JP3935561B2 - Metallized film capacitors - Google Patents

Metallized film capacitors Download PDF

Info

Publication number
JP3935561B2
JP3935561B2 JP17999397A JP17999397A JP3935561B2 JP 3935561 B2 JP3935561 B2 JP 3935561B2 JP 17999397 A JP17999397 A JP 17999397A JP 17999397 A JP17999397 A JP 17999397A JP 3935561 B2 JP3935561 B2 JP 3935561B2
Authority
JP
Japan
Prior art keywords
fuse
insulating
film
capacitor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17999397A
Other languages
Japanese (ja)
Other versions
JPH1126275A (en
Inventor
博数 阪口
正明 松原
智哉 安立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP17999397A priority Critical patent/JP3935561B2/en
Publication of JPH1126275A publication Critical patent/JPH1126275A/en
Application granted granted Critical
Publication of JP3935561B2 publication Critical patent/JP3935561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose

Abstract

PROBLEM TO BE SOLVED: To provide a metallized film capacitor in which less capacity reduction, miniaturization and lightening are enabled, by improving reliability for insulation breakdown by fuse effect. SOLUTION: At least one surface of a pair of metal evaporation electrodes 4 is divided into a large number of segments 2 with insulation slits 1, which are disposed in star shapes and whose end parts are rounded. A dimension W1 of a fuse part 3 formed with a metal evaporation electrode layer across the insulating slits, separating the segments adjacent to each other is 0.2-2.0 mm in a narrowest part, and an electrode leader part and the segment pare connected with a fuse part 13 provided between insulation slits 12 with rounded end parts, which continue in longitudinal direction of a side edge part bonded to the electrode leader part and is provided in a longitudinal direction of band- shaped conducting channel 6. In this case, a fuse part dimension W3 provided between the insulation slits in the longitudinal direction is 1.25 or more and further not more than 2 to the dimension W1 of the fuse part provided between the insulation slits separating each segment.

Description

【0001】
【発明の属する技術分野】
本発明は、充放電用または直流フィルタ用に使用される直流用コンデンサで、金属化フィルムの金属蒸着電極に多数個のセグメントを形成することによって自己回復機能と自己保安機構とを併せ持つ金属化フィルムコンデンサの電気特性の改良に関するものである。
【0002】
【従来の技術】
従来、充放電用または直流フィルタ用コンデンサは、アルミニウム箔電極と絶縁紙、プラスチックフィルムまたはこれらの複合体の構成よりなり、誘電体が局部的に絶縁破壊すると自己回復機能がないためコンデンサとしての性能を失うことを考慮して、定格電位傾度を120V/μm程度に設定していた。
これに対して、金属化フィルムコンデンサでは局部的な絶縁破壊をしても、金属蒸着電極の飛散による自己回復機能によりコンデンサの性能を回復するために、定格電位傾度が150V/μm程度までの設計が可能であり、これによって充放電用、直流フィルタ用コンデンサの小形化が実現している。
【0003】
【発明が解決しようとする課題】
金属化フィルムコンデンサは、アルミニウム箔電極を使用したコンデンサに比べ小形・高信頼性であるが、金属蒸着電極の自己回復機能を超えた絶縁破壊が生じると周辺の広範囲な金属蒸着電極から絶縁破壊部分に電流が集中して流入する。この電流により金属化フィルムが加熱溶融し、金属化フィルムコンデンサの絶縁破壊が巻回層間の多層部にまで波及して自己回復せず、金属化フィルムコンデンサとして機能を果たさなくなることがある。
【0004】
このため、金属蒸着のない絶縁スリットで多数のセグメントに細分化し、絶縁スリットを横切って形成したヒューズ部により各セグメントを直並列接続することにより、或るセグメントの位置で絶縁破壊が起きたとき放電電流によりヒューズ部を溶断させ、コンデンサの絶縁破壊の影響をセグメントの範囲内にとどめるよう配慮しているが、多数のセグメントに分割している絶縁スリット間に設けたヒューズ部寸法(W1 )と、長手方向の絶縁スリット間に設けたヒューズ部寸法(W3 )によってはヒューズ部が溶断せず、コンデンサの絶縁破壊が起こることがあった。
【0005】
【課題を解決するための手段】
本発明は、金属化フィルムの絶縁破壊時に確実にヒューズ部を溶断させることにより、コンデンサ容量の減少を防ぎ、これによりフィルムの電位傾度を高めるとともに、金属化フィルムコンデンサの小形・軽量化を図るものである。
すなわち、片面に金属蒸着電極4を有する金属化フィルム7同士または両面に金属蒸着電極4を有する両面金属化フィルム10と絶縁フィルム11、あるいは片面に金属蒸着電極4を有する金属化フィルム7と絶縁フィルム11とを組合せ、これらを重ね合わせたものを巻回し、その巻回素子の両端面に電極引出部21を形成してなるコンデンサにおいて、上記金属蒸着電極の少なくとも一方の面が、星状に配した端部が丸味を帯びている絶縁スリット1により多数のセグメント2に分割され、互いに隣接するセグメントを隔てる絶縁スリット間を横切って上記金属蒸着電極層によって形成したヒューズ部3により接続されており、また上記ヒューズ部寸法(W1 )が最狭部で0.2〜2.0mmであり、かつ上記金属化フィルムの金属蒸着電極が上記電極引出部に結合されている側縁部の長手方向に連続する帯状の通電路6が形成され、上記通電路6の長手方向に、端部が丸味を帯びている絶縁スリット12が設けられ、該絶縁スリット12間に設けたヒューズ部13により電極引出部とセグメントが接続され、上記長手方向の絶縁スリット間に設けたヒューズ部寸法(W3 )が、各セグメントを隔てる絶縁スリット間に設けたヒューズ部寸法(W1 )に対して1.25以上でかつ2倍未満であり、
また、上記ヒューズ部3とセグメント2の金属蒸着電極(アクティブ部)4の膜抵抗値が6〜30Ω/□で、かつ上記電極引出部21に結合されている部分(ヘビー部)と長手方向の絶縁スリット間に設けたヒューズ部13の膜抵抗値が2〜10Ω/□であり、
そして、上記フィルムの定格電位傾度が150〜325V/μmであり、
さらに、上記セグメント2の面積が25〜900mmであることを特徴としている。
【0009】
そして、上記巻回素子の両端面に金属を溶射したコンデンサ素子20を並列、直列、または直並列に複数個接続して容器22に収容したことを特徴としている。
【0010】
また、上記金属化フィルムコンデンサは、充放電用または直流フィルター用であることを特徴としている。
【0011】
【発明の実施の形態】
本発明による絶縁スリットの形状は図1乃至図4に示すようなパターンであって、星状に細分化されたセグメントおよび長手方向の絶縁スリットで形成されたセグメントは、金属化フィルムに自己回復機能を超えた絶縁破壊が生じた場合、破壊箇所であるセグメントに流入する電流により、絶縁スリット間のヒューズ部が確実に溶断してセグメントを最小限の範囲で分離させる。
【0012】
【実施例1】
本発明の金属化フィルムコンデンサの具体的な実施例について、図面を参照しつつ詳細に説明する。図1(a)は金属蒸着のない絶縁スリットで細分化されたセグメントの形状で、セグメントを隔てる絶縁スリット間を横切ってヒューズ部が形成され、かつ側縁部の長手方向の絶縁スリット間にヒューズ部を設けた形状を示す平面図、図1(b)はセグメントおよび長手方向の絶縁スリットを構成する絶縁スリットの詳細図で、図2〜図4は絶縁スリットによって分割された他のセグメントおよび長手方向の絶縁スリットの形状を示す平面図及び詳細図であり、図5(a)は一対の金属化フィルムの断面図、(b)は両面金属化フィルムと絶縁フィルムの組合せによる断面図、(c)は片面に金属蒸着電極を有する金属化フィルムと絶縁フィルムの組合せによる断面図、図6はコンデンサ素子を容器に収容した断面図である。
【0013】
図5において、7は金属化フィルムで、絶縁フィルム11の表面に真空蒸着により金属蒸着電極4が形成されている。図1において、1は網状に細分化された絶縁スリットで、この部分には金属蒸着は形成されておらず、絶縁スリットの端部形状は半円形に形成されている。3はそれぞれのヒューズ部で、細分化されたセグメント2を並列接続している。12は側縁部の長手方向の絶縁スリットで、この部分にも金属蒸着は形成されてなく、絶縁スリットの端部形状も半円形に形成されている。13は側縁部の長手方向のヒューズ部で、電極引出部21とセグメント2を並列接続している。5はマージン部で、この部分にも金属蒸着は形成されていない。図5の8は金属を溶射する連続通電路6である金属化フィルムの端部側であってヘビー部であり、9はセグメントを構成しているアクティブ部であり、13のヒューズ部はヘビー部の領域内にある。
【0014】
図5(a)に示すように、金属化フィルム7のマージン部5が反対側になるように重ね合わせて巻回し、その両端面に金属を溶射して電極引出部21を形成したコンデンサ素子20を容器22に収容し、絶縁剤23を含浸して本発明の金属化フィルムコンデンサを作製した。
【0015】
次に累積過電圧試験用に作製した本構造の供試コンデンサの仕様を以下に示す。
[供試コンデンサの仕様諸元]
・金属化ポリプロピレンフィルム:12μm、100mm幅
・亜鉛蒸着膜抵抗値:ヘビー部2Ω/□、アクティブ部6Ω/□
・ヒューズ部蒸着膜抵抗値:6Ω/□
・長手方向のヒューズ部蒸着膜抵抗値:2Ω/□
セグメント面積:81mm2
・セグメント間のヒューズ部寸法:
スリット間 W1 =1.0mm
絶縁スリット幅 W2 =0.2mm
・長手方向のヒューズ部寸法:
スリット間 W3 =1.5mm
絶縁スリット幅 W2 =0.2mm
・コンデンサ容量:12μF
・絶縁剤:菜種油
・容器:角形ブリキケース
・試料数:5個
【0016】
試験の方法は、累積過電圧試験で、常温にて供試コンデンサに150V/μm(1800V)に相当する直流電圧を24時間印加する。印加後、コンデンサの容量を1kHzにて測定する。次に175V/μmに相当する電圧を同様にして印加し、その後、容量を測定し、25V/μm間隔での印加・測定を順次繰り返し、350V/μm(4200V)まで容量変化率の評価を行った。その試験結果を図7に示す。
【0017】
この試験結果より、定格電位傾度が150から300V/μmまでの間は容量変化が殆どなく、325V/μmで4.5%、350V/μmで21%のコンデンサの容量減少となった。従って、定格電位傾度が325V/μm以下であればコンデンサの容量減少は5%以下にとどめられることが確認できた。
この結果から、定格電圧を3900V(フィルム電位傾度325V/μm)以下に設定することができる。
【0018】
【実施例2】
次に図1に示す構成で、直流連続通電試験用(1)に作製した供試コンデンサの仕様を以下に示す。
[供試コンデンサの仕様緒元]
・金属化ポリプロピレンフィルム:12μm、100mm幅
・亜鉛蒸着膜抵抗値:ヘビー部2Ω/□、アクティブ部6Ω/□
・ヒューズ部蒸着膜抵抗値:6Ω/□
・長手方向のヒューズ部蒸着膜抵抗値:2Ω/□
・セグメント面積:81mm2
・セグメント間のヒューズ部寸法:
スリット間 W1 =0.2、1.0、2.0mm
絶縁スリット幅 W2 =0.5mm
・長手方向のヒューズ部寸法:
スリット間 W3 =0.15〜3.8mm
絶縁スリット幅 W2 =0.5mm
・コンデンサ容量:12μF
・絶縁剤:菜種油
・容器:角形ブリキケース
・試料数:各種組合せにて合計18個
(試料数は各1個で、その組合せ要因は表1に記載する。)
【0019】
試験の方法は、直流連続通電試験(1)で、70℃の熱風循環式恒温槽中で、3375Vの直流電圧を4000時間連続印加して試験終了後、容量変化率について評価を行った。その試験結果を表1に示す。
【0020】
【表1】

Figure 0003935561
【0021】
この試験結果から次のことが判明した。ヒューズ部であるスリット間寸法(W1 )が0.2〜2.0mmの範囲で、かつ長手方向のスリット間寸法(W3 )がスリット間寸法(W1 )に対して1.25倍以上でかつ2倍未満であれば、金属化フィルムに絶縁破壊が起きたときはヒューズ部が正常に動作して、コンデンサの容量減少も5%以下と少なく安定している。しかし、1.25倍未満になるとヒューズ部が動作し易く、コンデンサの容量減少も5%以上となり好ましくない。
【0022】
【実施例3】
更に図1に示す構成で、直流連続通電試験用(2)に作製した供試コンデンサの仕様を以下に示す。
[供試コンデンサの仕様諸元]
・金属化ポリプロピレンフィルム:12μm、100mm幅
・亜鉛蒸着膜抵抗値:ヘビー部10Ω/□、アクティブ部30Ω/□
・ヒューズ部蒸着膜抵抗値:30Ω/□
・長手方向のヒューズ部蒸着膜抵抗値:10Ω/□
・セグメント面積:81mm2
・セグメント間のヒューズ部寸法:
スリット間 W1 =0.2、1.0、2.0mm
絶縁スリット幅 W2 =0.5mm
・長手方向のヒューズ部寸法:
スリット間 W3 =0.15〜3.8mm
絶縁スリット幅 W2 =0.5mm
・コンデンサ容量:12μF
・絶縁剤:菜種油
・容器:角形ブリキケース
・試料数:各種組合せにて合計18個
(試料数は各1個で、その組合せ要因は表2に記載する。)
【0023】
試験の方法は実施例2と同様の直流連続通電試験(2)で、70℃の熱風循環式恒温槽中で、3375Vの直流電圧を4000時間連続印加して試験終了後、容量変化率について評価を行った。その試験結果を表2に示す。
【0024】
【表2】
Figure 0003935561
【0025】
この試験結果から次のことが判明した。ヒューズ部であるスリット間寸法(W1 )が0.2〜2.0mmの範囲で、かつ長手方向のスリット間寸法(W3 )がスリット間寸法(W1 )に対して1.25倍以上でかつ2倍未満であれば、ヒューズ部が正常に動作して、コンデンサの容量減少も5%以下と少なく安定している。しかし、1.25倍未満になるとヒューズ部が動作し易くなり、コンデンサの容量減少も5%以上となるので好ましくない。
【0026】
尚、実施例2の直流連続通電試験(1)では蒸着膜抵抗値をヒューズ部およびアクティブ部で6Ω/□、長手方向の絶縁スリット間に設けたヒューズ部とヘビー部で2Ω/□とした。これ以上の膜抵抗値の場合も同様に試験したが、コンデンサの容量減少が少なくなる傾向である。
さらに、実施例3の直流連続通電試験(2)では膜抵抗値をヒューズ部およびアクティブ部で30Ω/□、長手方向の絶縁スリット間に設けたヒューズ部とヘビー部で10Ω/□としたが、これよりも低い膜抵抗値で同様に試験した場合もコンデンサの容量減少が少なくなる傾向である。
【0027】
以上の結果より、膜抵抗値はヒューズ部およびアクティブ部で6〜30Ω/□、長手方向の絶縁スリット間に設けたヒューズ部とヘビー部で2〜10Ω/□が好ましい。
膜抵抗値がヒューズ部およびアクティブ部で6Ω/□未満、長手方向の絶縁スリット間に設けたヒューズ部とヘビー部で2Ω/□未満の場合、ヒューズ部が動作し易くなり、コンデンサの容量減少も大きくなる。
また、膜抵抗値がヒューズ部およびアクティブ部で30Ω/□を超え、長手方向の絶縁スリット間に設けたヒューズ部とヘビー部で10Ω/□を超える場合、ヒューズ部が動作し難くなり、絶縁破壊が進むため、コンデンサの容量減少も大きくなる。
なお、実施例ではセグメント面積は81mmとしたが、25〜900mmの場合でもコンデンサの容量減少を少なくできる効果が認められた。また、絶縁スリットの端部は半円形状のものを示したが、丸味を帯びているものであればよい。
【0028】
上記実施例1、2、3において、金属蒸着電極はヘビー部/アクティブ部及びヒューズ部とした形状のものを用いたが、端部/内側部の電極厚みは均一であってもよく、また適宜変えてもよい。また絶縁スリット幅(W2 )を0.5mmとしたが、2.0mmを超えるとコンデンサの形状が大きくなり、好ましくない。ただし、2.0mm以下では何れの寸法でも良い。
また、上記実施例では亜鉛蒸着電極の場合を示したが、アルミニウム蒸着電極またはアルミニウムと亜鉛の混合体の金属蒸着電極の場合でも同様の結果が得られた。さらに、実施例では一対の金属蒸着電極の両方をセグメントに細分化したが、一対の金属蒸着電極のうち片方のみをセグメントに細分化しても同様に効果が認められた。ここでは、金属化フィルムの材質がポリプロピレンフィルムの場合を示したが、ポリエチレンテレフタレートフィルム、ポリフェニレンスルフィドフィルムなどの樹脂フィルムを使用することができる。さらに、絶縁剤である絶縁油は菜種油としたが、他の絶縁油を用いた場合や、絶縁性ガスを用いた場合等も同様の効果が得られており、絶縁剤については液体、気体、固体(樹脂)の何れであってもよい。また、絶縁が完全に行われる場合は、特に絶縁剤を充填する必要はない。
【0029】
【発明の効果】
本発明によれば、一対の金属蒸着電極の少なくとも一方の面が、星状に配した端部が丸味を帯びた絶縁スリットでセグメントに細分化され、スリット間に形成したヒューズ部でセグメントが並列接続され、長手方向にも絶縁スリットが設けられた金属化フィルムを使用することにより、異常時に絶縁スリット間に形成したヒューズ部が溶断され、セグメントの絶縁破壊が最小限に抑えられるので、コンデンサの容量減少を最小限にとどめることができる。よって、コンデンサの安全性を高めることができ、さらに小形・軽量化が可能になるなど工業的、実用的にその価値は極めて大なるものである。
【図面の簡単な説明】
【図1】図1(a)は金属蒸着のない絶縁スリットで細分化されたセグメントおよび長手方向の絶縁スリット間にヒューズ部を設けた形状を示す平面図、(b)はセグメントおよび長手方向の絶縁スリット部を構成する詳細図である。
【図2】図2は絶縁スリットによって分割された他のセグメントおよび長手方向の絶縁スリット部の形状を示す平面図および詳細図である。
【図3】図3は絶縁スリットによって分割された他のセグメントおよび長手方向の絶縁スリット部の形状を示す平面図および詳細図である。
【図4】図4は絶縁スリットによって分割された他のセグメントおよび長手方向の絶縁スリット部の形状を示す平面図および詳細図である。
【図5】図5(a)は一対の金属化フィルムの断面図で、(b)図は両面金属化フィルムと絶縁フィルムの組合せによる断面図、(c)図は片面に金属蒸着電極を有する金属化フィルムと絶縁フィルムの組合せによる断面図である。
【図6】図6はコンデンサ素子を容器に収容した断面図である。
【図7】図7は累積過電圧試験結果を示す図である。
【符号の説明】
1:絶縁スリット
2:セグメント
3:ヒューズ部
4:金属蒸着電極
5:マージン部
6:通電路
7:金属化フィルム
8:ヘビー部
9:アクティブ部
10:両面金属化フィルム
11:絶縁フィルム
12:側縁部の長手方向の絶縁スリット
13:側縁部の長手方向の絶縁スリット間に設けたヒューズ部
20:コンデンサ素子
21:電極引出部
22:容器
23:絶縁剤[0001]
BACKGROUND OF THE INVENTION
The present invention is a DC capacitor used for charging / discharging or a DC filter, and a metallized film having a self-healing function and a self-safety mechanism by forming a number of segments on a metal vapor deposition electrode of the metallized film. The present invention relates to improvement of the electrical characteristics of the capacitor.
[0002]
[Prior art]
Conventionally, capacitors for charging / discharging or DC filters consist of an aluminum foil electrode and insulating paper, plastic film, or a composite of these, and since there is no self-healing function when the dielectric breaks down locally, the performance as a capacitor The rated potential gradient was set to about 120 V / μm.
In contrast, metallized film capacitors are designed to have a rated potential gradient of up to about 150 V / μm in order to recover the performance of the capacitors by self-recovery function due to scattering of the metal deposition electrode even if local dielectric breakdown occurs. As a result, it is possible to reduce the size of the capacitor for charging / discharging and the DC filter.
[0003]
[Problems to be solved by the invention]
Metallized film capacitors are smaller and more reliable than capacitors using aluminum foil electrodes, but if dielectric breakdown occurs beyond the self-healing function of the metal-deposited electrode, the dielectric breakdown portion starts from a wide range of metal-deposited electrodes. The current concentrates and flows in. With this current, the metallized film is heated and melted, and the dielectric breakdown of the metallized film capacitor may spread to the multilayer part between the winding layers and not self-recover, thereby failing to function as a metallized film capacitor.
[0004]
For this reason, it is subdivided into a large number of segments by insulating slits without metal deposition, and each segment is connected in series and parallel by a fuse part formed across the insulating slits. Although the fuse part is blown by the current and the influence of the dielectric breakdown of the capacitor is kept within the range of the segment, the fuse part dimension (W1) provided between the insulation slits divided into a number of segments, Depending on the size of the fuse portion (W3) provided between the insulating slits in the longitudinal direction, the fuse portion may not be melted and the dielectric breakdown of the capacitor may occur.
[0005]
[Means for Solving the Problems]
The present invention prevents the reduction of the capacitor capacity by reliably fusing the fuse part at the time of dielectric breakdown of the metallized film, thereby increasing the potential gradient of the film and reducing the size and weight of the metallized film capacitor. It is.
That is, the metallized films 7 having the metal vapor-deposited electrodes 4 on one side or the double-sided metallized film 10 and the insulating film 11 having the metal vapor-deposited electrodes 4 on both sides, or the metallized film 7 and the insulating film having the metal vapor-deposited electrodes 4 on one side. 11 is wound, and a superposition of these is wound, and in the capacitor in which the electrode lead-out portions 21 are formed on both end faces of the winding element, at least one surface of the metal vapor deposition electrode is arranged in a star shape. The end portion is divided into a number of segments 2 by a rounded insulating slit 1, and is connected by a fuse portion 3 formed by the metal-deposited electrode layer across the insulating slit separating adjacent segments. In addition, the fuse part dimension (W1) is 0.2 to 2.0 mm at the narrowest part, and metal deposition of the metallized film is performed. A belt-like energization path 6 is formed which is continuous in the longitudinal direction of the side edge portion where the pole is coupled to the electrode lead-out portion, and an insulating slit 12 whose end is rounded is formed in the longitudinal direction of the energization path 6. The electrode lead portion and the segment are connected by the fuse portion 13 provided between the insulating slits 12, and the fuse portion dimension (W3) provided between the insulating slits in the longitudinal direction is between the insulating slits separating the segments. 1.25 or more and less than twice the size of the fuse part provided (W1),
The fuse portion 3 and the metal vapor deposition electrode (active portion) 4 of the segment 2 have a film resistance value of 6 to 30Ω / □ and are connected to the electrode lead portion 21 (heavy portion) in the longitudinal direction. The film resistance value of the fuse portion 13 provided between the insulating slits is 2 to 10Ω / □,
And the rated potential gradient of the said film is 150-325 V / micrometer,
Furthermore, the area of the segment 2 is 25 to 900 mm 2 .
[0009]
A plurality of capacitor elements 20 sprayed with metal on both end faces of the winding element are connected in parallel, in series, or in series / parallel, and accommodated in a container 22.
[0010]
The metallized film capacitor is characterized in that it is used for charging / discharging or for a direct current filter.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The shape of the insulating slit according to the present invention is a pattern as shown in FIGS. 1 to 4, and the segment formed by the star-shaped segment and the insulating slit in the longitudinal direction is self-healing function in the metallized film. When a dielectric breakdown exceeding 1 is generated, the current flowing into the segment, which is the location of the breakdown, ensures that the fuse portion between the insulating slits is melted and the segments are separated in a minimum range.
[0012]
[Example 1]
Specific examples of the metallized film capacitor of the present invention will be described in detail with reference to the drawings. FIG. 1A shows the shape of a segment subdivided by insulating slits without metal vapor deposition. A fuse portion is formed across the insulating slits separating the segments, and a fuse is formed between the insulating slits in the longitudinal direction of the side edges. FIG. 1B is a detailed view of the insulating slits constituting the segments and the insulating slits in the longitudinal direction, and FIGS. 2 to 4 are other segments and longitudinal portions divided by the insulating slits. FIG. 5A is a cross-sectional view of a pair of metallized films, FIG. 5B is a cross-sectional view of a combination of a double-sided metallized film and an insulating film, and FIG. ) Is a cross-sectional view of a combination of a metallized film having a metal vapor deposition electrode on one side and an insulating film, and FIG. 6 is a cross-sectional view in which a capacitor element is housed in a container.
[0013]
In FIG. 5, 7 is a metallized film, and the metal vapor deposition electrode 4 is formed on the surface of the insulating film 11 by vacuum vapor deposition. In FIG. 1, reference numeral 1 denotes an insulating slit subdivided into a net-like shape. No metal vapor deposition is formed on this portion, and the end shape of the insulating slit is formed in a semicircular shape. Reference numeral 3 denotes each fuse portion, and the segmented segments 2 are connected in parallel. Reference numeral 12 denotes an insulating slit in the longitudinal direction of the side edge portion. No metal vapor deposition is formed in this portion, and the end shape of the insulating slit is also formed in a semicircular shape. A fuse part 13 in the longitudinal direction of the side edge part connects the electrode lead-out part 21 and the segment 2 in parallel. Reference numeral 5 denotes a margin portion, and no metal deposition is formed in this portion. 5 of FIG. 5 is the heavy metal part which is the end part side of the metallized film which is the continuous conduction path 6 which sprays metal, 9 is the active part which comprises the segment, 13 fuse parts are heavy parts Is in the area.
[0014]
As shown in FIG. 5A, the capacitor element 20 is formed by overlapping and winding the metallized film 7 so that the margin part 5 is on the opposite side, and spraying metal on both end faces to form the electrode lead part 21. Was placed in a container 22 and impregnated with an insulating agent 23 to produce a metallized film capacitor of the present invention.
[0015]
Next, the specifications of the test capacitor of this structure prepared for the cumulative overvoltage test are shown below.
[Specifications of test capacitor specifications]
・ Metallized polypropylene film: 12 μm, 100 mm width ・ Zinc deposited film resistance value: Heavy part 2Ω / □, Active part 6Ω / □
・ Fuse deposition film resistance: 6Ω / □
・ Fuse deposition film resistance value in the longitudinal direction: 2Ω / □
Segment area: 81mm 2
・ Fuse dimensions between segments:
Between slits W1 = 1.0mm
Insulation slit width W2 = 0.2mm
-Longitudinal fuse dimensions:
Between slits W3 = 1.5mm
Insulation slit width W2 = 0.2mm
・ Capacitor capacity: 12μF
Insulating agent: rapeseed oil Container: Square tin case Number of samples: 5 [0016]
The test method is a cumulative overvoltage test, in which a DC voltage corresponding to 150 V / μm (1800 V) is applied to a test capacitor at room temperature for 24 hours. After application, the capacitance of the capacitor is measured at 1 kHz. Next, a voltage corresponding to 175 V / μm was applied in the same manner, then the capacity was measured, and the application / measurement at intervals of 25 V / μm was sequentially repeated to evaluate the capacity change rate up to 350 V / μm (4200 V). It was. The test results are shown in FIG.
[0017]
From this test result, there was almost no change in capacitance when the rated potential gradient was 150 to 300 V / μm, and the capacitance decreased by 4.5% at 325 V / μm and 21% at 350 V / μm. Therefore, it has been confirmed that if the rated potential gradient is 325 V / μm or less, the capacitance reduction of the capacitor can be limited to 5% or less.
From this result, the rated voltage can be set to 3900 V (film potential gradient 325 V / μm) or less.
[0018]
[Example 2]
Next, the specifications of the test capacitor produced for the DC continuous current test (1) with the configuration shown in FIG. 1 are shown below.
[Specifications of test capacitor specifications]
・ Metallized polypropylene film: 12 μm, 100 mm width ・ Zinc deposited film resistance value: Heavy part 2Ω / □, Active part 6Ω / □
・ Fuse deposition film resistance: 6Ω / □
・ Fuse deposition film resistance value in the longitudinal direction: 2Ω / □
・ Segment area: 81mm 2
・ Fuse dimensions between segments:
Between slits W1 = 0.2, 1.0, 2.0 mm
Insulation slit width W2 = 0.5mm
-Longitudinal fuse dimensions:
Between slits W3 = 0.15-3.8mm
Insulation slit width W2 = 0.5mm
・ Capacitor capacity: 12μF
-Insulating agent: rapeseed oil-Container: Square tin case-Number of samples: 18 in total in various combinations (the number of samples is 1 each, and the combination factors are listed in Table 1)
[0019]
The test method was a DC continuous current test (1), in which a DC voltage of 3375 V was continuously applied for 4000 hours in a hot air circulating thermostat at 70 ° C., and the capacity change rate was evaluated after the test was completed. The test results are shown in Table 1.
[0020]
[Table 1]
Figure 0003935561
[0021]
From the test results, the following was found. The inter-slit dimension (W1) which is the fuse portion is in the range of 0.2 to 2.0 mm, and the longitudinal inter-slit dimension (W3) is 1.25 times or more than the inter-slit dimension (W1) and 2 If it is less than twice, when the dielectric breakdown occurs in the metallized film, the fuse portion operates normally, and the capacitance decrease of the capacitor is as stable as 5% or less. However, if the ratio is less than 1.25 times, the fuse part is easy to operate, and the capacity reduction of the capacitor is also 5% or more, which is not preferable.
[0022]
[Example 3]
Furthermore, the specification of the test capacitor produced for the DC continuous current test (2) with the configuration shown in FIG. 1 is shown below.
[Specifications of test capacitor specifications]
・ Metallized polypropylene film: 12 μm, 100 mm width ・ Zinc vapor deposition film resistance value: heavy portion 10Ω / □, active portion 30Ω / □
・ Fuse deposition film resistance: 30Ω / □
・ Fuse deposition film resistance value in the longitudinal direction: 10Ω / □
・ Segment area: 81mm 2
・ Fuse dimensions between segments:
Between slits W1 = 0.2, 1.0, 2.0 mm
Insulation slit width W2 = 0.5mm
-Longitudinal fuse dimensions:
Between slits W3 = 0.15-3.8mm
Insulation slit width W2 = 0.5mm
・ Capacitor capacity: 12μF
-Insulating agent: rapeseed oil-Container: Square tin case-Number of samples: 18 in total in various combinations (the number of samples is 1 for each, and the combination factors are listed in Table 2)
[0023]
The test method is a DC continuous current test (2) similar to that of Example 2, in which a DC voltage of 3375 V was continuously applied for 4000 hours in a hot air circulating thermostatic bath at 70 ° C., and the capacity change rate was evaluated after the test was completed. Went. The test results are shown in Table 2.
[0024]
[Table 2]
Figure 0003935561
[0025]
From the test results, the following was found. The inter-slit dimension (W1) which is the fuse portion is in the range of 0.2 to 2.0 mm, and the longitudinal inter-slit dimension (W3) is 1.25 times or more than the inter-slit dimension (W1) and 2 If it is less than twice, the fuse part operates normally and the capacitance decrease of the capacitor is less than 5% and stable. However, if the ratio is less than 1.25 times, the fuse portion is easy to operate, and the capacitance reduction of the capacitor is 5% or more, which is not preferable.
[0026]
In the DC continuous energization test (1) of Example 2, the deposited film resistance value was 6Ω / □ at the fuse portion and the active portion, and 2Ω / □ at the fuse portion and heavy portion provided between the longitudinal insulating slits. In the case of a film resistance value higher than this, the same test was performed, but the capacitance decrease of the capacitor tends to be reduced.
Furthermore, in the DC continuous energization test (2) of Example 3, the film resistance value was 30 Ω / □ at the fuse portion and the active portion, and 10 Ω / □ at the fuse portion and heavy portion provided between the longitudinal insulation slits. When the same test is performed with a lower film resistance value than this, the decrease in the capacitance of the capacitor tends to be reduced.
[0027]
From the above results, the film resistance value is preferably 6 to 30 Ω / □ at the fuse portion and the active portion, and 2 to 10 Ω / □ at the fuse portion and heavy portion provided between the insulating slits in the longitudinal direction.
If the membrane resistance is less than 6Ω / □ at the fuse and active parts, and less than 2Ω / □ at the fuse part and heavy part between the longitudinal insulation slits, the fuse part becomes easier to operate and the capacitance of the capacitor is reduced. growing.
Also, if the film resistance value exceeds 30Ω / □ at the fuse and active parts, and exceeds 10Ω / □ at the fuse part and heavy part provided between the longitudinal insulation slits, the fuse part becomes difficult to operate and dielectric breakdown occurs. Therefore, the capacity reduction of the capacitor also increases.
Incidentally, the segment area in the examples was a 81 mm 2, an effect of reducing the volume reduction of the capacitor even if 25~900Mm 2 was observed. Moreover, although the edge part of the insulation slit showed the semicircle shape, what is necessary is just roundish.
[0028]
In the above Examples 1, 2, and 3, the metal vapor deposition electrode was used in the shape of the heavy part / active part and the fuse part, but the electrode thickness of the end part / inner part may be uniform, and as appropriate. You may change it. The insulating slit width (W2) is 0.5 mm. However, if it exceeds 2.0 mm, the shape of the capacitor becomes large, which is not preferable. However, any dimension may be used at 2.0 mm or less.
Moreover, although the case of the zinc vapor deposition electrode was shown in the said Example, the same result was obtained also in the case of the aluminum vapor deposition electrode or the metal vapor deposition electrode of the mixture of aluminum and zinc. Further, in the examples, both of the pair of metal vapor deposition electrodes were subdivided into segments, but the same effect was observed when only one of the pair of metal vapor deposition electrodes was subdivided into segments. Here, although the case where the material of the metallized film is a polypropylene film is shown, a resin film such as a polyethylene terephthalate film or a polyphenylene sulfide film can be used. Furthermore, although the insulating oil that is the insulating agent is rapeseed oil, the same effect is obtained when using other insulating oils or when insulating gas is used. Any of solid (resin) may be sufficient. Moreover, when insulation is performed completely, it is not necessary to fill with an insulating agent in particular.
[0029]
【The invention's effect】
According to the present invention, at least one surface of a pair of metal vapor deposition electrodes is subdivided into segments by an insulating slit having a rounded end portion arranged in a star shape, and the segments are arranged in parallel by a fuse portion formed between the slits. By using a metallized film that is connected and provided with an insulating slit in the longitudinal direction, the fuse part formed between the insulating slits is blown in the event of an abnormality, and the dielectric breakdown of the segment is minimized. Capacity reduction can be minimized. Therefore, the safety of the capacitor can be enhanced, and further, the size and weight can be reduced, so that the value is extremely large industrially and practically.
[Brief description of the drawings]
FIG. 1A is a plan view showing a shape in which a fuse portion is provided between a segment segmented by an insulating slit without metal deposition and a longitudinal insulating slit, and FIG. It is detail drawing which comprises an insulation slit part.
FIG. 2 is a plan view and a detailed view showing the shape of another segment divided by the insulating slit and the insulating slit portion in the longitudinal direction.
FIG. 3 is a plan view and a detailed view showing the shape of another segment divided by the insulating slit and the insulating slit portion in the longitudinal direction.
FIG. 4 is a plan view and a detailed view showing the shape of another segment divided by the insulating slit and the insulating slit portion in the longitudinal direction.
5A is a cross-sectional view of a pair of metallized films, FIG. 5B is a cross-sectional view of a combination of a double-sided metallized film and an insulating film, and FIG. 5C has a metal vapor deposition electrode on one side. It is sectional drawing by the combination of a metallized film and an insulating film.
FIG. 6 is a cross-sectional view in which a capacitor element is accommodated in a container.
FIG. 7 is a diagram showing a cumulative overvoltage test result.
[Explanation of symbols]
1: Insulating slit 2: Segment 3: Fuse part 4: Metal deposition electrode 5: Margin part 6: Current path 7: Metallized film 8: Heavy part 9: Active part 10: Double-sided metallized film 11: Insulating film 12: side Insulating slit 13 in the longitudinal direction of the edge portion: Fuse portion 20 provided between the insulating slits in the longitudinal direction of the side edge portion: Capacitor element 21: Electrode extraction portion 22: Container 23: Insulating agent

Claims (3)

片面に金属蒸着電極(4)を有する金属化フィルム(7)同士または両面に金属蒸着電極(4)を有する両面金属化フィルム(10)と絶縁フィルム(11)、あるいは片面に金属蒸着電極(4)を有する金属化フィルム(7)と絶縁フィルム(11)とを組合せ、これらを重ね合わせたものを巻回し、その巻回素子の両端面に電極引出部(21)を形成してなるコンデンサにおいて、
上記金属蒸着電極の少なくとも一方の面が、星状に配した端部が丸味を帯びている絶縁スリット(1)により多数のセグメント(2)に分割され、互いに隣接するセグメントを隔てる絶縁スリット間を横切って上記金属蒸着電極層によって形成したヒューズ部(3)により接続されており、また上記ヒューズ部寸法(W1 )が最狭部で0.2〜2.0mmであり、
かつ上記金属化フィルムの金属蒸着電極が上記電極引出部に結合されている側縁部の長手方向に連続する帯状の通電路(6)が形成され、上記通電路(6)の長手方向に、端部が丸味を帯びている絶縁スリット(12)が設けられ、該絶縁スリット(12)間に設けたヒューズ部(13)により電極引出部とセグメントが接続され、上記長手方向の絶縁スリット間に設けたヒューズ部寸法(W3 )が、各セグメントを隔てる絶縁スリット間に設けたヒューズ部寸法(W1 )に対して1.25以上でかつ2倍未満であり、
また、上記ヒューズ部(3)とセグメント(2)の膜抵抗値が6〜30Ω/□で、かつ上記電極引出部(21)に結合されている部分と長手方向の絶縁スリット間に設けたヒューズ部(13)の膜抵抗値が2〜10Ω/□であり、
そして、上記フィルムの定格電位傾度が150〜325V/μmであり、
さらに、上記セグメント(2)の面積が25〜900mmであることを特徴とする金属化フィルムコンデンサ。
Double-sided metallized film (10) and metallized film (7) having metal-deposited electrodes (4) on one side or double-sided metallized film (10) and metallized-electrode (4) on both sides, or metal-deposited electrode (4 In a capacitor formed by combining a metallized film (7) having an insulating film (7) and an insulating film (11), winding these layers, and forming electrode lead portions (21) on both end faces of the winding element ,
At least one surface of the metal vapor-deposited electrode is divided into a number of segments (2) by an insulating slit (1) with rounded ends arranged in a star shape, and between the insulating slits separating adjacent segments. It is connected by a fuse part (3) formed by the metal vapor deposition electrode layer across, and the fuse part dimension (W1) is 0.2 to 2.0 mm at the narrowest part,
And the strip | belt-shaped electricity path (6) which continues in the longitudinal direction of the side edge part by which the metal vapor deposition electrode of the said metallized film is couple | bonded with the said electrode extraction part is formed, and the longitudinal direction of the said electricity path (6), An insulating slit (12) having a rounded end is provided, and the electrode lead-out portion and the segment are connected by a fuse portion (13) provided between the insulating slits (12). The provided fuse part dimension (W3) is 1.25 or more and less than twice the fuse part dimension (W1) provided between the insulating slits separating each segment ,
Also, fuses the fuse unit membrane resistance value (3) and segment (2) is 6~30Ω / □ a, and is provided between portions and the longitudinal direction of the insulating slits coupled to the electrode lead portions (21) film resistance of the parts (13) 2~10Ω / □ Ri der,
And the rated potential gradient of the said film is 150-325 V / micrometer,
Furthermore, the metallized film capacitor, wherein the area of said segment (2) is 25~900Mm 2.
上記巻回素子の両端面に金属を溶射したコンデンサ素子(20)を並列、直列、または直並列に複数個接続して容器(22)に収容したことを特徴とする請求項1記載の金属化フィルムコンデンサ。  The metallization according to claim 1, characterized in that a plurality of capacitor elements (20) sprayed with metal on both end faces of the winding element are connected in parallel, in series or in series-parallel and accommodated in a container (22). Film capacitor. 上記コンデンサは充放電用または直流フィルター用であることを特徴とする請求項1記載の金属化フィルムコンデンサ。  2. The metallized film capacitor according to claim 1, wherein the capacitor is used for charging / discharging or a direct current filter.
JP17999397A 1997-07-04 1997-07-04 Metallized film capacitors Expired - Fee Related JP3935561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17999397A JP3935561B2 (en) 1997-07-04 1997-07-04 Metallized film capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17999397A JP3935561B2 (en) 1997-07-04 1997-07-04 Metallized film capacitors

Publications (2)

Publication Number Publication Date
JPH1126275A JPH1126275A (en) 1999-01-29
JP3935561B2 true JP3935561B2 (en) 2007-06-27

Family

ID=16075588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17999397A Expired - Fee Related JP3935561B2 (en) 1997-07-04 1997-07-04 Metallized film capacitors

Country Status (1)

Country Link
JP (1) JP3935561B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4527874B2 (en) * 2000-12-27 2010-08-18 利昌工業株式会社 Electrical equipment such as molded surge absorbers
JP3914854B2 (en) * 2002-10-10 2007-05-16 松下電器産業株式会社 Metalized film capacitor, inverter smoothing capacitor and automotive capacitor using the same
JP2008277505A (en) * 2007-04-27 2008-11-13 Nichicon Corp Metallized film capacitor
JP2009244040A (en) * 2008-03-31 2009-10-22 Murata Mfg Co Ltd Method of measuring insulation breakdown voltage of film-like insulating material
US11817272B2 (en) 2017-08-15 2023-11-14 Oji Holdings Corporation Metallized film, metallized film roll, plate roll

Also Published As

Publication number Publication date
JPH1126275A (en) 1999-01-29

Similar Documents

Publication Publication Date Title
JP2004134561A (en) Metallized film capacitor, smoothing capacitor for inverter using the same, and capacitor for automobile
WO2010090245A1 (en) Metalized film capacitor
WO2007125986A1 (en) Film capacitor
JP3870932B2 (en) Metallized film capacitors
JP4869531B2 (en) Capacitor element for power capacitor, power capacitor having the element, and metallized film for power capacitor
JP2006286988A (en) Metallization film capacitor
JP3935561B2 (en) Metallized film capacitors
JP2007103534A (en) Metallization film capacitor
JP5647400B2 (en) Metallized film capacitors
JP3454043B2 (en) Metallized film capacitors
JP4366930B2 (en) Metallized film capacitors
JPH10308323A (en) Metalized film capacitor
JPH08250367A (en) Metallized film capacitor
JP2001510637A (en) High energy density capacitor film and capacitor made therefrom
JPH08288171A (en) Metallized film capacitor
CN112366082A (en) Element for DC support capacitor
JP5647402B2 (en) Metallized film capacitors
JP5294321B2 (en) Metallized film capacitors
JP5397936B2 (en) Metallized film capacitors
JPH06244054A (en) Metallized film capacitor
JPH1145819A (en) Metallized film capacitor
JP5395302B2 (en) Metallized film capacitors
JP5397968B2 (en) Metallized film capacitors
JPH1126281A (en) Metallized film capacitor
JPS5824932B2 (en) capacitor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees