JP2004089154A - 6−デヒドロvb−a還元酵素 - Google Patents

6−デヒドロvb−a還元酵素 Download PDF

Info

Publication number
JP2004089154A
JP2004089154A JP2002258785A JP2002258785A JP2004089154A JP 2004089154 A JP2004089154 A JP 2004089154A JP 2002258785 A JP2002258785 A JP 2002258785A JP 2002258785 A JP2002258785 A JP 2002258785A JP 2004089154 A JP2004089154 A JP 2004089154A
Authority
JP
Japan
Prior art keywords
enzyme
bars1
gene
dehydro
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002258785A
Other languages
English (en)
Inventor
Noriyasu Shikura
志倉 教保
Jiyunji Yamamura
山村 準志
Yasumichi Yamada
山田 靖宙
Tatsuji Seki
関 達治
Takuya Nihei
仁平 卓也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP2002258785A priority Critical patent/JP2004089154A/ja
Publication of JP2004089154A publication Critical patent/JP2004089154A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

【課題】新規酵素及びその酵素を用いる(2R,3R,6S)−バージアブタノリド(VB)−Aの製造方法に関し、ストレプトマイセス・バージニアエ(Streptomyces virginiae)のバージニアマイシン生産を数nMの極低濃度で誘導することができる放線菌ホルモンである(2R,3R,6S)−VB−Aの製造に有用な酵素及びその酵素を用いる(2R,3R,6S)−VB−Aの製造方法を提供する。
【解決手段】上記Streptomyces virginiae由来の特定のアミノ酸配列からなり、6−デヒドロVB−Aの還元反応を触媒する酵素。
【選択図】   なし

Description

【0001】
【発明の属する技術分野】
本発明は、新規酵素及びその酵素を用いる(2R,3R,6S)−バージアブタノリド(VB)−Aの製造方法に関し、ストレプトマイセス・バージニアエ(Streptomyces virginiae)のバージニアマイシン生産を数nMの極低濃度で誘導することができる放線菌ホルモンである(2R,3R,6S)−VB−Aの製造に有用な酵素及びその酵素を用いる(2R,3R,6S)−VB−Aの製造方法を提供することを目的とする。
【0002】
【従来の技術】
糸状グラム陽性菌であるストレプトマイセス(Streptomyces)属の微生物は、ヒトの医薬品及び農業分野において利用されている公知の全ての抗生物質の3分の2以上を生産する。すなわち多くの2次代謝産物の万能の産生者である(非特許文献1)。栄養のような多くの制限因子がストレプトマイセス属の抗生物質産生に影響することが知られている(非特許文献2及び3)。しかし、この機序の詳細な知識及び/又は調節機構の解明はなされておらず、高産生性工業用菌株の合理的設計を妨げている。
【0003】
ストレプトマイセス属の抗生物質産生作用に影響する公知の因子(非特許文献4〜6)の中でも、γ−ブチロラクトン自己調節因子は、最も研究されているものの1つであり、様々なストレプトマイセス属の種に、2次代謝、特に抗生物質産生の開始を引き起こすことが一般に示されている(非特許文献7及び8)。公知のγ−ブチロラクトン型自己調節因子は、6−α−水酸基を有するバージニアブタノリド(VB)型、6−β−水酸基を有するIM−2型、及び6−ケト基を有するA−factor型に分けられ、自己調節因子の3つの型のわずかな構造的差異を認識する型特異的レセプタータンパク質を有する。極めて低濃度、通常は、数ナノモルの濃度で働く自己調節因子の効力及び高いリガンド特異性のレセプタータンパク質の存在は、γ−ブチロラクトン型自己調節因子がストレプトマイセスホルモンと考えられることを意味する(非特許文献9〜12)。
【0004】
Streptomyces virginiaeは、代表的な菌株の1つであり、VB−AがVB特異的レセプタータンパク質であるBarAに結合することによって、2つの構造的に異なる抗生物質であるバージニアマイシンM1及びバージニアマイシンSの産生を調節する。VB−A及びBarA間の複合体形成後のシグナル伝達経路及び/又は調節機序については、明らかにされているが、VB自体の生合成についてはほとんど何も知られていない(非特許文献13〜15)。どのようにして、いつ、VB産生が調節されるのかについての知見を得るためには、VB生合成を触媒する遺伝子を得ることが必要である。また、何故に、S. virginiaeのような1つの菌株のみがγ−ブチロラクトン型自己調節因子を産生し、Streptomyces lavendulae FRI−5のような別の菌株のみが、IM−2型の自己調節因子のみを産生するかの機序を明らかにするために、自己調節因子生合成の最後の還元段階を触媒する酵素を生化学的に特徴づけることが重要である。
【0005】
自己調節因子の生合成経路については、主に放射性又は安定なアイソトープでラベルした前駆体を与えることによって信憑性の高い仮説経路が既に明らかにされている(図1B)(非特許文献16及び17)。推定された経路は、自己調節因子生合成における下記の2つの還元段階:
NADH依存エノイルレダクターゼ型還元によるA−factor型前駆体(6−デヒドロVB−A)の形成、及び
最後のNADPH依存ケト還元による(6S)絶対配置のVB型化合物又は(6R)絶対配置のIM−2型化合物のいずれかの形成
の存在を示唆する。
【0006】
自己調節因子生合成に関する遺伝子を探索する間に、新規オープンリーディングフレーム(orf4)(非特許文献18)が、VB特異的レセプターをコードするBarA遺伝子の上流に同定され、この遺伝子がVB生合成経路に関与する可能性を提起した。この研究において、発明者は、orf4遺伝子に焦点を合わせ、そしてOrf4タンパク質が、A−factor型前駆体のVB型化合物への立体特異的な還元の触媒に不可欠な生合成酵素であることを見出した。これは、発明者の知る限り、γ−ブチロラクトン自己調節因子についての実際の生合成酵素をコードする遺伝子の単離及び特徴決定を記載する最初の報告である。
Streptomyces virginiaeにおいては、ストレプトグラミン系抗生物質バージニアマイシンM1及びSの産生が、γ−ブチロラクトン型自己調節因子の一つである、バージニアブタノリド(VB)と呼ばれる低分子量ストレプトマイセスホルモンによって厳密に調節されている。S.virginiaeから、ホルモン生合成遺伝子(barS1)がクローニングされ、Escherichia coliにおける発現及びS. virginiaeにおける遺伝子破壊によって機能が解明された。barS1遺伝子(257アミノ酸タンパク質(分子量27,095)をコードする774bpオープンリーディングフレーム)は、VB特異的レセプター遺伝子であるbarAを囲む10kbのレギュレーターアイランドに位置する。推測されたBarS1タンパク質は、β−ケトアシル−アシル担体タンパク質/補酵素Aリダクターゼと相同性があり、そして短鎖アルコールデヒドロゲナーゼのスーパーファミリーに属する。VB生合成におけるBarS1タンパク質の機能は、VB生合成の最終段階である6−デヒドロVB−AからVB−AへのBarS1によるインビトロ転換によって確認された。基質としてのラセミ体の6−デヒドロVB−Aから可能な4種のエナンチオマー産生物の中で、(2R,3R,6S)−VB−Aのみ天然型のエナンチオマーのみが、精製されたリコンビナントBarS1(rBarS1)によって産生され、rBarS1が基質として(3R)−アイソマーを認識し、(6S)産生物に立体特異的に還元するレダクターゼであることを示した。
相同組換えによって作成されたbarS1破壊株(ΔbarS1)においては、VBの産生及びバージニアマイシンの産生は認められなかった。ΔbarS1株によるバージニアマイシンの産生は、培養物へのVB外部添加によって完全に回復し、barS1遺伝子がS. virginiaeにおける自己調節因子VBの生合成に不可欠であること、及びVBの欠失によりVM産生能力がなくなることを示した。
【0007】
【非特許文献1】
チャンプネス・ダブリュー(Champness, W.)著,アクチノマイセート発展、抗生物質産生及び系統学:問題及び課題(Actinomycete development, antibiotic production and phylogeny: questions and challenges),ワイ・ブイ・ブルン及びエル・ジェイ・スキムケッツ編(Y.V. Brun and L.J. Skimkets (ed.)),原核生物の発展(Prokaryotic development),米国ワシントン市(Washington D.C.),エイエスエム・プレス(ASM Press),2000年,p.11−31
【非特許文献2】
チャター・ケー・エフ及びエム・ジェイ・ビブ(Chater, K.F. and M.J. Bibb)著、微生物抗生物質産生の調節(Regulation of bacterial antibiotic production)、エッチ・クラインカウフ及びエッチ・ブイ・デーレン編(H. Kleinkauf and H.V.Doehren(ed))、バイオ/テクノロジー(Bio/Technology)、ドイツ、VCH Press、1977年、7巻、p.57−105
【非特許文献3】
デマイン・エー及びエー・ファング(Demain, A and A. Fang)著、放線菌学(Actinomycetology)、1995年、9巻、p.98−117
【非特許文献4】
ホブス・ジー等(Hobbs, G. et al.)著、細菌学雑誌(J. Bacteriol.)、1992年、174巻、p.1487−1494
【非特許文献5】
フード・ディー・ダブリュー等(Hood, D.W. et al.)、遺伝子(Gene)、1992年、115巻、p.5−12
【非特許文献6】
ヤング・ケー等(Yang, K. et al.)著、細菌学雑誌(J. Bacteriol.)、1995年、177巻、p.6111−6117
【非特許文献7】
ヤマダ・ワイ(Yamada, Y)著、放線菌における抗生物質産生の自己調節因子及び調節(Autoregulatory factors and regulation of antibiotic production in Streptomyces)、アール・イングランド等編(R. England et al.(ed))、微生物シグナル伝達及び情報伝達(Microbial signaling and communication.)、一般微生物学会(Society for General Microbiology)、英国ケンブリッジ(Cambridge)、ケンブリッジ大学出版局(Cambridge University Press)、1999年、p.177−196
【非特許文献8】
ヤマダ・ワイ及びティー・ニヒラ(Yamada Y and T. Nihira)著、微生物ホルモン及び微生物化学生態学(Microbial hormones and microbial chemical ecology)、ディー・エッチ・アール・バートン及びケー・ナカニシ(D.H.R.Barton and K.Nakanishi(ed))編、総合天然物化学(Comprehensive natural products chemistry)、英国オックスフォード(Oxford, United Kingdom)、エルゼビア科学(Elseview Science Ltd.)、1998年、第8巻、p.377−413
【非特許文献9】
ニヒラ・ティー等(Nihira, T et al.)著、抗生物質雑誌(J. Antibiot.)、1995年、177巻、p.6111−6117
【非特許文献10】
オカモト・エス等(Okamoto S. et al.)著、生物化学雑誌(J. Biol. Chem)、1995年、270巻、p.12319−12326
【非特許文献11】
タカノ・イー等(Takano E. et al.)著、分子微生物学(Mol. Microbiol.)、2001年、41巻、p.1015−1028
【非特許文献12】
ワキ・エム等(Waki M. et al.)著、細菌学雑誌(J. Bacteriol.)、1997年、179巻、p.5131−5137
【非特許文献13】
キノシタ・エッチ等(Kinoshita H. et al.)著、細菌学雑誌(J. Bacteriol.)、1999年、181巻、p.5075−5080
【非特許文献14】
ナカノ・エッチ等(Nakano H. et al.)著、細菌学雑誌(J. Bacteriol.)、1998年、180巻、p.3317−3322
【非特許文献15】
ナカノ・エッチ等(Nakano H. et al.)著、生命科学生物工学雑誌(J. Biosci. Biotechnol.)、2000年、90巻、p.204−207
【非特許文献16】
サクダ・エス等(Sakuda S. et al.)著、米国化学会誌(J. Am. Chem. Soc.)、1992年、114巻、p.663−668
【非特許文献17】
サクダ・エス及びワイ・ヤマダ(Sakuda S. and Y. Yamada)著、アルドール縮号によって形成されたブチロラクトン及びシクロペンタノイド骨格の生合成(Biosynthesis of butyrolactone and cyclopentanoid skeletons formed by aldol condensation)、ディー・エッチ・アイ・バートン等(D.H.I.Barton et al.(ed))編、総合天然物化学(Comprehensive natural products chemistry)、英国オックスフォード(Oxford, United Kingdom)、エルゼビア科学(Elseview Science Ltd.)、1998年、第1巻、p.139−158
【非特許文献18】
カワチ・アール等(Kawachi R. et al.)著、分子微生物学(Mol. Microbiol.)、2000年、36巻、p.302−313
【0008】
【発明が解決しようとする課題】
本発明は、新規酵素及びその酵素を用いる(2R,3R,6S)−バージアブタノリド(VB)−Aの製造方法に関し、ストレプトマイセス・バージニアエ(Streptomyces virginiae)のバージニアマイシン生産を数nMの極低濃度で誘導することができる放線菌ホルモンである(2R,3R,6S)−VB−Aの製造に有用な酵素及びその酵素を用いる(2R,3R,6S)−VB−Aの製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
したがって本発明は、配列番号1のアミノ酸配列からなり、6−デヒドロVB−Aの還元反応を触媒する酵素、すなわちBarS1タンパク質に関する。
【0010】
本発明者らは、S. virginiaeにおいて、BarS1レセプタータンパク質であるすでに同定、解析されたBarAタンパク質をコードするbarA遺伝子の上流にオープンリーディングフレーム(orf4)を同定し、barS1遺伝子の存在およびその機能を解明した。遺伝子工学的手法により単離したbarS1遺伝子について遺伝情報を担うDNA断片から必要な部分をベクターに組み込むことにより、宿主細胞に導入し形質転換体を得ることができる。
【0011】
ここで、6−デヒドロVB−Aの還元活性を有する限り、配列番号1に示したアミノ酸配列についてアミノ酸の1個又は数個の欠失、挿入、置換等があってもよい。例えば、DNAがコードするアミノ酸配列についてアミノ酸のいくつかの欠失、挿入、置換等を生じるようにDNAを改変することは、合成オリゴヌクレオチドを用いた部位特異的変異導入法などの周知の方法で適宜行うことができる。また、該DNAを適宜改変したDNAを鋳型にして、Mn2+イオンの存在下(通常0.5〜10mMの濃度)、または特定のヌクレオチドの濃度を低くしてPCR法を行うことによってランダムに変異が導入されたDNAを得ることができる。このようにして得られたDNAのうち、BarS1活性を有するタンパク質をコードするものが、本願発明に含まれることは言うまでもない。
【0012】
本遺伝子を組み込むベクターとして好ましいのは、宿主細胞中で自律複製可能であり、さらに組換え宿主細胞のみを選別できるような適当な選択マーカーなどが付与されたものがあげられ、適当な宿主細胞内で、本発明の遺伝子を発現できるものである。さらに、このようなベクターは公知のベクター等から公知の技術を用いて業者が容易に製造し得るようなものであってもよいし、商業的に販売されているものでも良い。特に好ましいのはプラスミドpET−3d(Novagen社)である。
【0013】
また、用いられる宿主細胞としては、得られた組換えベクターでもって形質転換され、かつ本遺伝子を発現させることができるようなものであれば特に制限なく使用することができる。このような宿主細胞としては、本発明の目的に沿って本遺伝子の発現を達成し得る限り、グラム陰性菌あるいはグラム陽性菌の区別なく、さらには、下等細胞あるいは高等細胞の区別なく、動物由来細胞であろうと植物由来細胞であろうと使用できる。
【0014】
オリジナル株では抽出が困難であったBarS1タンパク質は,barS1遺伝子を組み込んだベクターによって形質転換した生物体から得ることができ、例えば大腸菌であれば、LB培地で培養し、対数増殖期にIPTG(イソプロピル−β−D−チオガラクトピラノシド)で発現誘導させた菌体を超音波などで破砕した粗抽出液から各種カラムクロマトグラフィーを用いて精製することができるし、タグ付きベクターを用いれば、さらに簡便に精製することができる。
【0015】
得られた組換えBarS1タンパク質(rBarS1)は分子量がSDS−PAGEにより27,000、ゲルろ過カラムクロマトグラフィーにより54000と確認できる。また、rBarS1が所有する6−デヒドロVB−Aレダクターゼ活性は、例えばNADPH存在下で(±)−6−デヒドロVB−Aを基質とした還元反応により生成したVB−Aを定量することによって確認することができる。
【0016】
また、本発明は(2R,3S,6S)−VB−Aの製造方法も提供する。該形質転換体を培養し、得られた精製rBarS1を用いて上記同様に(±)−6−デヒドロVB−Aを還元して(2R,3S,6S)−VB−Aを得ることができる。
(2R,3S,6S)−VB−Aの同定は、例えば生成したVB−AをジベンゾアートととしてC18逆相カラムクロマトグラフィーにより精製および定量後、各磁気共鳴やCI−MSにより化学構造を決定することができるし、キラルHPLCによって立体構造を決定することができる。
【0017】
【実施例】
以下に本発明の酵素の調製方法及びその特徴付けと該酵素を用いた(2R,3R,6S)−VB−Aの製造方法並びに該酵素による効果として、バージニアマイシンの誘導について、実施例によって説明する。
【0018】
実施例1
材料及び方法
菌株、培養条件及びプラスミド
S.virginiae(MAFF 10−06014株)はf培地(0.75%(w/v)バクトカシトン、0.75%(w/v)酵母エキス、1.5%(w/v)グリセロール、0.25%(w/v)塩化ナトリウム(pH6.5))を用いて、28℃で培養を行なった。遺伝子の構築、増幅には大腸菌(Escherichia coli DH5α株)を使用し、遺伝子発現には大腸菌(Escherichia coli BL21(DE)/pLysS)を宿主として使用した。発現プラスミドは、pET−3dを使用した。プラスミドの接合伝達には、RP4由来pUZ8002を含むメチル化欠損大腸菌(ET12567)を使用した。また、プラスミドはpKC1132を使用した。
【0019】
化学物質
化学物質は、ナカライテスク株式会社、タカラバイオ株式会社、和光薬品工業株式会社製の試薬を使用した。β−NADPH、β−NADH、HPLC分子量マーカーは、オリエンタル酵母、SDS−PAGEは、アマシャムファルマシアの製品を使用した。
【0020】
pET−barS1の構築及び組換えBarS1(rBarS1)の調製
barS1をコードするDNA配列の5′末端にNcoI部位、3′末端にBamHI部位を付加するため、barS1を含むBamHI−BamHI(2.0kb)フラグメントを鋳型にして、配列番号3及び4に示すプライマーを用いてPCRを行なった。この増幅断片をpET−3dのNcoI−BamHI部位に導入し、pET−barS1を得て、DNAシークエンスにより配列を確認した。組換えbarS1(rbarS1)を調製するため、500mlの坂口フラスコに抗生物質(アンピシリン及びクロラムフェニコール、最終濃度25μg/ml)を含むLB培地(1%(w/v)トリプトン、0.5%(w/v)酵母エキス、1%(w/v)塩化ナトリウム(pH7.0))250mlを調製しpET−barS1により形質転換された大腸菌(Escherichia coli, BL21(DE)/pLysS)の前培養液2.5mlを植菌した。波長600nmの吸光度が0.5になるまで37℃で培養し、最終濃度が1mMになるようにIPTG(イソプロピル−β−D−チオガラクトピラノシド)を添加後2〜3時間培養した。集菌した細胞を10倍量の0.5M塩化ナトリウムを含む緩衝液A(0.02mMトリエタノールアミン−塩酸(pH7.0)、20%(w/v)グリセロール、5mMEDTA、5mM2−メルカプトエタノール、1mMDTT、0.1mMPMSF、10μMロイペプチン、0.3μMペプスタチン、)に懸濁し、氷上で超音波破砕を行なった。このようにして得られた細胞抽出液を、SDS−PAGE及び6−デヒドロVB−Aレダクターゼ活性のアッセイに使用した。SDS−PAGEを、10−20%の濃度勾配をつけた分離ゲルを使用し、クマシーブリリアントブルーで染色した。rBarS1の精製は、18,000×g、20分遠心後、透析を行なった試料を0.05M 塩化ナトリウム及び100μM NADPHを含む緩衝液Aで平衡化したDEAE−セファセルカラム(140ml)に供し、同緩衝液560mlで洗浄後、0.1M 塩化ナトリウム及び100μM NADPHを含む緩衝液A(910ml)、0.15M 塩化ナトリウム及び100μM NADPHを含む緩衝液A(700ml)、0.2M 塩化ナトリウム及び100μM NADPHを含む緩衝液A(840ml)で溶出した。限外ろ過で濃縮後の試料は、SDS−PAGEで単一バンドであった。
【0021】
分子量の測定
rBarS1の分子量の測定はSMARTシステム(アマシャムファルンマシアバイオテク製)のセファロース12カラムを用いたゲルろ過HPLCにより、非変性状態で行なった。2−メルカプトエタノールを含めず、0.3M 塩化ナトリウム及び10μM NADPHを含む緩衝液Aを使用した。また分子量マーカーとして、グルタミン酸デヒドロゲナーゼ(分子量290,000)、乳酸デヒドロゲナーゼ(分子量142,000)、酵母エノラーゼ(分子量67,000)、酵母アデニル酸キナーゼ(分子量32,000)、チトクロームc(分子量12,400)を用いた。
【0022】
6−デヒドロVB−Aレダクターゼの活性測定
6−デヒドロVB−Aレダクターゼ活性を、EDTAを含めず、0.5M 塩化ナトリウム含む緩衝液Aを用いて25℃で測定した。最終濃度766μMの(±)−6−デヒドロVB−A、5mMのNADPHもしくはNADHを加えた。タンパク質の定量はバイオラッド社製タンパク質アッセイキットもしくはHPLCにより測定した。1ユニットは25℃で1分間に1μモルのVB−Aを生成する酵素量を表す。市販のデヒドロゲナーゼの反応は、EDTAを含めず、0.5M 塩化ナトリウム含む緩衝液A(pH7.0)を用いて、5mMのNADPHとNADH存在下で24℃で測定した。なお、3−ヒドロキシブタン酸デヒドロゲナーゼの反応は37℃で行なった。また、グリセロールデヒドロゲナーゼは緩衝液Aにグリセロールを含まずに行なった。
【0023】
A−factor型基質群の活性測定は、反応により生成したVB産生物をベンゾイル化後にC18逆相HPLC分析により定量した。酵素反応液は575μlで開始し、200μlの1%トリフルオロ酢酸、1225μlの冷水を添加して停止させた。5μgのVB−Dが内部標準として加えられた。反応液を9mlの水で希釈し、5mlの水でOASIS HLB抽出カードリッジに供した。8mlの75%(v/v)アセトニトリルによりVB−DとともにVBを溶出し、溶媒除去した。
VB−Dの600倍量のシアン化ベンゾイルと5μlのトリ−n−ブチルアミン存在下室温10分間ベンゾイル化後、反応液からへキサン−メタノール−水(3ml−250μl−750μl)で抽出を行ない、有機層を溶媒除去後、C18逆相HPLCを用い、ピーク面積より生成物量を決定した。
【0024】
rBarS1で触媒された生成物の単離及びキラルHPLC分析
rBarS1により生成されたVB−AをジベンゾアートとしてC18逆相HPLCにより精製した。化学構造は600MHzH核磁気共鳴及びCI−MSにより同定した。
【0025】
S. virginiaeからの粗細胞抽出液の調製
500mlのバッフル付き三角フラスコにf培地70mlを調製し、2.1mlの前培養液を植菌後、28℃で振とう培養した。遠心分離(3,000×g,4℃)を5分間行なって菌体を集菌し、5倍量の0.5M 塩化ナトリウム及び100μM NADPHを含む緩衝液Aに懸濁し超音波破砕を行なった。遠心分離(3,000×g,4℃)を20分間行ない、上清を試料として得た。
【0026】
S. virginiaeのΔbarS1株の作製
varM、orf4、orf5、barXを含むBst1107I−EcoT22I(5kb)フラグメントを平滑化し、プラスミドpUC19のSmaI部位にサブクローニングし、orf4(barS1)コード領域を含むPsp1406I−BsmI(297bp)フラグメントを欠失させ、プラスミドpJK101を作製した。これは、84番目のフェニルアラニンから192番目のグリシンまでの99アミノ酸残基の欠失に相当する。得られたプラスミドpJK101について欠失の確認をDNAシークエンサーにより行なった。欠失したbarS1をΔbarS1と称する。
【0027】
S. virginiaeの染色体DNA上のbarS1と置換するため、コンジュゲーションプラスミドを作製した。varM、ΔbarS1、orf5、barXを含むHindIII−EcoRI(4.7kb)フラグメントをpJK101からコンジュゲーションプラスミドであるpKC1132にサブクローニングし、pJK102を得た。これを含むE.coli ET12567/pUZ8002からプラスミドの接合伝達によりS. virginiaeに導入し、アプラマイシンを含む培地で選択した。
【0028】
バージニアマイシン及びVB生成の活性測定
S. virginiaeの胞子(10)個体を70mlのf培地に植菌し、24時間振とう培養した。培養後、集菌し、同量のf培地に懸濁し、直ちに冷凍保存(−80℃)した。室温で融解し、f培地で600nmの吸光度が0.075になるように希釈した。バージニアマイシン生成の解析には、菌体を定期的に回収し、遠心上清を調製した。VBに依存したバージニアマイシンの生成量の測定はBacillus subtilis PC1219を接種して調製したバイオアッセイ用プレート上に立てたペニシリンカップに、先の遠心上清220μlを入れ、30℃で一晩培養後に生じた生育阻止円大きさにより決定した。化学的手法で合成したVB−C6をスタンダードとして使用した。VB単位1ユニットは、0.6 ngまたは2.6nMのVB−Aに相当し、これはバージニアマイシン生成を誘導するVB−Aの最小量を表す。
【0029】
ヌクレオチド配列アクセッション番号
この明細書に記載されたヌクレオチド配列は、アクセッション番号AB035548としてDDBJ/EMBL/GenBankデータバンクに登録されている。
【0030】
結果及び考察
orf4遺伝子のヌクレオチド配列
barAを含む10kbEcoRI−EcoRIフラグメントで、barAと同方向でbarA開始コドンの2,986bp上流から始まるorf4遺伝子が明らかになった(図2A)。得られたオープンリーディングフレーム(ORF)は、257アミノ酸よりなる27,095Daのタンパク質をコードすることが予想され、短鎖アルコールデヒドロゲナーゼスーパーファミリーに属する、数種のβ−ケトアシル−アシル担体タンパク質/補酵素A(CoA)レダクターゼ、例えば、ダウノルビシンの生合成におけるレダクターゼとして機能するS. peucetiusからのDpsE(相同性36.0%)、フレノリシンの生合成に関与するS.reseofulvusからのFrnP(相同性36.0%)及びアクチノロージンポリケチド鎖の会合の間のβ−ケト基のレダクターゼとして機能するS. coelicolor A3からのActIII(相同性34.8%)とは、中程度の相同性を示した。
【0031】
推測されたorf4産生物とこれらの短鎖アルコールデヒドロゲナーゼタンパク質とのアライメント(図2B)により、大部分の明らかな同一性が、NAD(P)H結合モチーフ、Gly−X−X−X−Gly−X−Glyのような典型的βαβフォールドを含有するアミノ末端領域、同じく、活性部位残基としてみなされるSer148、Tyr161及びLys165を含む中間領域に存在することを示した。
【0032】
rOrf4の過剰発現及び精製
orf4産生物をより詳細に検討するために、T7発現ベクターpET−3dを用いてE. coli内で組換えOrf4(rOrf4)タンパク質を発現させた。
コード領域をPCRを用いて増幅し、そしてT7RNAポリメラーゼプロモーターの制御下においた。SDS−PAGE分析(図3、レーン2)は、pET−orf4を有するIPTG誘導E.coli BL21(DE3)/pLysSが、27kDaタンパク質を有意に過発現したことを示し、このタンパク質とorf4産生物との同一性をN末端アミノ酸配列の解析によって確認した(データは示さず)。
【0033】
rOrf4の実際の酵素機能を明らかにするために、基質として6−デヒドロVB−Aを用いることによってその活性を試験した。pET−orf4を有するIPTG誘導細胞から調製された細胞抽出物は、NADPHの存在下でVB−Aを形成するための高い6−デヒドロVB−Aレダクターゼ活性(268mU/mgタンパク質)を示した。一方、pET−3dを有するコントロール細胞からの細胞抽出物は、全く活性を示さなかった(表1)。過剰発現されたrOrf4をDEAEセファセルカラムで32.8%の活性収率で均一まで精製した(図3、レーン3)。SDS−PAGEでの見かけの分子量27,000は、ヌクレオチド配列から算出された分子量(27,095)と良く一致した。モレキュラーシーブHPLCによる未変性条件下で精製されたrOrf4は、見かけの分子量54,000を示し、2量体の性質を示した。この精製酵素と6−デヒドロVB−Aとの酵素反応を行い、そして産生物をベンゾイル化後に逆相C18HPLCによって精製した。単離産生物の600MHz1H核磁気共鳴及びCI−MSスペクトルの全てが合成VB−Aジベンゾアートのそれと良く一致し、rOrf4タンパク質の触媒産生物がVB−Aであることが確認された。
【0034】
【表1】
Figure 2004089154
【0035】
6−デヒドロVB−Aレダクターゼ活性がrOrf4の特異的特徴であることを検証するために、6−デヒドロVB−Aレダクターゼ活性について、いくつかの市販デヒドロゲナーゼを試験した。
【0036】
20時間のインキュベーション中に2,000倍の酵素量(アッセイ当たり1U)の存在下においてさえ、試験した5種類のデヒドロゲナーゼ(パン酵母からのアルコールデヒドロゲナーゼ、Bacillus megateriumからのグリセロールデヒドロゲナーゼ、Rhodopseudomonas sphaeroidesからの3−ヒドロキシブチラートデヒドロゲナーゼ、Pseudomonas testosteroniからの3α−ヒドロキシステロイドデヒドロゲナーゼ、及びP. testosteroniからのβ−ヒドロキシステロイドデヒドロゲナーゼ)のいずれにおいても検出可能な活性は見出されなかった(データは示さず)。
【0037】
これらの結果から、ofr4遺伝子が、6−デヒドロVB−AからVB−Aへの還元を触媒する6−デヒドロVB−Aレダクターゼの遺伝子であると結論され、そしてbarS1(ブチロラクトン自己レギュレーター合成として)と表した。
【0038】
rBarS1の特徴決定
酵素特異性を特徴づけるために、精製rBarS1を5mMNADH又はNADPHの存在下でアッセイした。5mMNADPHでは明らかな活性が検出されたが、NADHでは活性が全く検出されず、rBarS1がNADPH特異的であることを示した(Table 1)。10mMNADPHの存在下で、(±)−6−デヒドロVB−AについてのK値及びVmax値を測定したところ、それぞれ11.1μM及び269mU/mgタンパク質であった。また至適pHは、7.5であった。
至適温度は、狭く、25℃で最大活性であり、35℃及び40〜50℃での30分間のインキュベーションでそれぞれ80%及び完全な活性の減少から明らかなように、安定性の範囲は狭い。
【0039】
この酵素の基質特異性、特にC2鎖構造の影響を決定するために、一連の合成A−factor型アナログ、すなわち、A−factorC〜C(直線側鎖)、A−factor(天然型)及び6−デヒドロVB−Aの存在下で6−デヒドロVBレダクターゼアッセイを行った(表2)。
【0040】
【表2】
Figure 2004089154
【0041】
活性は、鎖長が4〜6で急激に上昇したが、より側鎖を長くした場合には少しの活性減少をもたらしたに過ぎなかった。この基質特異性は、S.virginiaeによって産生されるオリジナルの自己レギュレーターの生産プロフィールと良く一致した。すなわち、直鎖又は分岐の6〜7個の炭素C2側鎖を有するVB(VB−A、VB−B、VB−C及びVB−D)が量的に優勢である一方、より短い側鎖を有するVB(VB−E)の量は少なかった。
【0042】
反応の立体特異性を検討するため、キラルHPLCによってVB−Aジベンゾアートを解析し、光学的に純粋な(2R,3R,6S)型であることを見出した。高感度検出方法によってIM−2型化合物〔(2R,3R,6R)型又は(2S,3S,6S)型〕が全く検出されなかったことを考慮すると(データは示さず)、rBarS1は、基質として(3R)−6−デヒドロVB−Aのみを受け入れ、立体特異的還元を触媒し、天然(2R,3R,6S)−VB−Aを形成すると結論された。さらに、barS1機能を推測するために、S. virginiaeの6〜16時間培養時の細胞における6−デヒドロVB−A活性の時間経過を調べた。その結果、比活性は全培養中ほとんど一定(521μU/mgタンパク質)であり、逆転写PCRによるbarS1の構成的発現と良く一致した。
【0043】
相同組換えによるbarS1の破壊
VB及び/又はバージニアマイシンのいずれかにおけるbarS1のインビボでの機能を知るために、barS1生合成遺伝子をbarS1遺伝子内部の297bpフラグメントのフレーム内欠失によって破壊した。コンジュゲーションベクターpKC1132に由来する破壊プラスミド(pJK102、図5A)をE.coli ET12567/pUZ8002のコンジュゲーションによってS. virginiae内に導入した。アプラマイシン(50μg/ml)含有固体ISP−2上の単一交差株を選択した後、S. virginiaeのΔbarS1株を、アプラマイシンのない固体ISP−2上での、3回の胞子から胞子への培養によって得た。単一交差株中のpJK102の組込み、及びΔbarS1株中の野生型アレルのΔbarS1変異アレルとの交換をPCR(データは示さず)及びサザンブロットハイブリダイゼーション(図5)によって確認した。2つの代表的な2重交差株をさらなる研究のために選択した。野生型S. virginiaeと比べると、barS1破壊については液体培地又は固体培地のいずれにおいてもいかなる増殖不良も検出されなかった。対照的に、barS1破壊は、VB及びバージニアマイシンの産生を完全に失わせた(表3)。
【0044】
【表3】
Figure 2004089154
【0045】
通常は、S. virginiaeは、培養の10.5時間後にVBの産生を開始し、VB濃度は、培養約12時間で150U/mlに達し、次いで培養13時間後にバージニアマイシンの産生を誘導する。ΔbarS1株においては、培養24時間後においてもVB産生は全く検出されず、バージニアマイシンの産生も全く認められなかった。バージニアマイシン産生の欠損がVB産生の損失が原因か否かを明らかにするために、外部VBを培養8時間でbarS1破壊株の培養時に加えると、バージニアマイシン産生が野生株と同一レベルにまで回復された。この結果は、barS1遺伝子がVB合成に不可欠であり、そして自己調節因子VBの最後の生合成段階を触媒する6−デヒドロVB−Aレダクターゼをコードする唯一の遺伝子であることを示した。
【0046】
S. griseusのafsA遺伝子がA−factorの生合成酵素の1つをコードすることが提案されていたが、生合成経路における実際の触媒段階又は酵素機能は、今まで未解明であった。さらに、AfsAタンパク質の機能に関する矛盾する情報が、2つの相同性の高いafsA類縁遺伝子、すなわち、S. virginiae barX及びS. coelicolor scbAが、触媒酵素としてよりも多面的調節タンパク質をコードすることが最近明らかになっている。自己調節因子生合成における遺伝子の1つとしてのbarS1のクローニング及び解析は、分子レベルでのγ−ブチロラクトン自己調節因子の実際の生合成機序の解明及び理解を促進する。
【0047】
【配列表】
Figure 2004089154
Figure 2004089154
Figure 2004089154
Figure 2004089154
Figure 2004089154
Figure 2004089154
Figure 2004089154

【図面の簡単な説明】
【図1A】3種類のStreptomyces種からのγ−ブチロラクトン自己レギュレーターである。A−factor、VB−A及びIM−2の絶対配置を示されたように、それぞれ(3R)、(2R,3R,6S)及び(2R,3R,6R)で表した。
【図1B】前駆体取り込みから推測された推定生合成経路である。β−ケトアシル−CoAを形成する縮合(2)が、ポリケチド生合成の場合と同様な過程で、イソバレリル−CoAと2つのマロニルCoAとの間に生じ、次いでβ−ケトアシル−CoA(2)がグリセロールに由来するジヒドロキシアセトン−C型単位(1)と結合し、β−ケトエステル(3)を作り、続いて分子内アルドール縮合によってγ−ブチロラクトン(4)を形成する。連続する脱水及び還元が6−デヒドロVB−Aに導く(5)。最後に、6−カルボニル基の還元が、(2R,3R,6S)−VB−A(6)又はその(6R)−エピマーのいずれかをもたらす。
【図2A】barAを含む10kbEcoRI−EcoRIフラグメント内のorf4遺伝子の配置。黒塗り矢印、網掛け矢印及び白塗り矢印は、それぞれ、推定調節遺伝子、バージニアマイシン耐性遺伝子及び触媒酵素遺伝子を示す。
【図2B】orf4産生物と数種のβ−ケトアシル−アシル担体タンパク質/CoAレダクターゼのアミノ酸アライメント。同一残基を黒四角中の白字で示した。Orf4、S. virginiae(本研究);DspE、S. peucetius;FrnP、S. roseofulvus;ActIII、S. coelicolor A3。
【図3】E. coli内で発現させ、精製したrOrf4のSDS−PAGE分析。rOrf4タンパク質を矢印で示した。レーン1、分子量マーカー;レーン2、IPTGで誘導したpET−orf4を有するE. coli BL21/pLysSからの粗抽出物;レーン4、IPTGで誘導したpET−3dを有するE. coli BL21/pLysSからの粗抽出物。サンプル7μgを10〜20%の直線勾配ゲル上で分離し、ゲルをクマーシーブリリアントブルーG−250で染色した。
【図4】合成VB−Aジベンゾアート及びrBarS1を用いるベンゾイル化反応産生物のキラルHPLCプロフィール。HPLCを、流速1.0ml/minで、移動相としてヘキサン及びイソプロパノール(90:10)を用い、Chiralpak ADカラム(内径4.6mm×25cm)を用いて22℃で行った。(1)酵素産生物ジベンゾアート、(2)合成(2S,3S,6R)−エナンチオマージベンゾアート、及び(3)合成(2R,3R,6S)−エナンチオマージベンゾアート。
【図5A】barS1破壊突然変異体の構築。barS1の破壊に用いた方法の略図。斜線矢印は、barS1遺伝子を示し、白塗り矢印はアプラマイシン耐性遺伝子(apr)並びにvarM、orf5及びbarX遺伝子を示す。W.T.、野生型。
【図5B】BamHIで消化した、野生型株(レーン4)、ΔbarS1株(レーン1及び2)、単一交差株(レーン3)からの染色体DNAのサザンハイブリダイゼーション。用いたプローブは、パネルAにプローブとして示したBamHI−NruIフラグメントであった。BamHI消化は、野生型染色体及びΔbarS1染色体のそれぞれにおいて2.0kbフラグメント及び1.7kbフラグメントをもたらした。

Claims (5)

  1. 配列番号1のアミノ酸配列からなり、6−デヒドロVB−Aの還元反応を触媒する酵素。
  2. 還元反応が、立体特異的である、請求項1に記載の酵素。
  3. 還元反応が、(3R)−6−デヒドロVB−Aの(2R,3R,6S)−VB−Aへの還元である、請求項1又は2に記載の酵素。
  4. 酵素が配列番号1のアミノ酸配列からなるポリペプチドの2量体の形態である、請求項1〜3のいずれか1項に記載の酵素。
  5. 請求項1〜4のいずれか1項に記載の酵素を用いることを含む、(2R,3R,6S)−VB−Aの製造方法。
JP2002258785A 2002-09-04 2002-09-04 6−デヒドロvb−a還元酵素 Pending JP2004089154A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002258785A JP2004089154A (ja) 2002-09-04 2002-09-04 6−デヒドロvb−a還元酵素

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002258785A JP2004089154A (ja) 2002-09-04 2002-09-04 6−デヒドロvb−a還元酵素

Publications (1)

Publication Number Publication Date
JP2004089154A true JP2004089154A (ja) 2004-03-25

Family

ID=32063323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002258785A Pending JP2004089154A (ja) 2002-09-04 2002-09-04 6−デヒドロvb−a還元酵素

Country Status (1)

Country Link
JP (1) JP2004089154A (ja)

Similar Documents

Publication Publication Date Title
ES2424866T3 (es) Procedimiento para producir ácido glicólico por regeneración de coenzima
RU2504584C2 (ru) СПОСОБ ПОЛУЧЕНИЯ ПИРРОЛОХИНОЛИНОХИНОНА (PQQ) С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ РОДА Methylobacterium ИЛИ Hyphomicrobium
US7575910B2 (en) Method for producing L-fuculose and method for producing L-fucose
Shikura et al. barS1, a gene for biosynthesis of a γ-butyrolactone autoregulator, a microbial signaling molecule eliciting antibiotic production in Streptomyces species
JPH10229885A (ja) 新規アルコールアルデヒド脱水素酵素
WO2006076094A2 (en) Process for constructing strain having compactin hydroxylation ability
JP2005522180A (ja) チロシン、桂皮酸およびパラ−ヒドロキシ桂皮酸の産生方法
PT1499716E (pt) Adi de rhodococcus erythropolis
US20220049235A1 (en) Engineering Bacteria for Ferulic Acid Production, Preparation Method and Use Thereof
KR101061412B1 (ko) 이소유제놀 모노옥시게나아제의 클로닝 및 그의 용도
KR102149044B1 (ko) 2-히드록시 감마 부티로락톤 또는 2,4-디히드록시-부티레이트 의 제조 방법
JP7067706B2 (ja) 形質転換微生物及びその利用
JP4272231B2 (ja) キラルなヒドロキシアルデヒド化合物の製造方法
EA012165B1 (ru) Ферментативное получение витамина с
CN111349644A (zh) 生物合成异戊二醇的菌株及方法
JP2004089154A (ja) 6−デヒドロvb−a還元酵素
JP3850557B2 (ja) 新規遺伝子及びその遺伝子を保有する形質転換細胞
KR101541034B1 (ko) D―갈락토네이트 고생산 대장균 균주 및 이의 용도
US7901923B2 (en) Microorganism of Enterobacteriacae genus harboring genes associated with L-carnitine biosynthesis and method of producing L-carnitine using the microorganism
US20140329275A1 (en) Biocatalysis cells and methods
CN112410353A (zh) 一种fkbS基因、含其的基因工程菌及其制备方法和用途
KR20040086425A (ko) 레보다이온의 제조방법
JP4415247B2 (ja) 新規なグリセロールキナーゼ、該遺伝子及び該遺伝子を用いたグリセロールキナーゼの製造法
JP6635535B1 (ja) Efpタンパク質を発現する大腸菌およびそれを用いたフラボノイド化合物製造方法
JP3396740B2 (ja) ホスホエノールピルビン酸カルボキシラーゼをコードする遺伝子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030