CN111349644A - 生物合成异戊二醇的菌株及方法 - Google Patents

生物合成异戊二醇的菌株及方法 Download PDF

Info

Publication number
CN111349644A
CN111349644A CN202010186932.5A CN202010186932A CN111349644A CN 111349644 A CN111349644 A CN 111349644A CN 202010186932 A CN202010186932 A CN 202010186932A CN 111349644 A CN111349644 A CN 111349644A
Authority
CN
China
Prior art keywords
ala
leu
gly
val
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010186932.5A
Other languages
English (en)
Inventor
张炽坚
何廷刚
艾勇
陈林
马成伟
曾安平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hua An Tang Biotech Group Co ltd
Original Assignee
Hua An Tang Biotech Group Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hua An Tang Biotech Group Co ltd filed Critical Hua An Tang Biotech Group Co ltd
Priority to CN202010186932.5A priority Critical patent/CN111349644A/zh
Publication of CN111349644A publication Critical patent/CN111349644A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0022Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01002Alcohol dehydrogenase (NADP+) (1.1.1.2), i.e. aldehyde reductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01078Methylglyoxal reductase (NADH-dependent) (1.1.1.78)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/99Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with other acceptors (1.2.99)
    • C12Y102/99006Carboxylate reductase (1.2.99.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/03Oxidoreductases acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • C12Y104/03002L-Amino-acid oxidase (1.4.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/11Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
    • C12Y113/110274-Hydroxyphenylpyruvate dioxygenase (1.13.11.27)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及生物合成领域,特别涉及生物合成异戊二醇的菌株及方法。本发明以3‑羟基异戊酸(3HIV)作为前体制备异戊二醇的生物合成途径,该途径依次通过CAR和醛酮还原酶对3HIV进行酶生物催化从而制备IPDO。

Description

生物合成异戊二醇的菌株及方法
技术领域
本发明涉及生物合成领域,特别涉及生物合成异戊二醇的菌株及方法。
背景技术
异戊二醇(3-甲基-1,3-丁二醇,IPDO)是一种无色无味的液体,与水完全混合。异戊二醇除了具有安全性和与其他成分的高度相容性外,在护肤应用中还可以起到保湿和润肤的作用。它也被用于修复受损头发的护发产品中。
到目前为止,化学合成仍被用于生产异戊二醇,然而该方法依赖于化石资源,且对环境不友好。因此,开发利用可再生碳水化合物原料生产IPDO的绿色生物合成工艺具有越来越大的工业价值。
发明内容
有鉴于此,本发明提供了一种新的IPDO生物合成途径,利用单一微生物将可发酵碳源生物转化为异戊二醇(IPDO)。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了羧酸还原酶(CAR)和醛还原酶(特别是酿酒酵母中的NADPH依赖的甲基乙二醛还原酶GRE2或大肠杆菌中的乙醇脱氢酶YqhD)的过表达在生物合成异戊二醇中的应用。
羧酸还原酶(CARs)能够将多种羧酸催化还原为醛类,这些醛类很容易通过醛酮还原酶还原转化为目标醇。研究结果表明,从乙酰辅酶A出发通过部分的甲羟戊酸途径生物合成3HIV的可能性以及用丙酮和乙酰辅酶A通过生物催化生产3HIV的方法。此外,研究发现α-酮异已酸(KIC)可以在4-羟基苯丙酮酸双加氧酶(HPD)的催化下一步酶解生成3HIV(图1)。KIC是亮氨酸途径的中间产物,因此,KIC的生产可以通过使用工程微生物发酵方法或使用表达特定氨基酸脱氨酶(aad)的全细胞催化亮氨酸脱氨来实现。这使得可再生的碳水化合物原料(如葡萄糖)生产IPDO成为可能。
本发明还提供了α-酮异己酸双加氧酶(也称为4-羟基苯丙酮酸双加氧酶,HPD)、羧酸还原酶(CAR)和醛还原酶(特别是酿酒酵母中的NADPH依赖的甲基乙二醛还原酶GRE2或大肠杆菌中的乙醇脱氢酶YqhD)的过表达在生物合成异戊二醇中的应用。
本发明还提供了氨基酸脱氨酶(aad)、α-酮异己酸双加氧酶(也称为4-羟基苯丙酮酸双加氧酶,HPD)、羧酸还原酶(CAR)和醛还原酶(特别是酿酒酵母中的NADPH依赖的甲基乙二醛还原酶GRE2或大肠杆菌中的乙醇脱氢酶YqhD)的过表达在生物合成异戊二醇中的应用。
本发明还提供了α-酮异己酸双加氧酶(也称为4-羟基苯丙酮酸双加氧酶,HPD)、羧酸还原酶(CAR)和醛还原酶(特别是酿酒酵母中的NADPH依赖的甲基乙二醛还原酶GRE2或大肠杆菌中的乙醇脱氢酶YqhD)的过表达以及alsS(编码丙酮酸合成酶)、ilvC、ilvD、leuA、leuB、leuC、leuD的过表达在生物合成异戊二醇中的应用。
本发明还提供了生物合成异戊二醇的菌株,其羧酸还原酶和醛还原酶过表达。
本发明还提供了生物合成异戊二醇的菌株,其α-酮异己酸双加氧酶、羧酸还原酶和醛还原酶过表达。
本发明还提供了生物合成异戊二醇的菌株,其氨基酸脱氨酶、α-酮异己酸双加氧酶、羧酸还原酶和醛还原酶过表达。
本发明还提供了生物合成异戊二醇的菌株,其α-酮异己酸双加氧酶、羧酸还原酶和醛还原酶的过表达以及alsS(编码丙酮酸合成酶)、ilvC、ilvD、leuA、leuB、leuC、leuD的过表达在生物合成异戊二醇中的应用。
在本发明的一些具体实施方案中所述醛还原酶包括甲基乙二醛还原酶GRE2或乙醇脱氢酶YqhD;所述α-酮异己酸双加氧酶包括SaHPD、SnHPD、AaHPD或RaHPD;生物合成异戊二醇的底物为可发酵碳源,所述可发酵碳源包括3HIV、KIC、亮氨酸或葡萄糖。
本发明还提供了生物合成异戊二醇的方法,以所述的菌株为出发菌株;所述底物为可发酵碳源,所述可发酵碳源包括3-HIV、KIC、亮氨酸或葡萄糖。
在本发明的一些具体实施方案中,当底物为3HIV时,同时过表达羧酸还原酶(CAR)和醛还原酶(特别是酿酒酵母中的NADPH依赖的甲基乙二醛还原酶GRE2或大肠杆菌中的乙醇脱氢酶YqhD)。为此,构建了sLCKP03/pIBBLC45、sLCKP03/pIBBLC48。
在本发明的一些具体实施方案中,当底物为KIC时,同时过表达α-酮异己酸双加氧酶(也称为4-羟基苯丙酮酸双加氧酶,HPD)、羧酸还原酶(CAR)和醛还原酶(特别是酿酒酵母中的NADPH依赖的甲基乙二醛还原酶GRE2或大肠杆菌中的乙醇脱氢酶YqhD)。通过质粒pIBBLC30和pET-Car转入到菌株sLCKP01中过表达,获得菌株sLCKP01/(pIBBLC30+pET-Car)。
在本发明的一些具体实施方案中,当底物为亮氨酸时,同时过表达氨基酸脱氨酶(aad)、α-酮异己酸双加氧酶(也称为4-羟基苯丙酮酸双加氧酶,HPD)、羧酸还原酶(CAR)和醛还原酶(特别是酿酒酵母中的NADPH依赖的甲基乙二醛还原酶GRE2或大肠杆菌中的乙醇脱氢酶YqhD)。所需的四种酶aad、AaHPD、NiCAR和GRE2通过pIBBLC34质粒和psfp-NiCAR导入并在sLCKP01中过表达。
在本发明的一些具体实施方案中,当底物为葡萄糖时,同时过表达α-酮异己酸双加氧酶、羧酸还原酶和醛还原酶以及alsS(编码丙酮酸合成酶)、ilvC、ilvD、leuA、leuB、leuC、leuD。在菌株sLCKP03中使用了两个质粒来过表达从丙酮酸到IPDO生物转化过程中的相关基因,该菌株为sLCKP03/(p15Leu+pIBBLC45)。质粒pIBBLC45过度表达AaHPD、NiCAR、GRE2基因(如图4所示),质粒p15Leu过度表达alsS(编码丙酮酸合成酶)、ilvC、ilvD、leuA、leuB、leuC、leuD等基因(如图9所示)。
本发明以3-羟基异戊酸(3HIV)作为前体制备异戊二醇的生物合成途径,该途径依次通过CAR和醛酮还原酶对3HIV进行酶生物催化从而制备IPDO(图1)。3HIV是必需氨基酸亮氨酸降解途径的天然代谢物,可以在人体内合成。如图1所示,IPDO可以通过α-酮异已酸(KIC,亮氨酸生物合成途径的最后一个中间产物)在大肠杆菌中通过三步反应生物制备。第一步反应将KIC转化为3HIV,所使用的酶为α-酮异己酸双加氧酶(也称为4-羟基苯丙酮酸双加氧酶,HPD)。第一步反应所生成的3HIV被CAR(羧酸还原酶)转化为3-羟基-3-甲基丁烷(3HMB)。随后,3HMB通过相应的醛还原酶(特别是酿酒酵母中的NADPH依赖的甲基乙二醛还原酶GRE2或大肠杆菌中的乙醇脱氢酶YqhD)还原为IPDO。这些反应的标准吉布斯自由能(ΔrG’°,显示在图1的灰色框中)均小于零,表明这些反应的方向在热力学上是可行的和有利的。当底物为3HIV时,工程菌sLCKP03/pIBBLC48和sLCKP03/pIBBLC45的试验结果证明了该途径在胞内的可行性。试验结果显示sLCKP03/pIBBLC48菌株的IPDO产量是sLCKP03/pIBBLC45菌株的7.5倍,这可能主要是因为MiCAR对3HIV的活性明显高于NiCAR(见表3)。
当底物为KIC时,本发明提供的菌株产生了5.2mg/L的IPDO。
当底物为亮氨酸时,本发明提供的菌株发酵36小时后取样检测,菌株sLCKP01/(pIBBLC34+psfp-NiCAR)产生36.6±3.2mg/L的IPDO。
当底物为葡萄糖时,本发明提供的菌株sLCKP03/(p15Leu+pIBBLC45)中可检测到IPDO的产生,而对照菌株sLCKP03/p15Leu和sLCKP03/pIBBLC45在相同条件下均未检测到IPDO。用菌sLCKP03/(p15Leu+pIBBLC45)进行上述重复发酵实验,样品10倍浓缩后用GC/MS测定样品IPDO的含量,两个平行样品中IPDO原浓度分别被测定为1.5mg/L和2.9mg/L(如图10所示)。这些结果表明,通过图1所示的新途径由葡萄糖发酵生产IPDO是可行的。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1示以葡萄糖为原料,经KIC合成IPDO的新生物合成途径及IPDO生产代谢工程;相应的基因以斜体显示在箭头旁边;
图2示标品KIC、3HIV、IPDO的液相色谱图(浓度水平:1.0,2.5,5.0,10mM);
图3示质粒pDPT的图谱;
图4示质粒pIBBLC45的图谱;
图5示质粒pIBBLC48图谱;
图6示sLCKP03/pIBBLC45和sLCKP03/pIBBLC48的IPDO生产;标品包含KIC、3HIV和IPDO,浓度为10mm;
图7示sLCKP01/(pIBBLC30+pET-Car)菌株以KIC为底物发酵生产IPDO的GC检测结果;
图8示以亮氨酸为底物的sLCKP01/(pIBBLC34+psfp-NiCAR)菌株发酵生产IPDO的GC检测结果;
图9示质粒p15Leu的图谱;alsS基因是从枯草芽孢杆菌中克隆得到;该质粒表达的LeuA(G462D)是LeuA的亮氨酸反馈抗性突变体;
图10示用GC/MS法分析并鉴定菌株sLCKP03/(p15Leu+pIBBLC45)以葡萄糖发酵样品中IPDO的产量。
具体实施方式
本发明公开了生物合成异戊二醇的菌株及方法,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明。本发明的方法及应用已经通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。
培养基:
LB培养基(LB)含有5g/L酵母提取物、10g/L胰蛋白酶和10g/L NaCl。LB琼脂平板为LB培养基加1.5%琼脂。发酵培养基II(FII培养基)含(每升)葡萄糖(30g)、MgSO4·7H2O(0.5g),KH2PO4(3g),K2HPO4(12g),(NH4)2SO4(4g)、酵母提取物(1g)、柠檬酸钠(2g)、FeSO4·7H2O(0.1g)。
引物:
如果没有另外说明,本研究使用的所有引物的序列如表1所示。
表1.本发明使用的引物列表.
Figure BDA0002414525110000051
Figure BDA0002414525110000061
Figure BDA0002414525110000071
分析方法
如图2所示,相对高浓度的组分KIC、3HIV和IPDO可以用高效液相色谱法分析:分析柱为Aminex HPX-87H column(300×7.8mm柱)(Bio-Rad,Hercules,USA),柱温箱温度设定为60℃,流动相为5mM H2SO4,流速为0.6ml/min,所使用的检测器为示差折光(RI)检测器。
简称:
糖磷酸转移酶系统(PTS)、磷酸烯醇丙酮酸(pep)、丙酮酸(pyr)、乙酰内酯(alac)、(2R)-2,3-二羟基-3-甲基丁酸酯(DHIV)、乙酰辅酶a(AcCoA)、乙酰磷酸(Acetyl-p)。酶编码基因:D乳酸脱氢酶(ldhA)乙酰乳酸合成酶(als),酮醇酸还原异构酶:辅酶ii+(ilvC)、二羟酸脱水酶(ilvD)2-苹果酸异丙酯合成酶(leuA)3-苹果酸异丙酯脱氢酶(leuB)3-苹果酸异丙酯脱水酶亚基LeuC(LeuC)3-苹果酸异丙酯脱水酶亚基(诸侯)支链氨基酸转氨酶(ilvE),酪氨酸转氨酶(tyrB),氨基酸脱氨酶(aad)4-羟基苯丙酮酸加双氧酶(HPD),羧酸还原酶(CAR)、来自酿酒酵母(GRE2)的nadph依赖性的甲基乙二醛还原酶(GRE2)、来自大肠杆菌的醇脱氢酶(YqhD)、丙酮酸氧化酶(poxB)、丙酮酸甲酸裂解酶(pflB)、丙酮酸脱氢酶(aceEF)、醇脱氢酶/醛脱氢酶(adhE)、磷酸乙酰转移酶(pta)和醋酸激酶(ackA)。
蛋白质序列
序列1(SaHPD):如SEQ ID No.1所示
MTQTTHHTPDTARQADPFPVKGMDAVVFAVGNAKQAAHYSTAFGMQLVAYSGPENGSRETASYVLTNGSARFVLTSVIKPATPWGHFLADHVAEHGDGVVDLAIEVPDARAAHAYAIEHGARSVAEPYELKDEHGTVVLAAIATYGKTRHTLVDRTGYDGPYLPGYVAAAPIVEPPAHRTFQAIDHCVGNVELGRMNEWVGFYNKVMGFTNMKEFVGDDIATEYSALMSKVVADGTLKVKFPINEPALAKKKSQIDEYLEFYGGAGVQHIALNTGDIVETVRTMRAAGVQFLDTPDSYYDTLGEWVGDTRVPVDTLRELKILADRDEDGYLLQIFTKPVQDRPTVFFEIIERHGSMGFGKGNFKALFEAIEREQEKRGNL
序列2(SnHPD):如SEQ ID No.2所示
MADTTMHTQPTTPATARQADPFPVKGMDAVVFAVGNAKQAAHYYSTAFGMKRVAYQGPETGSRETASYVLTSGGARFVFTSVVKPTTEWGRFLADHVAAHGDGVVDLAIEVPDARAAYAYAVEHGATGLEEPYETKDEHGTVVRAAIATYGQTRHTLVERTGYDGPYLPGFVAAEPLVAAPTKRFFQAVDHCVGNVELGKMDEWVAFYNNVMGFTNMKEFVGDDIATEYSALMSKVVADGTKKVKFPLNEPAVAKKKSQIDEYLEFYGGPGVQHIALATNDIVASVRQMRAAGVEFLDVPGSYYDTLGEWVGETRVPIDELRELKILADRDEDGYLLQIFTKPVQDRPTVFFEMIERHGSLGFGKGNFKALFEAIEREQDRRGNL
序列3(AaHPD):如SEQ ID No.3所示
MTETLDQGKPMDDVSFDQLRQLVGLVDYDSSSDPFPVKAMDAVVFVVGNATQTALFYQFAFGMEQVAYSGPETGNRDHKSYVLKSGSARFVINGGVSPESPLLDHHRAHGDGVVDLALEVGDVDRCVEHARSQGATVLDEPHDVSDEHGTVRIAAIAAYGETRHTLIDRSRYTGPYLPGYVAKAGAYRKPEGAPKRLFQAVDHCVGNVELGKMDYWVEFYNRVMGFVNMAEFIGDDIATDYSALMSKVVANGNHRVKFPLNEPAVAQRKSQIDEYLEFYGGPGCQHIALATNDILSTVDAMRAAGVEFLDTPDSYYDDPELRARIGEVRVPIEELKSRKILVDRDEDGYLLQIFTKPTGDRPTVFYEMIERHGSLGFGKGNFKALFEAIEREQERRGNL
序列4(RaHPD):如SEQ ID No.4所示
MTTYSNKGPKPERGRFLHFHSVTFWVGNAKQAASFYCNKMGFEPLAYKGLETGSREVVSHVIKQGKIVFVLCSALNPWNKEMGDHLVKHGDGVKDIAFEVEDCEHIVQKARERGAKIVREPWVEEDKFGKVKFAVLQTYGDTTHTLVEKINYTGRFLPGFEAPTYKDTLLPKLPSCNLEIIDHIVGNQPDQEMESASEWYLKNLQFHRFWSVDDTQVHTEYSSLRSIVVANYEESIKMPINEPAPGRKKSQIQEYVDYNGGAGVQHIALRTEDIITTIRHLRERGMEFLAVPSSYYRLLRENLKTSKIQVKENMDVLEELKILVDYDEKGYLLQIFTKPMQDRPTLFLEVIQRHNHQGFGAGNFNSLFKAFEEEQALRGNLTDLETNGVRSGM
序列5(NiCAR):如SEQ ID No.5所示
MAVDSPDERLQRRIAQLFAEDEQVKAARPLEAVSAAVSAPGMRLAQIAATVMAGYADRPAAGQRAFELNTDDATGRTSLRLLPRFETITYRELWQRVGEVAAAWHHDPENPLRAGDFVALLGFTSIDYATLDLADIHLGAVTVPLQASAAVSQLIAILTETSPRLLASTPEHLDAAVECLLAGTTPERLVVFDYHPEDDDQRAAFESARRRLADAGSLVIVETLDAVRARGRDLPAAPLFVPDTDDDPLALLIYTSGSTGTPKGAMYTNRLAATMWQGNSMLQGNSQRVGINLNYMPMSHIAGRISLFGVLARGGTAYFAAKSDMSTLFEDIGLVRPTEIFFVPRVCDMVFQRYQSELDRRSVAGADLDTLDREVKADLRQNYLGGRFLVAVVGSAPLAAEMKTFMESVLDLPLHDGYGSTEAGASVLLDNQIQRPPVLDYKLVDVPELGYFRTDRPHPRGELLLKAETTIPGYYKRPEVTAEIFDEDGFYKTGDIVAELEHDRLVYVDRRNNVLKLSQGEFVTVAHLEAVFASSPLIRQIFIYGSSERSYLLAVIVPTDDALRGRDTATLKSALAESIQRIAKDANLQPYEIPRDFLIETEPFTIANGLLSGIAKLLRPNLKERYGAQLEQMYTDLATGQADELLALRREAADLPVLETVSRAAKAMLGVASADMRPDAHFTDLGGDSLSALSFSNLLHEIFGVEVPVGVVVSPANELRDLANYIEAERNSGAKRPTFTSVHGGGSEIRAADLTLDKFIDARTLAAADSIPHAPVPAQTVLLTGANGYLGRFLCLEWLERLDKTGGTLICVVRGSDAAAARKRLDSAFDSGDPGLLEHYQQLAARTLEVLAGDIGDPNLGLDDATWQRLAETVDLIVHPAALVNHVLPYTQLFGPNVVGTAEIVRLAITARRKPVTYLSTVGVADQVDPAEYQEDSDVREMSAVRVVRESYANGYGNSKWAGEVLLREAHDLCGLPVAVFRSDMILAHSRYAGQLNVQDVFTRLILSLVATGIAPYSFYRTDADGNRQRAHYDGLPADFTAAAITALGIQATEGFRTYDVLNPYDDGISLDEFVDWLVESGHPIQRITDYSDWFHRFETAIRALPEKQRQASVLPLLDAYRNPCPAVRGAILPAKEFQAAVQTAKIGPEQDIPHLSAPLIDKYVSDLELLQLL
序列6(GRE2):如SEQ ID No.6所示
MSVFVSGANGFIAQHIVDLLLKEDYKVIGSARSQEKAENLTEAFGNNPKFSMEVVPDISKLDAFDHVFQKHGKDIKIVLHTASPFCFDITDSERDLLIPAVNGVKGILHSIKKYAADSVERVVLTSSYAAVFDMAKENDKSLTFNEESWNPATWESCQSDPVNAYCGSKKFAEKAAWEFLEENRDSVKFELTAVNPVYVFGPQMFDKDVKKHLNTSCELVNSLMHLSPEDKIPELFGGYIDVRDVAKAHLVAFQKRETIGQRLIVSEARFTMQDVLDILNEDFPVLKGNIPVGKPGSGATHNTLGATLDNKKSKKLLGFKFRNLKETIDDTASQILKFEGRI
序列7(MiCAR):如SEQ ID No.7所示
MSTAIHDEHLDRRIEELIANDPQFAAARPDPAITAATEAPGLRLPQIIRTVLDGYADRPALAQRVVEFVTDAKTGRTTAELLPRFETITYGELGERVSALGRAWAGDAVRPGDRVCVLGFNSVDYATIDIALGTIGAVSVPLQTSAAISSLQPIVAETEPSLIASSVNQLPDAVELILAGDHVPGKLVVFDYQPQVDDQREAVEAAAARLADSGVAVEALADVLRRGKDLPAVEPPASDEDSLALLIYTSGSTGAPKGAMYPQSNVGKMWRRGSKNWFGESAASITLNFMPMSHVMGRGILYGTLGNGGTAYFAARSDLSTLLEDLELVRPTEMNFVPRIWETLYGEFQRQVERRLADGDAGPEARETVAAAVLEEQRQYLLGGRFIFAMTGSAPTSPELKAWAESLLQMHLMDGYGSTEAGMVLFDGEIQRPPVIDYKLVDVPDLGYFSTDRPHPRGELLLRTENMFPGYYKRAETTANVFDEDGYYRTGDVFAEIAPDRLVYVDRRNNVLKLAQGEFVTLAKLEAVFGNSPRIRQIYVYGNSSQPYLLAVVVPTEEALADNDLESLKPKIADSLQKVAKETGLQSYEVPRDFIIETTPFTLENGLLTGIRKLAWPKLKAHYGDRLEQMYAELAAGQANELAELRRSGAAAPVAQTVSRAAAALLGATAGDLSADAHFTDLGGDSLSALTFGNLLREIFDVDVPVGVIVSPANDLAGIAAYIEAERQGSKRPTFAAVHGRGATMVHASDLTLDKFLDEATLAAAPSLPKPATEVRTVLLTGATGFLGRYLALDWLERMDMVDGKVIALVRARTDEEARARLDKTFDSGDPKLLAHYQRLAADHLEVIAGDKGEANLGLDPQTWQRLAEEVDVIVDPAALVNHVLPYSELFGPNALGTAELIRIALTSRQKPYTYVSTIGVGDQIQPGEFVENADIRQISATREINDGYANGYGNSKWAGEVLLREAHDLCGLPVTVFRCDMILADTTYAGQLNLPDMFTRLMLSLVATGIAPGSFYELDADGNRQRAHYDGLPVEFIAAAISTLGTQITDSDTGFQTYHVMNPYDDGIGLDEYIDWLIEAGYSIERIADYSEWLRRFETSLRALPDRQRQYSLLPLLHNYQKPEKPINGSMAPTDVFRAAVQEAKIGPDKDIPHVSAPVIVKYITDLELLGLL
序列8(aad):如SEQ ID No.8所示
MKISRRKLLLGVGAAGVLAGGAALVPMVRRDGKFVEAKSRASFVEGTEGALPKESDAVIIGGGIQGIMTAINLAERGMSVTILEKGEIAGEQSGRAYSQIISYQTSPEIFPLHHYGKILWRGMNEKIGADTSYRTQGRVEALADEKAFDKAQAWIKTAKESAGFDTPLNTRIIKGDELSNRLVGAQTPWTVAAFEEDSGSVDPETGTPALARYAKQIGVKIYTNCAVRGIETAGGKISDVVTEKGAIKTSHVVLAGGIWSRLFMGNMGIDIPTLNVYLSQQRVSGVPGAPRGNVHLPNGIHFREQADGTYAVAPRIFTSSIVKDSFLLGPKFMHLLGGGELPLEFSIGEDLFNSFKMATSWKLDEKTPFEQYRIATATQNTEHLDAVFQRMKAEFPVFEKSQVVERWGAVVSPTFDELPIISEVKEYPGLVINTATVWGMTEGPAAGELTADIVTGKKPVIDPTPFSMDRFKK
本文使用的全部术语“过表达”通常是指相对于未进行基因改造的对照菌株而言增高了统计学上显著的量;为了避免疑义,术语过表达”通常是相对于未进行基因改造的对照菌株而言增高至少10%,例如:与未进行基因改造的对照菌株相比而言,增高至少约20%、或至少约30%、或至少约40%、或至少约50%、或至少约60%、或至少约70%、或至少约80%、或至少约90%、或上至并包括100%增高,或与对照相比而言的10%~100%之间的任意增高;或与对照相比,增高至少约2倍、或至少约3倍、或至少约4倍、或至少约5倍、或至少约10倍,或2倍至10倍以上的任意增高。特别地,增强表达包括在宿主细菌内表达外源的相应蛋白。
本发明提供的生物合成异戊二醇的菌株及方法中所用原料及试剂均可由市场购得。
下面结合实施例,进一步阐述本发明:
实施例1质粒构建
编码SaHPD(SEQ.1)的相应基因从阿维链霉菌(Streptomyces avermitilis,DSM41443)基因组DNA用引物NdeI-SaHPD和SaHPD-XhoI扩增得到。扩增所得片段在相应的限制性内切酶消解后插入到载体pET22b的NdeI和XhoI位点上,所得质粒命名为pIBBLC02。
编码SnHPD(SEQ.2)的相应基因从稻瘟病菌(Streptomyces noursei,DSM40635)基因组DNA用引物NdeI-SnHPD和SnHPD-XhoI扩增得到。扩增所得片段在相应的限制性内切酶消解后插入到载体pET22b的NdeI和XhoI位点上,所得质粒命名为pIBBLC03。
编码AaHPD(SEQ.3)的相应基因从albata Allokutzneria(DSM 44149)基因组DNA用引物NdeI-AaHPD和AaHPD-XhoI扩增得到。扩增所得片段在相应的限制性内切酶消解后插入到载体pET22b的NdeI和XhoI位点上,所得质粒命名为pIBBLC05。
RaHPD(SEQ.4)的相应基因由GenScript USA公司进行代码优化后重新合成。将合成的基因插入载体pET22b中,得到质粒命名为pIBBLC17。
编码NiCAR(SEQ.5)的相应基因利用引物NcoI-His-NiCAR和NiCAR-HindIII从Nocardia iowensis(DSM 45197)基因组DNA中扩增得到。扩增所得片段在相应的限制性内切酶消解后插入到载体pET28a的NcoI和HindIII位点上,所得质粒命名为pIBBLC06。
质粒pIBBLC10用于过表达乙醛还原酶GRE2(SEQ 6)。利用引物NdeI-GRE2和GRE2-HindIII从酿酒酵母(S288c株)基因组DNA中扩增出相应的GRE2基因,经NdeI和HindIII酶消解后插入质粒pIBBLC06相应的位点,得到pIBBLC10质粒。
利用引物NdeI-MiCAR和MiCAR-HindIII从分枝杆菌ATCC 13950基因组DNA扩增得到含有MiCAR(SEQ 6)编码基因的DNA片段。该片段经NdeI和HindIII插入到质粒pIBBLC06相应的位点,得到pIBBLC12质粒。
利用引物SacI-GRE2和GRE2-KpnI从质粒pIBBLC10中扩增出GRE2基因,转入质粒pDPT(图3),得到质粒pTrc-GRE2。从质粒pIBBLC05和pIBBLC17上分别用引物对BamHI-pET/AaHPD-HindIII和BamHI-pET/RaHPD-HindIII扩增得到AaHPD和RaHPD基因。经BamHI和HindIII酶切后分别插入质粒pTrc-GRE2的相应酶切位点,获得质粒pIBBLC30和pIBBLC31。
含有FAD结合氧化还原酶(氨基酸脱氨酶aad,SEQ 8)编码序列的DNA片段由GenScript USA公司合成。以该片段为模板,用引物aad-FF和aad-FR进行PCR扩增,使用融合HD克隆试剂盒(TaKaRa)将所得PCR产物插入到质粒pIBBLC30的KpnI位点获得质粒pIBBLC34。
质粒pET28-Car由GenScript USA公司构建,该质粒含有针对大肠杆菌优化编码的NiCAR编码基因。利用限制性内切酶NcoI和HindIII将car基因亚克隆到载体pTrc99A中,得到质粒pIBBLC40。利用引物GRE2-FF和AaHPD-FR从质粒pIBBLC30中扩增出含有AaHPD和GRE2的DNA片段。然后使用融合HD克隆试剂盒(TaKaRa)将其插入到质粒pIBBLC40的HindIII位点,获得质粒pIBBLC45。
为了构建一个表达GRE2和MiCAR基因的质粒,分别用引物NdeI-MiCAR/MiCAR-HindIII and MiCAR-rbs-GRE2/T7ter对质粒pIBBLC12和pIBBLC10进行PCR扩增。同时用引物pZAF和pZA31R3将质粒pza311luc(从pZ Vectors--EXPRESSYS购买)线性化。所获得的PCR产物用融合HD克隆试剂盒(TaKaRa)进行连接获得质粒pIBBLC48。
实施例2菌株sLCKP01,sLCKP02,and sLCKP03的构建
编码枯草芽孢杆菌磷酸戊二烯基转移酶的相应编码基因sfp通常与CAR基因共同表达以最大程度发挥CAR酶的活力(Finnigan et al.,2017)。为了使sfp基因在遗传上能够稳定表达,将sfp基因整合到宿主的染色体中进行表达是非常重要且必要的。为此,我们将sfp基因表达分别整合到大肠杆菌BL21和W3110的染色体中。
为了将sfp基因整合到BL21中,首先用引物pTagR和ilvE-N20对模板质粒pTagAmpR(Chen等人,2019)进行PCR扩增,构建了一个名为pIBBLC14的质粒。然后,分别用引物ilvE-C1/ilvE-C2和ilvE-C3/ilvE-C4从大肠杆菌BL21中扩增出两个DNA片段。用sfp-C1(tggttcgctgggaagacctcgacgctctcccttatgcg,如SEQ ID No.46所示)和sfp-C2引物(ttacagcagttcttcgtagctaaccatcg,如SEQ ID No.47所示)从质粒pCDFDeut-1_sfp(GenScript USA Inc.的定制产品)中扩增出含有sfp基因的DNA片段。然后用融合HD克隆试剂盒将这三个DNA片段同时插入到质粒pIBBLC4的HindIII位点中,得到一个名为pIBBLC15的质粒。然后,采用Jiang等人报道的方法(2015年)将其导入预制备的BL21/pCas感受态细胞中,以在基因组中插入sfp基因。消除质粒pCas和pIBBLC15后,获得一株重组菌株,该菌株被命名为sLCKP01。
为了整合大肠杆菌W3110染色体上的sfp基因,用与pIBBLC14相同的方法构建了gRNA供体质粒pIBBLC21,但所使用的引物为pTagR和ilvB-N20。然后,分别用引物对uilvB-C2/XbaI-uilvB和dilvB-HindIII/dilvB-C1从大肠杆菌W3110基因组DNA中扩增出两个目标DNA片段,并将该两个片段插入到用XbaI和HindIII消化后的线性化载体pIBBLC21中,从而得到质粒pIBBLC22。从质粒pCDFDeut-1_-sfp中,分别用引物对j23101sfp/sfp-HF和j23105sfp/sfp-HF扩增出含有sfp基因的DNA片段。使用融合HD克隆试剂盒,它们被分别插入到质粒pIBBLC21的HindIII位点上,并相应地获得两个质粒,被分别命名为pIBBLC23和pIBBLC24。通过质粒pIBBLC23及CRISPR/Cas基因编辑技术,将由组成性启动子J23101(https://parts.igem.org/Part:BBa_J23101)控制sfp基因表达的表达盒整合到大肠杆菌DY330(Yu et al.,2000)的染色体中。随后去除DY330染色体上的lambda-Red重组系统,并消除掉质粒pCas和pIBBLC23,获得sLCKP02菌株。以同样的方法,但使用质粒pIBBLC24构建了sLCKP03菌株。不同的是在重组菌sLCKP03中,sfp基因的表达由启动子J23105控制(https://parts.igem.org/Part:BBa_J23105)。
实施例3 CARs、GRE2、YqhD的表达与提纯
将质粒pIBBLC10和pET-YqhD转化宿主大肠杆菌BL21进行蛋白表达。将质粒pET28-Car分别转化到宿主BL21、BL21/pCDFDeut-sfp和sLCKP01中。将质粒pIBBLC12转化到sLCKP01菌株中。质粒pIBBL40分别转化到宿主菌sLCKP01、sLCKP02和sLCKP03中。将LB琼脂板的单菌落或冷冻管接种到5ml LB培养基中,并在37℃、220rpm下培养过夜。然后将过夜培养物50倍稀释接种到50ml LB培养基中(在300ml摇瓶中)。在37℃、220转/分条件下培养到OD600约为0.4到0.6后,添加0.5mM IPTG开始诱导蛋白表达。然后将培养物转入30℃、220转/分的条件下培养12-16小时。在培养过程中,如有必要,添加相应的抗生素(氨苄西林,100微克/毫升;卡那霉素50微克/毫升,链霉素50微克/毫升)。培养物在冰上冷却30分钟后,在4℃、5000转/分的条件下离心收集细胞。移除上清液后,用30毫升的结合缓冲液(20mM磷酸钠、500mM氯化钠、20mM咪唑、pH值7.4)洗涤一次。将细胞重新悬浮在3ml的结合缓冲液中,并使用
Figure BDA0002414525110000141
24仪器物理破碎细胞。然后在4℃、13000rpm条件下离心20分钟获得含蛋白的上清液。随后按照SpinTrap columns(GE Healthcare)试剂盒提供的操作手册纯化目标蛋白,并将目标蛋白洗脱至洗脱缓冲液(20mM磷酸钠、500mM氯化钠、500mM咪唑、pH7.4)中。随后,在4℃下使用
Figure BDA0002414525110000142
Ultra-0.5离心超滤膜,将洗脱缓冲液替换成HEPES缓冲液(pH 7.5)用于后续的酶分析实验。根据布拉德福德方法,以牛血清白蛋白为标准,对所获得的蛋白样品进行定量。
实施例4 sLCKP01,sLCKP02,and sLCKP03菌株评估
为了评估染色体上整合的sfp基因的表达强度是否能够提供足够的磷戊二烯基转移酶活性,我们在不同的宿主中过表达和纯化了NiCAR,并进行了体外酶活测定(表2)。
表2.不同寄主NiCAR过表达活性的比较。
Figure BDA0002414525110000151
表2中,实验1~3的数据表明,与CAR共同表达的磷戊四烯基转移酶对CAR的活性至关重要,这一结果与之前的报导一致(Venkitasubramanian et al.,2007)。2号和3号的实验结果表明,sfp基因的整合表达,从该宿主中表达获得的CAR酶具有相对较高的活力。这可能是质粒的不稳定性导致的。将菌株sLKP01至sLCKP03中获得的NiCAR(No.4~6)的活性进行比较,发现这些菌株均能保证过表达CAR具有高活性。3号和4号实验活性的差异可能是由启动子的强度不同导致的转录水平的差异引起的(pET-Car和pIBBLC40使用的启动子分别为T7和trc)。
实施例5 NiCAR和MiCAR对3HIV的催化活力比较
CARs体外酶活检测按照文献(Moura et al.,2016)描述进行,并进行了少量修改。根据反应中NADPH在340nm吸光值的变化来测定并计算酶活力。完整的反应体系包含80mM的磷酸缓冲液(pH值7.5),MgCl2 10mM,0.25mM NADPH,1mM ATP,10mM 3-HIV或5mM苯甲酸作为底物和50-200μg/L纯化的CAR酶(NiCAR或MiCAR),总反应体积为0.2mL。所有的反应都在比色皿进行,反应温度为30℃,反应时间5到15分钟,动态检测340nm吸光值变化。将底物(3-HIV或苯甲酸)外的其他成分混合,加热至反应温度后加入底物(3-HIV或苯甲酸)开始反应。测定NiCAR和MiCAR对3HIV和苯甲酸的酶催化活性结果见表3。
表3.sLCKP01中NiCAR和MiCAR过表达活性的比较。
Figure BDA0002414525110000161
结果表明,MiCAR比NiCAR对3HIV和苯甲酸有更高的活性。在10mm3HIV存在时,MiCAR的活性是NiCAR的4倍以上。
实施例6从3HIV体内外生物合成IPDO
3HIV到IPDO的合成途径,该途径由CAR和醛还原酶依次催化的反应组成(如图1所示)。为了实验证明该途径,我们以3HIV为底物在体外和体内测试了CAR和醛还原酶级联反应产物。
在体外试验中,反应在含有20mM 3HIV、10mM NADPH、2mM ATP、10mM Mg2+、400ug/LNiCAR和200ug/L YqhD(或GRE2)的HEPES缓冲液(pH 7.5)中进行。在30℃孵育6小时后,用气相色谱法测定样品的IPDO浓度。如表4所示,通过CAR和醛酮还原酶催化的多酶反应,实现了以3HIV为底物催化生成IPDO。
表4.多酶反应中3HIV产生IPDO。
Figure BDA0002414525110000171
为了证明从3HIV出发的IPDO通路在细胞体内也能工作,我们在细胞中同时过表达了CAR和醛酮还原酶。为此,构建并测试了三株细胞sLCKP03/pIBBLC45、sLCKP03/pIBBLC48和BL21/(pIBBLC10+psfp-NiCAR)。从LB琼脂板上挑取单个菌落接种到添加相应抗生素的5ml LB培养基中,并过夜培养。将一定量的过夜培养物接种于10ml FII培养基(pH 6.9,含抗生素和50mM 3HIV)置于100ml摇瓶中,初始OD600为0.1。在37℃,220rpm的条件下进行发酵培养。当OD600达到约0.3时,加入0.2mM IPTG诱导培养。用GC或HPLC测定48h时样品的浓度(结果见表5)。
表5.通过CAR和醛还原酶将3HIV转化为IPDO的胞内试验结果。
Figure BDA0002414525110000172
结果表明,在发酵培养基中如果不供应3HIV,就不会产生IPDO。而当提供底物为3HIV时,相同工程菌BL21/(pIBBLC10+psfp-NiCAR)在相同条件下产生了0.48g/L的IPDO。这表明,来自3HIV的IPDO通路在体内也起作用。工程菌sLCKP03/pIBBLC48和sLCKP03/pIBBLC45的试验结果也证明了该途径在胞内的可行性。试验结果显示sLCKP03/pIBBLC48菌株的IPDO产量是sLCKP03/pIBBLC45菌株的7.5倍,这可能主要是因为MiCAR对3HIV的活性明显高于NiCAR(见表3)。
实施例7由KIC合成IPDO
为了从实验上证明以KIC为底物的IPDO途径,我们首先利用全细胞催化将KIC转化为3HIV,然后将其作为底物在体外进行上述级联反应。此外,我们还在体内测试了来自KIC的整个IPDO合成路径。
首先,以KIC为原料采用全细胞催化法合成3HIV。为此,我们首先将质粒pIBBLC02、pIBBLC03、pIBBLC05和pIBBLC17转化进入大肠杆菌BL21,得到相应的菌株BL21/pIBBLC02、BL21/pIBBLC03、BL21/pIBBLC05和BL21/pIBBLC17。单个菌落接种于5ml LB培养基中,并在37℃、220rpm下培养过夜。过夜培养物稀释100倍,接种到50ml LB培养基中。当OD600增长至0.4到0.6时,加入0.5mM IPTG诱导,然后在30℃、220rpm条件下继续培养12小时。然后在5000rpm下离心10分钟收集细胞,用0.9%氯化钠溶液洗细胞一次后,将细胞重新悬浮在5ml的0.1M Tris缓冲液(pH 6.5)中,该缓冲液含有33mM KIC、3mM FeSO4、1mM DTT和5mM抗坏血酸。然后将细胞液转移至100ml摇瓶中在30℃、220转/分条件下孵育。采用第1.6节所述的高效液相色谱法对在6小时和24小时内采集的样品进行分析。表6所列结果表明,所有酶SaHPD、SnHPD、AaHPD和RaHPD均具有α-酮异己酸双加氧酶活性。其中,AaHPD在检测条件下似乎比其他酶活性更高。
表6.以KIC为原料,全细胞催化加体外酶促反应合成IPDO。
Figure BDA0002414525110000181
Figure BDA0002414525110000191
为了证明从KIC到IPDO整个途径的可行性,我们用KIC通过全细胞催化生产得到的3HIV作为底物,进行2.6节所描述的体外酶级联反应生产IPDO。具体如下:将上述全细胞催化反应液离心去除细胞后,3倍稀释加入到含有80mM HEPES(pH 7.5),10mM NADPH,5mMATP,10mM Mg2+,400μg NiCAR和200μg GRE2的酶级联反应体系中。在30℃反应5小时后取样进行GC分析。结果显示KIC经全细胞催化所获得的3HIV可以被CAR及醛酮还原酶依次催化生产目标产物IPDO。这一结果进一步证明了从KIC生产IPDO的生物合成途径(如图1所示)的可行性。
为了进一步在体内检测这一途径,我们将该途径所需的三个酶通过质粒pIBBLC30和pET-Car转入到菌株sLCKP01中过表达,获得菌株sLCKP01/(pIBBLC30+pET-Car)并进行如下试验。将单个菌落接种于5ml LB培养基中过夜生长。5ml的发酵培养基置于100ml的摇瓶中,按2%的接种量接入过夜培养物。发酵培养基的组成为(每升):20g葡萄糖,0.5gMgSO4·7H2O,2.8g NaH2PO4·H2O,3.52g Na2HPO4·2H2O,10g(NH4)2SO4,20g酵母提取物,2g柠檬酸单钠,0.1g FeSO4·7H2O,0.1g维生素B1、6.5g KIC,0.4g酪氨酸,5g亮氨酸,1g异亮氨酸和1g缬氨酸。当OD600达到0.3左右时,加入0.2mM IPTG。所有的发酵都补充了100μg/mL氨苄青霉素和50μg/mL卡那霉素。发酵在37℃,220rpm摇床中进行。发酵36小时后,取样检测。分析结果显示菌株产生了5.2mg/L的IPDO。
实施例8由亮氨酸生物合成IPDO
如图1所示,亮氨酸能够被某些氨基酸脱氨酶(aad)转化为KIC,因此,也可以从亮氨酸出发,通过aad将其转化为KIC后再继续被催化生成IPDO。所需的四种酶aad、AaHPD、NiCAR和GRE2通过pIBBLC34质粒和psfp-NiCAR导入并在sLCKP01中过表达。所得菌株sLCKP01/(pIBBLC34+psfp-NiCAR)利用亮氨酸为底物进行发酵生产IPDO,所使用的发酵培养基为:FII培养基中加入5g/L亮氨酸、1g/L异亮氨酸、1g/L缬氨酸、0.2g/L酪氨酸及相应的抗生素。将上述菌株从LB-琼脂培养基中挑取单菌落并接种于5ml LB培养基中,在37℃、220rpm的摇床中培养过夜。然后将过夜培养物接种到10ml上述发酵培养基并置于100ml的摇瓶中,在与过夜培养物相同的培养条件下进行发酵。当OD600达到约0.3时,加入0.1mMIPTG进行诱导。发酵过程中每8至12小时手动调节pH至6.9。36小时后取样检测,菌株sLCKP01/(pIBBLC34+psfp-NiCAR)产生36.6±3.2mg/L的IPDO。
实施例9从葡萄糖生物合成IPDO
为了证明IPDO可以由葡萄糖为底物进行生物合成,我们在菌株sLCKP03中使用了两个质粒来过表达从丙酮酸到IPDO生物转化过程中的相关基因,该菌株为sLCKP03/(p15Leu+pIBBLC45)。质粒pIBBLC45过度表达AaHPD、NiCAR、GRE2基因(如图4所示),质粒p15Leu过度表达alsS(编码丙酮酸合成酶)、ilvC、ilvD、leuA、leuB、leuC、leuD等基因(如图9所示)。以只含有质粒p15Leu或pIBBLC45的菌株sLCKP03/p15Leu和sLCKP03/pIBBLC45作为对照。
上述菌株在摇瓶中用FII-培养基进行批式发酵。单菌落接种到5毫升的LB培养基中(34μg/mL氯霉素(Cm34)和100μg/mL氨苄青霉素(Amp100)),在37℃,220rpm的条件下过夜培养。以初始OD600=0.1的接种量接种于10ml FII培养基(加入上述相同的抗生素),置于100ml的摇瓶并在相同条件下培养。当OD600到达0.3~0.6左右时,加入0.2mM IPTG诱导。32小时后取样品,离心取上清并通过旋蒸浓缩10倍后,用GC进行分析检测。结果表明,在菌株sLCKP03/(p15Leu+pIBBLC45)中可检测到IPDO的产生,而对照菌株sLCKP03/p15Leu和sLCKP03/pIBBLC45在相同条件下均未检测到IPDO。用菌sLCKP03/(p15Leu+pIBBLC45)进行上述重复发酵实验,样品10倍浓缩后用GC/MS测定样品IPDO的含量,两个平行样品中IPDO原浓度分别被测定为1.5mg/L和2.9mg/L(如图10所示)。这些结果表明,通过图1所示的新途径由葡萄糖发酵生产IPDO是可行的。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
序列表
<110> 花安堂生物科技集团有限公司
<120> 生物合成异戊二醇的菌株及方法
<130> MP2002139
<160> 47
<170> SIPOSequenceListing 1.0
<210> 1
<211> 380
<212> PRT
<213> SaHPD
<400> 1
Met Thr Gln Thr Thr His His Thr Pro Asp Thr Ala Arg Gln Ala Asp
1 5 10 15
Pro Phe Pro Val Lys Gly Met Asp Ala Val Val Phe Ala Val Gly Asn
20 25 30
Ala Lys Gln Ala Ala His Tyr Ser Thr Ala Phe Gly Met Gln Leu Val
35 40 45
Ala Tyr Ser Gly Pro Glu Asn Gly Ser Arg Glu Thr Ala Ser Tyr Val
50 55 60
Leu Thr Asn Gly Ser Ala Arg Phe Val Leu Thr Ser Val Ile Lys Pro
65 70 75 80
Ala Thr Pro Trp Gly His Phe Leu Ala Asp His Val Ala Glu His Gly
85 90 95
Asp Gly Val Val Asp Leu Ala Ile Glu Val Pro Asp Ala Arg Ala Ala
100 105 110
His Ala Tyr Ala Ile Glu His Gly Ala Arg Ser Val Ala Glu Pro Tyr
115 120 125
Glu Leu Lys Asp Glu His Gly Thr Val Val Leu Ala Ala Ile Ala Thr
130 135 140
Tyr Gly Lys Thr Arg His Thr Leu Val Asp Arg Thr Gly Tyr Asp Gly
145 150 155 160
Pro Tyr Leu Pro Gly Tyr Val Ala Ala Ala Pro Ile Val Glu Pro Pro
165 170 175
Ala His Arg Thr Phe Gln Ala Ile Asp His Cys Val Gly Asn Val Glu
180 185 190
Leu Gly Arg Met Asn Glu Trp Val Gly Phe Tyr Asn Lys Val Met Gly
195 200 205
Phe Thr Asn Met Lys Glu Phe Val Gly Asp Asp Ile Ala Thr Glu Tyr
210 215 220
Ser Ala Leu Met Ser Lys Val Val Ala Asp Gly Thr Leu Lys Val Lys
225 230 235 240
Phe Pro Ile Asn Glu Pro Ala Leu Ala Lys Lys Lys Ser Gln Ile Asp
245 250 255
Glu Tyr Leu Glu Phe Tyr Gly Gly Ala Gly Val Gln His Ile Ala Leu
260 265 270
Asn Thr Gly Asp Ile Val Glu Thr Val Arg Thr Met Arg Ala Ala Gly
275 280 285
Val Gln Phe Leu Asp Thr Pro Asp Ser Tyr Tyr Asp Thr Leu Gly Glu
290 295 300
Trp Val Gly Asp Thr Arg Val Pro Val Asp Thr Leu Arg Glu Leu Lys
305 310 315 320
Ile Leu Ala Asp Arg Asp Glu Asp Gly Tyr Leu Leu Gln Ile Phe Thr
325 330 335
Lys Pro Val Gln Asp Arg Pro Thr Val Phe Phe Glu Ile Ile Glu Arg
340 345 350
His Gly Ser Met Gly Phe Gly Lys Gly Asn Phe Lys Ala Leu Phe Glu
355 360 365
Ala Ile Glu Arg Glu Gln Glu Lys Arg Gly Asn Leu
370 375 380
<210> 2
<211> 385
<212> PRT
<213> SnHPD
<400> 2
Met Ala Asp Thr Thr Met His Thr Gln Pro Thr Thr Pro Ala Thr Ala
1 5 10 15
Arg Gln Ala Asp Pro Phe Pro Val Lys Gly Met Asp Ala Val Val Phe
20 25 30
Ala Val Gly Asn Ala Lys Gln Ala Ala His Tyr Tyr Ser Thr Ala Phe
35 40 45
Gly Met Lys Arg Val Ala Tyr Gln Gly Pro Glu Thr Gly Ser Arg Glu
50 55 60
Thr Ala Ser Tyr Val Leu Thr Ser Gly Gly Ala Arg Phe Val Phe Thr
65 70 75 80
Ser Val Val Lys Pro Thr Thr Glu Trp Gly Arg Phe Leu Ala Asp His
85 90 95
Val Ala Ala His Gly Asp Gly Val Val Asp Leu Ala Ile Glu Val Pro
100 105 110
Asp Ala Arg Ala Ala Tyr Ala Tyr Ala Val Glu His Gly Ala Thr Gly
115 120 125
Leu Glu Glu Pro Tyr Glu Thr Lys Asp Glu His Gly Thr Val Val Arg
130 135 140
Ala Ala Ile Ala Thr Tyr Gly Gln Thr Arg His Thr Leu Val Glu Arg
145 150 155 160
Thr Gly Tyr Asp Gly Pro Tyr Leu Pro Gly Phe Val Ala Ala Glu Pro
165 170 175
Leu Val Ala Ala Pro Thr Lys Arg Phe Phe Gln Ala Val Asp His Cys
180 185 190
Val Gly Asn Val Glu Leu Gly Lys Met Asp Glu Trp Val Ala Phe Tyr
195 200 205
Asn Asn Val Met Gly Phe Thr Asn Met Lys Glu Phe Val Gly Asp Asp
210 215 220
Ile Ala Thr Glu Tyr Ser Ala Leu Met Ser Lys Val Val Ala Asp Gly
225 230 235 240
Thr Lys Lys Val Lys Phe Pro Leu Asn Glu Pro Ala Val Ala Lys Lys
245 250 255
Lys Ser Gln Ile Asp Glu Tyr Leu Glu Phe Tyr Gly Gly Pro Gly Val
260 265 270
Gln His Ile Ala Leu Ala Thr Asn Asp Ile Val Ala Ser Val Arg Gln
275 280 285
Met Arg Ala Ala Gly Val Glu Phe Leu Asp Val Pro Gly Ser Tyr Tyr
290 295 300
Asp Thr Leu Gly Glu Trp Val Gly Glu Thr Arg Val Pro Ile Asp Glu
305 310 315 320
Leu Arg Glu Leu Lys Ile Leu Ala Asp Arg Asp Glu Asp Gly Tyr Leu
325 330 335
Leu Gln Ile Phe Thr Lys Pro Val Gln Asp Arg Pro Thr Val Phe Phe
340 345 350
Glu Met Ile Glu Arg His Gly Ser Leu Gly Phe Gly Lys Gly Asn Phe
355 360 365
Lys Ala Leu Phe Glu Ala Ile Glu Arg Glu Gln Asp Arg Arg Gly Asn
370 375 380
Leu
385
<210> 3
<211> 399
<212> PRT
<213> AaHPD
<400> 3
Met Thr Glu Thr Leu Asp Gln Gly Lys Pro Met Asp Asp Val Ser Phe
1 5 10 15
Asp Gln Leu Arg Gln Leu Val Gly Leu Val Asp Tyr Asp Ser Ser Ser
20 25 30
Asp Pro Phe Pro Val Lys Ala Met Asp Ala Val Val Phe Val Val Gly
35 40 45
Asn Ala Thr Gln Thr Ala Leu Phe Tyr Gln Phe Ala Phe Gly Met Glu
50 55 60
Gln Val Ala Tyr Ser Gly Pro Glu Thr Gly Asn Arg Asp His Lys Ser
65 70 75 80
Tyr Val Leu Lys Ser Gly Ser Ala Arg Phe Val Ile Asn Gly Gly Val
85 90 95
Ser Pro Glu Ser Pro Leu Leu Asp His His Arg Ala His Gly Asp Gly
100 105 110
Val Val Asp Leu Ala Leu Glu Val Gly Asp Val Asp Arg Cys Val Glu
115 120 125
His Ala Arg Ser Gln Gly Ala Thr Val Leu Asp Glu Pro His Asp Val
130 135 140
Ser Asp Glu His Gly Thr Val Arg Ile Ala Ala Ile Ala Ala Tyr Gly
145 150 155 160
Glu Thr Arg His Thr Leu Ile Asp Arg Ser Arg Tyr Thr Gly Pro Tyr
165 170 175
Leu Pro Gly Tyr Val Ala Lys Ala Gly Ala Tyr Arg Lys Pro Glu Gly
180 185 190
Ala Pro Lys Arg Leu Phe Gln Ala Val Asp His Cys Val Gly Asn Val
195 200 205
Glu Leu Gly Lys Met Asp Tyr Trp Val Glu Phe Tyr Asn Arg Val Met
210 215 220
Gly Phe Val Asn Met Ala Glu Phe Ile Gly Asp Asp Ile Ala Thr Asp
225 230 235 240
Tyr Ser Ala Leu Met Ser Lys Val Val Ala Asn Gly Asn His Arg Val
245 250 255
Lys Phe Pro Leu Asn Glu Pro Ala Val Ala Gln Arg Lys Ser Gln Ile
260 265 270
Asp Glu Tyr Leu Glu Phe Tyr Gly Gly Pro Gly Cys Gln His Ile Ala
275 280 285
Leu Ala Thr Asn Asp Ile Leu Ser Thr Val Asp Ala Met Arg Ala Ala
290 295 300
Gly Val Glu Phe Leu Asp Thr Pro Asp Ser Tyr Tyr Asp Asp Pro Glu
305 310 315 320
Leu Arg Ala Arg Ile Gly Glu Val Arg Val Pro Ile Glu Glu Leu Lys
325 330 335
Ser Arg Lys Ile Leu Val Asp Arg Asp Glu Asp Gly Tyr Leu Leu Gln
340 345 350
Ile Phe Thr Lys Pro Thr Gly Asp Arg Pro Thr Val Phe Tyr Glu Met
355 360 365
Ile Glu Arg His Gly Ser Leu Gly Phe Gly Lys Gly Asn Phe Lys Ala
370 375 380
Leu Phe Glu Ala Ile Glu Arg Glu Gln Glu Arg Arg Gly Asn Leu
385 390 395
<210> 4
<211> 393
<212> PRT
<213> RaHPD
<400> 4
Met Thr Thr Tyr Ser Asn Lys Gly Pro Lys Pro Glu Arg Gly Arg Phe
1 5 10 15
Leu His Phe His Ser Val Thr Phe Trp Val Gly Asn Ala Lys Gln Ala
20 25 30
Ala Ser Phe Tyr Cys Asn Lys Met Gly Phe Glu Pro Leu Ala Tyr Lys
35 40 45
Gly Leu Glu Thr Gly Ser Arg Glu Val Val Ser His Val Ile Lys Gln
50 55 60
Gly Lys Ile Val Phe Val Leu Cys Ser Ala Leu Asn Pro Trp Asn Lys
65 70 75 80
Glu Met Gly Asp His Leu Val Lys His Gly Asp Gly Val Lys Asp Ile
85 90 95
Ala Phe Glu Val Glu Asp Cys Glu His Ile Val Gln Lys Ala Arg Glu
100 105 110
Arg Gly Ala Lys Ile Val Arg Glu Pro Trp Val Glu Glu Asp Lys Phe
115 120 125
Gly Lys Val Lys Phe Ala Val Leu Gln Thr Tyr Gly Asp Thr Thr His
130 135 140
Thr Leu Val Glu Lys Ile Asn Tyr Thr Gly Arg Phe Leu Pro Gly Phe
145 150 155 160
Glu Ala Pro Thr Tyr Lys Asp Thr Leu Leu Pro Lys Leu Pro Ser Cys
165 170 175
Asn Leu Glu Ile Ile Asp His Ile Val Gly Asn Gln Pro Asp Gln Glu
180 185 190
Met Glu Ser Ala Ser Glu Trp Tyr Leu Lys Asn Leu Gln Phe His Arg
195 200 205
Phe Trp Ser Val Asp Asp Thr Gln Val His Thr Glu Tyr Ser Ser Leu
210 215 220
Arg Ser Ile Val Val Ala Asn Tyr Glu Glu Ser Ile Lys Met Pro Ile
225 230 235 240
Asn Glu Pro Ala Pro Gly Arg Lys Lys Ser Gln Ile Gln Glu Tyr Val
245 250 255
Asp Tyr Asn Gly Gly Ala Gly Val Gln His Ile Ala Leu Arg Thr Glu
260 265 270
Asp Ile Ile Thr Thr Ile Arg His Leu Arg Glu Arg Gly Met Glu Phe
275 280 285
Leu Ala Val Pro Ser Ser Tyr Tyr Arg Leu Leu Arg Glu Asn Leu Lys
290 295 300
Thr Ser Lys Ile Gln Val Lys Glu Asn Met Asp Val Leu Glu Glu Leu
305 310 315 320
Lys Ile Leu Val Asp Tyr Asp Glu Lys Gly Tyr Leu Leu Gln Ile Phe
325 330 335
Thr Lys Pro Met Gln Asp Arg Pro Thr Leu Phe Leu Glu Val Ile Gln
340 345 350
Arg His Asn His Gln Gly Phe Gly Ala Gly Asn Phe Asn Ser Leu Phe
355 360 365
Lys Ala Phe Glu Glu Glu Gln Ala Leu Arg Gly Asn Leu Thr Asp Leu
370 375 380
Glu Thr Asn Gly Val Arg Ser Gly Met
385 390
<210> 5
<211> 1174
<212> PRT
<213> NiCAR
<400> 5
Met Ala Val Asp Ser Pro Asp Glu Arg Leu Gln Arg Arg Ile Ala Gln
1 5 10 15
Leu Phe Ala Glu Asp Glu Gln Val Lys Ala Ala Arg Pro Leu Glu Ala
20 25 30
Val Ser Ala Ala Val Ser Ala Pro Gly Met Arg Leu Ala Gln Ile Ala
35 40 45
Ala Thr Val Met Ala Gly Tyr Ala Asp Arg Pro Ala Ala Gly Gln Arg
50 55 60
Ala Phe Glu Leu Asn Thr Asp Asp Ala Thr Gly Arg Thr Ser Leu Arg
65 70 75 80
Leu Leu Pro Arg Phe Glu Thr Ile Thr Tyr Arg Glu Leu Trp Gln Arg
85 90 95
Val Gly Glu Val Ala Ala Ala Trp His His Asp Pro Glu Asn Pro Leu
100 105 110
Arg Ala Gly Asp Phe Val Ala Leu Leu Gly Phe Thr Ser Ile Asp Tyr
115 120 125
Ala Thr Leu Asp Leu Ala Asp Ile His Leu Gly Ala Val Thr Val Pro
130 135 140
Leu Gln Ala Ser Ala Ala Val Ser Gln Leu Ile Ala Ile Leu Thr Glu
145 150 155 160
Thr Ser Pro Arg Leu Leu Ala Ser Thr Pro Glu His Leu Asp Ala Ala
165 170 175
Val Glu Cys Leu Leu Ala Gly Thr Thr Pro Glu Arg Leu Val Val Phe
180 185 190
Asp Tyr His Pro Glu Asp Asp Asp Gln Arg Ala Ala Phe Glu Ser Ala
195 200 205
Arg Arg Arg Leu Ala Asp Ala Gly Ser Leu Val Ile Val Glu Thr Leu
210 215 220
Asp Ala Val Arg Ala Arg Gly Arg Asp Leu Pro Ala Ala Pro Leu Phe
225 230 235 240
Val Pro Asp Thr Asp Asp Asp Pro Leu Ala Leu Leu Ile Tyr Thr Ser
245 250 255
Gly Ser Thr Gly Thr Pro Lys Gly Ala Met Tyr Thr Asn Arg Leu Ala
260 265 270
Ala Thr Met Trp Gln Gly Asn Ser Met Leu Gln Gly Asn Ser Gln Arg
275 280 285
Val Gly Ile Asn Leu Asn Tyr Met Pro Met Ser His Ile Ala Gly Arg
290 295 300
Ile Ser Leu Phe Gly Val Leu Ala Arg Gly Gly Thr Ala Tyr Phe Ala
305 310 315 320
Ala Lys Ser Asp Met Ser Thr Leu Phe Glu Asp Ile Gly Leu Val Arg
325 330 335
Pro Thr Glu Ile Phe Phe Val Pro Arg Val Cys Asp Met Val Phe Gln
340 345 350
Arg Tyr Gln Ser Glu Leu Asp Arg Arg Ser Val Ala Gly Ala Asp Leu
355 360 365
Asp Thr Leu Asp Arg Glu Val Lys Ala Asp Leu Arg Gln Asn Tyr Leu
370 375 380
Gly Gly Arg Phe Leu Val Ala Val Val Gly Ser Ala Pro Leu Ala Ala
385 390 395 400
Glu Met Lys Thr Phe Met Glu Ser Val Leu Asp Leu Pro Leu His Asp
405 410 415
Gly Tyr Gly Ser Thr Glu Ala Gly Ala Ser Val Leu Leu Asp Asn Gln
420 425 430
Ile Gln Arg Pro Pro Val Leu Asp Tyr Lys Leu Val Asp Val Pro Glu
435 440 445
Leu Gly Tyr Phe Arg Thr Asp Arg Pro His Pro Arg Gly Glu Leu Leu
450 455 460
Leu Lys Ala Glu Thr Thr Ile Pro Gly Tyr Tyr Lys Arg Pro Glu Val
465 470 475 480
Thr Ala Glu Ile Phe Asp Glu Asp Gly Phe Tyr Lys Thr Gly Asp Ile
485 490 495
Val Ala Glu Leu Glu His Asp Arg Leu Val Tyr Val Asp Arg Arg Asn
500 505 510
Asn Val Leu Lys Leu Ser Gln Gly Glu Phe Val Thr Val Ala His Leu
515 520 525
Glu Ala Val Phe Ala Ser Ser Pro Leu Ile Arg Gln Ile Phe Ile Tyr
530 535 540
Gly Ser Ser Glu Arg Ser Tyr Leu Leu Ala Val Ile Val Pro Thr Asp
545 550 555 560
Asp Ala Leu Arg Gly Arg Asp Thr Ala Thr Leu Lys Ser Ala Leu Ala
565 570 575
Glu Ser Ile Gln Arg Ile Ala Lys Asp Ala Asn Leu Gln Pro Tyr Glu
580 585 590
Ile Pro Arg Asp Phe Leu Ile Glu Thr Glu Pro Phe Thr Ile Ala Asn
595 600 605
Gly Leu Leu Ser Gly Ile Ala Lys Leu Leu Arg Pro Asn Leu Lys Glu
610 615 620
Arg Tyr Gly Ala Gln Leu Glu Gln Met Tyr Thr Asp Leu Ala Thr Gly
625 630 635 640
Gln Ala Asp Glu Leu Leu Ala Leu Arg Arg Glu Ala Ala Asp Leu Pro
645 650 655
Val Leu Glu Thr Val Ser Arg Ala Ala Lys Ala Met Leu Gly Val Ala
660 665 670
Ser Ala Asp Met Arg Pro Asp Ala His Phe Thr Asp Leu Gly Gly Asp
675 680 685
Ser Leu Ser Ala Leu Ser Phe Ser Asn Leu Leu His Glu Ile Phe Gly
690 695 700
Val Glu Val Pro Val Gly Val Val Val Ser Pro Ala Asn Glu Leu Arg
705 710 715 720
Asp Leu Ala Asn Tyr Ile Glu Ala Glu Arg Asn Ser Gly Ala Lys Arg
725 730 735
Pro Thr Phe Thr Ser Val His Gly Gly Gly Ser Glu Ile Arg Ala Ala
740 745 750
Asp Leu Thr Leu Asp Lys Phe Ile Asp Ala Arg Thr Leu Ala Ala Ala
755 760 765
Asp Ser Ile Pro His Ala Pro Val Pro Ala Gln Thr Val Leu Leu Thr
770 775 780
Gly Ala Asn Gly Tyr Leu Gly Arg Phe Leu Cys Leu Glu Trp Leu Glu
785 790 795 800
Arg Leu Asp Lys Thr Gly Gly Thr Leu Ile Cys Val Val Arg Gly Ser
805 810 815
Asp Ala Ala Ala Ala Arg Lys Arg Leu Asp Ser Ala Phe Asp Ser Gly
820 825 830
Asp Pro Gly Leu Leu Glu His Tyr Gln Gln Leu Ala Ala Arg Thr Leu
835 840 845
Glu Val Leu Ala Gly Asp Ile Gly Asp Pro Asn Leu Gly Leu Asp Asp
850 855 860
Ala Thr Trp Gln Arg Leu Ala Glu Thr Val Asp Leu Ile Val His Pro
865 870 875 880
Ala Ala Leu Val Asn His Val Leu Pro Tyr Thr Gln Leu Phe Gly Pro
885 890 895
Asn Val Val Gly Thr Ala Glu Ile Val Arg Leu Ala Ile Thr Ala Arg
900 905 910
Arg Lys Pro Val Thr Tyr Leu Ser Thr Val Gly Val Ala Asp Gln Val
915 920 925
Asp Pro Ala Glu Tyr Gln Glu Asp Ser Asp Val Arg Glu Met Ser Ala
930 935 940
Val Arg Val Val Arg Glu Ser Tyr Ala Asn Gly Tyr Gly Asn Ser Lys
945 950 955 960
Trp Ala Gly Glu Val Leu Leu Arg Glu Ala His Asp Leu Cys Gly Leu
965 970 975
Pro Val Ala Val Phe Arg Ser Asp Met Ile Leu Ala His Ser Arg Tyr
980 985 990
Ala Gly Gln Leu Asn Val Gln Asp Val Phe Thr Arg Leu Ile Leu Ser
995 1000 1005
Leu Val Ala Thr Gly Ile Ala Pro Tyr Ser Phe Tyr Arg Thr Asp Ala
1010 1015 1020
Asp Gly Asn Arg Gln Arg Ala His Tyr Asp Gly Leu Pro Ala Asp Phe
1025 1030 1035 1040
Thr Ala Ala Ala Ile Thr Ala Leu Gly Ile Gln Ala Thr Glu Gly Phe
1045 1050 1055
Arg Thr Tyr Asp Val Leu Asn Pro Tyr Asp Asp Gly Ile Ser Leu Asp
1060 1065 1070
Glu Phe Val Asp Trp Leu Val Glu Ser Gly His Pro Ile Gln Arg Ile
1075 1080 1085
Thr Asp Tyr Ser Asp Trp Phe His Arg Phe Glu Thr Ala Ile Arg Ala
1090 1095 1100
Leu Pro Glu Lys Gln Arg Gln Ala Ser Val Leu Pro Leu Leu Asp Ala
1105 1110 1115 1120
Tyr Arg Asn Pro Cys Pro Ala Val Arg Gly Ala Ile Leu Pro Ala Lys
1125 1130 1135
Glu Phe Gln Ala Ala Val Gln Thr Ala Lys Ile Gly Pro Glu Gln Asp
1140 1145 1150
Ile Pro His Leu Ser Ala Pro Leu Ile Asp Lys Tyr Val Ser Asp Leu
1155 1160 1165
Glu Leu Leu Gln Leu Leu
1170
<210> 6
<211> 342
<212> PRT
<213> GRE2
<400> 6
Met Ser Val Phe Val Ser Gly Ala Asn Gly Phe Ile Ala Gln His Ile
1 5 10 15
Val Asp Leu Leu Leu Lys Glu Asp Tyr Lys Val Ile Gly Ser Ala Arg
20 25 30
Ser Gln Glu Lys Ala Glu Asn Leu Thr Glu Ala Phe Gly Asn Asn Pro
35 40 45
Lys Phe Ser Met Glu Val Val Pro Asp Ile Ser Lys Leu Asp Ala Phe
50 55 60
Asp His Val Phe Gln Lys His Gly Lys Asp Ile Lys Ile Val Leu His
65 70 75 80
Thr Ala Ser Pro Phe Cys Phe Asp Ile Thr Asp Ser Glu Arg Asp Leu
85 90 95
Leu Ile Pro Ala Val Asn Gly Val Lys Gly Ile Leu His Ser Ile Lys
100 105 110
Lys Tyr Ala Ala Asp Ser Val Glu Arg Val Val Leu Thr Ser Ser Tyr
115 120 125
Ala Ala Val Phe Asp Met Ala Lys Glu Asn Asp Lys Ser Leu Thr Phe
130 135 140
Asn Glu Glu Ser Trp Asn Pro Ala Thr Trp Glu Ser Cys Gln Ser Asp
145 150 155 160
Pro Val Asn Ala Tyr Cys Gly Ser Lys Lys Phe Ala Glu Lys Ala Ala
165 170 175
Trp Glu Phe Leu Glu Glu Asn Arg Asp Ser Val Lys Phe Glu Leu Thr
180 185 190
Ala Val Asn Pro Val Tyr Val Phe Gly Pro Gln Met Phe Asp Lys Asp
195 200 205
Val Lys Lys His Leu Asn Thr Ser Cys Glu Leu Val Asn Ser Leu Met
210 215 220
His Leu Ser Pro Glu Asp Lys Ile Pro Glu Leu Phe Gly Gly Tyr Ile
225 230 235 240
Asp Val Arg Asp Val Ala Lys Ala His Leu Val Ala Phe Gln Lys Arg
245 250 255
Glu Thr Ile Gly Gln Arg Leu Ile Val Ser Glu Ala Arg Phe Thr Met
260 265 270
Gln Asp Val Leu Asp Ile Leu Asn Glu Asp Phe Pro Val Leu Lys Gly
275 280 285
Asn Ile Pro Val Gly Lys Pro Gly Ser Gly Ala Thr His Asn Thr Leu
290 295 300
Gly Ala Thr Leu Asp Asn Lys Lys Ser Lys Lys Leu Leu Gly Phe Lys
305 310 315 320
Phe Arg Asn Leu Lys Glu Thr Ile Asp Asp Thr Ala Ser Gln Ile Leu
325 330 335
Lys Phe Glu Gly Arg Ile
340
<210> 7
<211> 1174
<212> PRT
<213> MiCAR
<400> 7
Met Ser Thr Ala Ile His Asp Glu His Leu Asp Arg Arg Ile Glu Glu
1 5 10 15
Leu Ile Ala Asn Asp Pro Gln Phe Ala Ala Ala Arg Pro Asp Pro Ala
20 25 30
Ile Thr Ala Ala Thr Glu Ala Pro Gly Leu Arg Leu Pro Gln Ile Ile
35 40 45
Arg Thr Val Leu Asp Gly Tyr Ala Asp Arg Pro Ala Leu Ala Gln Arg
50 55 60
Val Val Glu Phe Val Thr Asp Ala Lys Thr Gly Arg Thr Thr Ala Glu
65 70 75 80
Leu Leu Pro Arg Phe Glu Thr Ile Thr Tyr Gly Glu Leu Gly Glu Arg
85 90 95
Val Ser Ala Leu Gly Arg Ala Trp Ala Gly Asp Ala Val Arg Pro Gly
100 105 110
Asp Arg Val Cys Val Leu Gly Phe Asn Ser Val Asp Tyr Ala Thr Ile
115 120 125
Asp Ile Ala Leu Gly Thr Ile Gly Ala Val Ser Val Pro Leu Gln Thr
130 135 140
Ser Ala Ala Ile Ser Ser Leu Gln Pro Ile Val Ala Glu Thr Glu Pro
145 150 155 160
Ser Leu Ile Ala Ser Ser Val Asn Gln Leu Pro Asp Ala Val Glu Leu
165 170 175
Ile Leu Ala Gly Asp His Val Pro Gly Lys Leu Val Val Phe Asp Tyr
180 185 190
Gln Pro Gln Val Asp Asp Gln Arg Glu Ala Val Glu Ala Ala Ala Ala
195 200 205
Arg Leu Ala Asp Ser Gly Val Ala Val Glu Ala Leu Ala Asp Val Leu
210 215 220
Arg Arg Gly Lys Asp Leu Pro Ala Val Glu Pro Pro Ala Ser Asp Glu
225 230 235 240
Asp Ser Leu Ala Leu Leu Ile Tyr Thr Ser Gly Ser Thr Gly Ala Pro
245 250 255
Lys Gly Ala Met Tyr Pro Gln Ser Asn Val Gly Lys Met Trp Arg Arg
260 265 270
Gly Ser Lys Asn Trp Phe Gly Glu Ser Ala Ala Ser Ile Thr Leu Asn
275 280 285
Phe Met Pro Met Ser His Val Met Gly Arg Gly Ile Leu Tyr Gly Thr
290 295 300
Leu Gly Asn Gly Gly Thr Ala Tyr Phe Ala Ala Arg Ser Asp Leu Ser
305 310 315 320
Thr Leu Leu Glu Asp Leu Glu Leu Val Arg Pro Thr Glu Met Asn Phe
325 330 335
Val Pro Arg Ile Trp Glu Thr Leu Tyr Gly Glu Phe Gln Arg Gln Val
340 345 350
Glu Arg Arg Leu Ala Asp Gly Asp Ala Gly Pro Glu Ala Arg Glu Thr
355 360 365
Val Ala Ala Ala Val Leu Glu Glu Gln Arg Gln Tyr Leu Leu Gly Gly
370 375 380
Arg Phe Ile Phe Ala Met Thr Gly Ser Ala Pro Thr Ser Pro Glu Leu
385 390 395 400
Lys Ala Trp Ala Glu Ser Leu Leu Gln Met His Leu Met Asp Gly Tyr
405 410 415
Gly Ser Thr Glu Ala Gly Met Val Leu Phe Asp Gly Glu Ile Gln Arg
420 425 430
Pro Pro Val Ile Asp Tyr Lys Leu Val Asp Val Pro Asp Leu Gly Tyr
435 440 445
Phe Ser Thr Asp Arg Pro His Pro Arg Gly Glu Leu Leu Leu Arg Thr
450 455 460
Glu Asn Met Phe Pro Gly Tyr Tyr Lys Arg Ala Glu Thr Thr Ala Asn
465 470 475 480
Val Phe Asp Glu Asp Gly Tyr Tyr Arg Thr Gly Asp Val Phe Ala Glu
485 490 495
Ile Ala Pro Asp Arg Leu Val Tyr Val Asp Arg Arg Asn Asn Val Leu
500 505 510
Lys Leu Ala Gln Gly Glu Phe Val Thr Leu Ala Lys Leu Glu Ala Val
515 520 525
Phe Gly Asn Ser Pro Arg Ile Arg Gln Ile Tyr Val Tyr Gly Asn Ser
530 535 540
Ser Gln Pro Tyr Leu Leu Ala Val Val Val Pro Thr Glu Glu Ala Leu
545 550 555 560
Ala Asp Asn Asp Leu Glu Ser Leu Lys Pro Lys Ile Ala Asp Ser Leu
565 570 575
Gln Lys Val Ala Lys Glu Thr Gly Leu Gln Ser Tyr Glu Val Pro Arg
580 585 590
Asp Phe Ile Ile Glu Thr Thr Pro Phe Thr Leu Glu Asn Gly Leu Leu
595 600 605
Thr Gly Ile Arg Lys Leu Ala Trp Pro Lys Leu Lys Ala His Tyr Gly
610 615 620
Asp Arg Leu Glu Gln Met Tyr Ala Glu Leu Ala Ala Gly Gln Ala Asn
625 630 635 640
Glu Leu Ala Glu Leu Arg Arg Ser Gly Ala Ala Ala Pro Val Ala Gln
645 650 655
Thr Val Ser Arg Ala Ala Ala Ala Leu Leu Gly Ala Thr Ala Gly Asp
660 665 670
Leu Ser Ala Asp Ala His Phe Thr Asp Leu Gly Gly Asp Ser Leu Ser
675 680 685
Ala Leu Thr Phe Gly Asn Leu Leu Arg Glu Ile Phe Asp Val Asp Val
690 695 700
Pro Val Gly Val Ile Val Ser Pro Ala Asn Asp Leu Ala Gly Ile Ala
705 710 715 720
Ala Tyr Ile Glu Ala Glu Arg Gln Gly Ser Lys Arg Pro Thr Phe Ala
725 730 735
Ala Val His Gly Arg Gly Ala Thr Met Val His Ala Ser Asp Leu Thr
740 745 750
Leu Asp Lys Phe Leu Asp Glu Ala Thr Leu Ala Ala Ala Pro Ser Leu
755 760 765
Pro Lys Pro Ala Thr Glu Val Arg Thr Val Leu Leu Thr Gly Ala Thr
770 775 780
Gly Phe Leu Gly Arg Tyr Leu Ala Leu Asp Trp Leu Glu Arg Met Asp
785 790 795 800
Met Val Asp Gly Lys Val Ile Ala Leu Val Arg Ala Arg Thr Asp Glu
805 810 815
Glu Ala Arg Ala Arg Leu Asp Lys Thr Phe Asp Ser Gly Asp Pro Lys
820 825 830
Leu Leu Ala His Tyr Gln Arg Leu Ala Ala Asp His Leu Glu Val Ile
835 840 845
Ala Gly Asp Lys Gly Glu Ala Asn Leu Gly Leu Asp Pro Gln Thr Trp
850 855 860
Gln Arg Leu Ala Glu Glu Val Asp Val Ile Val Asp Pro Ala Ala Leu
865 870 875 880
Val Asn His Val Leu Pro Tyr Ser Glu Leu Phe Gly Pro Asn Ala Leu
885 890 895
Gly Thr Ala Glu Leu Ile Arg Ile Ala Leu Thr Ser Arg Gln Lys Pro
900 905 910
Tyr Thr Tyr Val Ser Thr Ile Gly Val Gly Asp Gln Ile Gln Pro Gly
915 920 925
Glu Phe Val Glu Asn Ala Asp Ile Arg Gln Ile Ser Ala Thr Arg Glu
930 935 940
Ile Asn Asp Gly Tyr Ala Asn Gly Tyr Gly Asn Ser Lys Trp Ala Gly
945 950 955 960
Glu Val Leu Leu Arg Glu Ala His Asp Leu Cys Gly Leu Pro Val Thr
965 970 975
Val Phe Arg Cys Asp Met Ile Leu Ala Asp Thr Thr Tyr Ala Gly Gln
980 985 990
Leu Asn Leu Pro Asp Met Phe Thr Arg Leu Met Leu Ser Leu Val Ala
995 1000 1005
Thr Gly Ile Ala Pro Gly Ser Phe Tyr Glu Leu Asp Ala Asp Gly Asn
1010 1015 1020
Arg Gln Arg Ala His Tyr Asp Gly Leu Pro Val Glu Phe Ile Ala Ala
1025 1030 1035 1040
Ala Ile Ser Thr Leu Gly Thr Gln Ile Thr Asp Ser Asp Thr Gly Phe
1045 1050 1055
Gln Thr Tyr His Val Met Asn Pro Tyr Asp Asp Gly Ile Gly Leu Asp
1060 1065 1070
Glu Tyr Ile Asp Trp Leu Ile Glu Ala Gly Tyr Ser Ile Glu Arg Ile
1075 1080 1085
Ala Asp Tyr Ser Glu Trp Leu Arg Arg Phe Glu Thr Ser Leu Arg Ala
1090 1095 1100
Leu Pro Asp Arg Gln Arg Gln Tyr Ser Leu Leu Pro Leu Leu His Asn
1105 1110 1115 1120
Tyr Gln Lys Pro Glu Lys Pro Ile Asn Gly Ser Met Ala Pro Thr Asp
1125 1130 1135
Val Phe Arg Ala Ala Val Gln Glu Ala Lys Ile Gly Pro Asp Lys Asp
1140 1145 1150
Ile Pro His Val Ser Ala Pro Val Ile Val Lys Tyr Ile Thr Asp Leu
1155 1160 1165
Glu Leu Leu Gly Leu Leu
1170
<210> 8
<211> 473
<212> PRT
<213> aad
<400> 8
Met Lys Ile Ser Arg Arg Lys Leu Leu Leu Gly Val Gly Ala Ala Gly
1 5 10 15
Val Leu Ala Gly Gly Ala Ala Leu Val Pro Met Val Arg Arg Asp Gly
20 25 30
Lys Phe Val Glu Ala Lys Ser Arg Ala Ser Phe Val Glu Gly Thr Glu
35 40 45
Gly Ala Leu Pro Lys Glu Ser Asp Ala Val Ile Ile Gly Gly Gly Ile
50 55 60
Gln Gly Ile Met Thr Ala Ile Asn Leu Ala Glu Arg Gly Met Ser Val
65 70 75 80
Thr Ile Leu Glu Lys Gly Glu Ile Ala Gly Glu Gln Ser Gly Arg Ala
85 90 95
Tyr Ser Gln Ile Ile Ser Tyr Gln Thr Ser Pro Glu Ile Phe Pro Leu
100 105 110
His His Tyr Gly Lys Ile Leu Trp Arg Gly Met Asn Glu Lys Ile Gly
115 120 125
Ala Asp Thr Ser Tyr Arg Thr Gln Gly Arg Val Glu Ala Leu Ala Asp
130 135 140
Glu Lys Ala Phe Asp Lys Ala Gln Ala Trp Ile Lys Thr Ala Lys Glu
145 150 155 160
Ser Ala Gly Phe Asp Thr Pro Leu Asn Thr Arg Ile Ile Lys Gly Asp
165 170 175
Glu Leu Ser Asn Arg Leu Val Gly Ala Gln Thr Pro Trp Thr Val Ala
180 185 190
Ala Phe Glu Glu Asp Ser Gly Ser Val Asp Pro Glu Thr Gly Thr Pro
195 200 205
Ala Leu Ala Arg Tyr Ala Lys Gln Ile Gly Val Lys Ile Tyr Thr Asn
210 215 220
Cys Ala Val Arg Gly Ile Glu Thr Ala Gly Gly Lys Ile Ser Asp Val
225 230 235 240
Val Thr Glu Lys Gly Ala Ile Lys Thr Ser His Val Val Leu Ala Gly
245 250 255
Gly Ile Trp Ser Arg Leu Phe Met Gly Asn Met Gly Ile Asp Ile Pro
260 265 270
Thr Leu Asn Val Tyr Leu Ser Gln Gln Arg Val Ser Gly Val Pro Gly
275 280 285
Ala Pro Arg Gly Asn Val His Leu Pro Asn Gly Ile His Phe Arg Glu
290 295 300
Gln Ala Asp Gly Thr Tyr Ala Val Ala Pro Arg Ile Phe Thr Ser Ser
305 310 315 320
Ile Val Lys Asp Ser Phe Leu Leu Gly Pro Lys Phe Met His Leu Leu
325 330 335
Gly Gly Gly Glu Leu Pro Leu Glu Phe Ser Ile Gly Glu Asp Leu Phe
340 345 350
Asn Ser Phe Lys Met Ala Thr Ser Trp Lys Leu Asp Glu Lys Thr Pro
355 360 365
Phe Glu Gln Tyr Arg Ile Ala Thr Ala Thr Gln Asn Thr Glu His Leu
370 375 380
Asp Ala Val Phe Gln Arg Met Lys Ala Glu Phe Pro Val Phe Glu Lys
385 390 395 400
Ser Gln Val Val Glu Arg Trp Gly Ala Val Val Ser Pro Thr Phe Asp
405 410 415
Glu Leu Pro Ile Ile Ser Glu Val Lys Glu Tyr Pro Gly Leu Val Ile
420 425 430
Asn Thr Ala Thr Val Trp Gly Met Thr Glu Gly Pro Ala Ala Gly Glu
435 440 445
Leu Thr Ala Asp Ile Val Thr Gly Lys Lys Pro Val Ile Asp Pro Thr
450 455 460
Pro Phe Ser Met Asp Arg Phe Lys Lys
465 470
<210> 9
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 9
gatatacata tgacgcagac cacacaccac 30
<210> 10
<211> 33
<212> DNA
<213> Artificial Sequence
<400> 10
attagactcg agcaggttgc cccgcttctc ctg 33
<210> 11
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 11
ctctgccata tggcagacac cacgatgcac 30
<210> 12
<211> 32
<212> DNA
<213> Artificial Sequence
<400> 12
attagactcg aggaggttgc cgcgccggtc ct 32
<210> 13
<211> 32
<212> DNA
<213> Artificial Sequence
<400> 13
atgatcctcg aggagattgc ctcggcgctc ct 32
<210> 14
<211> 31
<212> DNA
<213> Artificial Sequence
<400> 14
gatatacata tgaccgagac tctcgaccag g 31
<210> 15
<211> 60
<212> DNA
<213> Artificial Sequence
<400> 15
gatataccat gggccatcat catcatcatc accatatggc agtggattca ccggatgagc 60
<210> 16
<211> 36
<212> DNA
<213> Artificial Sequence
<400> 16
gtcgacaagc tttcagagca gctgaagcag ttccag 36
<210> 17
<211> 37
<212> DNA
<213> Artificial Sequence
<400> 17
catcaccata tgtcagtttt cgtttcaggt gctaacg 37
<210> 18
<211> 45
<212> DNA
<213> Artificial Sequence
<400> 18
ggccgcaagc ttatattctg ccctcaaatt ttaaaatttg ggagg 45
<210> 19
<211> 64
<212> DNA
<213> Artificial Sequence
<400> 19
cagaccatgg aattcgagct cagaaggaga tatacatatg tcagttttcg tttcaggtgc 60
taac 64
<210> 20
<211> 56
<212> DNA
<213> Artificial Sequence
<400> 20
gattaattgt caacaggtac cttatattct gccctcaaat tttaaaattt gggagg 56
<210> 21
<211> 37
<212> DNA
<213> Artificial Sequence
<400> 21
gtttggaagc tttcagagga gtccgagcaa ctccagg 37
<210> 22
<211> 36
<212> DNA
<213> Artificial Sequence
<400> 22
catcaccata tgtcgactgc cattcatgac gaacac 36
<210> 23
<211> 53
<212> DNA
<213> Artificial Sequence
<400> 23
tcccggggat ccgaaataat tttgtttaac tttaagaagg agatatacat atg 53
<210> 24
<211> 33
<212> DNA
<213> Artificial Sequence
<400> 24
gcatgcaagc ttagagattg cctcggcgct cct 33
<210> 25
<211> 34
<212> DNA
<213> Artificial Sequence
<400> 25
gcatgcaagc ttacatgccg ctacgcacgc cgtt 34
<210> 26
<211> 59
<212> DNA
<213> Artificial Sequence
<400> 26
agggcagaat ataagcaact ttaagaagga gataaagatg aaaatttcaa ggagaaagc 59
<210> 27
<211> 39
<212> DNA
<213> Artificial Sequence
<400> 27
attaattgtc aacagttact tcttaaagcg atccatact 39
<210> 28
<211> 40
<212> DNA
<213> Artificial Sequence
<400> 28
atccgccaaa acagccaagc tttagagatt gcctcggcgc 40
<210> 29
<211> 42
<212> DNA
<213> Artificial Sequence
<400> 29
ttcgagctcc gtcgacaagc tggaattcga gctcagaagg ag 42
<210> 30
<211> 45
<212> DNA
<213> Artificial Sequence
<400> 30
ataacccctt ggggcctcta aggcatcaaa taaaacgaaa ggctc 45
<210> 31
<211> 47
<212> DNA
<213> Artificial Sequence
<400> 31
gtcgacatat ggtgatgctc ctctttaatg aattcggtca gtgcgtc 47
<210> 32
<211> 35
<212> DNA
<213> Artificial Sequence
<400> 32
cgacctgcag aagctaccag gttgaagcgg cactc 35
<210> 33
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 33
gtcttcccag cgaaccatct 20
<210> 34
<211> 40
<212> DNA
<213> Artificial Sequence
<400> 34
cgaagaactg ctgtaataga tcaggaaggt atcgcgctgg 40
<210> 35
<211> 35
<212> DNA
<213> Artificial Sequence
<400> 35
taatagatct aagctccgcg ataatcggct taccg 35
<210> 36
<211> 80
<212> DNA
<213> Artificial Sequence
<400> 36
gctcagtcct aggtataata ctagtatgtc gcacgcgctg cactagtttt agagctagaa 60
atagcaagtt aaaataaggc 80
<210> 37
<211> 80
<212> DNA
<213> Artificial Sequence
<400> 37
gctcagtcct aggtataata ctagtgatta acgctgccaa acgccgtttt agagctagaa 60
atagcaagtt aaaataaggc 80
<210> 38
<211> 40
<212> DNA
<213> Artificial Sequence
<400> 38
gttcgggcac aaagcttcat tctgatgaac aacgaagcgc 40
<210> 39
<211> 40
<212> DNA
<213> Artificial Sequence
<400> 39
acagggtaat agatctaagc tgcgcgatgt tgttcaagcc 40
<210> 40
<211> 37
<212> DNA
<213> Artificial Sequence
<400> 40
tcatcagaat gaagctttgt gcccgaactt gccatgc 37
<210> 41
<211> 38
<212> DNA
<213> Artificial Sequence
<400> 41
gctttttttg aattctctag ttaaggcgct gacggcac 38
<210> 42
<211> 85
<212> DNA
<213> Artificial Sequence
<400> 42
caagttcggg cacaaagctt ttacagctag ctcagtccta ggtattatgc tagcaacttt 60
aataaggaga tataccatgg gcaag 85
<210> 43
<211> 85
<212> DNA
<213> Artificial Sequence
<400> 43
caagttcggg cacaaagctt ttacggctag ctcagtccta ggtactatgc tagcaacttt 60
aataaggaga tataccatgg gcaag 85
<210> 44
<211> 40
<212> DNA
<213> Artificial Sequence
<400> 44
ttcatcagaa tgaagctcgg atccttacag cagttcttcg 40
<210> 45
<211> 36
<212> DNA
<213> Artificial Sequence
<400> 45
actagtatta tacctaggac tgagctagct gtcaag 36
<210> 46
<211> 38
<212> DNA
<213> Artificial Sequence
<400> 46
tggttcgctg ggaagacctc gacgctctcc cttatgcg 38
<210> 47
<211> 29
<212> DNA
<213> Artificial Sequence
<400> 47
ttacagcagt tcttcgtagc taaccatcg 29

