の平均値を用い、t2として短辺部における肉厚の平均値を用いてもよい。 Further, as shown in FIG. 3C, the cylindrical member 6a has a thickness t2 on the short side portion larger than a thickness t1 on the long side portion. The thickness t1 at the long side is the thickness between the first long side 11a and the second long side 12a, and the thickness t2 at the short side is the first short side 11b and the second short side 12b. Between the wall thickness. The thickness of the long side of the tubular member 6a at the center in the x direction is used as t1, and the thickness of the short side of the tubular member 6a at the center in the y direction is used as t2. The average value of the thickness at the long side may be used as t1, and the average value of the thickness at the short side may be used as t2.
このような芯体6(筒状部材6a)の横断面の形状は、例えば芯体6の横断面の写真を画像処理するなどして確認すればよい。 The shape of the cross section of the core 6 (the cylindrical member 6a) may be confirmed by, for example, performing image processing on a photograph of the cross section of the core 6 and the like.
このようなフィルムコンデンサAは、例えば以下のようにして作製できる。筒状部材6aの素体として、横断面におけるx方向の肉厚がy方向の肉厚より大きい筒状素体6αを準備する。この筒状素体6αの横断面は例えば図4(a)に示すように円形状の外周と、x方向の半径がy方向の半径よりも大きい内周と、を有するものを用いる。 Such a film capacitor A can be manufactured, for example, as follows. As the element body of the cylindrical member 6a, a cylindrical element body 6α whose wall thickness in the x direction in the cross section is larger than wall thickness in the y direction is prepared. As shown in FIG. 4A, for example, a cross section of the cylindrical element body 6α having a circular outer periphery and an inner periphery having a radius in the x direction larger than a radius in the y direction is used.
この筒状素体6αの肉厚が小さい部位(内周半径が大きい部位)に補強部材6βを配置し、芯素体とする。ここで、補強部材6βは筒状素体6αの内周に沿うように配置する。補強部材6βは、同じ形状を有するものがy方向の上下に一対、筒状素体6αの中心を対称点とした点対称に配置されることが好ましい。 A reinforcing member 6β is arranged at a portion where the thickness of the cylindrical body 6α is small (a portion where the inner peripheral radius is large) to form a core body. Here, the reinforcing member 6β is arranged along the inner periphery of the cylindrical element body 6α. It is preferable that a pair of reinforcing members 6β having the same shape are arranged in a pair of upper and lower portions in the y-direction and point-symmetrically with respect to the center of the cylindrical element body 6α.
この芯素体に、上述の金属化フィルム5a、5bを積層巻回する。この時、金属化フィルム5aと5bとは、フィルムの幅方向(z方向)に互いに少しずらして積層巻回する。 The above-mentioned metalized films 5a and 5b are laminated and wound around this core body. At this time, the metallized films 5a and 5b are laminated and wound slightly shifted from each other in the width direction (z direction) of the film.
得られた巻回体である本体7を芯素体とともにプレスして、図3(a)に示すような形状に偏平加工する。このとき、プレスする方向を、筒状素体6αの肉厚が小さいy方向とすることにより、筒状素体6αは、図3(b)に示すような、横断面が一対の直線状の第1長辺11aおよび一対の第1短辺11bを備える角丸長方形状の外周11と、外周11の内側に第1長辺11aに沿う一対の第2長辺12aおよびこれらをつなぐ一対の第2短辺12bを備える内周12と、を有する筒状部材6aとなる。 The obtained wound body 7 is pressed together with the core body and flattened into a shape as shown in FIG. At this time, the pressing direction is set to the y direction in which the thickness of the cylindrical body 6α is small, so that the cylindrical body 6α has a pair of linear cross sections as shown in FIG. A rounded rectangular outer periphery 11 having a first long side 11a and a pair of first short sides 11b; a pair of second long sides 12a along the first long side 11a inside the outer periphery 11; And an inner periphery 12 having two short sides 12b.
このような筒状部材6aは、外周11全体が、一対の直線状の第1長辺11a、および一対の第1短辺11bからなる。また、図3(c)に示すように、横断面の長辺部における肉厚(t1)よりも、短辺部の肉厚(t2)が大きいものとなる。t1よりもt2が大きいことにより、筒状部材6aのx方向の両端である短辺部が補強され、巻回体である本体7をプレスして偏平加工する工程の後期において、筒状素体6αのx方向の両端に短辺部が形成される際に、短辺部の異常な変形の発生を抑制できる。 In such a tubular member 6a, the entire outer periphery 11 includes a pair of linear first long sides 11a and a pair of first short sides 11b. In addition, as shown in FIG. 3C, the thickness (t2) of the short side portion is larger than the thickness (t1) of the long side portion of the cross section. Since t2 is larger than t1, the short sides at both ends in the x direction of the cylindrical member 6a are reinforced, and in the latter stage of the flattening process by pressing the main body 7 as a wound body, When short sides are formed at both ends in the x direction of 6α, occurrence of abnormal deformation of the short sides can be suppressed.
筒状素体6αの肉厚が小さい部位に補強部材6βが配置されていることにより、プレスの際に、筒状部材6aの長辺部となる部位が局所的に折れ曲がること(以下、単に筒状部材6aの局所的な変形という)を抑制することができる。このように筒状部材6aの局所的な変形が抑制されることにより、金属化フィルム5a、5bの緩みや金属化フィルム5a、5b間の空隙の発生(以下、まとめて単に金属化フィルム間の空隙発生という)を抑制することができ、絶縁性の高いフィルムコンデンサAとなる。 By arranging the reinforcing member 6β at a portion where the thickness of the tubular element body 6α is small, a portion to be a long side portion of the tubular member 6a is locally bent at the time of pressing (hereinafter simply referred to as a cylinder). Local deformation of the shaped member 6a) can be suppressed. By suppressing the local deformation of the cylindrical member 6a in this manner, loosening of the metallized films 5a and 5b and generation of voids between the metallized films 5a and 5b (hereinafter collectively referred to simply as Voids) can be suppressed, and the film capacitor A having high insulating properties can be obtained.
プレス後、補強部材6βは除去してもよいが、除去せず筒状部材6aの内周の内側に配置された内部部材6bとして筒状部材6aとともに、図4(b)に示すような芯体6を構成することが好ましい。 After the pressing, the reinforcing member 6β may be removed, but without removing the reinforcing member 6β, the core as shown in FIG. 4B is used together with the cylindrical member 6a as the internal member 6b disposed inside the inner periphery of the cylindrical member 6a. Preferably, the body 6 is constituted.
筒状部材6aは、第2短辺12bに開口し、軸長方向に延びる溝13を具備していてもよい。溝13は、軸長方向の一方の端部からもう一方の端部にわたっている。溝13は、第2短辺12bに位置する開口部(O)から隣接する第1短辺11b側に延び、第1短辺11b側に底部(P)を有している(図4(b)を参照)。このような溝13は、プレスにより筒状素体6αのx方向の両端に短辺部が形成される際、筒状素体6αの内周が、x方向の両端近傍で折りたたまれることにより形成される。溝13は、筒状部材6aの各短辺部にそれぞれ形成されていてもよい(溝13a、13b)。なお、説明を容易にするために、各横断面図において溝13のx方向の長さを誇張して示している。 The cylindrical member 6a may have a groove 13 that opens in the second short side 12b and extends in the axial direction. The groove 13 extends from one end in the axial direction to the other end. The groove 13 extends from the opening (O) located on the second short side 12b to the adjacent first short side 11b side, and has a bottom (P) on the first short side 11b side (FIG. 4 (b) )). Such a groove 13 is formed by folding the inner periphery of the cylindrical element 6α near both ends in the x direction when short sides are formed at both ends in the x direction of the cylindrical element 6α by pressing. Is done. The groove 13 may be formed on each short side of the tubular member 6a (grooves 13a, 13b). For ease of description, the length of the groove 13 in the x direction is exaggerated in each cross-sectional view.
軸長方向に垂直な断面(横断面)において、筒状部材6aの内周12は、溝13aの開口部(O)と溝13bの開口部(O’)を結ぶ線(O−O’線)に対し、線対称の形状を有することが好ましい。例えば、O−O’線上に第1の底辺14を有し、第2長辺12aを第2の底辺(12a)とする一対の台形が、第1の底辺14(O−O’線)を介して向き合った形状をなすことが好ましい(図5(a)、(b))。第1の底辺14と第2の底辺12aの長さは、等しくてもよい(図5(c))。 In a cross section (transverse cross section) perpendicular to the axial direction, the inner circumference 12 of the cylindrical member 6a has a line (OO ′) connecting the opening (O) of the groove 13a and the opening (O ′) of the groove 13b. ), It is preferable to have a line-symmetric shape. For example, a pair of trapezoids having the first base 14 on the OO ′ line and the second long side 12a as the second base (12a) forms the first base 14 (OO ′ line). It is preferable to form a shape facing each other through the intermediary portions (FIGS. 5A and 5B). The lengths of the first base 14 and the second base 12a may be equal (FIG. 5C).
一対の台形は、溝13aと溝13bの開口部を結ぶ線(O−O’線)に対して対称に配置されていることが好ましいが、外周11の形状を損なわない程度であれば、x軸方向に互いにずれて配置されていてもよい(図6(a)、(b))。一対の台形がx軸方向に互いにずれて配置されている場合、筒状部材6aの外周11の中心に対し点対称に配置されていることが好ましい。 The pair of trapezoids are preferably arranged symmetrically with respect to a line (OO ′ line) connecting the openings of the grooves 13a and 13b, but if the shape of the outer periphery 11 is not impaired, x They may be arranged offset from each other in the axial direction (FIGS. 6A and 6B). When the pair of trapezoids are arranged so as to be shifted from each other in the x-axis direction, it is preferable that they are arranged point-symmetrically with respect to the center of the outer periphery 11 of the tubular member 6a.
なお、溝13a、13bは、いずれも筒状部材6aの外周11の長径上に位置することが好ましい。また、内周12がなす形状である一対の台形は、いずれも等脚台形であることが好ましい。溝13a、13bが長径上に位置し、内周12が一対の等脚台形状であることにより、プレス時の局所的な変形をより生じにくくすることができる。 Preferably, the grooves 13a, 13b are both located on the major axis of the outer periphery 11 of the tubular member 6a. Further, it is preferable that each of the pair of trapezoids formed by the inner circumference 12 is an equilateral trapezoid. Since the grooves 13a and 13b are located on the major axis and the inner periphery 12 has a pair of equal-leg trapezoidal shapes, local deformation during pressing can be made more difficult.
筒状部材6aの横断面において、外周11全体の長さをA、図5(a)に示すように、溝13aの底部Pから溝13bの底部P’までの長さをB、溝13aの開口部Oから溝13bの開口部O’までの長さ(O−O’線の長さ、または第1の底辺14の長さという場合もある)をCとする。このとき、式X=(A×C)/(2×B×B)の値が、0.8〜1.2の範囲、特には0.9〜1.1の範囲にあることが好ましい。Xは、筒状部材6aの横断面の形状因子であり、Xをこの範囲とすることで、筒状部材6aの局所的な変形をより一層抑制することができる。 In the cross section of the cylindrical member 6a, the entire length of the outer periphery 11 is A, and the length from the bottom P of the groove 13a to the bottom P 'of the groove 13b is B, as shown in FIG. The length from the opening O to the opening O 'of the groove 13b (sometimes referred to as the length of the line OO' or the length of the first base 14) is denoted by C. At this time, the value of the formula X = (A × C) / (2 × B × B) is preferably in the range of 0.8 to 1.2, particularly preferably in the range of 0.9 to 1.1. X is a shape factor of a cross section of the cylindrical member 6a, and by setting X within this range, local deformation of the cylindrical member 6a can be further suppressed.
例えば、Xが0.8より小さい場合は、プレス工程の初期に長辺部と短辺部との境界で変形が生じやすく、金属化フィルム間の空隙が発生しやすくなる懸念がある。また、Xが1.2より大きい場合は、プレス工程の後期に短辺部の異常な変形が生じやすく、フィルム間の空隙が発生しやすくなる懸念がある。 For example, when X is smaller than 0.8, deformation is likely to occur at the boundary between the long side and the short side at the beginning of the pressing step, and there is a concern that voids between the metallized films are likely to be generated. On the other hand, when X is larger than 1.2, abnormal deformation of the short side portion is likely to occur late in the pressing process, and there is a concern that voids between the films are likely to be generated.
筒状部材6aを上述のような形状とするには、筒状素体6αの内周の形状を、プレス後に上述のような形状となるように設計すればよい。 In order to form the cylindrical member 6a as described above, the inner peripheral shape of the cylindrical element body 6α may be designed so as to have the above-described shape after pressing.
筒状部材6aの内周12の内側に、内部部材6bを配置する場合、内部部材6bは筒状部材6aの材料よりもヤング率が高い材料とする。内部部材6b(補強部材6β)のヤング率を筒状部材6a(筒状素体6α)よりも高くすることで、プレスの際に筒状部材6aの長辺部となる部位の局所的な折れ曲がりが発生しにくくなる。また、プレス後のフィルムコンデンサAにおいて誘電体フィルム1a、1bの弾性回復に対し、芯体6が変形しにくくなるという効果も得られる。 When the inner member 6b is arranged inside the inner periphery 12 of the tubular member 6a, the inner member 6b is made of a material having a higher Young's modulus than the material of the tubular member 6a. By making the Young's modulus of the inner member 6b (reinforcing member 6β) higher than that of the cylindrical member 6a (cylindrical element 6α), local bending of a portion that becomes a long side portion of the cylindrical member 6a during pressing is performed. Is less likely to occur. In addition, the elastic body of the dielectric film 1a, 1b in the pressed film capacitor A has an effect that the core body 6 is hardly deformed with respect to the elastic recovery.
補強部材6βを残し内部部材6bとした場合、内部部材6bは、プレスにより筒状部材6aの内周12に密着し、内周12の形状と同じ形状、すなわち溝13aの開口部(O)と溝13bの開口部(O’)を結ぶ線(O−O’線)に対し、線対称の形状を有するものとなり、O−O’線を境とした2つの独立した第1部材6b1、第2部材6b2で構成される。第1部材6b1は一方の第2長辺12aに接し、第2部材6b2はもう一方の第2長辺12aに接している。 When the reinforcing member 6β is left and the inner member 6b is formed, the inner member 6b is brought into close contact with the inner periphery 12 of the tubular member 6a by pressing, and has the same shape as the inner periphery 12, ie, the opening (O) of the groove 13a. It has a shape symmetrical with respect to a line (OO 'line) connecting the opening (O') of the groove 13b, and has two independent first members 6b1 and It is composed of two members 6b2. The first member 6b1 is in contact with one second long side 12a, and the second member 6b2 is in contact with the other second long side 12a.
図4(b)を用いて説明すると、第1部材6b1と第2部材6b2とは、溝13aの開
口部Oと溝13bの開口部O’を結ぶ線(O−O’線)に沿った辺および第2長辺12aを底辺とする一対の台形状となる。
Explaining with reference to FIG. 4B, the first member 6b1 and the second member 6b2 are along a line (OO ′ line) connecting the opening O of the groove 13a and the opening O ′ of the groove 13b. It becomes a pair of trapezoidal shapes with the side and the second long side 12a as bases.
第1部材6b1と第2部材6b2とは、O−O’線で互いに接していてもよいし、離間していてもよいが、内部部材6bが絶縁性を有する場合は、たとえば図7(a)に示すように、軸長方向(z方向)の一端から他端のうち少なくとも一部で互いに接していることが好ましい。第1部材6b1と第2部材6b2とが、軸長方向(z方向)の一端から他端のうち少なくとも一部で互いに接していることにより、端子電極8a、8bを形成するメタリコンが第1部材6b1と第2部材6b2との間隙に侵入しても、端子電極8aと端子電極8bとの導通が抑制され、ショート率を低減できる。 The first member 6b1 and the second member 6b2 may be in contact with each other by an OO ′ line or may be separated from each other. However, when the inner member 6b has an insulating property, for example, FIG. ), It is preferable that at least a part of one end to the other end in the axial length direction (z direction) is in contact with each other. Since the first member 6b1 and the second member 6b2 are in contact with each other at least at one end from the one end to the other end in the axial direction (z direction), the metallikon forming the terminal electrodes 8a and 8b becomes the first member. Even if it enters the gap between 6b1 and the second member 6b2, conduction between the terminal electrodes 8a and 8b is suppressed, and the short-circuit rate can be reduced.
また、軸長方向(z方向)の両端では、図7(a)に示すように、第1部材6b1と第2部材6b2とが離間していることが好ましい。軸長方向(z方向)の両端において、第1部材6b1と第2部材6b2との間隙にメタリコンが侵入し、アンカー効果が得られることで、端子電極8a、8bの接合強度が向上する効果が得られる。この効果は、内部部材6bが絶縁性を有する場合、導電性を有する場合のいずれであっても得られる。 Further, as shown in FIG. 7A, it is preferable that the first member 6b1 and the second member 6b2 are separated from each other at both ends in the axial direction (z direction). At both ends in the axial direction (z direction), metallikon penetrates into the gap between the first member 6b1 and the second member 6b2, and the anchor effect is obtained, thereby improving the bonding strength between the terminal electrodes 8a and 8b. can get. This effect can be obtained regardless of whether the internal member 6b has an insulating property or has a conductive property.
なお、上述の補強部材6αをプレスした後に除去し、内周12により形成される空間に他の部材を配置して内部部材6bとしてもよい。 Note that the above-described reinforcing member 6α may be removed after pressing, and another member may be arranged in the space formed by the inner periphery 12 to form the internal member 6b.
筒状部材6aの材料としては、例えばポリプロピレン(PP、融点:168℃、ヤング率:1.2GPa)、ポリアセタール(POM、融点:181℃、ヤング率:2.8GPa)、ポリアミド(PA、融点:225℃、ヤング率:1.9GPa)、ポリエチレンテレフタレート(PET、融点:255℃、ヤング率:3.7GPa)、ポリフェニレンサルファイド(PPS、融点:290℃、ヤング率:3.3GPa)、ポリテトラフルオロエチレン(PTFE、融点:327℃、ヤング率:0.41GPa)、およびポリエーテルエーテルケトン(PEEK、融点:374℃、ヤング率:3.5GPa)などの有機樹脂材料が挙げられる。 As the material of the cylindrical member 6a, for example, polypropylene (PP, melting point: 168 ° C., Young's modulus: 1.2 GPa), polyacetal (POM, melting point: 181 ° C., Young's modulus: 2.8 GPa), polyamide (PA, melting point: 225 ° C, Young's modulus: 1.9 GPa, polyethylene terephthalate (PET, melting point: 255 ° C, Young's modulus: 3.7 GPa), polyphenylene sulfide (PPS, melting point: 290 ° C, Young's modulus: 3.3 GPa), polytetrafluoro Organic resin materials such as ethylene (PTFE, melting point: 327 ° C., Young's modulus: 0.41 GPa), and polyetheretherketone (PEEK, melting point: 374 ° C., Young's modulus: 3.5 GPa) are exemplified.
内部部材6bの材料としては、例えば錫(融点:232℃、ヤング率:41.4GPa)、亜鉛(融点:420℃、ヤング率:96.5GPa)、アルミニウム(融点:660℃、ヤング率:68.3GPa)、および銅(融点:1083℃、ヤング率:110GPa)などの金属材料が挙げられる。また、ポリエチレンテレフタレート(PET、融点:255℃、ヤング率:3.7GPa)、ポリフェニレンサルファイド(PPS、融点:290℃、ヤング率:3.3GPa)、およびポリエーテルエーテルケトン(PEEK、融点:374℃、ヤング率:3.5GPa)などの有機樹脂材料を用いてもよい。これらの材料のうち、筒状部材6aの材料よりも高いヤング率を有するものを適用すればよい。なお、内部部材6bは絶縁性の材料であることが好ましい。 As the material of the internal member 6b, for example, tin (melting point: 232 ° C., Young's modulus: 41.4 GPa), zinc (melting point: 420 ° C., Young's modulus: 96.5 GPa), aluminum (melting point: 660 ° C., Young's modulus: 68) .3GPa) and copper (melting point: 1083 ° C., Young's modulus: 110 GPa). Also, polyethylene terephthalate (PET, melting point: 255 ° C., Young's modulus: 3.7 GPa), polyphenylene sulfide (PPS, melting point: 290 ° C., Young's modulus: 3.3 GPa), and polyetheretherketone (PEEK, melting point: 374 ° C.) , Young's modulus: 3.5 GPa). Among these materials, a material having a higher Young's modulus than the material of the tubular member 6a may be applied. Preferably, the inner member 6b is made of an insulating material.
補強部材6βとして用いる点からは、内部部材6bの材料は金属であることが好ましい。内部部材6bが金属など導電性の材料である場合は、軸長方向(z方向)の両端に露出した内部部材6bの表面に絶縁性の被覆を設けることが好ましい。絶縁性の被覆としては、例えばポリイミドなど絶縁性を有する樹脂製のテープ、シート、および接着剤などが挙げられる。また、図7(b)に示すように、一対の導電性の内部部材6bを軸長方向(z方向)の両端に配置し、これらの内部部材6bを互いに電気的に絶縁してもよい。一対の内部部材6bを互いに電気的に絶縁するには、一対の内部部材6b間に絶縁性の材料を配置する、一対の内部部材6bを物理的に離間するなどの手段を用いればよい。 It is preferable that the material of the inner member 6b is metal in terms of use as the reinforcing member 6β. When the internal member 6b is made of a conductive material such as a metal, it is preferable to provide an insulating coating on the surface of the internal member 6b exposed at both ends in the axial direction (z direction). Examples of the insulating coating include a tape, a sheet, and an adhesive made of an insulating resin such as polyimide. Further, as shown in FIG. 7B, a pair of conductive internal members 6b may be arranged at both ends in the axial direction (z direction), and these internal members 6b may be electrically insulated from each other. In order to electrically insulate the pair of internal members 6b from each other, a means such as disposing an insulating material between the pair of internal members 6b or physically separating the pair of internal members 6b may be used.
図8は、連結型コンデンサCの構成を模式的に示した斜視図である。図8においては構成を分かりやすくするために、ケースならびにモールド用の樹脂を省略して記載している
。本実施形態の連結型コンデンサCは、複数個のフィルムコンデンサAが一対のバスバー21、23により並列接続された構成となっている。バスバー21、23は、外部接続用の端子部21a、23aとフィルムコンデンサAの端子電極8a、8bにそれぞれ接続される引出端子部21b、23bにより構成されている。
FIG. 8 is a perspective view schematically showing the configuration of the connection type capacitor C. In FIG. 8, the case and the resin for molding are omitted for easy understanding of the configuration. The connection type capacitor C of the present embodiment has a configuration in which a plurality of film capacitors A are connected in parallel by a pair of bus bars 21 and 23. The bus bars 21 and 23 are composed of external connection terminals 21a and 23a and lead terminals 21b and 23b connected to the terminal electrodes 8a and 8b of the film capacitor A, respectively.
連結型コンデンサCに上記したフィルムコンデンサAを適用すると、ショート率が低く絶縁性の高い連結型コンデンサCを得ることができる。 When the above-mentioned film capacitor A is applied to the connection type capacitor C, it is possible to obtain the connection type capacitor C having a low short-circuit rate and a high insulating property.
なお、図8に示した連結型コンデンサCは、フィルムコンデンサAの横断面の長径の方向に配置したものであるが、この他に、フィルムコンデンサAを横断面の短径の方向に積み上げた構造であっても同様の効果を得ることができる。 The connection type capacitor C shown in FIG. 8 is arranged in the direction of the major axis of the cross section of the film capacitor A. In addition, a structure in which the film capacitors A are stacked in the direction of the minor axis of the cross section is used. However, the same effect can be obtained.
図9は、インバータの構成を説明するための概略構成図である。図9には、直流から交流を作り出すインバータDの例を示している。本実施形態のインバータDは、図9に示すように、スイッチング素子(例えば、IGBT(Insulated gate Bipolar Transistor)
)とダイオードにより構成されるブリッジ回路31と、電圧安定化のためにブリッジ回路31の入力端子間に配置された容量部33とを備えた構成となっている。ここで、容量部33として上記のフィルムコンデンサAまたは連結型コンデンサCが適用される。
FIG. 9 is a schematic configuration diagram for explaining the configuration of the inverter. FIG. 9 shows an example of an inverter D that produces an alternating current from a direct current. As shown in FIG. 9, the inverter D of the present embodiment includes a switching element (for example, an IGBT (Insulated gate Bipolar Transistor)).
) And a diode, and a capacitor 33 disposed between input terminals of the bridge circuit 31 for voltage stabilization. Here, the film capacitor A or the connection type capacitor C described above is applied as the capacitance section 33.
なお、このインバータDは、直流電源の電圧を昇圧する昇圧回路35に接続されることになる。一方、ブリッジ回路31は駆動源となるモータジェネレータ(モータM)に接続されることになる。 The inverter D is connected to a booster circuit 35 that boosts the voltage of the DC power supply. On the other hand, the bridge circuit 31 is connected to a motor generator (motor M) serving as a driving source.
図10は、電動車輌を示す概略構成図である。図10には、電動車輌Eとしてハイブリッド自動車(HEV)の例を示している。 FIG. 10 is a schematic configuration diagram showing the electric vehicle. FIG. 10 shows an example of a hybrid vehicle (HEV) as the electric vehicle E.
図10における符号41は駆動用のモータ、43はエンジン、45はトランスミッション、47はインバータ、49は電源(電池)、51a、51bは前輪および後輪である。 In FIG. 10, reference numeral 41 denotes a driving motor, 43 denotes an engine, 45 denotes a transmission, 47 denotes an inverter, 49 denotes a power source (battery), and 51a and 51b denote front wheels and rear wheels.
この電動車輌Eは、駆動源としてモータ41またはエンジン43、もしくは両方の出力がトランスミッション45を介して左右一対の前輪51aに伝達される機能を主として備えており、電源49はインバータ47を介してモータ41に接続されている。 The electric vehicle E mainly has a function of transmitting the output of a motor 41 or an engine 43 or both as a drive source to a pair of left and right front wheels 51 a via a transmission 45. 41.
また、図10に示した電動車輌Eには、電動車輌E全体の統括的な制御を行う車輌ECU53が設けられている。車輌ECU53には、イグニッションキー55や図示しないアクセルペダル、ブレーキ等の電動車輌Eからの運転者等の操作に応じた駆動信号が入力される。この車輌ECU53は、その駆動信号に基づいて指示信号をエンジンECU57、電源49、および負荷としてのインバータ47に出力する。エンジンECU57は、指示信号に応答してエンジン43の回転数を制御し、電動車輌Eを駆動する。 Further, the electric vehicle E shown in FIG. 10 is provided with a vehicle ECU 53 for performing overall control of the entire electric vehicle E. The vehicle ECU 53 receives a drive signal according to the driver's operation from the electric vehicle E such as an ignition key 55, an accelerator pedal (not shown), and a brake. The vehicle ECU 53 outputs an instruction signal to the engine ECU 57, the power supply 49, and the inverter 47 as a load based on the drive signal. The engine ECU 57 drives the electric vehicle E by controlling the rotation speed of the engine 43 in response to the instruction signal.
上記のフィルムコンデンサAまたは連結型コンデンサCを容量部33として適用したインバータDを、例えば、図10に示すような電動車輌Eのインバータ47として用いると、フィルムコンデンサAまたは連結型コンデンサCが、ショート率が低く絶縁性の高いものであるため、電動車輌Eに搭載されたECUなどの制御装置の電流制御をより安定したものにすることができる。 When the inverter D using the film capacitor A or the connection type capacitor C as the capacitance unit 33 is used as, for example, the inverter 47 of the electric vehicle E as shown in FIG. 10, the film capacitor A or the connection type capacitor C is short-circuited. Since the ratio is low and the insulation is high, current control of a control device such as an ECU mounted on the electric vehicle E can be made more stable.
なお、本実施形態のインバータDは、上記のハイブリッド自動車(HEV)のみならず、電気自動車(EV)や燃料電池車、あるいは電動自転車、発電機、太陽電池など種々の電力変換応用製品に適用できる。 The inverter D according to the present embodiment can be applied not only to the above-described hybrid vehicle (HEV) but also to various electric power conversion products such as an electric vehicle (EV), a fuel cell vehicle, an electric bicycle, a generator, and a solar cell. .
ポリアリレート(U−100、ユニチカ製)を用いて平均厚さ2.5μmの誘電体フィルムを作製した。誘電体フィルムは、ポリアリレートをトルエンに溶解し、コータを用いてポリエチレンテレフタレート(PET)製の基材上に塗布し、シート状に成形した。成形後、130℃で熱処理してトルエンを除去し、誘電体フィルムを得た。 A dielectric film having an average thickness of 2.5 μm was prepared using polyarylate (U-100, manufactured by Unitika). The dielectric film was prepared by dissolving polyarylate in toluene, applying the solution on a substrate made of polyethylene terephthalate (PET) using a coater, and forming the sheet. After the molding, heat treatment was performed at 130 ° C. to remove toluene, and a dielectric film was obtained.
得られた誘電体フィルムを基材から剥離し、140mm幅にスリット加工した後、誘電体フィルムの一方の主面に電極膜として、メタルマスクを用いて107mm幅のAl金属膜を真空蒸着法により形成し、金属化フィルムを得た。金属膜の厚さは70nm、シート抵抗は8.0Ω/□であった。なお、金属膜の膜厚は、イオンミリング加工をした断面の走査型電子顕微鏡(SEM)観察により求めた。シート抵抗(Rs)は、幅(w)10mm、長さ(l)300mmの金属膜の両端間の抵抗値(R)を二端子法で測定し、式Rs=R×w/lにより算出した。 After peeling the obtained dielectric film from the substrate and slitting it to a width of 140 mm, an Al metal film having a width of 107 mm was formed on one main surface of the dielectric film as an electrode film using a metal mask by a vacuum deposition method. Formed to give a metallized film. The thickness of the metal film was 70 nm, and the sheet resistance was 8.0 Ω / □. Note that the thickness of the metal film was determined by observing a section subjected to ion milling with a scanning electron microscope (SEM). The sheet resistance (Rs) was obtained by measuring the resistance value (R) between both ends of a metal film having a width (w) of 10 mm and a length (l) of 300 mm by a two-terminal method, and calculating by the equation Rs = R × w / l. .
140mm幅の金属化フィルムをさらにスリット加工し、1.5mmのマージン部(誘電体フィルムの露出部)を有する55mm幅の金属化フィルムとした。 The 140 mm wide metallized film was further slit to form a 55 mm wide metallized film having a 1.5 mm margin (exposed portion of the dielectric film).
筒状素体は、図4(a)に示すような断面形状、すなわち、外周が円形状で、x方向の肉厚が厚く、y方向の肉厚が薄い断面形状を有する長さ55mmのポリプロピレン(PP、融点:168℃、ヤング率:1.2GPa)製のものを準備した。表1に、筒状素体の外径、x方向の肉厚、y方向の肉厚を示す。また、補強部材として金属アルミニウム板(融点:660℃、ヤング率:68.3GPa)を用い、筒状素体の内部に配置して芯素体とした。補強部材の肉厚、配置(筒状素体の内周に配置した際の、横断面における補強部材の占める角度θ)を表1に示す。 The tubular element has a cross-sectional shape as shown in FIG. 4A, that is, a 55 mm long polypropylene having a cross-sectional shape with a circular outer periphery, a large thickness in the x direction, and a small thickness in the y direction. (PP, melting point: 168 ° C., Young's modulus: 1.2 GPa) were prepared. Table 1 shows the outer diameter, the thickness in the x direction, and the thickness in the y direction of the tubular element. In addition, a metal aluminum plate (melting point: 660 ° C., Young's modulus: 68.3 GPa) was used as a reinforcing member, and a core element was disposed inside the cylindrical element. Table 1 shows the thickness and arrangement of the reinforcing members (the angle θ occupied by the reinforcing members in the cross section when the reinforcing members are disposed on the inner periphery of the tubular element).
55mm幅の一対の金属化フィルムを、電極膜が誘電体フィルムを介して対向するように芯素体に積層巻回し、巻回体を作製した。なお、一対の金属化フィルムは、幅方向(z方向)に互いに0.5mmずれた状態とし、マージン部を幅方向(z方向)の異なる側にそれぞれ配した状態で巻回した。巻回数は642回とし、外径12.5mm、幅55.5mm(いずれも平均値)の巻回体を得た。 A 55 mm wide pair of metallized films was laminated and wound around a core element body such that the electrode films face each other with a dielectric film interposed therebetween, thereby producing a wound body. The pair of metallized films were wound in a state of being shifted by 0.5 mm from each other in the width direction (z direction), and the margin portions were arranged on different sides in the width direction (z direction). The number of windings was 642, and a wound body having an outer diameter of 12.5 mm and a width of 55.5 mm (both average values) was obtained.
得られた巻回体を、芯素体とともにプレスすることで偏平加工し、フィルムコンデンサ本体とした。プレスは温度120℃、プレス荷重500gfの条件で行った。また、比較のため、肉厚が一様な筒状素体を用いたもの(試料No.16〜18)、および芯素体を抜き取って偏平加工したもの(試料No.19)も作製した。なお、図4(a)に示す横断面形状を有する芯素体については、プレス方向を筒状素体の肉厚が薄いy方向とした。 The obtained wound body was flattened by pressing together with a core element to obtain a film capacitor body. The pressing was performed under the conditions of a temperature of 120 ° C. and a pressing load of 500 gf. For comparison, a sample using a cylindrical element having a uniform thickness (Sample Nos. 16 to 18) and a sample obtained by extracting a core element and performing flattening (Sample No. 19) were also manufactured. For the core element having the cross-sectional shape shown in FIG. 4A, the pressing direction was set to the y direction in which the thickness of the cylindrical element was small.
偏平加工後、芯体の端部にポリイミド製テープのカバーを設け、内部部材を被覆した。その後フィルムコンデンサ本体の電極膜が露出した対向する端面に亜鉛と錫との合金を溶射し、端子電極であるメタリコン電極を形成してフィルムコンデンサとした。 After the flattening process, a polyimide tape cover was provided at the end of the core body to cover the inner member. Thereafter, an alloy of zinc and tin was sprayed on the opposite end surfaces of the film capacitor body where the electrode films were exposed, and metallikon electrodes as terminal electrodes were formed to obtain a film capacitor.
得られたフィルムコンデンサの幅方向(z方向)の中央部を、ダイヤモンドワイヤーソーを用いて切断し、芯体の横断面形状を確認した。図4(a)に示す断面形状を有する芯素体を用いたものはいずれも、芯体が、角丸長方形状の外周および一対の台形が向き合った形状の内周を有する筒状部材と、2つの台形が筒状部材の内周に沿って配置された内部部材と、により構成されていた。また、これらはいずれも、各第2短辺のy方向における中央部に開口し、隣接する各第1短辺側に延び、第1短辺側に底部を有する溝を有していた。 The center part of the obtained film capacitor in the width direction (z direction) was cut using a diamond wire saw, and the cross-sectional shape of the core was confirmed. In any of the cases using the core element having the cross-sectional shape shown in FIG. 4A, the core member has a cylindrical member having a rounded rectangular outer periphery and an inner periphery having a pair of trapezoids facing each other; And two internal members arranged along the inner periphery of the tubular member. In addition, each of them has a groove that opens at the center of each second short side in the y direction, extends to the adjacent first short side, and has a bottom at the first short side.
一方、肉厚が一様な芯素体を用いたものでは、外周の長辺に相当する部位の中央付近に
局所的に凹んだ部分が形成され、一対の直線状の長辺および一対の短辺を備える角丸長方形状をなす外周を有していなかった。また、内周も2つの楕円状の空隙が並んだような形状をなしていた。さらに、芯素体を抜き取って偏平加工したものは、巻回の中心付近で、x方向の両端に膨らみを有し、x方向の中央付近に凹んだ部分が形成されていた。
On the other hand, in the case of using a core body having a uniform thickness, a locally concave portion is formed near the center of a portion corresponding to the long side of the outer periphery, and a pair of linear long sides and a pair of short sides are formed. It did not have a rounded rectangular outer periphery with sides. Further, the inner periphery also had a shape in which two elliptical gaps were arranged. Further, when the core element body was extracted and flattened, there were bulges at both ends in the x direction near the center of the winding, and a concave portion was formed near the center in the x direction.
芯体を有する試料については、筒状部材の長辺部の肉厚(y方向の肉厚)t1、および短辺部の肉厚(x方向の肉厚)t2を確認した。また、芯体の外周が角丸長方形状の試料については、芯体の横断面の形状因子Xを確認した。なお、X=(A×C)/(2×B×B)であり、式中、Aは筒状部材の外周全体の長さ、Bは一方の溝の底部からもう一方の溝の底部までの長さ、Cは一方の溝の開口部からもう一方の溝の開口部までの長さである(図5(a)を参照)。これらは、芯体の横断面をデジタルカメラで撮影した画像を、画像処理ソフトを用いて画像解析することにより求めた。 With respect to the sample having the core, the thickness (the thickness in the y direction) t1 of the long side portion of the cylindrical member and the thickness (the thickness in the x direction) t2 of the short side portion were confirmed. In addition, for the sample whose outer periphery of the core was rounded and rectangular, the shape factor X of the cross section of the core was confirmed. Note that X = (A × C) / (2 × B × B), where A is the entire length of the outer periphery of the cylindrical member, and B is from the bottom of one groove to the bottom of the other groove. And C is the length from the opening of one groove to the opening of the other groove (see FIG. 5A). These were obtained by analyzing an image of a cross section of the core body taken by a digital camera using image processing software.
作製したフィルムコンデンサのショート率、絶縁破壊電圧(BDV)を評価した。ショート率は、マルチメーターを用いてフィルムコンデンサの抵抗を測定し、1kΩ以下をショートとし、その割合を求めた。絶縁破壊電圧(BDV)は、フィルムコンデンサに、0Vから毎秒10Vの昇圧速度で直流電圧を印加する昇圧試験を行い、静電容量が0Vの値(初期値)に対して5%以上低下する直前の電圧値から求めた。静電容量の初期値は、昇圧試験を行う前にAC10V、1kHzの条件で測定した。静電容量の初期値の平均値は、17.7μFであった。また、昇圧試験においては、ショート、すなわち漏れ電流値が1.0mAを超えた場合に、一旦直流電圧を0Vに戻してAC10V、1kHzの条件にて静電容量を測定し、その値が初期値に対して95%以上であれば0Vから再度昇圧試験を行うことを繰り返した。 The short-circuit rate and dielectric breakdown voltage (BDV) of the produced film capacitor were evaluated. The short-circuit rate was measured by measuring the resistance of the film capacitor using a multimeter, and 1 kΩ or less was regarded as short-circuit, and the ratio was determined. The breakdown voltage (BDV) is measured by applying a DC voltage to the film capacitor at a voltage increase rate of 10 V / sec from a voltage of 0 V. Immediately before the capacitance decreases by 5% or more with respect to the value of 0 V (initial value). Was determined from the voltage value. The initial value of the capacitance was measured under the conditions of AC 10 V and 1 kHz before performing the boosting test. The average value of the initial value of the capacitance was 17.7 μF. In the boosting test, when the short circuit, that is, the leakage current value exceeded 1.0 mA, the DC voltage was once returned to 0 V, and the capacitance was measured under the conditions of AC 10 V and 1 kHz, and the value was set to the initial value. When the voltage was 95% or more, the step-up test was repeated from 0 V.
芯体の筒状部材の肉厚t1、t2、横断面の形状因子X、フィルムコンデンサのショート率および絶縁破壊電圧(BDV)を表2に示す。なお、ショート率以外はn=50の平均値である。 Table 2 shows the thicknesses t1 and t2 of the cylindrical member of the core, the shape factor X of the cross section, the short-circuit rate of the film capacitor, and the breakdown voltage (BDV). The values other than the short-circuit rate are average values of n = 50.
芯体の横断面形状が、外周が角丸長方形状で、t2がt1より大きい筒状部材を有する試料No.1〜15は、ショート率が10%以下、絶縁破壊電圧(BDV)が850V以上という絶縁性の高いものであった。特に芯体の外周の形状因子Xが0.8〜1.2の範囲である試料No.2〜4、7〜9、12〜14では、ショート率が4%以下、BDVが1000V以上と、より絶縁性の高いものとなった。 Sample No. having a cylindrical member having a round cross section with a rounded outer periphery and a t2 larger than t1 was obtained. Samples Nos. 1 to 15 had a high short-circuit rate of 10% or less and a high dielectric breakdown voltage (BDV) of 850 V or more. In particular, the sample No. in which the shape factor X of the outer periphery of the core was in the range of 0.8 to 1.2. In the cases of 2 to 4, 7 to 9, and 12 to 14, the short-circuit rate was 4% or less and the BDV was 1000 V or more.
1a、1b・・誘電体フィルム
3a、3b・・電極膜
5a、5b・・金属化フィルム
6・・・・・・芯体
6a・・・・・筒状部材
6b・・・・・内部部材
7・・・・・・本体
8a、8b・・端子電極
11・・・・・芯体(筒状部材)の外周
11a・・・・芯体(筒状部材)の外周の長辺
11b・・・・芯体(筒状部材)の外周の短辺
12・・・・・筒状部材の内周
12a・・・・筒状部材の内周の長辺
12b・・・・筒状部材の内周の短辺
13・・・・・溝
1a, 1b, dielectric films 3a, 3b, electrode films 5a, 5b, metallized films 6, core members 6a, cylindrical members 6b, internal members 7 ····· Main body 8a, 8b ··· Terminal electrode 11 ····· Outer periphery 11a of core (cylindrical member) ··· Long side 11b of outer periphery of core (cylindrical member) ···・ Short side 12 of outer periphery of core body (cylindrical member) ・ ・ ・ ・ ・ ・ Inner circumference 12a of cylindrical member ・ ・ ・ ・ Long side 12b of inner circumference of cylindrical member ・ ・ ・ ・ ・ ・ Inner circumference of cylindrical member 13 of the short side of the groove
Claims (10)
前記芯体は、前記軸長方向に垂直な断面が、
一対の直線状の第1長辺、および一対の第1短辺を備える長方形状の外周と、
前記第1長辺に沿う一対の第2長辺、および該一対の第2長辺をつなぐ一対の第2短辺を備える内周と、を有する、絶縁材料からなる筒状部材を具備し、
該筒状部材は、前記第1短辺と前記第2短辺との間における肉厚が、前記第1長辺と前記第2長辺との間における肉厚よりも大きく、
前記内周の内側に内部部材が配置され、該内部部材は、前記筒状部材の材料よりもヤング率が高い材料により構成されていることを特徴とするフィルムコンデンサ。 A body comprising a core and a metallized film wound on the core, and a pair of terminal electrodes provided on both end surfaces in the axial direction of the body, and
The core body has a cross section perpendicular to the axial direction,
A rectangular outer periphery having a pair of straight first long sides and a pair of first short sides;
A cylindrical member made of an insulating material, having a pair of second long sides along the first long side, and an inner periphery having a pair of second short sides connecting the pair of second long sides,
Tubular member, the wall thickness between the first short side and the second short sides, much larger than the thickness between the second long side and the first long side,
A film capacitor , wherein an inner member is arranged inside the inner periphery, and the inner member is made of a material having a higher Young's modulus than the material of the tubular member .
前記芯体は、前記軸長方向に垂直な断面が、
一対の直線状の第1長辺、および一対の第1短辺を備える長方形状の外周と、
前記第1長辺に沿う一対の第2長辺、および該一対の第2長辺をつなぐ一対の第2短辺を備える内周と、を有する、絶縁材料からなる筒状部材を具備し、
該筒状部材は、前記第1短辺と前記第2短辺との間における肉厚が、前記第1長辺と前記第2長辺との間における肉厚よりも大きいとともに、前記一対の第2短辺にそれぞれ開口し、前記軸長方向に延びる一対の溝を具備し、
該溝は、前記第2短辺に位置する開口部から隣接する前記第1短辺側にそれぞれ延びるとともに、該第1短辺側に底部を有することを特徴とするフィルムコンデンサ。 A body comprising a core and a metallized film wound on the core, and a pair of terminal electrodes provided on both end surfaces in the axial direction of the body, and
The core body has a cross section perpendicular to the axial length direction,
A rectangular outer periphery having a pair of straight first long sides and a pair of first short sides;
A cylindrical member made of an insulating material, having a pair of second long sides along the first long side, and an inner periphery having a pair of second short sides connecting the pair of second long sides,
The cylindrical member has a thickness between the first short side and the second short side that is greater than a thickness between the first long side and the second long side, and the pair of the paired members. A pair of grooves that respectively open on the second short side and extend in the axial length direction;
The groove, the second extends to each of the first short side adjacent the opening located on the short side, off I Lum capacitor you characterized in that it has a bottom in the first short side.
該Xが、0.8〜1.2の範囲にあることを特徴とする請求項4または5に記載のフィルムコンデンサ。 In a cross section perpendicular to the axial direction, the length of the outer periphery is A, the length from one of the bottoms to the other is B, and one of the openings is the other of the openings. When the length to is C and X = (A × C) / (2 × B × B),
The X is a film capacitor according to claim 4 or 5, characterized in that in the range of 0.8 to 1.2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016012510A JP6649096B2 (en) | 2016-01-26 | 2016-01-26 | Film capacitors, connected capacitors, inverters and electric vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016012510A JP6649096B2 (en) | 2016-01-26 | 2016-01-26 | Film capacitors, connected capacitors, inverters and electric vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017135198A JP2017135198A (en) | 2017-08-03 |
JP6649096B2 true JP6649096B2 (en) | 2020-02-19 |
Family
ID=59505034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016012510A Active JP6649096B2 (en) | 2016-01-26 | 2016-01-26 | Film capacitors, connected capacitors, inverters and electric vehicles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6649096B2 (en) |
-
2016
- 2016-01-26 JP JP2016012510A patent/JP6649096B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017135198A (en) | 2017-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6510662B2 (en) | Film capacitor, coupled capacitor, inverter and electric vehicle | |
JP6574922B1 (en) | Film capacitors, coupled capacitors, inverters and electric vehicles | |
WO2006109732A1 (en) | Metalized film capacitor, case module type capacitor using the same, inverter circuit, and vehicle drive motor drive circuit | |
CN111213217B (en) | Film capacitor, connection type capacitor, inverter using the same, and electric vehicle | |
JP6688876B2 (en) | Film capacitor, concatenated capacitor, and inverter and electric vehicle using the same | |
JP2008288242A (en) | Case mold type capacitor | |
JP6687373B2 (en) | Film capacitor, concatenated capacitor, and inverter and electric vehicle using the same | |
JP6539338B2 (en) | Film capacitor and coupled capacitor, inverter, and electric vehicle | |
JP4923589B2 (en) | Case mold type capacitor | |
JP6799588B2 (en) | Film capacitors, articulated capacitors, inverters and electric vehicles using them | |
JP2008211128A (en) | Metallized film capacitors | |
WO2018101260A1 (en) | Film capacitor, inverter and electric vehicle | |
JP2013084546A (en) | Power storage device and vehicle | |
JP6649096B2 (en) | Film capacitors, connected capacitors, inverters and electric vehicles | |
JP2009200378A (en) | Composite metallized-film capacitor | |
JP6737818B2 (en) | Film capacitors, concatenated capacitors, inverters, and electric vehicles | |
JP2005093516A (en) | Metallized film capacitor and inverter power source circuit | |
JP7228027B2 (en) | Multilayer capacitors, concatenated capacitors, inverters and electric vehicles | |
JP2008258470A (en) | Metallized film capacitor and manufacturing method thereof | |
JP2007250923A (en) | Metallized film capacitor and its manufacturing method | |
WO2009139174A1 (en) | Film condenser and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180921 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190625 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190821 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6649096 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |