JP2004363431A - Metalized film capacitor - Google Patents

Metalized film capacitor Download PDF

Info

Publication number
JP2004363431A
JP2004363431A JP2003161773A JP2003161773A JP2004363431A JP 2004363431 A JP2004363431 A JP 2004363431A JP 2003161773 A JP2003161773 A JP 2003161773A JP 2003161773 A JP2003161773 A JP 2003161773A JP 2004363431 A JP2004363431 A JP 2004363431A
Authority
JP
Japan
Prior art keywords
electrode
capacitor
small unit
electrode lead
fuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003161773A
Other languages
Japanese (ja)
Other versions
JP2004363431A5 (en
Inventor
Kohei Shioda
浩平 塩田
Hiroki Takeoka
宏樹 竹岡
Toshiharu Saito
俊晴 斎藤
Tomoyuki Yamagata
知之 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003161773A priority Critical patent/JP2004363431A/en
Publication of JP2004363431A publication Critical patent/JP2004363431A/en
Publication of JP2004363431A5 publication Critical patent/JP2004363431A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of a conventional metalized film capacitor including lattice shaped split electrodes, having electrode separate slits along an electrode lead-out part, the slits being connected by electrode lead-out fuse parts that the temperature of the capacitor is increased at application of power, and the withstanding voltage of the capacitor has been decreased. <P>SOLUTION: The capacitor is configured such that a current flowing from a metallicon electrode 1 via an electrode lead-out 2 to respectively each of small unit capacitors 7 adjacent to each other along electrode separation slits 3 through a plurality of (two or over) electrode lead-out fuses 4 to each of them small unit capacitors 7 are adjacent to each other. Thus, a metalized film having lattice shaped small unit capacitor parts is provided with electrode separation slits without a vapor-deposit metal along the electrode lead-out part; and electrode lead-out fuse parts formed partially traversing the electrode separation slits, at least two or over, that is, a plurality of the electrode lead-out fuses are provided to each of the small unit capacitors adjacent to each electrode lead-out fuse, so that the semiconductor integrated circuit can be realized with a self-protective function, that is, the metalized film capacitor with less heat generation at current conduction and usable at a high potential gradient. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器、電気機器や産業機器に用いられる金属化フィルムコンデンサに関するものである。さらに詳しくは、金属蒸着電極部にヒューズ部を形成して自己保安機能を設けた金属化フィルムコンデンサに関するものである。
【0002】
【従来の技術】
金属化フィルムコンデンサは、一般に、金属箔を電極に用いるものと、誘電体フィルム上に設けた蒸着金属を電極に用いるものとに大別される。中でも、蒸着金属を電極とする金属化フィルムコンデンサは、金属箔を電極に用いるものに比べて電極の占める体積が小さく小型軽量化が図れることと、誘電体フィルムに施した金属蒸着電極部特有の自己回復性能すなわち絶縁欠陥部で短絡が生じた場合に、短絡のエネルギーで欠陥部周辺の金属蒸着電極が蒸発・飛散してその蒸発・飛散部分が絶縁化し、コンデンサの機能が回復する性能により絶縁破壊に対する信頼性が高いことから、従来から広く用いられている(例えば特許文献1参照)。
【0003】
このような金属化フィルムコンデンサについて図3を参照して説明する。図3において、金属蒸着電極部31内に金属部分が無い分割スリット32を格子状に設けて微細な小単位コンデンサ部分33に区分し、分割スリット32に部分的に形成した小単位コンデンサ間ヒューズ部34により前記小単位コンデンサ部分33を並列接続することが行われている。これは、前述の自己回復時の短絡電流により絶縁欠陥部周囲の小単位コンデンサ間ヒューズ部を溶断して絶縁欠陥部を電気回路から切り離す自己保安機能を形成するとともに、小単位コンデンサ部分の面積が小さく分割できることから、小単位コンデンサ間ヒューズ部の溶断による電極容量減少も小さくなり、誘電体フィルム1μmのあたりの電圧を高める高電位傾度化が図れるとされている。
【0004】
そして10〜1000mmの面積からなる格子状に分割された小単位コンデンサ部分33と各小単位コンデンサ部分33を接続する0.05〜1.5mm幅の小単位コンデンサ間ヒューズ部34が有り、かつメタリコン電極35と隣接する電極引出し部36に沿った部分に電極分離スリット37を設けている。この電極分離スリット37内に設けた電極引出しヒューズ部38は、電極引出し部36と電極分離スリット37に隣接する小単位コンデンサ部分33を導通する役目を果たしている。前記分割スリット32内に設けた小単位コンデンサヒューズ部34とは幅寸法が異なっている。すなわち、電極引出しヒューズ部38の幅を前記小単位コンデンサ間ヒューズ部34の幅に対し2〜20倍にした場合に直流での電位傾度130〜350V/μm、交流での電位傾度60〜120V/μmの金属化フィルムコンデンサが実現できることが開示されている。
【0005】
しかしながら、前述の自己保安機能を設けた金属化フィルムコンデンサは、自己保安機能として働くヒューズ部の無い金属化フィルムコンデンサに比べて、通電時の電流による発熱が大きいという問題点があった。
【0006】
すなわち、単に一定の直流電圧が印加され続ける場合にはコンデンサには電流が流れないため発熱は生じないが、交流電流やリプル電流、充放電電流、サージ電流等が流れた場合には、コンデンサが著しく発熱してしまう。そしてコンデンサの温度上昇が大きくなると、コンデンサの耐電圧や長期信頼性が低下するため、この問題は解消すべき大きな課題となっていた。
【0007】
特に、インバータの平滑用途のように、コンデンサに直流電圧をかけながら大きなリプル電流を通電する場合には、リプル電流による温度上昇のためにコンデンサの耐電圧が低下する課題があった。特に自動車用途に用いられた場合には、周囲温度が元々高いことから、大きな課題となっていた。
【0008】
かかる従来の課題はメタリコン電極35から電極引出し部36を通して電極引出しヒューズ部38へ電流が流れ込む際に、電極引出し部36自体が発熱してしまうために、コンデンサが大きく温度上昇することに起因することが明らかになり、また電極引出し部36が劣化してtanδが悪化したりすることを究明した。
【0009】
すなわち、図3において、コンデンサを流れる電流は、メタリコン電極35から端面全体で流れ込み図3の矢印39で示すように、電極引出し部36を長手方向に流れた後矢印40に示す方向に流れ、電極引出しヒューズ部38を通じて矢印41の方向に流れ、隣接する小単位コンデンサ部分33に至るのであり、電極引出し部36自体が、幅が狭くて電極引出しヒューズ部38に至るのに長い電流経路を通ることになっているため、発熱してしまうことが本発明者等の究明によって判明した。
【0010】
【特許文献1】
特開平8−250367号公報
【0011】
【発明が解決しようとする課題】
前記従来例の技術的な問題点に鑑み、本発明が解決しようとする課題は、通電時の発熱を小さく、すなわちコンデンサの温度上昇を小さくし、かつ自己保安性能の高い金属化フィルムコンデンサを提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために請求項1記載に係る発明は、電極引出し部と電極分離スリットに隣接する各小単位コンデンサ部分とを電極分離スリットを部分的に横切って形成した電極引出しヒューズ部によって導通する構成において、各小単位コンデンサ部分はそれぞれ複数の電極引出しヒューズ部によって前記電極引出し部に導通することとした。
【0013】
この構成によれば、メタリコン電極から電極引出し部を経由して電極分離スリットに隣接する各小単位コンデンサ部分に流れ込む電流は少なくとも2つ以上の複数の電極引出しヒューズ部を通すことになる。従って図3に示す様なメタリコン電極、電極引出し部を経由して一つの電極引出しヒューズ部を通って電流が各小単位コンデンサ部分に流れ込むのに比較して電流経路が短くなり、電極引出し部の発熱が少ない。これによりコンデンサの温度上昇も、従来例より小さく、コンデンサの耐電圧や長期信頼性の低下が少ない。
【0014】
また、請求項2記載に係る発明のように、電極分離スリットに沿った各小単位コンデンサ部分毎に存在する複数の電極引出しヒューズ部の位置は、前記電極分離スリットに沿う各小単位コンデンサ部分同士の隣接点を中心として前記電極分離スリット上のそれぞれ相反する方向の対称位置とすることにより、メタリコン電極から、電極引出し部を経由して複数の電極引出しヒューズ部より各小単位コンデンサ部分に流れる電流経路の長さは、各小単位コンデンサ部分の何れもが均等となる。従って電流経路の長さの不均等に起因して電極引出し部のなかで局部的に温度が上昇することはない。
【0015】
また、請求項3記載の発明のように、電極引出しヒューズ部を電極分離スリット上に等間隔で形成する構成とすることにより、電極引出しヒューズ部の位置が等間隔になる。従って電極引出し部を流れる電流は等間隔に存在する電極引出しヒューズ部を通ることとなり、電極引出し部を流れる電流が不均等になることがなく、局部的に電流が多く流れる部分がないので電極引出し部に局部的な温度上昇がない。
【0016】
また、請求項4記載の発明のように、電極引出しヒューズ部の幅を小単位コンデンサ間ヒューズ部の幅以下としても、各小単位コンデンサ部分の各辺にある小単位コンデンサ部分間ヒューズ部よりも電極分離スリットにある電極引出しヒューズ部間の間隔は狭く、すなわち小単位コンデンサ部分間ヒューズ部よりも電極引出しヒューズ部の方が設置密度が多いため電極引出し部は円滑に電流が流れることになり局部的な温度上昇は従来例よりも少ない。
【0017】
また、請求項5記載の発明のように、電極引出しヒューズ部を0.1mm以上で0.5mm以下の幅とすることにより、100℃における自己保安機能の動作性の低下がなく、かつ電極引出しヒューズ部の形成がし易い生産性の利点がある。
【0018】
また、請求項6記載に係る発明のように1枚の誘電体フィルムの両面に金属蒸着膜を形成した両面金属蒸着フィルムと、金属が蒸着されていない誘電体フィルムとを重ね合わせることにより、すなわち一方の金属蒸着フィルムの誘電体フィルムと他方の金属蒸着フィルムの誘電体フィルムを共通の1枚の誘電体フィルムとすることにより金属蒸着フィルムは1枚でよく、生産工数を減らすことができる。
【0019】
また、本発明による金属化フィルムコンデンサは自己発熱が小さく、温度上昇が小さいので、電気モータの制御を行うインバータ用平滑コンデンサとか、使用温度環境の厳しい自動車用途のコンデンサとして最適である。
【0020】
【発明の実施の形態】
本発明の目的は、各請求項に記載した構成を要部とすることにより達成できるのであるが、以下には図を参照しながら具体的な構成の実施例を説明する。
【0021】
(実施の形態1)
図1は、本発明の実施の形態1の金属化フィルムコンデンサの金属化フィルムおよびこれに接続するメタリコン電極を示す鳥瞰図である。図1において金属化フィルムは、一側端でメタリコン電極1と接続する電極引出し部2を有し、前記電極引出し部2に沿って長手方向に伸びる蒸着金属の無い電極分離スリット3と、前記電極分離スリット3を部分的に横切って形成された電極引出しヒューズ部4を備えている。また金属化フィルムの有効電極部は分割スリット5により格子状に区分され、前記分割スリット5を部分的に横切って形成された小単位コンデンサ間ヒューズ部6により並列接続された小単位コンデンサからなっている。そして、前記電極引出しヒューズ部4は、電極分離スリット3に沿って隣接する各小単位コンデンサ部分7のそれぞれに対して2本設けられている。前記電極引出しヒューズ部4が電極分離スリット3上に設けられている位置は、電極分離スリット3に沿う各小単位コンデンサ部分同士の隣接点8を中心として電極分離スリット3上のそれぞれ相反する方向の対称位置としている。この構成により、自己保安機能を有し、しかも発熱の少ない金属化フィルムコンデンサを実現できる。
【0022】
図1を参照して説明すると、メタリコン電極1の端面全体から流れる電流は、図1の矢印10で示すように電極引出し部2を図1の横方向に流れた後矢印11に示す方向に流れ電極引出しヒューズ部4を通じて矢印12の方向に流れ電極分離スリット3に隣接する小単位コンデンサ部分7に至る。そしてこの電極引出しヒューズ部4は電極分離スリット3に沿っている各小単位コンデンサ部分7にそれぞれ2本あるため、図3で示した従来の1本しかない金属化フィルムにおける場合のようにメタリコン電極35の端面から流れる電流が電極引出しヒューズ部38に至る経路よりも短いことになる。従って本実施例では発熱の少ない金属化フィルムコンデンサにすることができる。9は絶縁マージン部である。
【0023】
また、図2は、本発明の実施の形態2の金属化フィルムコンデンサの金属化フィルムおよびこれに接続するメタリコン電極を示す鳥瞰図である。なお、図1に示した構成部分と同じ構成部分には同じ符号を付与し詳細な説明を省略する。図2からわかるように、電極引出しヒューズ部4は、隣接する小単位コンデンサ部分7に対して2本づつ、ほぼ等間隔に設けられている。この構成により、さらに発熱が少なく、高電位傾度で使用可能な金属化フィルムコンデンサを実現できる。
【0024】
次に、本発明の実施の形態1と2よりなる金属化フィルムコンデンサの特性例について説明する。
【0025】
厚みが3.5μmで幅が70mmのポリプロピレンフィルムを用いて、図1および図2に示す構成の金属化フィルムを作製した。なお、ヒューズ幅の影響を検討するために、電極引出しヒューズ部4および小単位コンデンサ間ヒューズ部6の幅を変えて各金属化フィルムを作製した。この金属化フィルムと、同一幅でスリットやヒューズ部がない金属化フィルム(所謂ベタ蒸着フィルム)を、絶縁マージン部が異なる側に配置されるよう重ねて巻回し、200μFの小判型コンデンサ素子を作製して、ポリブチレンテレフタレート製のケースにおさめてエポキシ樹脂でモールドした。また、比較のために、図3に示す従来技術よりなるコンデンサも作製した。なお、いずれの場合も蒸着金属としては、アルミニウムを用いた。
【0026】
このようにして作製した各コンデンサに、85℃において10kHzで実効値20Aの正弦波電流を180分間通電し、小判型素子表面の温度上昇値を測定した。なお、いずれのコンデンサにおいても180分後には温度上昇は飽和していた。得られた結果を次の表1に示す。
【0027】
【表1】

Figure 2004363431
【0028】
実施の形態1、2と従来例の比較から、本発明よりなるコンデンサは従来例に比べて温度上昇が明らかに小さい。
【0029】
次に各コンデンサに85℃で前記リプル電流を通電した状態で、700Vの直流電圧を印加し、1000時間後の容量変化率を測定した。結果を表1に示す。本発明よりなるコンデンサは従来例に比べて高電圧下での容量減少が明らかに小さく、高電位傾度で使用できる。これは、従来例においてはリプル電流による発熱のためにフィルムの耐圧が低下するために、多くの個所で局部短絡によるヒューズ溶断が発生したのに対し、本発明の実施の形態1、2ではリプル電流による発熱が抑制されることからヒューズ部の溶断も少なくなったためである。
【0030】
さらに、各コンデンサに対して、85℃および100℃で自己保安機能の試験を行った。試験方法は、まず、700VDCを24時間連続印加した後、24時間毎に35VDCづつ昇圧して、各電圧での24時間後の容量の変化率を測定した。そして、容量が試験前の初期値に対して97%以上減少した場合に、自己保安機能が動作したとみなした。また、試験中にコンデンサがショート状態に至った場合には、自己保安機能が不良とみなした。得られた結果を表1に示す。電極引出しヒューズ部の幅が小単位コンデンサ間ヒューズ部よりも太い場合や、電極引出しヒューズ部の幅が0.5mmを超える場合には、85℃では問題なく動作したが、100℃における自己保安機能の動作性が低下した。したがって、電極引出しヒューズ部の幅は小単位コンデンサ間ヒューズ部の幅以下、もしくは0.5mm以下とすることが望ましい。なお、0.1mm未満の幅では、ヒューズ部の形成自体が困難となることから、電極引出しヒューズ部の幅は、0.1〜0.5mmとすることが望ましい。
【0031】
なお、前記実施の形態では、四角形状からなる小単位コンデンサ部分を例として説明したが、本発明はこれに限定するものではなく、他の形状、例えば六角形状、三角形状の格子状の小単位コンデンサ部分においても同様の結果を得た。
【0032】
さらに、誘電体フィルムとしてポリプロピレンフィルムを用いて説明したが、他のフィルム例えばポリエチレンテレフタレートやポリフェニレンサルファイド、ポリエチレンナフタレート等においても同様の結果を得た。また誘電体フィルムとして、2枚以上のフィルムを重ねても、同様の効果を得た。
【0033】
また蒸着金属として亜鉛、あるいは亜鉛とアルミニウムの混合物を用いた場合にも同様の効果を得た。
【0034】
また、分割スリットにより小単位コンデンサ部分が形成される態様とベタ蒸着電極は別々のフィルムに設けても、これらまたは同じパターンの金属蒸着を同じフィルムの表裏に設け、未蒸着のフィルムと重ねて積層、巻回しても良い。
【0035】
また、実施の形態ではエポキシ樹脂でモールドした乾式小判型コンデンサの例を説明したが、絶縁油やワックスで含浸された湿式コンデンサでも同様の効果が得られる。またコンデンサ形状は丸型でもよい。
【0036】
【発明の効果】
以上の説明から明らかなように、本発明によれば、格子状の小単位コンデンサ部分を有する金属化フィルムにおいて、電極引出し部に沿う蒸着金属の無い電極分離スリットと、電極分離スリットを部分的に横切って形成された電極引出しヒューズ部を備え、前記電極引出しヒューズ部を隣接する小単位コンデンサ部分のそれぞれに対して少なくとも2本以上すなわち複数設けることにより、自己保安機能を有し、しかも電流通電時に発熱が少なく、高電位傾度で使用可能な金属化フィルムコンデンサを実現することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における金属化フィルムの鳥瞰図
【図2】本発明の実施の形態2における金属化フィルムの鳥瞰図
【図3】従来技術における金属化フィルムの鳥瞰図
【符号の説明】
1 メタリコン電極
2 電極引出し部
3 電極分離スリット
4 電極引出しヒューズ部
5 分割スリット
6 小単位コンデンサ間ヒューズ部
7 小単位コンデンサ部分
8 隣接点
9 絶縁マージン部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metallized film capacitor used for electronic equipment, electric equipment and industrial equipment. More specifically, the present invention relates to a metallized film capacitor provided with a self-security function by forming a fuse portion on a metal deposition electrode portion.
[0002]
[Prior art]
In general, metallized film capacitors are roughly classified into those using a metal foil for an electrode and those using a metal deposited on a dielectric film for an electrode. Among them, the metallized film capacitor using a vapor-deposited metal as the electrode has a smaller volume and smaller weight than the electrode using a metal foil as the electrode, and has a characteristic characteristic of the metal-deposited electrode portion applied to the dielectric film. Self-healing performance, that is, when a short circuit occurs in an insulation defect, the metal deposition electrode around the defect evaporates and scatters due to the energy of the short circuit, and the evaporated and scattered part is insulated, and the capacitor recovers its function. Because of its high reliability against destruction, it has been widely used (for example, see Patent Document 1).
[0003]
Such a metallized film capacitor will be described with reference to FIG. In FIG. 3, a divided slit 32 having no metal portion in a metal deposition electrode portion 31 is provided in a lattice shape and divided into fine small unit capacitor portions 33, and a small unit capacitor fuse portion formed partially in the divided slit 32. 34, the small unit capacitor portions 33 are connected in parallel. This is because the short-circuit current at the time of self-recovery mentioned above blows the fuse between the small unit capacitors around the insulation defect and forms a self-protection function that separates the insulation defect from the electric circuit. Since it can be divided into small pieces, the decrease in electrode capacity due to the blowing of the fuse portion between the small unit capacitors is also small, and a high potential gradient that increases the voltage per 1 μm of the dielectric film can be achieved.
[0004]
There is a small unit capacitor portion 33 divided into a lattice having an area of 10 to 1000 mm 2 and a small unit capacitor inter-unit fuse portion 34 having a width of 0.05 to 1.5 mm for connecting each small unit capacitor portion 33, and An electrode separation slit 37 is provided in a portion along the electrode lead-out portion 36 adjacent to the metallikon electrode 35. The electrode extraction fuse portion 38 provided in the electrode separation slit 37 serves to conduct the electrode extraction portion 36 and the small unit capacitor portion 33 adjacent to the electrode separation slit 37. The width dimension is different from the small unit capacitor fuse portion 34 provided in the division slit 32. That is, when the width of the electrode lead-out fuse portion 38 is 2 to 20 times the width of the small-unit capacitor fuse portion 34, the DC potential gradient is 130 to 350 V / μm, and the AC potential gradient is 60 to 120 V / μm. It is disclosed that a μm metallized film capacitor can be realized.
[0005]
However, the metallized film capacitor provided with the above-described self-security function has a problem in that heat generated by a current when energized is larger than that of a metallized film capacitor having no fuse portion serving as a self-security function.
[0006]
In other words, when a constant DC voltage is simply kept applied, no current flows through the capacitor and no heat is generated.However, when an AC current, a ripple current, a charge / discharge current, a surge current, or the like flows, the capacitor is not operated. It generates heat remarkably. When the temperature rise of the capacitor increases, the withstand voltage and long-term reliability of the capacitor decrease, and this problem has been a major problem to be solved.
[0007]
In particular, when a large ripple current is applied while a DC voltage is applied to a capacitor as in the case of smoothing an inverter, there has been a problem that the withstand voltage of the capacitor is reduced due to a rise in temperature due to the ripple current. In particular, when used for automobiles, the ambient temperature was originally high, so this was a major problem.
[0008]
Such a conventional problem is caused by the fact that when the current flows from the metallikon electrode 35 to the electrode extraction fuse portion 38 through the electrode extraction portion 36, the electrode extraction portion 36 itself generates heat, so that the temperature of the capacitor greatly increases. And the fact that the electrode lead portion 36 is deteriorated and tan δ is deteriorated.
[0009]
That is, in FIG. 3, the current flowing through the capacitor flows from the metallikon electrode 35 over the entire end face, and flows in the electrode lead portion 36 in the longitudinal direction as shown by the arrow 39 in FIG. The current flows in the direction of arrow 41 through the extraction fuse portion 38 and reaches the adjacent small unit capacitor portion 33. The electrode extraction portion 36 itself has a narrow width and passes through a long current path to reach the electrode extraction fuse portion 38. It has been found by the inventors of the present invention that heat is generated.
[0010]
[Patent Document 1]
JP-A-8-250367
[Problems to be solved by the invention]
In view of the technical problems of the conventional example, the problem to be solved by the present invention is to provide a metallized film capacitor that generates less heat when energized, that is, reduces the temperature rise of the capacitor and has high self-protection performance. Is to do.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is characterized in that the electrode lead portion and each small unit capacitor portion adjacent to the electrode separation slit are electrically connected by an electrode lead fuse portion formed partially across the electrode separation slit. In this configuration, each small unit capacitor portion is electrically connected to the electrode lead portion by a plurality of electrode lead fuse portions.
[0013]
According to this configuration, the current flowing from the metallikon electrode to the small unit capacitor portion adjacent to the electrode separation slit via the electrode extraction portion passes through at least two or more of the electrode extraction fuse portions. Therefore, the current path is shorter than the current flowing into each small unit capacitor portion through one electrode extraction fuse portion via the metal interconnection electrode and the electrode extraction portion as shown in FIG. Low fever. As a result, the temperature rise of the capacitor is smaller than that of the conventional example, and the decrease in the withstand voltage and the long-term reliability of the capacitor is small.
[0014]
Further, as in the invention according to claim 2, the positions of the plurality of electrode lead-out fuse portions that are present for each small unit capacitor portion along the electrode separation slit are different from each other for each small unit capacitor portion along the electrode separation slit. Currents flowing from the metallikon electrode to the small unit capacitor portions from the plurality of electrode lead-out fuse portions via the electrode lead-out portions by setting the symmetrical positions in the opposite directions on the electrode separation slits with the adjacent point as the center. The length of the path is equal for each of the small unit capacitor portions. Therefore, the temperature does not locally increase in the electrode lead portion due to the uneven length of the current path.
[0015]
In addition, as in the third aspect of the present invention, by forming the electrode extraction fuse portions on the electrode separation slit at equal intervals, the positions of the electrode extraction fuse portions are equal. Therefore, the current flowing through the electrode lead portion passes through the electrode lead fuse portion which is present at equal intervals, the current flowing through the electrode lead portion does not become uneven, and there is no portion where a large amount of current flows locally. There is no local temperature rise in the part.
[0016]
Further, as in the invention according to claim 4, even if the width of the electrode lead-out fuse portion is set to be equal to or smaller than the width of the fuse portion between the small unit capacitors, the width is smaller than that of the fuse portion between the small unit capacitor portions on each side of each small unit capacitor portion. The gap between the electrode extraction fuses in the electrode separation slit is narrow, that is, the electrode extraction fuse has a higher installation density than the fuse for the small unit capacitor part, so that the current flows smoothly in the electrode extraction fuse and the local area. The typical temperature rise is smaller than in the conventional example.
[0017]
Further, as in the invention according to claim 5, by setting the width of the electrode drawing fuse portion to be 0.1 mm or more and 0.5 mm or less, the operability of the self-protection function at 100 ° C. is not reduced, and the electrode drawing is performed. There is an advantage in productivity that the fuse portion can be easily formed.
[0018]
Further, by superposing a double-sided metal vapor-deposited film in which a metal vapor-deposited film is formed on both sides of one dielectric film as in the invention according to claim 6, and a dielectric film on which no metal is vapor-deposited, By using the dielectric film of one metal-deposited film and the dielectric film of the other metal-deposited film as one common dielectric film, only one metal-deposited film is required, and the number of production steps can be reduced.
[0019]
Further, the metallized film capacitor according to the present invention has a small self-heating and a small temperature rise, and is therefore most suitable as a smoothing capacitor for an inverter for controlling an electric motor or a capacitor for an automobile used in a severe operating temperature environment.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
The object of the present invention can be achieved by making the configuration described in each claim a main part. Hereinafter, an embodiment of a specific configuration will be described with reference to the drawings.
[0021]
(Embodiment 1)
FIG. 1 is a bird's-eye view showing a metallized film of a metallized film capacitor according to a first embodiment of the present invention and metallikon electrodes connected thereto. In FIG. 1, the metallized film has an electrode lead portion 2 connected to a metallikon electrode 1 at one side end, and has an electrode separation slit 3 having no metal deposited and extending in the longitudinal direction along the electrode lead portion 2; An electrode extraction fuse portion 4 formed partially across the separation slit 3 is provided. Further, the effective electrode portion of the metallized film is divided into a lattice shape by the division slits 5 and is composed of small unit capacitors connected in parallel by small unit inter-capacitor fuse portions 6 formed partially across the division slits 5. I have. Further, two electrode extraction fuse portions 4 are provided for each of the small unit capacitor portions 7 adjacent along the electrode separation slit 3. The position where the electrode extraction fuse portion 4 is provided on the electrode separation slit 3 is set in the opposite direction on the electrode separation slit 3 around the adjacent point 8 of each small unit capacitor portion along the electrode separation slit 3. The position is symmetric. With this configuration, it is possible to realize a metallized film capacitor having a self-security function and generating less heat.
[0022]
Referring to FIG. 1, the current flowing from the entire end face of the metallikon electrode 1 flows through the electrode lead portion 2 in the horizontal direction in FIG. It flows in the direction of arrow 12 through the electrode extraction fuse portion 4 and reaches the small unit capacitor portion 7 adjacent to the electrode separation slit 3. Since there are two electrode pull-out fuse portions 4 in each small unit capacitor portion 7 along the electrode separation slit 3, as in the case of the conventional metallized film having only one electrode shown in FIG. The current flowing from the end face 35 is shorter than the path leading to the electrode extraction fuse section 38. Therefore, in this embodiment, a metallized film capacitor that generates less heat can be obtained. 9 is an insulation margin part.
[0023]
FIG. 2 is a bird's-eye view showing the metallized film of the metallized film capacitor according to the second embodiment of the present invention and the metallikon electrodes connected thereto. The same components as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description will be omitted. As can be seen from FIG. 2, the electrode lead fuse portions 4 are provided at substantially equal intervals, two by two, with respect to the adjacent small unit capacitor portion 7. With this configuration, it is possible to realize a metallized film capacitor that generates less heat and can be used with a high potential gradient.
[0024]
Next, an example of characteristics of the metallized film capacitor according to the first and second embodiments of the present invention will be described.
[0025]
Using a polypropylene film having a thickness of 3.5 μm and a width of 70 mm, a metallized film having the configuration shown in FIGS. 1 and 2 was produced. In addition, in order to examine the influence of the fuse width, each metallized film was manufactured by changing the width of the electrode lead-out fuse portion 4 and the fuse portion 6 between the small unit capacitors. This metallized film and a metallized film having the same width and without slits or fuses (so-called solid vapor-deposited film) are superposed and wound so that the insulation margins are arranged on different sides, thereby producing a 200 μF oval capacitor element. Then, it was put in a case made of polybutylene terephthalate and molded with epoxy resin. For comparison, a capacitor according to the prior art shown in FIG. 3 was also manufactured. In each case, aluminum was used as the metal to be deposited.
[0026]
A sine wave current having an effective value of 20 A at 85 ° C. and a frequency of 20 A was applied to each capacitor for 180 minutes at 85 ° C., and the temperature rise of the surface of the oval element was measured. The temperature rise was saturated in all the capacitors after 180 minutes. The results obtained are shown in Table 1 below.
[0027]
[Table 1]
Figure 2004363431
[0028]
From the comparison between the first and second embodiments and the conventional example, the capacitor according to the present invention has a significantly smaller temperature rise than the conventional example.
[0029]
Next, a DC voltage of 700 V was applied in a state where the ripple current was applied to each capacitor at 85 ° C., and the capacitance change rate after 1000 hours was measured. Table 1 shows the results. The capacitor according to the present invention has a significantly smaller capacity decrease under a high voltage than the conventional example, and can be used with a high potential gradient. This is because, in the conventional example, the fuse was blown due to a local short circuit in many places because the withstand voltage of the film was lowered due to the heat generated by the ripple current. This is because the generation of heat by the current is suppressed, so that the fusing of the fuse portion is reduced.
[0030]
In addition, each capacitor was tested for self-security at 85 ° C and 100 ° C. In the test method, first, 700 VDC was applied continuously for 24 hours, then the voltage was increased by 35 VDC every 24 hours, and the rate of change in capacity at each voltage after 24 hours was measured. Then, when the capacity decreased by 97% or more from the initial value before the test, it was considered that the self-security function was operated. When the capacitor was short-circuited during the test, the self-security function was considered to be defective. Table 1 shows the obtained results. When the width of the electrode lead fuse part was wider than the small unit capacitor-to-capacitor fuse part, or when the width of the electrode lead fuse part exceeded 0.5 mm, it operated without any problem at 85 ° C. Operability decreased. Therefore, it is desirable that the width of the electrode lead fuse portion is equal to or less than the width of the fuse portion between the small unit capacitors, or 0.5 mm or less. If the width is less than 0.1 mm, the formation of the fuse portion itself becomes difficult. Therefore, the width of the electrode lead fuse portion is desirably 0.1 to 0.5 mm.
[0031]
In the above-described embodiment, the small unit capacitor portion having a square shape has been described as an example, but the present invention is not limited to this, and other shapes such as a hexagonal shape, a triangular lattice-like small unit may be used. Similar results were obtained in the capacitor part.
[0032]
Furthermore, although the description has been made using a polypropylene film as the dielectric film, similar results were obtained with other films such as polyethylene terephthalate, polyphenylene sulfide, and polyethylene naphthalate. Similar effects were obtained even when two or more films were stacked as a dielectric film.
[0033]
Similar effects were obtained when zinc or a mixture of zinc and aluminum was used as the metal to be deposited.
[0034]
Also, even if the mode in which the small unit capacitor portion is formed by the split slit and the solid deposition electrode are provided on separate films, these or the same pattern of metal deposition is provided on the front and back of the same film, and is laminated on an undeposited film. , May be wound.
[0035]
Further, in the embodiment, the example of the dry type oval type capacitor molded with the epoxy resin has been described, but the same effect can be obtained with a wet type capacitor impregnated with insulating oil or wax. The shape of the capacitor may be round.
[0036]
【The invention's effect】
As is apparent from the above description, according to the present invention, in the metallized film having the lattice-shaped small unit capacitor portion, the electrode separation slit without the vapor-deposited metal along the electrode lead portion, and the electrode separation slit are partially formed. It has an electrode drawing fuse portion formed across, and has a self-security function by providing at least two or more, ie, a plurality of, said electrode drawing fuse portions for each of the adjacent small unit capacitor portions, and has a self-protection function, and at the time of current supply. It is possible to realize a metallized film capacitor that generates less heat and can be used with a high potential gradient.
[Brief description of the drawings]
FIG. 1 is a bird's-eye view of a metallized film according to Embodiment 1 of the present invention. FIG. 2 is a bird's-eye view of a metallized film according to Embodiment 2 of the present invention. ]
DESCRIPTION OF SYMBOLS 1 Metallicon electrode 2 Electrode extraction part 3 Electrode separation slit 4 Electrode extraction fuse part 5 Split slit 6 Fuse part between small unit capacitors 7 Small unit capacitor part 8 Adjacent point 9 Insulation margin part

Claims (8)

誘電体フィルムの一側端に絶縁マージン部を、反対側端にメタリコン電極に接続した電極引出し部を設けた1対の金属蒸着フィルムをそれぞれの絶縁マージン部とメタリコン電極との位置が相互に反対になるように巻回または積層した金属化フィルムコンデンサにおいて、前記1対の金属蒸着フィルムのうちの少なくとも片方の金属蒸着フィルムには、前記電極引出し部に平行する細長い電極分離スリットと、有効電極部を分割スリットにより格子状に区分し、前記分割スリットを部分的に横切る小単位コンデンサ間ヒューズ部により並列接続される数多くの小単位コンデンサ部分とを構成し、前記電極引出し部と前記電極分離スリットに隣接する各小単位コンデンサ部分とは前記電極分離スリットを部分的に横切って形成した電極引出しヒューズ部によって導通する構成であって、各小単位コンデンサ部分はそれぞれ複数の電極引出しヒューズ部によって前記電極引出し部に導通したことを特徴とする金属化フィルムコンデンサ。A pair of metal-deposited films provided with an insulating margin at one end of the dielectric film and an electrode lead-out portion connected to the metallikon electrode at the other end are provided with the positions of the insulating margin and the metallikon electrode opposite to each other. In the metallized film capacitor wound or laminated so that at least one of the pair of metal-deposited films has an elongated electrode separation slit parallel to the electrode lead-out portion, an effective electrode portion, Are divided into a lattice shape by a dividing slit, and a large number of small unit capacitor portions are connected in parallel by a small unit inter-capacitor fuse portion partially crossing the dividing slit, and the electrode extraction portion and the electrode separating slit are formed. Each of the adjacent small unit capacitor portions is connected to an electrode extraction hole formed partially across the electrode separation slit. Be configured to conduct the over's unit, metallized film capacitors, characterized in that the turned to the electrode lead-out portion by a plurality of electrode lead-out fuse portion respectively each small unit capacitors moiety. 電極分離スリットに沿う各小単位コンデンサ部分の個々に存在する複数の電極引出しヒューズ部の位置は、前記電極分離スリットに沿う各小単位コンデンサ部分同士の隣接点を中心として前記電極分離スリット上のそれぞれ相反する方向の対称位置としたことを特徴とする請求項1記載の金属化フィルムコンデンサ。The positions of the plurality of electrode extraction fuse portions individually present in each of the small unit capacitor portions along the electrode separation slit are respectively located on the electrode separation slits around the adjacent point between the small unit capacitor portions along the electrode separation slit. 2. The metallized film capacitor according to claim 1, wherein the metallized film capacitors are symmetrical in opposite directions. 電極引出しヒューズ部を電極分離スリット上に等間隔で形成したことを特徴とする請求項1または2記載の金属化フィルムコンデンサ。3. The metallized film capacitor according to claim 1, wherein the electrode drawing fuse portions are formed at equal intervals on the electrode separation slit. 電極引出しヒューズ部の幅を分離スリットを横切って小単位コンデンサ部分を相互に導通する小単位コンデンサ間ヒューズ部の幅以下としたことを特徴とする請求項1ないし3のいずれかに記載の金属化フィルムコンデンサ。4. The metallization according to claim 1, wherein the width of the electrode drawing fuse portion is smaller than the width of the fuse portion between the small unit capacitors which connects the small unit capacitor portions to each other across the separation slit. Film capacitor. 電極引出しヒューズ部を0.1mm以上で0.5mm以下の幅としたことを特徴とする請求項1ないし4のいずれかに記載の金属化フィルムコンデンサ。The metallized film capacitor according to any one of claims 1 to 4, wherein the electrode lead fuse portion has a width of 0.1 mm or more and 0.5 mm or less. 1枚の誘電体フィルムの両面に金属蒸着膜を形成した両面金属蒸着フィルムと、金属が蒸着されていない誘電体フィルムとを重ね合わせたことを特徴とする請求項1ないし5のいずれかに記載の金属化フィルムコンデンサ。The double-sided metal-deposited film in which a metal-deposited film is formed on both sides of one dielectric film and a dielectric film on which no metal is deposited are overlapped with each other. Metallized film capacitors. インバータ平滑用コンデンサに使用したことを特徴とする請求項1ないし6のいずれかに記載の金属化フィルムコンデンサ。7. The metallized film capacitor according to claim 1, wherein the metalized film capacitor is used as an inverter smoothing capacitor. 自動車用コンデンサに使用したことを特徴とする請求項1ないし6のいずれかに記載の金属化フィルムコンデンサ。7. The metallized film capacitor according to claim 1, wherein the metallized film capacitor is used for an automotive capacitor.
JP2003161773A 2003-06-06 2003-06-06 Metalized film capacitor Pending JP2004363431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003161773A JP2004363431A (en) 2003-06-06 2003-06-06 Metalized film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003161773A JP2004363431A (en) 2003-06-06 2003-06-06 Metalized film capacitor

Publications (2)

Publication Number Publication Date
JP2004363431A true JP2004363431A (en) 2004-12-24
JP2004363431A5 JP2004363431A5 (en) 2006-07-20

Family

ID=34054101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003161773A Pending JP2004363431A (en) 2003-06-06 2003-06-06 Metalized film capacitor

Country Status (1)

Country Link
JP (1) JP2004363431A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069540A1 (en) 2017-10-04 2019-04-11 株式会社村田製作所 Film capacitor, film for film capacitor, method for manufacturing film for film capacitor, and method for manufacturing film capacitor
WO2019097751A1 (en) 2017-11-15 2019-05-23 株式会社村田製作所 Film capacitor, and film for film capacitor
WO2020039638A1 (en) 2018-08-20 2020-02-27 株式会社村田製作所 Film capacitor, film for film capacitor, and method for manufacturing film for film capacitor
EP3413323B1 (en) * 2016-03-14 2021-06-09 Kyocera Corporation Film capacitor, connected capacitor, and inverter and electric vehicle using same
WO2021131235A1 (en) 2019-12-27 2021-07-01 株式会社村田製作所 Film capacitor, and film for film capacitors
EP3748656A4 (en) * 2018-01-29 2021-11-03 Kyocera Corporation Film capacitor, connection-type capacitor, inverter, and electric vehicle
DE112021004411T5 (en) 2020-10-09 2023-06-07 Murata Manufacturing Co., Ltd. FILM CAPACITOR, FOIL AND METALLIZED FOIL
DE112021004414T5 (en) 2020-10-09 2023-06-07 Murata Manufacturing Co., Ltd. FILM CAPACITOR, FOIL AND METALLIZED FOIL
DE112021004408T5 (en) 2020-10-09 2023-06-07 Murata Manufacturing Co., Ltd. FILM CAPACITOR, FOIL AND METALLIZED FOIL
DE112021004865T5 (en) 2020-10-16 2023-07-20 Murata Manufacturing Co., Ltd. FILM CONDENSER
DE112022004758T5 (en) 2021-12-07 2024-08-14 Murata Manufacturing Co., Ltd. FILM CAPACITOR AND RESIN FILM

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3413323B1 (en) * 2016-03-14 2021-06-09 Kyocera Corporation Film capacitor, connected capacitor, and inverter and electric vehicle using same
WO2019069540A1 (en) 2017-10-04 2019-04-11 株式会社村田製作所 Film capacitor, film for film capacitor, method for manufacturing film for film capacitor, and method for manufacturing film capacitor
WO2019097751A1 (en) 2017-11-15 2019-05-23 株式会社村田製作所 Film capacitor, and film for film capacitor
US11335504B2 (en) 2018-01-29 2022-05-17 Kyocera Corporation Film capacitor, combination type capacitor, inverter, and electric vehicle
EP3748656A4 (en) * 2018-01-29 2021-11-03 Kyocera Corporation Film capacitor, connection-type capacitor, inverter, and electric vehicle
WO2020039638A1 (en) 2018-08-20 2020-02-27 株式会社村田製作所 Film capacitor, film for film capacitor, and method for manufacturing film for film capacitor
WO2021131235A1 (en) 2019-12-27 2021-07-01 株式会社村田製作所 Film capacitor, and film for film capacitors
US11948748B2 (en) 2019-12-27 2024-04-02 Murata Manufacturing Co., Ltd. Film capacitor, and film for film capacitors
DE112021004411T5 (en) 2020-10-09 2023-06-07 Murata Manufacturing Co., Ltd. FILM CAPACITOR, FOIL AND METALLIZED FOIL
DE112021004414T5 (en) 2020-10-09 2023-06-07 Murata Manufacturing Co., Ltd. FILM CAPACITOR, FOIL AND METALLIZED FOIL
DE112021004408T5 (en) 2020-10-09 2023-06-07 Murata Manufacturing Co., Ltd. FILM CAPACITOR, FOIL AND METALLIZED FOIL
DE112021004865T5 (en) 2020-10-16 2023-07-20 Murata Manufacturing Co., Ltd. FILM CONDENSER
DE112022004758T5 (en) 2021-12-07 2024-08-14 Murata Manufacturing Co., Ltd. FILM CAPACITOR AND RESIN FILM

Similar Documents

Publication Publication Date Title
JP3914854B2 (en) Metalized film capacitor, inverter smoothing capacitor and automotive capacitor using the same
JP5370363B2 (en) Metallized film capacitors
JP6277436B2 (en) Film capacitor
JP3870932B2 (en) Metallized film capacitors
JP2004363431A (en) Metalized film capacitor
JP2009088258A (en) Metallized film capacitor
CN111213217B (en) Film capacitor, connection type capacitor, inverter using the same, and electric vehicle
JP3870875B2 (en) Deposition film, film capacitor using the film, and inverter device using the capacitor
JPWO2020084823A1 (en) Film capacitors, articulated capacitors, inverters and electric vehicles using them
JP6799588B2 (en) Film capacitors, articulated capacitors, inverters and electric vehicles using them
JP2013219094A (en) Metalization film capacitor
JP2006286988A (en) Metallization film capacitor
JP4366930B2 (en) Metallized film capacitors
JP2016207823A (en) Film capacitor element
JP6330139B2 (en) Metallized film capacitors
JP2004095604A (en) Metallized film capacitor
JP2001510637A (en) High energy density capacitor film and capacitor made therefrom
JPH08288171A (en) Metallized film capacitor
JP5294321B2 (en) Metallized film capacitors
JP3935561B2 (en) Metallized film capacitors
JP2005093516A (en) Metallized film capacitor and inverter power source circuit
JP2004186641A (en) Metallized film capacitor and method of manufacturing the same
KR102703396B1 (en) Deposited film for capacitors having a pattern for reducing capacitance reduction and film capacitor using the same
JP2006286987A (en) Metallization film capacitor
JP2004095605A (en) Metallized film capacitor and its manufacturing method, and inverter apparatus using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818