Claims (10)

1.羧酸还原酶和醛还原酶的过表达在生物合成异戊二醇中的应用。
2.α-酮异己酸双加氧酶和醛还原酶的过表达在生物合成异戊二醇中的应用。
3.氨基酸脱氨酶、α-酮异己酸双加氧酶、羧酸还原酶和醛还原酶的过表达在生物合成异戊二醇中的应用。
4.α-酮异己酸双加氧酶、羧酸还原酶和醛还原酶的过表达以及alsS、ilvC、ilvD、leuA、leuB、leuC、leuD的过表达在生物合成异戊二醇中的应用。
5.生物合成异戊二醇的菌株,其特征在于,羧酸还原酶和醛还原酶过表达。
6.生物合成异戊二醇的菌株,其特征在于,α-酮异己酸双加氧酶、羧酸还原酶和醛还原酶过表达。
7.生物合成异戊二醇的菌株,其特征在于,氨基酸脱氨酶、α-酮异己酸双加氧酶、羧酸还原酶和醛还原酶过表达。
8.生物合成异戊二醇的菌株,其特征在于,α-酮异己酸双加氧酶、羧酸还原酶和醛还原酶的过表达以及alsS、ilvC、ilvD、leuA、leuB、leuC、leuD的过表达在生物合成异戊二醇中的应用。
9.如权利要求1至4任一项所述的应用或如权利要求5至8任一项所述的菌株,其特征在于,所述醛还原酶包括甲基乙二醛还原酶GRE2或乙醇脱氢酶YqhD;所述α-酮异己酸双加氧酶包括SaHPD、SnHPD、AaHPD或RaHPD;
生物合成异戊二醇的底物为可发酵碳源,所述可发酵碳源包括3HIV、KIC、亮氨酸或葡萄糖。
10.生物合成异戊二醇的方法,其特征在于,以如权利要求5至8任一项所述的菌株为出发菌株;
所述底物为可发酵碳源,所述可发酵碳源包括3-HIV、KIC、亮氨酸或葡萄糖。
CN202010186932.5A 2020-03-17 2020-03-17 生物合成异戊二醇的菌株及方法 Pending CN111349644A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010186932.5A CN111349644A (zh) 2020-03-17 2020-03-17 生物合成异戊二醇的菌株及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010186932.5A CN111349644A (zh) 2020-03-17 2020-03-17 生物合成异戊二醇的菌株及方法

Publications (1)

Publication Number Publication Date
CN111349644A true CN111349644A (zh) 2020-06-30

Family

ID=71191487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010186932.5A Pending CN111349644A (zh) 2020-03-17 2020-03-17 生物合成异戊二醇的菌株及方法

Country Status (1)

Country Link
CN (1) CN111349644A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220325304A1 (en) * 2021-04-06 2022-10-13 Sasya Inc. Synthesis of beta-hydroxyisovalerate and methods of use
WO2023225030A3 (en) * 2022-05-17 2024-04-04 The Johns Hopkins University Biocatalytic use of nonheme iron proteins for molecular functionalization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688175A (zh) * 2007-02-09 2010-03-31 加利福尼亚大学董事会 利用重组微生物生产生物燃料
CN103789247A (zh) * 2014-02-14 2014-05-14 江南大学 一种全细胞转化生产α-酮异己酸的方法
CN106574238A (zh) * 2014-07-18 2017-04-19 Reg生命科学有限责任公司 微生物的脂肪二醇产生

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688175A (zh) * 2007-02-09 2010-03-31 加利福尼亚大学董事会 利用重组微生物生产生物燃料
CN103789247A (zh) * 2014-02-14 2014-05-14 江南大学 一种全细胞转化生产α-酮异己酸的方法
CN106574238A (zh) * 2014-07-18 2017-04-19 Reg生命科学有限责任公司 微生物的脂肪二醇产生

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALMA L. DI´AZ-PE´REZ ET AL.: "Bacterial L-leucine catabolism as a source of secondary metabolites", 《REV ENVIRON SCI BIOTECHNOL》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220325304A1 (en) * 2021-04-06 2022-10-13 Sasya Inc. Synthesis of beta-hydroxyisovalerate and methods of use
WO2023225030A3 (en) * 2022-05-17 2024-04-04 The Johns Hopkins University Biocatalytic use of nonheme iron proteins for molecular functionalization

Similar Documents

Publication Publication Date Title
US8906667B2 (en) Increasing NADPH-dependent products
US11597954B2 (en) Bioproduction of phenethyl alcohol, aldehyde, acid, amine, and related compounds
RU2521502C2 (ru) Микробиологический способ получения 1,2-пропандиола
US20100136638A1 (en) Production of 3-hydroxypropionic acid using beta-alanine/pyruvate aminotransferase
US20090203096A1 (en) Process for Production of Optically Active Alcohol
WO2010022763A1 (en) Method for the preparation of 2-hydroxy-isobutyrate
US10294479B2 (en) Candida carbonyl reductase and method for preparing (R)-lipoic acid precursor
Kratzer et al. Whole-cell bioreduction of aromatic α-keto esters using Candida tenuis xylose reductase and Candida boidinii formate dehydrogenase co-expressed in Escherichia coli
JP5320692B2 (ja) 酵母及びl−乳酸の製造方法
CN109609426B (zh) 一种以甲醇/甲醛和葡萄糖为共底物生产1,3-丙二醇的方法
CN111996176B (zh) 羰基还原酶突变体及其应用
CN111349644A (zh) 生物合成异戊二醇的菌株及方法
WO2020259569A1 (en) An engineered microbial strain for hydroxytyrosol production
JP5142268B2 (ja) 改良型没食子酸合成酵素および没食子酸の製造法
KR102149044B1 (ko) 2-히드록시 감마 부티로락톤 또는 2,4-디히드록시-부티레이트 의 제조 방법
US20140134690A1 (en) Microbes and methods for producing 1-propanol
CN114075524B (zh) 阿魏酸生产工程菌、其建立方法及其应用
CN109706189B (zh) 一种d-手性肌醇的制备方法
CN106957812B (zh) 一种产细胞色素p450酶及其电子传递系统工程菌的构建及其应用
EP2872639B1 (en) A microorganism modified for the production of 1,3-propanediol
KR102013058B1 (ko) 에탄올에서 부탄디올의 생산방법
KR102093546B1 (ko) 에탄올에서 아세토인의 생산방법
EP2796548A1 (en) Stereoselective production of (R)-3-quinuclidinol
CN117511831A (zh) 产麦角硫因的大肠杆菌的构建方法
CN114908129B (zh) 用于制备(r)-4-氯-3-羟基丁酸乙酯的脱氢酶

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination