JP2004095307A - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
JP2004095307A
JP2004095307A JP2002254130A JP2002254130A JP2004095307A JP 2004095307 A JP2004095307 A JP 2004095307A JP 2002254130 A JP2002254130 A JP 2002254130A JP 2002254130 A JP2002254130 A JP 2002254130A JP 2004095307 A JP2004095307 A JP 2004095307A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
gbl
negative electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002254130A
Other languages
English (en)
Inventor
Aiichiro Fujiwara
藤原 愛一郎
Asako Sato
佐藤 麻子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002254130A priority Critical patent/JP2004095307A/ja
Publication of JP2004095307A publication Critical patent/JP2004095307A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】充放電サイクル寿命が向上された非水電解質二次電池を提供する。
【解決手段】黒鉛質材料を含む負極4と、非水電解質とを具備する非水電解質二次電池であって、前記黒鉛質材料は、エチレンカーボネート(EC)とγ−ブチロラクトン(GBL)とからなる混合溶媒(体積比(EC:GBL)=1:2)にLiBFを1.5mol/L溶解させた浸漬媒による25℃での浸漬熱が0.1〜1.5J/gの範囲内にあり、かつCuKα線を用いるX線回折測定において回折角2θが42.8°〜44.0°と45.5°〜46.6°にピークが現れ、前記非水電解質は、ECとGBLを体積比(EC:GBL)が1:2〜1:4の範囲内で含む非水溶媒と、前記非水溶媒に1〜2.5mol/L溶解されたLiBFとを含有することを特徴とする。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池に関するものである。
【0002】
【従来の技術】
近年、電子機器の発展に伴い、一度のみ放電可能な一次電池に代わって、充電及び放電を繰り返すことができる二次電池に対する需要が高まっている。
【0003】
そこで、リチウム等の軽金属を負極として使用するリチウム二次電池が検討されてきた。このリチウム二次電池は、電圧が3.0V以上という高エネルギー密度と、低自己放電率という優れた特性を有している。しかし、負極に使用されるリチウム等が、充放電を繰り返すことによりデンドライト状に成長して、セパレータを貫通し、正極に到達するので、電池内部において短絡が生じやすいという問題がある。このため、負極としてリチウム等の軽金属を使用するリチウム二次電池は、実用化が困難であった。
【0004】
そこで、リチウム等を他の金属と合金化(例えば、LiAl合金)し、この合金を負極に使用するリチウム二次電池が検討されてきた。しかしながら、負極に使用される合金が充放電を繰り返すことにより、微粒子化しやすいという問題がある。このため、リチウム等と他の金属との合金を負極として使用するリチウム二次電池も、実用化が困難であった。
【0005】
この問題を解決するために、現状で最も有望な解決策は、リチウムを格納することが可能な黒鉛などの炭素材を負極活物質として用いる方法である。この場合、充電時には非水電解質中のリチウムイオンがこの黒鉛などの炭素材の層間にドーピング、吸蔵あるいは挿入(インターカレーション)等によって取り込まれ、放電時にはリチウムイオンが非水電解質中に放出される。即ち、黒鉛などの炭素材へのリチウムイオンの出入りによって、充放電(電極反応)を速やかに行うことができる。
【0006】
しかしながら、市場からの更なるリチウム二次電池の高容量化への要求は大きく、正極や負極の高密度化や、電極群の高緊縛度化、そして電池外装容器内のデッドスペースの削減などが行われているため、電極群に非水電解液を注液した際に非水電解液が電極群に含浸しづらくなっており、初充放電反応においてリチウムイオンがそれぞれの電極材料の層間に挿入・脱離する際に不具合が生じ、結果的に二次電池のサイクル寿命が低下するという問題点が生じている。
【0007】
一方、特開2002−175809号の公開公報には、下記(1)式で規定される浸漬熱比(ΔH /ΔH )を有する炭素材料を含む負極を用いることにより、炭素材料の非水電解液に対する濡れ性を向上させることが提案されている。
【0008】
1.2≦ΔH /ΔH ≦2   (1)
但し、前記(1)式において、前記ΔH は前記炭素材料のn−ヘプタンについての浸漬熱であり、前記ΔH は前記炭素材料の1−ニトロプロパンについての浸漬熱である。
【0009】
しかしながら、前述した(1)式で規定される浸漬熱比(ΔH /ΔH )を有する炭素材料では、非水電解液に対する濡れ性が不十分であるため、長いサイクル寿命を得られなかった。
【0010】
【発明が解決しようとする課題】
本発明は、充放電サイクル寿命が向上された非水電解質二次電池を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明に係る非水電解質二次電池は、正極と、黒鉛質材料を含む負極と、非水電解質とを具備する非水電解質二次電池であって、
前記黒鉛質材料は、エチレンカーボネート(EC)とγ−ブチロラクトン(GBL)とからなる混合溶媒(体積比(EC:GBL)=1:2)にLiBFを1.5mol/L溶解させた浸漬媒による25℃での浸漬熱が0.1〜1.5J/gの範囲内にあり、かつCuKα線を用いるX線回折測定において回折角2θが42.8°〜44.0°と45.5°〜46.6°にピークが現れ、
前記非水電解質は、エチレンカーボネート(EC)とγ−ブチロラクトン(GBL)を体積比(EC:GBL)が1:2〜1:4の範囲内で含む非水溶媒と、前記非水溶媒に1〜2.5mol/L溶解されたLiBFとを含有することを特徴とするものである。
【0012】
【発明の実施の形態】
本発明に係る非水電解質二次電池は、正極と、黒鉛質材料を含む負極と、非水電解質とを具備する非水電解質二次電池であって、
前記黒鉛質材料は、エチレンカーボネート(EC)とγ−ブチロラクトン(GBL)とからなる混合溶媒(体積比(EC:GBL)=1:2)にLiBFを1.5mol/L溶解させた浸漬媒による25℃での浸漬熱が0.1〜1.5J/gの範囲内にあり、かつCuKα線を用いるX線回折測定において回折角2θが42.8°〜44.0°と45.5°〜46.6°にピークが現れ、
前記非水電解質は、エチレンカーボネート(EC)とγ−ブチロラクトン(GBL)を体積比(EC:GBL)が1:2〜1:4の範囲内で含む非水溶媒と、前記非水溶媒に1〜2.5mol/L溶解されたLiBFとを含有することを特徴とするものである。
【0013】
このような二次電池によると、黒鉛質材料と非水電解質との固液界面エンタルピーが大きくなって黒鉛質材料と非水電解質との親和性を向上することができるため、固液界面を安定化させることができ、充放電サイクル寿命を向上することができる。
【0014】
以下、正極、負極及び非水電解質について説明する。
【0015】
まず、正極と負極は、その間にセパレータを介在させて電極群を構成することができる。電極群は、例えば、(i)正極及び負極をその間にセパレータを介在させて偏平形状または渦巻き状に捲回するか、(ii)正極及び負極をその間にセパレータを介在させて渦巻き状に捲回した後、径方向に圧縮するか、(iii)正極及び負極をその間にセパレータを介在させて1回以上折り曲げるか、あるいは(iv)正極と負極とをその間にセパレータを介在させながら積層する方法により作製される。
【0016】
電極群には、プレスを施さなくても良いが、正極、負極及びセパレータの一体化強度を高めるためにプレスを施しても良い。また、プレス時に加熱を施すことも可能である。
【0017】
1)正極
正極は、活物質を含む正極層が集電体の片面もしくは両面に担持された構造を有する。
【0018】
前記正極層は、正極活物質、結着剤および導電剤を含む。
【0019】
前記正極活物質としては、種々の酸化物、たとえば二酸化マンガン、リチウムマンガン複合酸化物、リチウム含有ニッケル酸化物、リチウム含有鉄酸化物(たとえば、LiCoO)、リチウム含有ニッケルコバルト酸化物(たとえば、LiNi0.8Co0.2)、リチウムマンガン複合酸化物(たとえばLiMn,LiMnO)を用いると高電圧が得られるために好ましい。
【0020】
前記導電剤としては、例えばアセチレンブラック、カーボンブラック、黒鉛等を挙げることができる。
【0021】
前記結着剤としては、例えばポリテトラフルオエチレン、ポリフッ化ビニリデン、エチレン−プロピレン−ジエン共重合体、スチレン−ブタジエンゴム等を用いることができる。
【0022】
前記正極活物質、導電剤および結着剤の配合割合は、正極活物質80〜95重量%、導電剤3〜20重量%、結着剤2〜7重量%の範囲にすることが望ましい。
【0023】
前記集電体としては、多孔性構造の導電性基板か、あるいは無孔の導電性基板を用いることができる。これら導電性基板は、例えば、アルミニウム、ステンレス、またはニッケルから形成することができる。
【0024】
前記正極は、例えば正極活物質、導電剤および結着剤を適当な溶媒に懸濁させ、この懸濁物を集電体に塗布し、乾燥した後、所望の圧力で1〜5回プレスすることにより作製される。
【0025】
前記正極はプレス後の充填密度が2.8g/cm以上、3.5g/cm以下であることが望ましい。
【0026】
2)負極
この負極は、負極集電体と、前記負極集電体の片面もしくは両面に担持され、負極活物質及び結着剤を含む負極層を有する。この負極活物質は、黒鉛質材料を含む。
【0027】
黒鉛質材料は、CuKα線を用いるX線回折測定において回折角2θが42.8°〜44.0°と45.5°〜46.6°にピークが現れるものである。このような黒鉛質材料は、菱面体晶系構造を有するため、二次電池の容量を向上することができる。
【0028】
また、黒鉛質材料は、エチレンカーボネート(EC)とγ−ブチロラクトン(GBL)とからなる混合溶媒(体積比(EC:GBL)=1:2)にLiBFを1.5mol/L溶解させた浸漬媒による25℃での浸漬熱が0.1〜1.5J/gの範囲内にある。これは、浸漬熱の値を0.1J/g未満か、もしくは1.5J/gより大きくすると、二次電池の充放電サイクル寿命が低下するからである。
【0029】
負極活物質には、上記黒鉛質材料のみを用いても良いし、あるいは上記黒鉛質材料と他の炭素質物との混合物を使用しても良い。
【0030】
他の炭素質物としては、例えば、人造黒鉛、コークス、炭素繊維、球状炭素などの黒鉛質材料もしくは炭素質材料、熱硬化性樹脂、等方性ピッチ、メソフェーズピッチ、メソフェーズピッチ系炭素繊維あるいはメソフェーズ小球体などに500〜3000℃で熱処理を施すことにより得られる黒鉛質材料または炭素質材料等を挙げることができる。
【0031】
前記結着剤としては、例えばポリテトラフルオエチレン、ポリフッ化ビニリデン、エチレン−プロピレン−ジエン共重合体、スチレン−ブタジエンゴム、カルボキシメチルセルロース等を用いることができる。
【0032】
負極には導電剤を含有させることができる。前記導電剤としては、例えば、アセチレンブラック、カーボンブラック等を挙げることができる。
【0033】
前記負極活物質、導電剤および結着剤の配合割合は、負極活物質80〜98重量%、導電剤3〜30重量%、結着剤1〜7重量%の範囲にすることが望ましい。
【0034】
前記集電体としては、多孔性構造の導電性基板か、あるいは無孔の導電性基板を用いることができる。これら導電性基板は、例えば、銅、ステンレス、またはニッケルから形成することができる。
【0035】
前記負極は、例えば、負極活物質、導電剤および結着剤を適当な溶媒に懸濁させ、この懸濁物を集電体に塗布し、乾燥した後、所望の圧力で1〜5回プレスすることにより作製される。
【0036】
3)セパレータ
セパレータは多孔質シートから形成される。
【0037】
多孔質シートとしては、例えば、多孔質フィルムもしくは不織布を用いることができる。前記多孔質シートは、たとえばポリオレフィンおよびセルロースから選ばれる少なくとも一種類の材料からなることが好ましい。前記ポリオレフィンとしては、例えばポリエチレン、ポリプロピレンを挙げることができる。ポリエンチレンか、あるいはポリプロピレン、または両者からなる多孔質フィルムは、二次電池の安全性を向上できるため好ましい。
【0038】
4)非水電解質
前記非水電解質には、液状またはゲル状の形態を有するものを使用することができる。
【0039】
液状非水電解質(非水電解液)は、例えば、非水溶媒に電解質(例えば、リチウム塩)を溶解させることにより得られる。また、ゲル状非水電解質は、非水電解液と、この非水電解液が保持される高分子材料とを含むものである。高分子材料としては、例えば、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリエチレンオキサイド、ポリ塩化ビニル、ポリアクリレート、ポリビニリデンフルオライドヘキサフルオロプロピレン等を挙げることができる。
【0040】
前記非水溶媒は、エチレンカーボネート(EC)とγ−ブチロラクトン(GBL)を体積比(EC:GBL)が1:2〜1:4の範囲内で含む。これは以下に説明する理由によるものである。ECの体積を1とした際のGBLの体積比が2未満であると、初充電時あるいは高温時のガス発生量が多くなる。また、非水溶媒の粘度が高くなってイオン伝導度が低下するため、高い低温放電特性を得られなくなる。一方、ECの体積を1とした際のGBLの体積比が4を超えると、特に高温時における負極表面とGBLとの反応性が高くなり、非水電解質の還元分解が進行し、負極の表面に充放電反応を阻害する被膜が形成される。このため、高温環境下において長寿命を得られなくなる。
【0041】
非水溶媒中には、ECとGBL以外の他の溶媒を30体積%以下(より好ましくは20体積%以下)の割合で含有させることができる。他の溶媒としては、例えば、プロピレンカーボネート(PC)、鎖状カーボネート(例えば、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)など)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、フェニルエチレンカーボネート(phEC)、γ−バレロラクトン(VL)、プロピオン酸メチル(MP)、プロピオン酸エチル(EP)、2―メチルフラン(2Me−F)、フラン(F)、チオフェン(TIOP)、カテコールカーボネート(CATC)、エチレンサルファイト(ES)、12−クラウン−4(Crown)、テトラエチレングリコールジメチルエーテル(Ether)等を挙げることができる。他の溶媒の種類は、1種類または2種類以上にすることができる。
【0042】
電解質は、四フッ化硼酸リチウム(LiBF)を含有する。非水溶媒中のLiBFの濃度は、1〜2.5mol/Lの範囲内にする。これは、LiBFの濃度が前記範囲を外れると、二次電池の充放電サイクル寿命が低下するからである。
【0043】
電解質は、LiBFのみから構成されていても良いし、あるいはLiBFと他のリチウム塩との混合塩を使用しても良い。他のリチウム塩としては、例えば、過塩素酸リチウム、六フッ化燐酸リチウム(LiPF)、六フッ化砒素リチウム(LiAsF)、トリフルオロメタスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CFSO]などのリチウム塩が挙げられる。中でも、LiPF、LiN(CFSOを用いるのが好ましい。
【0044】
電解質としてLiBFと他のリチウム塩との混合塩を使用する際、電解質全体の非水溶媒に対する溶解量は、0.5〜2モル/Lの範囲内にすることが望ましい。
【0045】
本発明に係る非水電解質二次電池の一例である薄型リチウムイオン二次電池を図1〜図2を参照して詳細に説明する。
【0046】
図1は、本発明に係わる非水電解質二次電池の一例である薄型リチウムイオン二次電池を示す斜視図、図2は図1の薄型リチウムイオン二次電池を短辺方向に沿って切断した部分断面図である。
【0047】
図1に示すように、矩形のカップ状をなす容器本体1内には、電極群2が収納されている。電極群2は、正極3と、負極4と、正極3と負極4の間に配置されるセパレータ5を含む積層物が偏平形状に捲回された構造を有する。非水電解質は、電極群2に保持されている。容器本体1の縁の一部は幅広になっており、蓋板6として機能する。容器本体1と蓋板6は、それぞれ、ラミネートフィルムから構成される。このラミネートフィルムは、外部保護層7と、熱可塑性樹脂を含有する内部保護層8と、外部保護層7と内部保護層8の間に配置される金属層9とを含む。容器本体1には蓋体6が内部保護層8の熱可塑性樹脂を用いてヒートシールによって固定され、それにより容器内に電極群2が密封される。正極3には正極タブ10が接続され、負極4には負極タブ11が接続され、それぞれ容器の外部に引き出されて、正極端子及び負極端子の役割を果たす。
【0048】
【実施例】
以下、本発明に係る非水電解質二次電池について図面を参照して詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0049】
(実施例1〜5)
<正極の作製>
N−メチルピロリドン25重量部に結着剤としてポリフッ化ビニリデンを3重量部溶解させた後、正極活物質として平均粒径3μmのLiCoOを87重量部と、導電性フィラーとしてグラファイトを8重量部とを添加し、ディゾルバーおよびビーズミルを用いて攪拌混合し、正極塗料を調製した。この塗料を厚み15μmのアルミニウム箔の両面に塗工・乾燥した後、プレスし、スリット加工を施すことにより厚さが120μmで、幅が48mmのリール状正極を得た。
【0050】
<負極の作製>
CuKα線を用いるX線回折測定において回折角2θが43.45°と46.33°にピークが現れる天然黒鉛を用意した。この天然黒鉛を空気中で700℃で2時間加熱処理することにより粒状の黒鉛質材料を5ロット得た。
【0051】
得られた黒鉛質材料について各ロット毎に以下に説明する方法により25℃での浸漬熱を測定し、その結果を下記表1に示す。
【0052】
すなわち、浸漬熱の測定に使用した機器は、東京理工株式会社製の双子型カロリーメーターであり、浸漬媒としては、エチレンカーボネート(EC)とγ−ブチロラクトン(GBL)が体積比で1:2の割合で混合された混合溶媒にLiBFをその濃度が1.5mol/Lになるように溶解させた溶液を使用した。
【0053】
粒状の黒鉛質材料を真空下150℃で16時間加熱脱気処理後、測定用ガラスアンプルに1.0g精秤し、封管した。上記測定用ガラスアンプルを浸漬媒が25ml収容された測定用セルに入れ、これを双子型カロリーメーター内にセットした。恒温槽内の温度が25℃で安定になってから、測定用ガラスアンプルを破壊して、浸漬媒と黒鉛質材料とを接触させ、このとき発生する熱量を検出した。測定用ガラスアンプルの破壊熱は、リファレンス側の空の測定用ガラスアンプルの破壊熱を差し引くことによって校正をおこなった。
【0054】
上記の粒状黒鉛質材料100重量部に対して、アセチレンブラックを0.5重量部添加して混合し、さらにスチレン/ブタジエンラテックスを4.2重量部と、増粘材としてカルボキシメチルセルロースの水溶液(固形分1重量%)を130重量部と、蒸留水20重量部とを添加して混合し、スラリーを調製した。
【0055】
厚さが10μmの銅箔の両面に、このスラリーをダイスコーターを用いて一定間隔を開けて塗布し、乾燥した後にプレスし、スリットすることにより、厚さが120μmで、幅が50mmのリール状負極を得た。
【0056】
<非水電解液の調製>
エチレンカーボネート(EC)とγ−ブチロラクトン(γ−BL)が体積比で1:3の割合で混合された非水溶媒に、電解質としてLiBFをその濃度が1mol/Lになるように溶解させ、非水電解液を調製した。
【0057】
<電極群の作製>
得られたリール状の正極と負極とを未塗布領域でそれぞれ裁断すると共にリードタブをそれぞれ接合した後、自動捲回機により正極と負極の間にセパレータとしてポリエチレン製微多孔膜を介在させ、これらをスパイラル状に捲回した。得られた捲回物を偏平状にプレス成形することにより電極群を得た。
【0058】
<電池の組み立て>
最外層からポリエチレンテレフタレート(PET)フィルム、アルミニウム箔、及び熱融着性樹脂フィルムの順に積層された厚さ0.15mmのラミネートフィルムからなる外装材で電極群を正負極端子が外装材から延出するように被覆した後、1辺を除いて開口縁部の熱融着樹脂フィルム同士を幅4mmで熱融着させて封止した。次いで外装材のまだ開口している1辺から前記組成の非水電解液2.5gを真空注液することにより、前述した図1に示す構造を有する薄型リチウムイオン二次電池を製造した。
【0059】
(比較例)
実施例1で説明したのと同様な種類の天然黒鉛を空気中での熱処理を行わずに黒鉛質材料として使用すること以外は、前述した実施例1で説明したのと同様にして薄型リチウムイオン二次電池を製造した。
【0060】
実施例1〜5および比較例の二次電池について、組み立て後、室温で24時間貯蔵した後、500mA、4.2Vで定電流定電圧初充電を8時間行った。実施例1及び比較例の二次電池についての初充電工程における電流曲線と電圧曲線を図3に示す。
【0061】
図3から明らかなように、実施例1の二次電池は、定電圧充電の期間が短く、また、充電電流が速やかに収束していることが理解できる。これは、負極に非水電解液が均一に、かつ十分に含浸していることを示唆している。これに対し、比較例の二次電池は、実施例1の二次電池に比べて定電流充電期間が短くて定電圧充電期間が長く、そのうえ電流の収束も不規則で乱れている。これは、非水電解液の含浸具合が不均一で、電池のインピーダンスが大きくなったことが影響していると考えられる。
【0062】
また、上記定電流定電圧初充電が施された実施例1〜5および比較例の二次電池に、1Cで、充電終止電圧4.2Vの定電流定電圧充電及び1Cで、放電終止電圧3Vの定電流放電の条件下で200サイクルの充放電試験を20℃において行い、その容量維持率(1サイクル目の容量を100%とする)を測定し、その結果を下記表1に示す。
【0063】
【表1】
Figure 2004095307
【0064】
表1から明らかなように、実施例1〜5の二次電池は、比較例の二次電池に比較して、200サイクル後の容量維持率が高いことが理解できる。
【0065】
なお、本発明は、上記の実施例に止まるものではなく、他の種類の正極・負極・セパレータ・容器の組合わせにおいても同様に適用可能である。また、上記の実施例のようなラミネートフィルムから容器を形成した非水電解質二次電池以外にも、例えば鉄、ステンレス、アルミニウム、ニッケル等の金属からなる円筒形もしくは角形の容器を用いる二次電池においても本発明は適用可能である。
【0066】
【発明の効果】
以上詳述したように本発明によれば、充放電サイクル寿命が向上された非水電解質二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明に係わる非水電解質二次電池の一例である薄型リチウムイオン二次電池を示す斜視図。
【図2】図1の薄型リチウムイオン二次電池を短辺方向に沿って切断した部分断面図。
【図3】実施例1及び比較例の薄型リチウムイオン二次電池についての初充電時の電流曲線と電圧曲線とを示す特性図。
【符号の説明】
1…容器本体、
2…電極群、
3…正極、
4…負極、
5…セパレータ、
6…蓋板、
7…外部保護層、
8…内部保護層、
9…金属層、
10…正極端子、
11…負極端子。

Claims (1)

  1. 正極と、黒鉛質材料を含む負極と、非水電解質とを具備する非水電解質二次電池であって、
    前記黒鉛質材料は、エチレンカーボネート(EC)とγ−ブチロラクトン(GBL)とからなる混合溶媒(体積比(EC:GBL)=1:2)にLiBFを1.5mol/L溶解させた浸漬媒による25℃での浸漬熱が0.1〜1.5J/gの範囲内にあり、かつCuKα線を用いるX線回折測定において回折角2θが42.8°〜44.0°と45.5°〜46.6°にピークが現れ、
    前記非水電解質は、エチレンカーボネート(EC)とγ−ブチロラクトン(GBL)を体積比(EC:GBL)が1:2〜1:4の範囲内で含む非水溶媒と、前記非水溶媒に1〜2.5mol/L溶解されたLiBFとを含有することを特徴とする非水電解質二次電池。
JP2002254130A 2002-08-30 2002-08-30 非水電解質二次電池 Pending JP2004095307A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002254130A JP2004095307A (ja) 2002-08-30 2002-08-30 非水電解質二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002254130A JP2004095307A (ja) 2002-08-30 2002-08-30 非水電解質二次電池

Publications (1)

Publication Number Publication Date
JP2004095307A true JP2004095307A (ja) 2004-03-25

Family

ID=32059950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002254130A Pending JP2004095307A (ja) 2002-08-30 2002-08-30 非水電解質二次電池

Country Status (1)

Country Link
JP (1) JP2004095307A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185812A (ja) * 2004-12-28 2006-07-13 Dainippon Printing Co Ltd 電極板の製造方法、および電極板
WO2006090607A1 (ja) * 2005-02-24 2006-08-31 Sony Corporation 電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185812A (ja) * 2004-12-28 2006-07-13 Dainippon Printing Co Ltd 電極板の製造方法、および電極板
WO2006090607A1 (ja) * 2005-02-24 2006-08-31 Sony Corporation 電池
JP5201325B2 (ja) * 2005-02-24 2013-06-05 ソニー株式会社 電池

Similar Documents

Publication Publication Date Title
US7261972B2 (en) Nonaqueous electrolyte secondary battery
US6713217B2 (en) Nonaqueous electrolyte secondary battery with a polyolefin microporous membrane separator
JP4412778B2 (ja) ポリマー電解質電池
CA2245048C (en) Method of preparing lithium ion polymer battery
JP2000123873A (ja) 固体電解質電池
JP2003282148A (ja) 薄型リチウムイオン二次電池
US7651818B2 (en) Lithium ion secondary battery and charging method therefor
JP2003272704A (ja) 非水系二次電池
JP2002260663A (ja) 非水電解質二次電池
JP2004095306A (ja) 非水電解質二次電池
JP2001084987A (ja) 電気化学デバイス
JP2002184462A (ja) 非水電解質及び非水電解質二次電池
JP2004087325A (ja) 非水電解質電池
JP4287123B2 (ja) 非水電解質及び非水電解質二次電池
US9660258B2 (en) Lithium-ion secondary battery
JP2003045433A (ja) 非水二次電池
JP2002042891A (ja) 薄型リチウム二次電池
JP4537851B2 (ja) 非水電解質二次電池
JP2004200122A (ja) 非水電解質二次電池の製造方法
JP2004095307A (ja) 非水電解質二次電池
JP2002134173A (ja) 非水二次電池の製造方法
JP2005032688A (ja) 非水電解質二次電池
JP4015837B2 (ja) 非水電解質及び非水電解質二次電池
JP2004063144A (ja) 非水電解質二次電池
JPH1050292A (ja) 非水電解液二次電池