JP3454043B2 - Metallized film capacitors - Google Patents

Metallized film capacitors

Info

Publication number
JP3454043B2
JP3454043B2 JP29609096A JP29609096A JP3454043B2 JP 3454043 B2 JP3454043 B2 JP 3454043B2 JP 29609096 A JP29609096 A JP 29609096A JP 29609096 A JP29609096 A JP 29609096A JP 3454043 B2 JP3454043 B2 JP 3454043B2
Authority
JP
Japan
Prior art keywords
film
electrode
metallized film
micro
blocks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29609096A
Other languages
Japanese (ja)
Other versions
JPH10144563A (en
Inventor
茂男 奥野
敏幸 西森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP29609096A priority Critical patent/JP3454043B2/en
Priority to DE19734477A priority patent/DE19734477B4/en
Priority to CN97118564.6A priority patent/CN1126129C/en
Priority to US08/907,902 priority patent/US5905628A/en
Publication of JPH10144563A publication Critical patent/JPH10144563A/en
Priority to US09/094,770 priority patent/US5942283A/en
Priority to US09/094,772 priority patent/US6048402A/en
Application granted granted Critical
Publication of JP3454043B2 publication Critical patent/JP3454043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は力率改善用の電力用
コンデンサ,電気機器用のコンデンサ,各種電源回路用
のコンデンサおよび通信機器等に使用される金属化フィ
ルムコンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power capacitor for improving power factor, a capacitor for electric equipment, a capacitor for various power supply circuits, a metallized film capacitor used for communication equipment and the like.

【0002】[0002]

【従来の技術】従来、金属化フィルムの蒸着金属を微小
分割してヒューズ機構を付加するものやそのフィルムを
用いたコンデンサは特開平4−225508号公報や特
開平8−31690号公報などで公知となっており、こ
れらの公知技術を用いてヒューズ機構付の金属化フィル
ムコンデンサを製造することは可能である。
Conventionally, known in such capacitors JP 4-225508 and JP-A-8-31690 discloses that used as fine dividing those and the film to add a fuse mechanism deposited metal of the metallized film Therefore, it is possible to manufacture a metallized film capacitor with a fuse mechanism using these known techniques.

【0003】[0003]

【発明が解決しようとする課題】ところが、このような
従来の構成で金属化フィルムコンデンサとした場合、種
々の課題があった。すなわち、図6に示すように蒸着電
極を金属化フィルムの長手方向と幅方向に亘って微小ブ
ロック80に分割して複数個形成し、各ブロック80間
にヒューズ部60を設けた構成では、自己回復でクリア
リングできない微小破壊が発生した場合、過大な短絡電
流が流れヒューズ部60が動作してその部分を金属化フ
ィルムコンデンサから切離すが、その部分の面積は微小
なため、隣接する微小ブロック80間から回り込む電流
が隣接する微小ブロック80間のヒューズ部60をも動
作させてしまい、何ら問題のない部分までも容量減少さ
せてしまう問題点があった。
However, when a metallized film capacitor having such a conventional structure is used, there are various problems. That is, as shown in FIG. 6, the vapor deposition electrode is divided into a plurality of minute blocks 80 in the longitudinal direction and the width direction of the metallized film, and the plurality of minute electrodes are provided. If a minute breakdown that cannot be cleared by recovery occurs, an excessive short-circuit current flows and the fuse portion 60 operates to separate that portion from the metallized film capacitor, but the area of that portion is minute, so an adjacent minute block There is a problem that the current flowing from between 80 also activates the fuse portion 60 between the adjacent minute blocks 80, and the capacity is reduced even in a portion having no problem.

【0004】また、微小破壊のクリアリングによる短絡
電流でヒューズ部60が動作しない場合、そのブロック
での破壊が進行し続け誘電体破壊を引起こし、さらに進
行し続けると、その周辺のブロックへと破壊が広がり、
最悪の場合、金属化フィルムコンデンサが発煙、発火す
る場合があった。
Further, when the fuse portion 60 does not operate due to a short-circuit current due to clearing of minute breakdown, breakdown in the block continues to progress, causing dielectric breakdown, and when it continues to progress, blocks around it continue to progress. The destruction spreads,
In the worst case, the metallized film capacitor may emit smoke or ignite.

【0005】さらに、図7に示すように保安機構付の金
属化フィルムコンデンサの場合、電極導出部となる金属
溶射部と金属化フィルムとの密着力向上のために金属溶
射部側の蒸着膜を厚くし、その他の部分はそれより薄い
構成とし、かつ一対の少なくとも一方の蒸着膜を長手方
向に電極区切り部70にて分割し、ヒューズ部60を形
成したコンデンサとする場合が多いが、保安機構とはフ
ィルムコンデンサ特有の自己回復作用でクリアリングで
きない破壊が発生した際、その箇所をクリアリングする
ための短絡電流のジュール熱によってヒューズ部60を
動作させるというものである。しかしながら、金属溶射
部側の蒸着膜を厚くした場合、クリアリングするための
エネルギーがその他の部分に比して大きくなるためクリ
アリングできない破壊が発生した場合、短絡電流が流れ
続け、蒸着膜が厚い箇所で誘電体破壊を引起こす場合が
あった。
Further, as shown in FIG. 7, in the case of a metallized film capacitor with a safety mechanism, a vapor deposition film on the metal sprayed portion side is used to improve the adhesion between the metal sprayed portion, which serves as an electrode lead-out portion, and the metallized film. In many cases, the capacitor is made thicker and the other parts are thinner than that, and at least one vapor-deposited film of the pair is divided in the longitudinal direction by the electrode dividing part 70 to form the fuse part 60. When the destruction that cannot be cleared occurs due to the self-recovery action peculiar to the film capacitor, the fuse section 60 is operated by the Joule heat of the short circuit current for clearing the location. However, if the deposition film on the side of the metal sprayed part is thickened,
When the destruction that cannot be cleared occurs because the energy is larger than the other portions, the short-circuit current may continue to flow, and the dielectric breakdown may occur at the portion where the deposited film is thick.

【0006】本発明は、上記問題点を解決するものであ
り、金属化フィルムコンデンサの特性向上を図ることを
目的とする。
[0006] The present invention solves the above problems, and an object thereof is to improve the characteristics of a metallized film capacitor.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の第1手段の金属化フィルムコンデンサは誘
電体フィルムの片面または両面に金属蒸着電極を形成し
た金属化フィルムを一対の金属蒸着電極が誘電体フィル
ムを介して対向するように積層、または巻回したコンデ
ンサ素子の両端面に電極引出部を設け、その金属蒸着電
極の抵抗値は電極引出部に接する部分の値が他の部分と
比較して低くなるように構成し、前記一対の少なくとも
一方の金属蒸着電極はフィルムの長手方向と幅方向に亘
って微小ブロックを複数個形成し、各微小ブロック隣接
間にヒューズ部を設けた分割電極パターンを構成とする
とともに、かつフィルム長手方向に一定間隔で前記分割
電極パターンを区切る電極区切り部を設け、隣接する前
記電極区切り部間の長手方向に少なくとも2個以上の微
小ブロックを有し、前記電極区切り部により、微小ブロ
ックでの破壊が順次広がることを防止するものである。
In order to achieve the above object, the metallized film capacitor of the first means of the present invention comprises a metallized film having a metal vapor deposition electrode formed on one or both sides of a dielectric film. Electrode lead-out portions are provided on both end faces of a capacitor element that is laminated or wound so that the vapor-deposited electrodes face each other with a dielectric film in between, and the resistance value of the metal vapor-deposited electrode is different from that of the portion in contact with the electrode lead-out portion. The pair of at least one metal vapor deposition electrode is formed so as to be lower than the portion, and a plurality of minute blocks are formed in the longitudinal direction and the width direction of the film, and a fuse portion is provided between adjacent minute blocks. divided with the electrode pattern and structure, and the film longitudinally provided with an electrode separator portion that separates the divided electrode pattern at regular intervals, the adjacent front
In the longitudinal direction between the electrode separators, at least two or more
A small block is provided, and the electrode partitioning portion prevents breakage in minute blocks from sequentially spreading.

【0008】また、本発明の第2手段の金属化フィルム
コンデンサは第1手段に加えて電極引出部に接する抵抗
値の低い低抵抗膜部の微小ブロック部は、その微小ブロ
ック面積が他の高抵抗膜部分の微小ブロック面積より小
さくしたものである。
Further, in the metallized film capacitor of the second means of the present invention, in addition to the first means, the small block portion of the low resistance film portion having a low resistance value in contact with the electrode lead-out portion has a small block area other than the above. It is smaller than the minute block area of the resistive film portion.

【0009】また本発明の第3の金属化フィルムコンデ
ンサは第2手段に加えて蒸着金属を亜鉛または亜鉛・ア
ルミニウム合金としたものである。
In addition to the second means, the third metallized film capacitor of the present invention has a vapor-deposited metal of zinc or a zinc-aluminum alloy.

【0010】[0010]

【発明の実施の形態】上記構成により、本発明の第1手
段の金属化フィルムコンデンサは、一方の金属蒸着電極
にはフィルムの長手方向と幅方向に亘って微小ブロック
を複数個形成し、各微小ブロック隣接間にヒューズ部を
設けた分割電極パターンを形成し、フィルム長手方向に
一定間隔で分割電極パターンを区切る電極区切部を設け
ているため、微小ブロックにおいて自己回復でクリアリ
ングできない微小破壊が発生した場合、隣接する微小ブ
ロック間から回り込む電流により、何ら問題のない微小
ブロック間のヒューズ部をも動作させることによる容量
減少の進行を抑制することや微小破壊のクリアリングに
よる短絡電流でヒューズ部が動作しない場合、その微小
ブロックでの破壊が進行し続け誘電体破壊が周辺のブロ
ックへ広がることによるコンデンサ全体の破壊を阻止す
る作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION With the above structure, the metallized film capacitor of the first means of the present invention has a plurality of minute blocks formed on one metal vapor deposition electrode in the longitudinal direction and the width direction of the film. A divided electrode pattern with a fuse portion is formed between adjacent minute blocks, and electrode divisions that divide the divided electrode pattern at regular intervals in the longitudinal direction of the film are provided. When it occurs, the current flowing from between adjacent micro blocks suppresses the progress of capacity reduction by operating the fuse part between micro blocks, which does not cause any problem. If does not work, the breakdown in the minute block continues to progress and the dielectric breakdown spreads to the surrounding blocks. It has the effect of preventing the destruction of the entire capacitor with.

【0011】また、本発明の第2手段の金属化フィルム
コンデンサは第1手段に加え電極引出部に接する低抵抗
膜部の微小ブロックは微小ブロック面積が他の高抵抗膜
部の微小ブロック面積より小さいため、微小破壊部のク
リアリング性が向上し、ヒューズ部の動作性が良化する
ため、金属溶射部側の蒸着膜を厚くした抵抗膜部のクリ
アリングできない破壊に対しても、蒸着膜が厚い箇所で
誘電体破壊を引起こすのを防止する作用をする。
Further, in the metallized film capacitor of the second means of the present invention, in addition to the first means, the minute block area of the low resistance film portion contacting the electrode lead-out portion is smaller than the minute block area of the other high resistance film portion. The small size improves the clearing property of the micro-destruction part and improves the operability of the fuse part. Has the function of preventing dielectric breakdown in thick areas.

【0012】また、本発明の第3手段の金属化フィルム
コンデンサは第2手段に加え、蒸着電極を亜鉛または亜
鉛・アルミニウム合金とすることにより、現在金属化フ
ィルムコンデンサの主流であるアルミニウム単体に比較
して、微小破壊時のクリアリングを行うのに小さなエネ
ルギですむ金属特性を生かして、アルミニウム蒸着コン
デンサより高電位傾度化、小形化を可能にする作用を有
する。
In addition to the second means, the metallized film capacitor of the third means of the present invention uses zinc or a zinc-aluminum alloy as the vapor deposition electrode, so that the metallized film capacitor can be compared with aluminum alone which is the mainstream of metalized film capacitors at present. Then, by utilizing the metal characteristics that require a small amount of energy to perform clearing at the time of microdestruction, it has the effect of enabling higher potential gradient and smaller size than the aluminum vapor deposition capacitor.

【0013】以下、本発明の実施の形態について、図1
ないし図5に沿って説明する。1はプラスチックフィル
ムよりなる誘電体フィルム、2は前記誘電体フィルム1
に真空連続蒸着機を用いて図2ないし図4のいずれかの
網目状の分割電極パターンに亜鉛とアルミニウムの合金
を蒸着した金属蒸着電極、2aは図5のように、分割電
極パターンのない金属蒸着電極、3は分割電極パターン
を有する金属化フィルムと分割電極パターンのない金属
化フィルムとを一対として積層、または巻回したコンデ
ンサ素子の両端面に金属溶射した電極引出部、4は前記
電極引出部3に接する部分が他の部分に比較して抵抗値
が低くなるように蒸着した蒸着電極2,2aの低抵抗膜
部、5は蒸着電極2,2aの高抵抗膜部、6は前記高抵
抗膜部5の一端に形成した電極マージン部、7はフィル
ム長手方向に一定間隔に金属蒸着電極2を区切る電極区
切り部で、この電極区切り部7は一直線(図2,図3)
のもの以外に山谷状の折線(図4)にて蒸着電極2を分
割できる。
FIG. 1 shows an embodiment of the present invention.
5 through FIG. 1 is a dielectric film made of a plastic film, 2 is the dielectric film 1
2 is a metal vapor-deposited electrode in which an alloy of zinc and aluminum is vapor-deposited on the mesh-shaped divided electrode pattern of any of FIGS. 2 to 4 using a vacuum continuous vapor deposition machine, and 2a is a metal without a divided electrode pattern as shown in FIG. Vapor-deposited electrodes, 3 is a metallized film having a divided electrode pattern and a metallized film having no divided electrode pattern, which are laminated or wound as a pair, or are electrode-sprayed by metal spraying on both end surfaces of a capacitor element, and 4 is the electrode lead-out. The low resistance film portion of the vapor deposition electrodes 2 and 2a vapor-deposited so that the portion in contact with the portion 3 has a lower resistance value than other portions, 5 is the high resistance film portion of the vapor deposition electrodes 2 and 2a , and 6 is the high resistance film portion. An electrode margin portion formed at one end of the resistance film portion 5 is an electrode dividing portion that divides the metal vapor deposition electrode 2 at regular intervals in the longitudinal direction of the film, and the electrode dividing portion 7 is a straight line (FIGS. 2 and 3).
In addition to those described above, the vapor deposition electrode 2 can be divided by a ridge-valley fold line (FIG. 4).

【0014】8は金属蒸着電極2の網目状の分割電極パ
ターンの微小ブロックで、ヒューズ部9を介してフィル
ムの長手方向と幅方向に亘って複数個形成されている。
Reference numeral 8 is a minute block of a mesh-like divided electrode pattern of the metal vapor deposition electrode 2, and a plurality of blocks are formed through the fuse portion 9 in the longitudinal direction and the width direction of the film.

【0015】8a,8bはそれぞれ電極引出部3に隣接
する微小ブロックで、この微小ブロック8a,8bは微
小ブロック8の面積より小さいため、微小破壊部のクリ
アリング性が向上し、ヒューズ部9の動作性が良化す
る。
Reference numerals 8a and 8b are minute blocks adjacent to the electrode lead-out portion 3, respectively. Since these minute blocks 8a and 8b are smaller than the area of the minute block 8, a minute broken portion is cleared.
The arranging property is improved, and the operability of the fuse part 9 is improved.

【0016】本実施の形態の金属化フィルムコンデンサ
の構成は、一方の金属蒸着電極2が誘電体フィルムの長
手方向と幅方向に微小ブロック8を複数個形成し、各微
小ブロック8の隣接間にヒューズ部9を設けた構成とす
るとともに、誘電体フイルム1の長手方向に一定間隔の
区切り部7を形成した金属化フィルムを用い、他方の金
属蒸着電極2aは微小ブロックも一定間隔の区切り部も
ない金属化フィルムを用いた金属化フィルムコンデンサ
を示した。なお、双方の金属蒸着電極2が微小ブロック
8を有する一対の金属化フィルムを用いて、これらを積
層、または巻回し金属化フィルムコンデンサを形成して
も良い。
In the structure of the metallized film capacitor of the present embodiment, one metal vapor deposition electrode 2 forms a plurality of minute blocks 8 in the longitudinal direction and the width direction of the dielectric film, and the minute blocks 8 are adjacent to each other. A metallized film is used in which a fuse portion 9 is provided and partition portions 7 are formed at regular intervals in the longitudinal direction of the dielectric film 1, and the metal vapor deposition electrode 2a on the other side has both minute blocks and partition portions at regular intervals. A metallized film capacitor with no metallized film is shown. In addition, a pair of metallized films in which both metal vapor deposition electrodes 2 have minute blocks 8 may be used, and these may be laminated or wound to form a metallized film capacitor.

【0017】また、本発明の実施の形態では電極引出部
3に接する低抵抗膜部4の微小ブロック8a,8bはそ
の微小ブロック面積が、他の高抵抗膜部5の微小ブロッ
クより小さいため微小破壊部のクリアリング性が向上
し、ヒューズ部9の動作性が良化する利点がある。
Further, in the embodiment of the present invention, the minute blocks 8a and 8b of the low resistance film portion 4 which are in contact with the electrode lead-out portion 3 have a minute block area smaller than the minute blocks of the other high resistance film portions 5 and thus are minute. There is an advantage that the clearing property of the destruction part is improved and the operability of the fuse part 9 is improved.

【0018】また、本発明の実施の形態では、金属蒸着
電極2,2aを亜鉛または亜鉛・アルミニウム合金とす
ることにより、アルミニウム単体電極に比較して微小破
壊時のクリアリングを行うのに小さなエネルギですむ金
属特性を生かして、高電位傾度化、小形化が図れる利点
を有する。
Further, in the embodiment of the present invention, the metal vapor deposition electrodes 2 and 2a are made of zinc or a zinc-aluminum alloy, so that a small energy is required to perform clearing at the time of microdestruction, as compared with an aluminum single electrode. Therefore, it has the advantage that high potential gradient and downsizing can be achieved by utilizing the metal characteristics.

【0019】[0019]

【実施例】つぎに、本実施の形態につき、具体的な数値
を用いて、詳細に説明する。まず、実施例Iとして、厚
さ6μmのポリプロピレンフィルムに、亜鉛とアルミニ
ウムの合金を真空連続蒸着機を用いて蒸着を行った。蒸
着膜抵抗値は金属溶射部側を2〜8Ω/□、その他の部
分を10〜30Ω/□とし、分割電極パターンを施した
金属化フィルムと分割電極パターンのない金属化フィル
(図2)とを一対とした巻回コンデンサとした。また
同様に実施例IIとして分割電極パターンを施した金属化
フィルム(図3)と分割電極パターンのない金属化フィ
ルム(図5)とを一対として巻回コンデンサとした。比
較用に従来例I(図7)、従来例II(図6)の巻回コン
デンサも同様に試作した。
EXAMPLES Next, the present embodiment will be described in detail using specific numerical values. First, as Example I, an alloy of zinc and aluminum was vapor-deposited on a polypropylene film having a thickness of 6 μm using a vacuum continuous vapor deposition machine. The vapor-deposited film resistance values were 2 to 8 Ω / □ on the metal sprayed portion side and 10 to 30 Ω / □ on the other portions, and a metallized film with a divided electrode pattern and a metallized film without a divided electrode pattern (FIG. 2) were used. To form a wound capacitor. Similarly, as Example II, a metallized film having a divided electrode pattern (FIG. 3) and a metallized film having no divided electrode pattern (FIG. 5) were paired to form a wound capacitor. For comparison, the wound capacitors of Conventional Example I (FIG. 7) and Conventional Example II (FIG. 6) were similarly manufactured.

【0020】最高許容温度化でのAC電圧ステップアッ
プ試験と同じく最高許容温度+15℃下でのAC電圧ス
テップアップ試験を実施したところ、(表1)に示す結
果となった。
When the AC voltage step-up test under the maximum allowable temperature + 15 ° C. was carried out similarly to the AC voltage step-up test at the maximum allowable temperature, the results shown in (Table 1) were obtained.

【0021】[0021]

【表1】 [Table 1]

【0022】表1のAC電圧ステップアップ試験は最高
許容温度下で定格電圧より12時間に50Vずつ昇圧し
ていった。コンデンサ静電容量がほぼ0となれば保安機
構が動作したとみなした。この場合、本実施例I,II、
従来例I,IIとも全数保安機構が動作しコンデンサ特性
に差が得られなかったため、さらに周囲温度を15℃上
昇させて同様に試験を実施した。
In the AC voltage step-up test in Table 1, the rated voltage was increased by 50 V in 12 hours at the maximum allowable temperature. When the capacitance of the capacitor became almost 0, it was considered that the security mechanism was activated. In this case, Examples I and II,
In the conventional examples I and II, the 100% security mechanism was activated and no difference was obtained in the capacitor characteristics. Therefore, the ambient temperature was further raised by 15 ° C. and the same test was conducted.

【0023】最高許容温度+15℃では本実施例I,II
は全数保安機構動作となったものの従来例Iでは6台が
従来例IIでは2台が破壊した。破壊箇所は従来例Iでは
金属溶射部側の蒸着膜が厚い箇所での破壊と中央部の蒸
着膜が薄い箇所での破壊であった。従来例IIでは全てが
金属溶射部側の蒸着膜が厚い箇所での破壊であった。こ
の結果により金属溶射部側の蒸着膜が厚い箇所での破壊
は、クリアリングするためのエネルギがその他の部分に
比較して大きくなるために破壊がクリアリングできず、
短絡電流が流れ続けたためにヒューズ部9で過大な発熱
を発生させ誘電体破壊を引起こしたと考えられる。ま
た、中央部の蒸着膜が薄い箇所での破壊は、微小破壊の
クリアリングによる短絡電流ではヒューズ部が動作せ
ず、そのブロックでの破壊が進行し続け誘電破壊が周辺
のブロックへ広がっていきコンデンサの破壊に至ったと
考えられる。
At the maximum allowable temperature of + 15 ° C., the present Examples I and II were used.
In the conventional example I, 6 units were destroyed, but in the conventional example II, 2 units were destroyed. In the conventional example I, the breakage points were a breakage in a portion where the vapor deposition film on the side of the metal spray coating was thick and a breakage in a portion where the vapor deposition film was thin in the center. In the conventional example II, all of the fractures occurred at the portion where the vapor deposition film on the metal sprayed portion side was thick. Due to this result, the destruction at the portion where the vapor deposition film on the metal sprayed portion side is thick cannot be cleared because the energy for clearing is larger than that at the other portions,
It is considered that since the short-circuit current continued to flow, the fuse portion 9 generated excessive heat and caused dielectric breakdown. In addition, the breakdown at the thin part of the evaporated film in the center part is that the fuse part does not operate due to the short-circuit current due to clearing of minute breakdown, and the breakdown in that block continues to progress and the dielectric breakdown spreads to the surrounding blocks. It is thought that the capacitor was destroyed.

【0024】これに対し、実施例I,IIのコンデンサで
は電極引出部3に接する低抵抗膜部4は微小ブロック面
積が他の部分より小さいため微小破壊部のクリアリング
性が向上し、ヒューズ部の動作性も向上し、保安機構が
動作したと同時にフィルム長手方向に一定間隔の電極区
切り部7を有しているため微小破壊のクリアリングによ
る短絡電流でヒューズ部9が動作しない場合、微小ブロ
ック8での破壊が進行し続け誘電体破壊が周辺の微小ブ
ロック8へ広がっていくことによるコンデンサの破壊を
妨げたことにより、コンデンサ破壊に至らなかったと考
えられる。
On the other hand, in the capacitors of Examples I and II, the low resistance film portion 4 in contact with the electrode lead-out portion 3 has a fine block area smaller than other portions, so that the clearing property of the fine fracture portion is improved, and the fuse portion is improved. When the fuse portion 9 does not operate due to a short-circuit current due to clearing of microdestruction, the microblock is also improved because the operability of the device is improved and, at the same time, the security mechanism operates and the electrode delimiters 7 are arranged at regular intervals in the longitudinal direction of the film. It is considered that the breakdown at 8 did not proceed because the breakdown of the capacitor continued to progress and the breakdown of the dielectric spreads to the minute blocks 8 in the periphery to prevent the breakdown of the capacitor.

【0025】また、同様のサンプルでJIS4908に
記載の自己回復性試験を実施した。その結果を(表2)
に示す。
A self-healing test described in JIS 4908 was conducted on the same sample. The results (Table 2)
Shown in.

【0026】[0026]

【表2】 [Table 2]

【0027】実施例I,IIに比較し、従来例Iは微小ブ
ロック面積に対し分割電極面積が大きいために自己回復
時の短絡電流でヒューズが溶断され大きな容量現象につ
ながったと考えられる。
It is considered that, as compared with Examples I and II, Conventional Example I had a large divided electrode area with respect to a minute block area, and therefore the fuse was blown by the short-circuit current during self-recovery, leading to a large capacitance phenomenon.

【0028】一方、従来例IIは従来例Iほどではないも
のの、ある微小ブロックの自己回復時にその隣接するブ
ロック間からの回り込む電流により、隣接する何ら問題
のないブロック間のヒューズ部をも動作させたため本実
施例より容量減少が大きくなったと考えられる。これに
対し、本実施例はフィルム長手方向に一定間隔の区切り
部を形成したため自己回復時の回り込み電流を抑制でき
何ら問題のない微小ブロックのヒューズ動作を抑制で
き、無意味な容量減少を低下できた結果となった。
On the other hand, in the conventional example II, although not as great as in the conventional example I, the current flowing from between the adjacent blocks during the self-recovery of a certain minute block also activates the fuse portion between the adjacent blocks having no problem. Therefore, it is considered that the capacity decrease was larger than that in this example. On the other hand, in this embodiment, since the dividing portions are formed at regular intervals in the longitudinal direction of the film, the sneak current at the time of self-recovery can be suppressed, and the fuse operation of a minute block without any problem can be suppressed, and meaningless capacity reduction can be reduced. It was the result.

【0029】また、電極引出部3に接する低抵抗膜部4
で自己回復が発生すると、自己回復エネルギが大きいた
めにほとんどの場合ヒューズが動作してしまい容量減少
につながるが、本実施例IIの場合は、そのことを考慮し
て電極引出部3に接する低抵抗膜部4は微小ブロック8
a,8bをさらに小さな面積とすることで容量減少を抑
制している。
Further, the low resistance film portion 4 contacting the electrode lead-out portion 3
When the self-recovery occurs in the case, the self-recovery energy is large and the fuse is operated in most cases, leading to a decrease in the capacity. However, in the case of the present Example II, in consideration of this fact, the low contact with the electrode lead-out portion 3 is considered. The resistive film portion 4 is a minute block 8
The capacitance reduction is suppressed by making a and 8b smaller.

【0030】[0030]

【発明の効果】以上のように、本発明の第1手段の金属
化フィルムコンデンサは、フィルム長手方向に一定間隔
の電極区切り部を有しているため、複数個の微小ブロッ
クに自己回復でクリアリングできない微小破壊が発生し
た場合、隣接する微小ブロック間からの回り込む電流が
隣接する何ら問題のないブロック間のヒューズ部をも動
作させることによる容量減少を抑制することや微小破壊
のクリアリングによる短絡電流でヒューズ部が動作しな
い場合、その微小ブロックでの破壊が進行し続け誘電体
破壊が周辺の微小ブロックへ順次広がることによるコン
デンサの破壊を防止することができるものである。
As described above, since the metallized film capacitor of the first means of the present invention has the electrode dividing portions at regular intervals in the longitudinal direction of the film, it is self-healing and cleared into a plurality of minute blocks. When a micro-breakage that cannot be ringed occurs, the current flowing from between adjacent micro-blocks suppresses the capacity reduction caused by operating the fuse part between adjacent blocks that do not have any problem. When the fuse portion does not operate due to the electric current, it is possible to prevent the destruction of the capacitor due to the fact that the destruction in the minute block continues to progress and the dielectric destruction sequentially spreads to the surrounding minute blocks.

【0031】また、本発明の第2手段の金属化フィルム
コンデンサは第1手段に加え、電極引出部に接する低抵
抗膜部は微小ブロック面積が他の部分より小さく微小破
壊部のクリアリング性を向上させたため、ヒューズ部の
動作性も向上し、金属溶射部側の蒸着膜を厚くした場合
のクリアリングできない破壊に対しても、短絡電流が流
れ続け、蒸着膜が厚い箇所で誘電体破壊を引起こすこと
を防止できるものである。
Further, in the metallized film capacitor of the second means of the present invention, in addition to the first means, the low resistance film portion in contact with the electrode lead-out portion has a small block area smaller than other portions and has a clearing property of a minute broken portion. As a result, the operability of the fuse part is also improved, and short-circuit current continues to flow even for damage that cannot be cleared when the vapor-deposited film on the metal sprayed side is thick, and dielectric breakdown occurs at locations where the vapor-deposited film is thick. It can be prevented from causing.

【0032】また、本発明の第3手段の金属化フィルム
コンデンサは第2手段に加え、蒸着金属を亜鉛または亜
鉛・アルミニウム合金とすることにより、現在金属化フ
ィルムコンデンサの主流であるアルミニウム単体に比較
して微小破壊時のクリアリングを行うに大きなエネルギ
が必要である金属特性を生かして、アルミニウム蒸着コ
ンデンサより高電位傾度化、小型化が可能となるもので
ある。
In addition to the second means, the metallized film capacitor of the third means of the present invention uses zinc or a zinc-aluminum alloy as the vapor-deposited metal, so that it can be compared with aluminum alone which is currently the mainstream of metallized film capacitors. Then, by utilizing the metal characteristic that a large amount of energy is required to perform clearing at the time of microdestruction, it is possible to achieve a higher potential gradient and a smaller size than an aluminum vapor deposition capacitor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態における金属化フィルムコ
ンデンサの断面模式図
FIG. 1 is a schematic sectional view of a metallized film capacitor according to an embodiment of the present invention.

【図2】同実施の形態の一方の金属化フィルムの一部平
面図
FIG. 2 is a partial plan view of one metallized film of the same embodiment.

【図3】同実施の形態の分割電極パターンの異なる一方
の金属化フィルムの一部平面図
FIG. 3 is a partial plan view of one metallized film having a different divided electrode pattern according to the same embodiment.

【図4】同実施の形態の分割電極パターンのさらに異な
る一方の金属化フィルムの一部平面図
FIG. 4 is a partial plan view of one of the metallized films having a different split electrode pattern according to the same embodiment.

【図5】同実施の形態の他方の金属化フィルムの一部平
面図
FIG. 5 is a partial plan view of the other metalized film of the same embodiment.

【図6】従来例1の分割電極パターンの異なる一方の金
属化フィルムの一部平面図
FIG. 6 is one of the gold with different split electrode patterns of Conventional Example 1 .
Partial plan view of genusification film

【図7】従来例2の一方の金属化フィルムの一部平面図 7 is a partial plan view of one metallized film of Conventional Example 2. FIG.

【符号の説明】[Explanation of symbols]

1 誘電体フィルム 2,2a 金属蒸着電極 3 電極引出部 4 低抵抗膜部 5 高抵抗膜部 6 電極マージン部 7 電極区切り部 8,8a,8b 微小ブロック 9 ヒューズ部 1 Dielectric film 2,2a metal deposition electrode 3 Electrode extraction part 4 Low resistance film part 5 High resistance film part 6 electrode margin 7 electrode separator 8,8a, 8b Micro block 9 Fuse part

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01G 4/015 H01G 4/18 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01G 4/015 H01G 4/18

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 誘電体フィルムの片面または両面に金属
蒸着電極を形成した金属化フィルムを一対の金属蒸着電
極が誘電体フィルムを介して対向するように積層、また
は巻回したコンデンサ素子の両端面に電極引出部を設
け、その金属蒸着電極の抵抗値は電極引出部に接する部
分の値が他の部分と比較して低くなるように構成し、前
記一対の少なくとも一方の金属蒸着電極はフィルムの長
手方向と幅方向に亘って微小ブロックを複数個形成し、
各微小ブロック隣接間にヒューズ部を設けた分割電極パ
ターンを構成とするとともに、かつフィルム長手方向に
一定間隔で前記分割電極パターンを区切る電極区切り部
を設け、隣接する前記電極区切り部間の長手方向に少な
くとも2個以上の微小ブロックを有し、前記電極区切り
部により、微小ブロックでの破壊が順次広がることを防
止する金属化フィルムコンデンサ。
1. Both end surfaces of a capacitor element in which a metallized film having a metal vapor deposition electrode formed on one surface or both surfaces of a dielectric film is laminated or wound so that a pair of metal vapor deposition electrodes face each other with a dielectric film interposed therebetween. An electrode lead-out portion is provided on the metal vapor-deposited electrode, and the resistance value of the metal vapor-deposited electrode is configured so that the value of the portion in contact with the electrode lead-out portion is lower than other portions, and the at least one metal vapor-deposited electrode in the pair is a film. Form a plurality of minute blocks across the length and width,
With a structure divided electrode pattern having a fuse portion between each of the micro blocks adjacent, and the film longitudinally provided with the divided electrode separator unit to separate the electrode pattern at regular intervals in the longitudinal direction between the electrodes separated portions adjacent Very few
A metallized film capacitor having at least two micro blocks, and preventing the destruction in the micro blocks from being successively spread due to the electrode dividing portion.
【請求項2】電極引出部に接する抵抗値の低い低抵抗膜
部の微小ブロックはその微小ブロック面積が他の高抵抗
膜部の微小ブロックの面積より小さくした請求項1記載
の金属化フィルムコンデンサ。
2. The metallized film capacitor according to claim 1, wherein the micro-block of the low-resistance film portion having a low resistance value contacting the electrode lead-out portion has a micro-block area smaller than the micro-block area of another high-resistance film portion. ..
【請求項3】蒸着金属を亜鉛または亜鉛・アルミニウム
合金とした請求項2記載の金属化フィルムコンデンサ。
3. The metallized film capacitor according to claim 2, wherein the vapor-deposited metal is zinc or a zinc-aluminum alloy.
JP29609096A 1996-08-09 1996-11-08 Metallized film capacitors Expired - Fee Related JP3454043B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP29609096A JP3454043B2 (en) 1996-11-08 1996-11-08 Metallized film capacitors
DE19734477A DE19734477B4 (en) 1996-08-09 1997-08-08 Metallized film capacitor and apparatus and method for making a metallized film for the metallized film capacitor
CN97118564.6A CN1126129C (en) 1996-08-09 1997-08-09 Metallized mylar capacitor and euqipment and method for making metallized mylar
US08/907,902 US5905628A (en) 1996-08-09 1997-08-11 Metallized film capacitor
US09/094,770 US5942283A (en) 1996-08-09 1998-06-15 Method for fabricating a metalized film
US09/094,772 US6048402A (en) 1996-08-09 1998-06-15 Device for fabricating a metalized film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29609096A JP3454043B2 (en) 1996-11-08 1996-11-08 Metallized film capacitors

Publications (2)

Publication Number Publication Date
JPH10144563A JPH10144563A (en) 1998-05-29
JP3454043B2 true JP3454043B2 (en) 2003-10-06

Family

ID=17828999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29609096A Expired - Fee Related JP3454043B2 (en) 1996-08-09 1996-11-08 Metallized film capacitors

Country Status (1)

Country Link
JP (1) JP3454043B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100564669B1 (en) 2004-07-30 2006-03-31 주식회사 뉴인텍 Condenser of evaporation film and method for making same
JP5647402B2 (en) * 2009-08-28 2014-12-24 ニチコン株式会社 Metallized film capacitors
JP5397936B2 (en) * 2009-02-05 2014-01-22 ニチコン株式会社 Metallized film capacitors
JP5647400B2 (en) * 2009-05-19 2014-12-24 ニチコン株式会社 Metallized film capacitors
JP5294321B2 (en) * 2009-03-31 2013-09-18 ニチコン株式会社 Metallized film capacitors
EP2395523A4 (en) * 2009-02-05 2017-06-21 Nichicon Corporation Metalized film capacitor
JP5397968B2 (en) * 2013-07-23 2014-01-22 ニチコン株式会社 Metallized film capacitors
JP2013219400A (en) * 2013-07-29 2013-10-24 Nichicon Corp Metallized film capacitor
JP5395302B2 (en) * 2013-07-29 2014-01-22 ニチコン株式会社 Metallized film capacitors
CN103996534A (en) * 2014-06-16 2014-08-20 安徽省宁国市海伟电子有限公司 Metallized capacitor film with improved oxidation resistance
JP6614558B2 (en) * 2018-01-26 2019-12-04 株式会社指月電機製作所 Metallized film and metallized film capacitor

Also Published As

Publication number Publication date
JPH10144563A (en) 1998-05-29

Similar Documents

Publication Publication Date Title
JP3454043B2 (en) Metallized film capacitors
JP3870932B2 (en) Metallized film capacitors
JP3870875B2 (en) Deposition film, film capacitor using the film, and inverter device using the capacitor
JP2006286988A (en) Metallization film capacitor
JPH09199371A (en) Metallized film capacitor
JP2939494B2 (en) Metallized film capacitors
JP4366930B2 (en) Metallized film capacitors
JPH08288171A (en) Metallized film capacitor
JP2004095604A (en) Metallized film capacitor
JP3935561B2 (en) Metallized film capacitors
JPH10308323A (en) Metalized film capacitor
JP2003257783A (en) Method for producing multilayer thin film capacitor and multilayer thin film capacitor
JP5647402B2 (en) Metallized film capacitors
JP2000012368A (en) Metallized film capacitor
JP2003178931A (en) Thin-film capacitor and foil therefor
JP6128477B2 (en) Metallized film capacitors
JP2004095605A (en) Metallized film capacitor and its manufacturing method, and inverter apparatus using the same
JPS612313A (en) Laminated metallized film capacitor
JPH09283366A (en) Capacitor
JPH1145819A (en) Metallized film capacitor
JP2002353060A (en) Metallized film capacitor
JPS5824932B2 (en) capacitor device
JP2000012372A (en) Dry type high voltage metallized film capacitor
JP4296532B2 (en) Deposition film for capacitor and capacitor using the same
JP2006286987A (en) Metallization film capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees