JP2004087980A - 端面発光型半導体レーザ、電子機器、端面発光型半導体レーザの制御方法及び端面発光型半導体レーザの製造方法 - Google Patents

端面発光型半導体レーザ、電子機器、端面発光型半導体レーザの制御方法及び端面発光型半導体レーザの製造方法 Download PDF

Info

Publication number
JP2004087980A
JP2004087980A JP2002249650A JP2002249650A JP2004087980A JP 2004087980 A JP2004087980 A JP 2004087980A JP 2002249650 A JP2002249650 A JP 2002249650A JP 2002249650 A JP2002249650 A JP 2002249650A JP 2004087980 A JP2004087980 A JP 2004087980A
Authority
JP
Japan
Prior art keywords
semiconductor laser
edge
emitting semiconductor
layer
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002249650A
Other languages
English (en)
Inventor
Junji Matsuzono
松園 淳史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002249650A priority Critical patent/JP2004087980A/ja
Publication of JP2004087980A publication Critical patent/JP2004087980A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】ブロード・エリア型で横モードを安定な単一モードとできる端面発光型半導体レーザ及びその端面発光型半導体レーザを備える電子機器を提供すること。
また、その端面発光型半導体レーザの制御方法及びその端面発光型半導体レーザの製造方法を提供すること。
【解決手段】端面発光型半導体レーザ1の導波路の幅方向にフォトニックバンドギャップを生成したので、ブロード・エリア型の端面発光型半導体レーザ1であっても出射されたレーザ光の横モードを容易に単一化できる。
具体的には、第2クラッド層3bに屈折率格子を波長領域で形成し導波路の幅方向にフォトニックバンドギャップを生成したので、新たに屈折率格子用の領域を形成しなくても、簡単に出射されるレーザ光の横モードを単一化できる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、例えばブロード・エリア型として用いられる端面発光型半導体レーザ及びその端面発光型半導体レーザを備える電子機器に関する。又、本発明は、その端面発光型半導体レーザの制御方法及びその端面発光型半導体レーザの製造方法に関する。
【0002】
【従来の技術】
従来端面発光型半導体レーザで高出力を得るためには、レーザ光出力がストライプ幅にほぼ比例して増すことからブロード・エリア型と呼ばれるチップ構造があり、そのストライプ幅を10μm以上に拡大した構造が良く用いられている。
【0003】
【発明が解決しようとする課題】
しかし、ストライプ幅を10μm以上に拡大すると横モードが単一化せず、多モードが混在した状態で発振が起きてしまう。
【0004】
そのため、ニアフィールドパターン(NFP)はストライプ幅に沿って一定とならず、また縦・横のモード状態は注入電流・環境温度等に依存して不安定である。このことから、集光スポット径が小さく絞れなかったり、安定に変調が掛けられなかったりといった欠点があり、光ディスク等のストレージ用途や通信用途には使用し難い。
【0005】
従ってブロード・エリア型半導体レーザの応用は、横モードプロファイルや縦・横のモード安定性を重視しない、例えば固体レーザや倍周波発生器(SHG)の励起用光源等に限定されてしまうという問題があった。
【0006】
本発明は、このような課題を解決するためになされるもので、ブロード・エリア型で横モードを安定な単一モードとできる端面発光型半導体レーザ及びその端面発光型半導体レーザを備える電子機器を提供することを目的とする。
【0007】
また、その端面発光型半導体レーザの制御方法及びその端面発光型半導体レーザの製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の主たる観点に係る端面発光型半導体レーザは、発振周波数に対応するフォトニックバンドギャップを導波路の幅方向に具備することを特徴とする。ここで、フォトニックバンドギャップとはいわゆる光学的伝搬禁止帯のことであり、波長のオーダーで屈折率を周期的に変動させるとき、光がその存在が許されないある周波数領域を持つことになり、その許されない周波数領域をフォトニックバンドギャップという。
【0009】
本発明では、発振周波数に対応するフォトニックバンドギャップを導波路の幅方向に具備するので、その発振周波数に対する導波路の幅方向の波数ベクトルが存在できず、発振するレーザ光の横モードを容易に単一モードとすることができる。
【0010】
本発明の一の形態によれば、前記フォトニックバンドギャップは、導波路の幅方向に所定の屈折率を有する第1の領域と前記第1の領域に対し相対的に屈折率の高い第2の領域とで、波長領域で周期的に形成される屈折率分布により形成することを特徴とする。これにより、導波路の幅方向にフォトニックバンドギャップが形成され簡単に横モードを単一化できる。
【0011】
本発明の一の形態によれば、前記周期的屈折率分布は、前記発振周波数を発振する活性層を挟むクラッド層の少なくとも一方に形成することを特徴とする。これにより、新たに前記周期的屈折率分布のための領域を形成しなくても発振するレーザ光の横モードをフォトニックバンドギャップにより容易に単一モードとすることができる。
【0012】
本発明の一の形態によれば、前記第1の領域は、空気孔により形成されていることを特徴とする。これにより、屈折率差を大きくできるのでフォトニックバンドギャップを大きく開かせることができ、確実に発振周波数をそのフォトニックバンドギャップ内に収容し横モードを容易に単一化できる。
【0013】
本発明の一の形態によれば、前記空気孔は、前記活性層に届かない深さに形成された溝構造を具備することを特徴とする。これにより、活性層領域に空気との接触面を形成しないので、活性層における表面再結合による発光効率の低下を防止できる。また、エッチング処理等により簡単に周期的屈折率分布構造を形成でき、コストの低減及び製作時間の短縮化が図れる。
【0014】
本発明の一の形態によれば、前記周期的屈折率分布は、前記クラッド層と屈折率の異なるガイド層と前記クラッド層との二層を、その合わせ面でお互いが凹凸形状で嵌合するように積層することによって形成することを特徴とする。これにより、例えば略波型形状の合わせ面部分を持つガイド層とクラッド層とで、フォトニックバンドギャップを導波路の幅方向に形成することができ、レーザ光の横モードを容易に単一化できる。
【0015】
本発明の一の形態によれば、前記周期的屈折率分布は、前記クラッド層と前記活性層との合わせ面でお互いが凹凸形状で嵌合するように積層することによって形成することを特徴とする。これにより、例えば略波型形状の合わせ面部分を持つクラッド層と活性層とで、より簡単な構成でフォトニックバンドギャップを導波路の幅方向に形成することができ、レーザ光の横モードを容易に単一化できる。
【0016】
本発明の他の観点に係る電子機器は、発振周波数に対応するフォトニックバンドギャップを導波路の幅方向に具備する端面発光型半導体レーザを備えることを特徴とする。
【0017】
本発明では、発振周波数に対応するフォトニックバンドギャップを導波路の幅方向に具備する端面発光型半導体レーザを備えるので、ストライプ幅を10μm以上に拡大し高出力としても、横モードを単一モードとすることができ、光ディスク等のストレージ用途や通信用途等に使用できる。
【0018】
本発明の他の観点に係る端面発光型半導体レーザの制御方法は、発振周波数に対応するフォトニックバンドギャップを導波路の幅方向に形成し、発振するレーザ光の横モードを前記フォトニックバンドギャップにより単一モードとすることを特徴とする。
【0019】
本発明では、発振周波数に対応するフォトニックバンドギャップを導波路の幅方向に形成し、そのフォトニックバンドギャップにより発振周波数に対する導波路幅方向の波数ベクトルの存在を排除し、発振するレーザ光の横モードを単一モードとするので、ストライプ幅を10μm以上に拡大しても発振するレーザ光の横モードを容易に単一モードとすることができる。
【0020】
本発明の他の観点に係る端面発光型半導体レーザの製造方法は、発振周波数に対応するフォトニックバンドギャップを導波路の幅方向に生成するように、前記幅方向に所定の屈折率を有する第1の領域と前記第1の領域に対し相対的に屈折率の高い第2の領域とで、波長領域で周期的な屈折率分布を有するように半導体層を形成する工程と、前記半導体層の上下に電極を形成する工程とを具備することを特徴とする。ここで半導体層とは、例えば活性層、グラッド層及びガイド層等をいう。
【0021】
本発明では、発振周波数に対応するフォトニックバンドギャップを導波路の幅方向に生成するように、前記幅方向に所定の屈折率を有する第1の領域と前記第1の領域に対し相対的に屈折率の高い第2の領域とで、波長領域で周期的な屈折率分布を有するように半導体層を形成する工程と半導体層の上下に電極を形成する工程とを具備するので、高出力でも容易にレーザ光の横モードが単一モードとされた端面発光型半導体レーザを製造できる。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき説明する。尚、以下に実施形態を説明するにあたっては、端面発光型半導体レーザの例としてゲインガイド型の端面発光型半導体レーザについて説明するが、これに限られるものではなくインデックス・ガイド型の端面発光型半導体レーザ等であってもよい。
【0023】
図1は本発明の第1の実施形態に係る端面発光型半導体レーザの概略斜視図、図2は図1の内p電極及び絶縁層を除いた状態の説明図、図3は本発明の第1の実施形態に係る端面発光型半導体レーザの製造プロセスのうち結晶成長工程の説明図、図4は図3の次の工程であるレジスト形成工程の説明図、図5は図4の次の工程であるエッチング及びレジスト除去工程の説明図、図6は図5の次の工程である絶縁層及びストライプ形成工程の説明図、図7は図6の次の工程であるp電極形成工程の説明図及び図8は図7の次の工程である基板裏面研磨及びn電極形成工程の説明図である。
【0024】
図1に示すように、端面発光型半導体レーザ1は、結晶成長の種結晶である例えばGaAsから形成される基板2、その基板2に結晶成長され活性層を挟みこんで光やキャリアを閉じ込める一対のクラッド層3内の基板側の第1クラッド層3a、又クラッド層3に挟まれレーザ光を発振する例えばp−GaAsから形成される活性層4、その活性層4に結晶成長される第2クラッド層3b、更に第2クラッド層3bに結晶成長され後述するp電極と半導体との接触を電気的に確実なものとするコンタクト層5、そのp電極が導波路方向(図1のZ方向)にストライプ構造となるようにコンタクト層5の一部を覆う絶縁層6、そしてその絶縁層6及び一部のコンタクト層5に蒸着等により形成されたp電極7、更に基板2の第1クラッド層3a側と反対側に蒸着等により形成されたn電極8及び導波路方向に垂直なへき開により形成される対向する一対の反射鏡面9等を具備する。
【0025】
ここで、基板2はクラッド層3や活性層4を結晶成長させるためのものであり、規則正しい格子をきれいに保ち原子同士をしっかり形成しながら積み重ねるためのものである。
【0026】
また、活性層4の略中央部にはレーザ光が発光する発光領域11がp電極7のストライプ幅より少し広がって形成され、この発光領域11の反射鏡面9の一方からレーザ光が出射される。
【0027】
更に第1クラッド層3aは例えばn−AlGaAsにより形成されており第2クラッド層3bは例えばp−AlGaAsにより形成されている。
【0028】
また、第2クラッド層3bには図1及び図2に示すように導波路の幅方向(図1のX方向)に周期的に形成された所定の屈折率の第1の領域として、例えば空気が充填された空気溝10がコンタクト層5に連通して形成され、その周期的に形成された空気溝10の間の第2クラッド層3bが第1の領域に対し相対的に屈折率の高い第2の領域となっている。ただし、空気溝10は第2クラッド層3bではその下の層である活性層4との境界線の直前で止まっている。これによって、活性層領域に表面が形成されないので、表面再結合により発光効率が低下するのを防止できる。また、加工劣化による信頼性の低下を避けることもできることとなる。
【0029】
ここで、屈折率の低い第1の領域として空気溝10を形成したが空気の代わりに窒素ガスや高分子材料等を充填しても良い。ただし、フォトニックバンドギャップの広さは屈折率格子(以下周期的な屈折率分布を「屈折率格子」と言う。)の振幅(屈折率の差)が大きいほど広くなるので、屈折率の低い第1の領域に空気溝10を形成し屈折率格子とするのが、フォトニックバンドギャップの広さを大きくすると言う観点等からは最も望ましい。フォトニックバンドギャップが狭いと導波路の幅方向への伝搬を禁止できる入射光波の振動数の許容値が小さくなってしまうからである。
【0030】
また、図1及び図2では空気溝10による屈折率格子が反射鏡面9の横幅(X方向)の略全長に掛けて形成されているが、少なくとも発光領域11に形成されていれば横幅(X方向)の略全長に掛けて形成されていなくても良い。
【0031】
更に空気溝10は、図2に示すように一方の反射鏡面9から他方の反射鏡面9まで導波路に沿って共振器長の全長に渡って形成されているが、これに限らず共振器長の一部であっても良い。
【0032】
また、屈折率格子の周期Λは発振波長領域であるが詳しくは入射光波の波長がλのとき、次のように設計される。
ここでneffは、共振器内をストライプ幅方向(導波路の幅方向、図1及び図2のX方向)に伝搬する光波が実効的に感じる屈折率であり、各々の場所の屈折率を光波モードの分布で重み付けし平均することにより求まる値である。
【0033】
例えば第2クラッド層3bの屈折率をn、空気溝10の屈折率をn、空気溝10の幅をWとすると溝のある第2クラッド層3b部分の平均の屈折率は以下のようである。
尚、λ=850nmとし、p−GaAsの活性層4の屈折率を3.6、p−AlGaAsの第2クラッド層3bの屈折率を3.3、Wを仮にΛ/2とすれば、Λは120nm(全体に活性層4の屈折率を適用した場合)〜200nm(全体に第2クラッド層3bの平均の屈折率を適用した場合)程度の寸法範囲を取ることとなり、電子線ビーム描画法や干渉露光法等を用いることでフォトレジストに対するパターンの形成が十分可能なサイズとなる。
【0034】
また、図1及び図2における空気溝10のサイズは説明の都合上決めたものであり実際のサイズを現すわけではない。他の図面でも同様である。
【0035】
更にコンタクト層5は、半導体である第2クラッド層3bと金属であるp電極7との間の電子をスムースに橋渡しするものでオーミック接触を取るものであり、GaAsに対し例えば亜鉛(Zn)のような不純物を高濃度にドープしたものが使われる。
【0036】
また、p電極7及びn電極8は例えば金をベースにした多層構造であり、半導体面との機械的接触を良くしたり、電極金属である金が半導体と混じり過ぎないようにしている。
【0037】
次に、このように構成されたゲインガイド型の端面発光型半導体レーザ1の動作及び制御方法についてフォトニックバンドギャップを中心に簡単に説明する。
【0038】
まず、レーザ光はストライプ状のp電極7に沿って活性層4中にできている反転分布領域に導かれながら、半導体結晶中の導波路を進行/増幅をし、結晶境界の端面にできている平行な反射鏡面9で反射を繰り返し発振/生成される。
【0039】
このとき、出射側の反射鏡面9の発光領域11がブロード・エリア型のように広く例えば10μm程度以上有ると導波路の幅方向に、高次モードに含まれる波数ベクトルが存在できることとなるが、第2クラッド層3b中の導波路の幅方向(図1及び2のX方向)に形成された屈折率格子によりブラッグ反射が生じ、その屈折率差等の格子条件により定められたフォトニックバンドギャップが導波路の幅方向に生成されることとなる。
【0040】
ここで、発振周波数が生成されたフォトニックバンドギャップの略中央を占めるように屈折率格子の格子条件例えば周期Λ等が定められているので、フォトニックバンドギャップ中の発振周波数の光は存在できず、レーザ光が発振/生成される導波路の幅方向には、高次モードに含まれる波数ベクトルが存在できないこととなり、出射されるレーザ光の横モードの単一化が図れることとなる。
【0041】
次に、このように構成されたゲインガイド型の端面発光型半導体レーザ1の製造方法について説明する。
【0042】
まず、図3に示すように充分に洗浄した種結晶である例えばGaAs基板を用意し、この上にn−AlGaAs第1クラッド層3aを例えば化学的反応を利用した成長法であるMOCVD(Metal Organic ChemicalVapour Deposition)法等により結晶成長させる。以下同様にn−AlGaAs第1クラッド層3aの上にp−GaAs活性層4、その上にp−AlGaAs第2クラッド層3b、更にその上にコンタクト層5を結晶成長させる。
【0043】
次に、図4に示すようにコンタクト層5の上にフォトレジストを塗布し、電子線ビーム描画等により空気溝10の部分となる所を除いてフォトレジスト12を形成する。その後、例えば塩素系ガスによるRIE(Reactive IonEtching)法によりエッチングし、更にフォトレジスト12を除去して図5に示すようにコンタクト層5及び第2クラッド層3bに連通する空気溝10を形成する。この際、活性層4に届かないようにすることが大切である。活性層4の領域に表面を作ると表面再結合により発光効率が低下する等不都合が生じるからである。
【0044】
また、フォトレジスト12に形成したパターンをマスクとしてエッチングを行う方法としては色々有るが、垂直形状を維持して高いアスペクト比が必要であるため、選択比が大きくとれるRIE法が望ましい。
【0045】
次に、コンタクト層5の上に絶縁層6を蒸着或いはスパッタリングし、最終的にストライプ幅となる分だけリフトオフ法又はエッチング法により除去し、図1及び図6に示すように発光領域11より少し小さく中央部分を除いて、その両側に形成する。
【0046】
更に図7に示すように、p電極7となる電極層を絶縁層6及び絶縁層6が除去されたコンタクト層5に蒸着し形成する。その後、基板2を研磨し厚さを100μm程度にし、研磨表面をエッチング等できれいに整えn電極8となる電極層を蒸着して図8に示すように形成する。
【0047】
以上で半導体レーザとしての積層構造は略できあがったが、端面発光半導体レーザとして製品化するためには、例えば鏡としての機能を持たせるバー状へき開、反射鏡面9の保護等のための端面コート、個別のチップに分離するペレット化、ヒートシンク上にハンダ付けするダイ・ボンド及び外気と遮断するキャップ・シール等の工程が必要である。
【0048】
このように本実施形態によれば、端面発光型半導体レーザ1の導波路の幅方向にフォトニックバンドギャップを生成したので、ブロード・エリア型の端面発光型半導体レーザ1であっても出射されたレーザ光の横モードを容易に単一化できる。
【0049】
具体的には、第2クラッド層3bに屈折率格子を波長領域で形成し導波路の幅方向にフォトニックバンドギャップを生成したので、新たに屈折率格子用の領域を形成しなくても、簡単に出射されるレーザ光の横モードを単一化できる。
【0050】
また、相対的に屈折率の低い第1の領域を空気孔としたので、フォトニックバンドギャップを大きく開くことができ、確実に発振周波数をそのフォトニックバンドギャップ内に収容できる。
【0051】
更に第1の領域の空気孔を活性層4に届かない程度の深さに形成された溝構造としたので、活性層領域に空気との接触面ができず活性層における表面再結合による発光効率の低下等の不都合を防止しながら、レーザ光の横モードを単一化できる。
【0052】
また、第2クラッド層3bに屈折率格子を波長領域で形成したので、新たに屈折率格子用の領域を形成しなくてもよく、製造工程の削減や製造時間の短縮化が可能となる。
【0053】
次に、本発明の第2の実施形態に係るゲインガイド型の端面発光型半導体レーザについて説明する。
【0054】
図9は本発明の第2の実施形態に係る端面発光型半導体レーザの概略斜視図、図10は図9の内波型形状の合わせ面より上を除いた状態の説明図、図11は本発明の第2の実施形態に係る端面発光型半導体レーザの製造プロセスのうち結晶成長工程の説明図、図12は図11の次の工程であるレジスト形成工程の説明図、図13は図12の次の工程であるエッチング及びレジスト除去工程の説明図、図14は図13の次の工程である結晶再成長工程の説明図、図15は図14の次の工程である絶縁層、ストライプ形成及びp電極形成工程の説明図及び図16は基板裏面研磨及びn電極形成工程の説明図である。
【0055】
図9に示すように、端面発光型半導体レーザ101は、基本的構造は一部を除けば第1の実施形態に係る端面発光型半導体レーザ1と同様であり、例えばn−GaAsから形成される基板102、その基板102に結晶成長された一対のクラッド層103内の基板側のn−Al0.3Ga0.7Asから形成される第1クラッド層103a、又その第1クラッド層103aに結晶成長されたn−Al0.07Ga0.93Asから形成されるガイド層113、そのガイド層113に結晶成長されたn−Al0.2Ga0.8Asから形成されるバッファ層114、更にそのバッファ層114に結晶成長されたp−GaAsから形成される厚さ0.2μm程度の活性層104、その活性層104に結晶成長されるp−Al0.3Ga0.7Asから形成される第2クラッド層103b、その第2クラッド層103bに結晶成長されたコンタクト層105、そのコンタクト層105の一部を覆う絶縁層106、そしてその絶縁層106及び一部のコンタクト層105に形成されたp電極107、更に基板102の第1クラッド層103a側と反対の面に形成されたn電極108及び一対の反射鏡面109等を具備する。
【0056】
ここで、基板102及び活性層104の略中央部に形成された発光領域111は第1の実施形態の基板2及び発光領域11と同様であり説明を省略する。
【0057】
第1クラッド層103aは、第1の実施形態の第1クラッド層3aと異なり図9及び図10に示すようにガイド層113との合わせ面部分で導波路の幅方向(図9および図10のX方向)にクラッド層凹部115及びクラッド層凸部116が連続する例えば波型形状を形成しており、その振幅は例えば0.15μm程度である。
【0058】
また、そのクラッド層凹部115及びクラッド層凸部116が連続する図9及び図10に示す周期Λは、第1の実施形態に係る端面発光型半導体レーザ1の屈折率格子の周期Λを求める方法と同様の方法により求めることができるので説明を省略する。
【0059】
更に、第1クラッド層103aのガイド層113との合わせ面部分での波型形状は、図10に示すように一方の反射鏡面109から他方の反射鏡面109まで導波路に沿って(図10のZ方向)共振器長の全長に渡って形成されているが、これに限らず共振器長の一部であっても良い。
【0060】
次にガイド層113は、図10に示すようなガイド層113との合わせ面部分が波型形状に形成された第1クラッド層103aにそのまま結晶成長されたもので、クラッド層凹部115にガイド層凸部118が、クラッド層凸部116にガイド層凹部117が完全に密着し、いわば両者が嵌合するように第1クラッド層103aの波型形状の振幅、周期等を同じに形成されている。
【0061】
また、ガイド層113の厚さは略は略0.15μmであり、図9に示すようにクラッド層凸部116の先端がバッファ層114にほとんど届いている。
【0062】
以上の第1クラッド層103aによるクラッド層凸部116と、ガイド層113によるガイド層凸部118との組み合わせにより、所定の屈折率の第1の領域であるクラッド層凸部116とそれより屈折率の高い第2の領域であるガイド層凸部118とが波長領域で周期的に形成され、屈折率格子が第1クラッド層103aとガイド層113との接合部分で形成されることとなる。
【0063】
尚、図9及び図10では屈折率格子が反射鏡面9の横幅(X方向)の略全長に渡って形成されているが、少なくとも発光領域111に形成されていれば横幅(X方向)の略全長に渡って形成されていなくても良い。
【0064】
また、屈折率格子として波型形状を説明したがこれに限られるものではなく溝形状や鋸歯形状等であっても、波長領域で屈折率の周期的分布が導波路の幅方向に形成できれば良い。
【0065】
更に図9及び図10中の波型形状のサイズは説明の都合上決めたものであり実際のサイズを現すわけではない。他の図面でも同様である。
【0066】
次にバッファ層114は、厚さが0.1μm程度であり、キャリアを活性層104に閉じ込めると共にガイド層113まで光の漏れを導くものである。キャリアの閉じ込めと光を導くことの作用の程度はAlとGaの組成で決まり、Alの濃度を上げればキャリアの活性層104への閉じ込めは強くなるが、同時に光も閉じ込められるためガイド層113に到達しにくくなるという相反した条件となる。
【0067】
従って上述した0.1μm程度の厚さはキャリアの閉じ込めと光を導くことの両方を勘案してバッファ層114の組成比と共に決められたものである。
【0068】
また、第2クラッド層103bは第1の実施形態と異なり空気溝10による屈折率格子は形成されていない。
【0069】
更にコンタクト層105、絶縁層106、p電極107及びn電極108は第1の実施形態のコンタクト層5、絶縁層6、p電極7及びn電極8と同様であるので説明は、省略する。
【0070】
尚、ガイド層113と第1クラッド層103aによる波型形状により屈折率格子を形成したが、これに限られるものでなく第1クラッド層103aに結晶成長させた活性層104にバッファ層を結晶成長させ、更にガイド層を結晶成長させてそのガイド層に第2クラッド層103bを結晶成長させることによって、ガイド層と第2クラッド層103bとの合わせ面で相互に凹凸部分が嵌合するように波型形状を設け、第1クラッド層103aの場合と同様に、導波路の幅方向に屈折率格子を形成することもできる。
【0071】
また、第1クラッド層103aとガイド層113とでまず第1番目の屈折率格子を導波路の幅方向に形成し、更に第2クラッド層103bと別のガイド層とで2番目の屈折率格子を導波路の幅方向に形成することもできる。これによって、導波路の幅方向へのフォトニックバンドギャップが強化され、横モードの単一化がより確実なものとできる。
【0072】
次に、このように構成されたゲインガイド型の端面発光型半導体レーザ101の動作及び制御方法については、第1の実施形態のゲインガイド型の端面発光型半導体レーザ1の動作及び制御方法と屈折率格子が形成されている場所が第2クラッド層3b中から第1クラッド層103aとガイド層113との波型形状の組み合わせ部分に変わるだけで、導波路の幅方向(図9及び図10のX方向)に形成された屈折率格子によりブラッグ反射が生じ、その屈折率差等の格子条件により定められたフォトニックバンドギャップが導波路の幅方向に生成される等は同様であり、その説明を省略する。
【0073】
次に、このように構成されたゲインガイド型の端面発光型半導体レーザ101の製造方法について説明する。
【0074】
まず、図11に示すように充分に洗浄した種結晶である例えばn−GaAs基板102を用意し、この上にn−Al0.3Ga0.7As第1クラッド層103aを例えば化学的反応を利用した成長法であるMOCVD(Metal Organic Chemical Vapour Deposition)法等により結晶成長させる。
【0075】
次に、図12に示すように第1クラッド層103aの上にフォトレジストを塗布し、電子線ビーム描画等によりクラッド層凹部115の部分となる所を除いてフォトレジスト112を形成する。その後第1クラッド層103a及びフォトレジスト112を、例えば塩素系ガスによるRIE(Reactive Ion Etching)法等によりエッチングし、更にフォトレジストを除去して図13に示すように、クラッド層凹部115とクラッド層凸部116とが連続する波型形状を次のガイド層113との合わせ面部分に、その振幅が0.15μm程度で周期Λが発振周波数が生成されるフォトニックバンドギャップの略中央にくるように形成する。
【0076】
また、その波型形状が形成された第1クラッド層103aにn−Al0.07Ga0.93Asガイド層113を、更にそのガイド層113に厚さ0.1μm程度のn−Al0.2Ga0.8Asバッファ層114を、またそのバッファ層114に厚さ0.2μm程度のp−GaAs活性層104、その活性層104にp−Al0.3Ga0.7As第2クラッド層103b、その第2クラッド層103bにコンタクト層105を夫々結晶成長させる。これにより、クラッド層凹部115にガイド層凸部118が、クラッド層凸部116にガイド層凹部117が完全に密着して第1クラッド層103aとガイド層113とにより、導波路の幅方向に屈折率格子が形成されることとなる。
【0077】
次に、コンタクト層105の上に絶縁層106を蒸着或いはスパッタリングし、最終的にストライプ幅となる分だけリフトオフ法又はエッチング法により除去し、図9及び図15に示すように発光領域111より少し小さく中央部分を除いて、その両側に絶縁層106を形成する。
【0078】
更に図15に示すように、p電極107となる電極層を絶縁層106及び絶縁層106が除去されたコンタクト層105に蒸着し形成する。その後、基板102を研磨し厚さを100μm程度にし、研磨表面をエッチング等できれいに整えn電極108となる電極層を蒸着して図16に示すように形成する。
【0079】
以上で半導体レーザとしての積層構造は略できあがったが、端面発光型半導体レーザとして製品化するためには、例えば鏡としての機能を持たせるバー状へき開、反射鏡面109の保護等のための端面コート、個別のチップに分離するペレット化、ヒートシンク上にハンダ付けするダイ・ボンド及び外気と遮断するキャップ・シール等の工程が必要である。
【0080】
このように本実施形態によれば、端面発光型半導体レーザ101の導波路の幅方向にフォトニックバンドギャップを生成したので、ブロード・エリア型の端面発光型半導体レーザであっても出射されたレーザ光の横モードを容易に単一化できる。
【0081】
具体的には、第1クラッド層103aとガイド層113とを合わせ面部分で波型形状に組み合わせて屈折率格子を波長領域で形成し、導波路の幅方向にフォトニックバンドギャップを生成したので、出射されたレーザ光の横モードを確実に単一化できる。
【0082】
次に、本発明の第3の実施形態に係るゲインガイド型の端面発光型半導体レーザについて説明する。
【0083】
図17は本発明の第3の実施形態に係る端面発光型半導体レーザの概略斜視図、図18は図17の内基板に結晶成長された第1クラッド層の活性層との合わせ面より上を除いた状態の説明図、図19は本発明の第3の実施形態に係る端面発光型半導体レーザの製造プロセスのうち結晶成長工程の説明図、図20は図19の次の工程であるレジスト形成工程の説明図、図21は図20の次の工程であるエッチング及びレジスト除去工程の説明図、図22は図21の次の工程である結晶再成長工程の説明図、図23は図22の次の工程である絶縁層、ストライプ形成及びp電極形成工程の説明図及び図24は基板裏面研磨及びn電極形成工程の説明図である。
【0084】
図17に示すように、端面発光型半導体レーザ201は、基本的構造は第1の実施形態に係る端面発光型半導体レーザ1と同様であり、例えばGaAsから形成される基板202、その基板202に結晶成長された一対のクラッド層203内の基板側のn−AlGaAsから形成される第1クラッド層203a、又その第1クラッド層203aに結晶成長されたp−GaAsから形成される活性層204、その活性層204に結晶成長されるp−AlGaAsから形成される第2クラッド層203b、その第2クラッド層203bに結晶成長されたコンタクト層205、そのコンタクト層205の一部を覆う絶縁層206、そしてその絶縁層206及び一部のコンタクト層205に形成されたp電極207、更に基板202の第1クラッド層203a側と反対の面に形成されたn電極208及び一対の反射鏡面209等を具備する。
【0085】
ここで、基板202及び活性層204の略中央部に形成された発光領域211は第1の実施形態の基板2及び発光領域11と同様であり説明を省略する。
【0086】
第1クラッド層203aは、第1の実施形態の第1クラッド層3aと異なり図17及び図18に示すように、活性層204との合わせ面部分で導波路の幅方向(図17および図18のX方向)にクラッド層凹部215及びクラッド層凸部216が連続する例えば波型形状を形成している。
【0087】
また、そのクラッド層凹部215及びクラッド層凸部216が連続する図17及び図18に示す周期Λは、第1の実施形態に係る端面発光型半導体レーザ1の屈折率格子の周期Λを求める方法と同様の方法により求めることができるので説明を省略する。
【0088】
更に、第1クラッド層203aの活性層204との合わせ面部分での波型形状は、図18に示すように一方の反射鏡面209から他方の反射鏡面209まで導波路に沿って(図18のZ方向)共振器長の全長に渡って形成されているが、これに限らず共振器長の一部であっても良い。
【0089】
次に活性層204は、図18に示すような活性層204との合わせ面部分が波型形状に形成された第1クラッド層203aにそのまま結晶成長されたものである。
【0090】
また、活性層204は第1クラッド層203aと活性層204との合わせ面部分で、クラッド層凹部215に活性層凸部218が、クラッド層凸部216に活性層凹部217が完全に密着し、いわば両者が嵌合するように第1クラッド層203aの波型形状の振幅、周期等と同じに形成されている。
【0091】
以上の第1クラッド層203aによるクラッド層凸部216と、活性層204による活性層凸部218との組み合わせにより、所定の屈折率の第1の領域であるクラッド層凸部216とそれより屈折率の高い第2の領域である活性層凸部218とが波長領域で周期的に形成され、屈折率格子が第1クラッド層203aと活性層213との接合部分で形成されることとなる。
【0092】
更に活性層204は、図17に示すように第2クラッド層203bとの合わせ面部分でも、第1クラッド層203aの波型形状と同様な振幅及び周期Λ等の波型形状を形成しており、第2クラッド層203bと活性層204との接合部分でも導波路の幅方向に屈折率格子が形成されている。
【0093】
尚、図17及び図18では屈折率格子が反射鏡面209の横幅(X方向)の略全長に渡って形成されているが、少なくとも発光領域211に形成されていれば横幅(X方向)の略全長に渡って形成されていなくても良い。
【0094】
また、屈折率格子として波型形状を説明したがこれに限られるものではなく鋸歯形状等であっても、波長領域で屈折率の周期的分布が導波路の幅方向に形成できれば良い。
【0095】
更に図17及び図18中の波型形状のサイズは説明の都合上決めたものであり実際のサイズを現すわけではない。他の図面でも同様である。
【0096】
次に、第2クラッド層203bは第1の実施形態と異なり空気溝10による屈折率格子ではなく、第1クラッド層203aとの合わせ面で活性層204に形成された波型形状の振幅及び周期Λ等と同じ波型形状が、活性層204との合わせ面部分に形成されている。
【0097】
更にコンタクト層205、絶縁層206、p電極207及びn電極208は第1の実施形態のコンタクト層5、絶縁層6、p電極7及びn電極8と同様であるので説明は、省略する。
【0098】
尚、第1クラッド層203aと活性層204との波型形状の組み合わせ部分と第2クラッド層203bと活性層204との波型形状の組み合わせ部分とにより両側に屈折率格子を形成したが、これに限られるものでなく例えば第1クラッド層203aと活性層204との波型形状の組み合わせ部分にのみ導波路の幅方向に屈折率格子を形成することもできる。
【0099】
次に、このように構成されたゲインガイド型の端面発光型半導体レーザ201の動作及び制御方法については、第1の実施形態のゲインガイド型の端面発光型半導体レーザ1の動作及び制御方法と、屈折率格子が形成されている場所が第2クラッド層3b中から、第1クラッド層203aと活性層204との波型形状の組み合わせ部分と第2クラッド層203bと活性層204との波型形状の組み合わせ部分とに変わるだけで、導波路の幅方向(図17及び図18のX方向)に形成された屈折率格子によりブラッグ反射が生じ、その屈折率差等の格子条件により定められたフォトニックバンドギャップが導波路の幅方向に生成される等は同様であり、その説明は省略する。
【0100】
次に、このように構成されたゲインガイド型の端面発光型半導体レーザ201の製造方法について説明する。
【0101】
まず、図19に示すように充分に洗浄した種結晶である例えばGaAs基板202を用意し、この上にn−AlGaAs第1クラッド層203aを例えば化学的反応を利用した成長法であるMOCVD(Metal Organic Chemical Vapour Deposition)法等により結晶成長させる。
【0102】
次に、図20に示すように第1クラッド層203aの上にフォトレジストを塗布し、電子線ビーム描画等によりクラッド層凹部215の部分となる所を除いてフォトレジスト212を形成する。その後第1クラッド層203a及びフォトレジスト212を、例えば塩素系ガスによるRIE(Reactive Ion Etching)法等によりエッチングし、更にフォトレジストを除去して図21に示すように、クラッド層凹部215とクラッド層凸部216とが連続する波型形状を次の活性層204との合わせ面部分に、形成する。
【0103】
ここで、波型形状はその周期Λ等を生成されるフォトニックバンドギャップの略中央に発振周波数がくるように形成する。
【0104】
また、図22に示すように波型形状が形成されたn−AlGaAs第1クラッド層203aにp−GaAs活性層204、その活性層204にp−AlGaAs第2クラッド層203b、その第2クラッド層203bにコンタクト層205を夫々結晶成長させる。これにより、クラッド層凹部215に活性層凸部218が、クラッド層凸部216に活性層凹部217が完全に密着して第1クラッド層203aと活性層204とにより、導波路の幅方向に屈折率格子が形成されることとなる。
【0105】
更に図22に示すように、活性層204と第2クラッド層203bとの合わせ面部分でも、第1クラッド層203aと活性層204との合わせ面部分での波型形状と同じ振幅及び周期Λ等により、同じ形状の波型形状が形成される。
【0106】
次に、コンタクト層205の上に絶縁層206を蒸着或いはスパッタリングし、最終的にストライプ幅となる分だけリフトオフ法又はエッチング法により除去し、図17及び図23に示すように発光領域211より少し小さく中央部分を除いて、その両側に絶縁層206を形成する。
【0107】
更に図23に示すように、p電極207となる電極層を絶縁層206及び絶縁層206が除去されたコンタクト層205に蒸着し形成する。その後、基板202を研磨し厚さを100μm程度にし、研磨表面をエッチング等できれいに整えn電極208となる電極層を蒸着して図24に示すように形成する。
【0108】
以上で半導体レーザとしての積層構造は略できあがったが、端面発光型半導体レーザとして製品化するためには、例えば鏡としての機能を持たせるバー状へき開、反射鏡面209の保護等のための端面コート、個別のチップに分離するペレット化、ヒートシンク上にハンダ付けするダイ・ボンド及び外気と遮断するキャップ・シール等の工程が必要である。
【0109】
このように本実施形態によれば、端面発光型半導体レーザ201の導波路の幅方向にフォトニックバンドギャップを生成したので、ブロード・エリア型の端面発光型半導体レーザであっても出射されるレーザ光の横モードを容易に単一化できる。
【0110】
具体的には、第1クラッド層203aと活性層204との合わせ面部分を波型形状に組み合わせて屈折率格子を波長領域で導波路の幅方向に形成し、更に活性層204と第2クラッド層203bとの合わせ面部分を第1クラッド層203aと活性層204との合わせ面部分での波型形状と同じ形状となるように組み合わせて屈折率格子を波長領域で導波路の幅方向に形成したので、導波路の幅方向にフォトニックバンドギャップを生成でき、出射されたレーザ光の横モードを確実に単一化できる。
【0111】
また、活性層204と第2クラッド層203bとの合わせ面部分の波型形状は、波型形状が形成された第1クラッド層203aに活性層204及び第2クラッド層203bをそのまま結晶成長させて形成することとしたので、製造工程の削減及び活性層の劣化等を防ぎながら確実に横モードを単一化できる。
【0112】
次に、本発明の第4の実施形態に係るゲインガイド型の端面発光型半導体レーザを備えた電子機器について、その例として光磁気記録再生装置について説明する。尚、この光磁気記録再生装置に備えられたゲインガイド型の端面発光型半導体レーザは端面発光型半導体レーザ1で説明するが、これに限られるものではなく端面発光型半導体レーザ101及び端面発光型半導体レーザ201のいずれであっても良い。
【0113】
図25は本発明の第4の実施形態に係る電子機器の例である光磁気記録再生装置の概略構成図である。
【0114】
光磁気記録再生装置301は、図25に示すように例えばCD−R(CD−Recordable)やCD−RW(CD−ReWritable)等の光ディスクを回転させるスピンドルモータ302、光ディスクから情報を読込んだり書き込んだりするピックアップユニット303、外部の情報を取り入れたり逆に外部に情報を出力するインターフェース部304及びこれらを制御する制御部305等から構成されている。
【0115】
ここで、ピックアップユニット303は図25に示すように、横モードが単一であるレーザ光を出射するブロード・エリア型の端面発光型半導体レーザ1、その端面発光型半導体レーザ1から出射されたレーザ光をトラッキング・サーボに必要な3スポットを生じさせるグレーティング306、往路のレーザ光を略100%透過させる偏光BS(PBS:polarized beam splitter)307、偏光BS307を透過したレーザ光を平行光にするコリメータ・レンズ(CL:coliimator lens)308、コリメータ・レンズ308により平行光にされたレーザ光を円偏光に変換するλ/4板309、λ/4板309により円偏光にされたレーザ光をCD−RW等の光ディスク310に焦点を結ぶ対物レンズ311、復路で偏光BS307によって反射されたレーザ光に焦点サーボに必要な非点収差を発生させるシリンドリカル・レンズ312及びピット信号等を受け取るパターン分割PD(PD:Photo Diode)313等により構成される。
【0116】
次に、このように構成されたゲインガイド型の端面発光型半導体レーザ1を備えた電子機器の例である光磁気記録再生装置301の動作について、光学的動作を中心に簡単に説明する。
【0117】
まず、光磁気記録再生装置301の電源が投入されると制御部305の指示によりスピンドルモータ302が所定の回転数で回転し、同時にスレッドモータ(図示しない)を駆動させ、所定の光ディスク310の位置にピックアップユニット303を移動させる。
【0118】
また、制御部305の制御下端面発光型半導体レーザ1が共振され、導波路の幅方向に形成された波長領域の屈折率格子により生成されたフォトニックバンドギャップにより、高次モードに含まれる導波路の幅方向の波数ベクトルが存在できなくなり、横モードがシングルモード化された1W以上の高出力のレーザ光が発光領域11から出射される。
【0119】
更に端面発光型半導体レーザ1から出射されたレーザ光はグレーティング306を通り、偏光BS307を透過しコリメータ・レンズ308により平行光にされ、λ/4板309で円偏光になり、対物レンズ311により光ディスク310例えばCD−RW等の所定位置に、高出力レーザ光の焦点が結ばれ必要な情報が書き込まれることとなる。
【0120】
また、再生の場合は光ディスク310により反射されたレーザ光が復路に入り逆コースを偏光BS307までたどり、偏光BS307で略100%シリンドリカル・レンズ312方向に反射され、シリンドリカル・レンズ312に入射し非点収差を発生させ、パターン分割PD313に入射する。
【0121】
更にレーザ光が入射したパターン分割PD313は、ピット信号、トラッキング信号及びフォーカス信号等を受け取り、それらの信号情報を制御部305に出力する。
【0122】
制御部305は、入力された信号情報をインターフェース部304に出力し、外部の表示装置等の電子機器に情報が出力され、或いは光磁気記録再生装置301に表示装置等の出力手段があるときはこれらにより信号情報が表示情報等に変換される。
【0123】
このように本実施形態によれば、発振周波数に対応するフォトニックバンドギャップを導波路の幅方向に具備する端面発光型半導体レーザを備えるので、ストライプ幅を10μm以上に拡大し高出力としても、横モードを単一モードとすることができ、高回転・高転送速度での書き込み(光磁気記録、相変化とも)が可能となる。
【0124】
また、携帯用電子機器では特に部品の軽量、小型化が要望されるが端面発光型半導体レーザ1を備えれば、端面発光型半導体レーザを高出力で横モードが単一化したレーザ光を出射できる小型軽量のチップ構造にでき、部品の軽量、小型化がより図られることとなる。
【0125】
なお、本発明は上述したいずれの実施形態にも限定されず、本発明の技術思想の範囲内で適宜変更して実施できる。
【0126】
例えば、上述した実施形態では端面発光型半導体レーザ1を備える電子機器の例として光磁気記録再生装置301について説明したがこれに限られるものではなく、レーザ加工装置でも発振周波数に対応するフォトニックバンドギャップを導波路の幅方向に具備する端面発光型半導体レーザを備えることによって、ストライプ幅を10μm以上に拡大し高出力としても、横モードを単一モードとすることができ、集光スポット径を微細化することができるので精密な加工が可能となる。また、レーザ・ビーム・プリンタ用光源としても、その高出力で横モードが単一化したレーザ光により印刷速度の向上を図ることができる。
【0127】
また、上述した実施形態では端面発光型半導体レーザ1、101及び201の例としてGaAs/AlGaAs系の特定の組成を用いて構成や製造方法等を説明したがこれに限られるものではなく、他の材料系や他の組成であっても良い。例えば代表的な材料系として、赤色波長であればGaInP/AlGaInP系、青色波長であればGaN/AlGaN系、通信波長帯の赤外波長であればInP/InGaAsP系等であっても、発振周波数に対応するフォトニックバンドギャップを導波路の幅方向に具備することによって、容易に高出力なブロード・エリア型の端面発光型半導体レーザで横モードを単一化できることとなる。
【0128】
【発明の効果】
以上説明したように、本発明では高出力なブロード・エリア型の端面発光型半導体レーザのレーザ光の横モードを安定な単一モードにできる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る端面発光型半導体レーザの概略斜視図である。
【図2】図1の内p電極及び絶縁層を除いた状態の説明図である。
【図3】本発明の第1の実施形態に係る端面発光型半導体レーザの製造プロセスのうち結晶成長工程の説明図である。
【図4】図3の次の工程であるレジスト形成工程の説明図である。
【図5】図4の次の工程であるエッチング及びレジスト除去工程の説明図である。
【図6】図5の次の工程である絶縁層及びストライプ形成工程の説明図である。
【図7】図6の次の工程であるp電極形成工程の説明図である。
【図8】図7の次の工程である基板裏面研磨及びn電極形成工程の説明図である。
【図9】本発明の第2の実施形態に係る端面発光型半導体レーザの概略斜視図である。
【図10】図9の内波型形状の合わせ面より上を除いた状態の説明図である。
【図11】本発明の第2の実施形態に係る端面発光型半導体レーザの製造プロセスのうち結晶成長工程の説明図である。
【図12】図11の次の工程であるレジスト形成工程の説明図である。
【図13】図12の次の工程であるエッチング及びレジスト除去工程の説明図である。
【図14】図13の次の工程である結晶再成長工程の説明図である。
【図15】図14の次の工程である絶縁層、ストライプ形成及びp電極形成工程の説明図である。
【図16】図15の次の工程である基板裏面研磨及びn電極形成工程の説明図である。
【図17】本発明の第3の実施形態に係る端面発光型半導体レーザの概略斜視図である。
【図18】図17の内基板に結晶成長された第1クラッド層と活性層との合わせ面より上を除いた状態の説明図である。
【図19】本発明の第3の実施形態に係る端面発光型半導体レーザの製造プロセスのうち結晶成長工程の説明図である。
【図20】図19の次の工程であるレジスト形成工程の説明図である。
【図21】図20の次の工程であるエッチング及びレジスト除去工程の説明図である。
【図22】図21の次の工程である結晶再成長工程の説明図である。
【図23】図22の次の工程である絶縁層、ストライプ形成及びp電極形成工程の説明図である。
【図24】図23の次の工程である基板裏面研磨及びn電極形成工程の説明図である。
【図25】本発明の第4の実施形態に係る電子機器の例である光磁気記録再生装置の概略構成図である。
【符号の説明】
1、101、201 端面発光型半導体レーザ
2、102、202 基板
3、103、203 クラッド層
3a、103a、203a 第1クラッド層
3b、103b、203b 第2クラッド層
4、104、204 活性層
5、105、205 コンタクト層
6、106、206 絶縁層
7、107、207 p電極
8、108、208 n電極
9、109、209 反射鏡面
10 空気溝
11、111、211 発光領域
12、112、212 フォトレジスト
113 ガイド層
114 バッファ層
301 光磁気記録再生装置
302 スピンドルモータ
303 ピックアップユニット
304 インターフェース部
305 制御部

Claims (10)

  1. 発振周波数に対応するフォトニックバンドギャップを導波路の幅方向に具備することを特徴とする端面発光型半導体レーザ。
  2. 請求項1に記載の端面発光型半導体レーザにおいて、
    前記フォトニックバンドギャップは、導波路の幅方向に所定の屈折率を有する第1の領域と前記第1の領域に対し相対的に屈折率の高い第2の領域とで、波長領域で周期的に形成される屈折率分布により形成することを特徴とする端面発光型半導体レーザ。
  3. 請求項2に記載の端面発光型半導体レーザにおいて、
    前記周期的屈折率分布は、前記発振周波数を発振する活性層を挟むクラッド層の少なくとも一方に形成することを特徴とする端面発光型半導体レーザ。
  4. 請求項3に記載の端面発光型半導体レーザにおいて、
    前記第1の領域は、空気孔により形成されていることを特徴とする端面発光型半導体レーザ。
  5. 請求項4に記載の端面発光型半導体レーザにおいて、
    前記空気孔は、前記活性層に届かない深さに形成された溝構造を具備することを特徴とする端面発光型半導体レーザ。
  6. 請求項2に記載の端面発光型半導体レーザにおいて、
    前記周期的屈折率分布は、前記クラッド層と屈折率の異なるガイド層と前記クラッド層との二層を、その合わせ面でお互いが凹凸形状で嵌合するように積層することによって形成することを特徴とする端面発光型半導体レーザ。
  7. 請求項2に記載の端面発光型半導体レーザにおいて、
    前記周期的屈折率分布は、前記クラッド層と前記活性層との合わせ面でお互いが凹凸形状で嵌合するように積層することによって形成することを特徴とする端面発光型半導体レーザ。
  8. 発振周波数に対応するフォトニックバンドギャップを導波路の幅方向に具備する端面発光型半導体レーザを備えることを特徴とする電子機器。
  9. 発振周波数に対応するフォトニックバンドギャップを導波路の幅方向に形成し、発振するレーザ光の横モードを前記フォトニックバンドギャップにより単一モードとすることを特徴とする端面発光型半導体レーザの制御方法。
  10. 発振周波数に対応するフォトニックバンドギャップを導波路の幅方向に生成するように、前記幅方向に所定の屈折率を有する第1の領域と前記第1の領域に対し相対的に屈折率の高い第2の領域とで、波長領域で周期的な屈折率分布を有するように半導体層を形成する工程と、
    前記半導体層の上下に電極を形成する工程と
    を具備することを特徴とする端面発光型半導体レーザの製造方法。
JP2002249650A 2002-08-28 2002-08-28 端面発光型半導体レーザ、電子機器、端面発光型半導体レーザの制御方法及び端面発光型半導体レーザの製造方法 Pending JP2004087980A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002249650A JP2004087980A (ja) 2002-08-28 2002-08-28 端面発光型半導体レーザ、電子機器、端面発光型半導体レーザの制御方法及び端面発光型半導体レーザの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002249650A JP2004087980A (ja) 2002-08-28 2002-08-28 端面発光型半導体レーザ、電子機器、端面発光型半導体レーザの制御方法及び端面発光型半導体レーザの製造方法

Publications (1)

Publication Number Publication Date
JP2004087980A true JP2004087980A (ja) 2004-03-18

Family

ID=32056704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002249650A Pending JP2004087980A (ja) 2002-08-28 2002-08-28 端面発光型半導体レーザ、電子機器、端面発光型半導体レーザの制御方法及び端面発光型半導体レーザの製造方法

Country Status (1)

Country Link
JP (1) JP2004087980A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269988A (ja) * 2005-03-25 2006-10-05 Sony Corp 半導体レーザ
JP2007157906A (ja) * 2005-12-02 2007-06-21 Sharp Corp 半導体レーザ素子および応用システム
EP1879272A1 (en) * 2005-04-28 2008-01-16 Kyoto University Photonic crystal laser
WO2012121083A1 (ja) * 2011-03-08 2012-09-13 国立大学法人京都大学 端面発光型半導体レーザ素子

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269988A (ja) * 2005-03-25 2006-10-05 Sony Corp 半導体レーザ
EP1879272A1 (en) * 2005-04-28 2008-01-16 Kyoto University Photonic crystal laser
EP1879272A4 (en) * 2005-04-28 2008-06-18 Rohm Co Ltd PHOTONIC CRYSTAL LASER
US7860141B2 (en) 2005-04-28 2010-12-28 Kyoto University Photonic crystal laser
JP2007157906A (ja) * 2005-12-02 2007-06-21 Sharp Corp 半導体レーザ素子および応用システム
WO2012121083A1 (ja) * 2011-03-08 2012-09-13 国立大学法人京都大学 端面発光型半導体レーザ素子
JP2012190847A (ja) * 2011-03-08 2012-10-04 Kyoto Univ 端面発光型半導体レーザ素子
US9219348B2 (en) 2011-03-08 2015-12-22 Kyoto University Edge-emitting semiconductor laser element

Similar Documents

Publication Publication Date Title
US7539230B2 (en) Semiconductor laser device and method for fabricating the same
JP4789558B2 (ja) 多波長半導体レーザ装置
US7098064B2 (en) Semiconductor laser device and its manufacturing method, and optical disc reproducing and recording apparatus
KR20010030301A (ko) 반도체 레이저 및 그 생성 방법
JP2006294984A (ja) 半導体レーザ素子とその製造方法およびそれを用いた光ピックアップ装置
US20020136255A1 (en) Semiconductor laser, optical element provided with the same and optical pickup provided with the optical element
US7704759B2 (en) Semiconductor laser device and method for fabricating the same
JP2006080307A (ja) 半導体レーザアレイ及びその製造方法、多波長半導体レーザ装置
JP2004165383A (ja) 半導体レーザ装置、第2高調波発生装置及び光ピックアップ装置
JP2004087980A (ja) 端面発光型半導体レーザ、電子機器、端面発光型半導体レーザの制御方法及び端面発光型半導体レーザの製造方法
JP2003086902A (ja) 半導体レーザ装置および光ディスク記録再生装置
JP3818815B2 (ja) 半導体レーザ素子及びその製造方法
JP2003163412A (ja) 窒化物半導体レーザ装置及び半導体光学装置
US6738402B1 (en) Semiconductor device with multiple laser resonators
JP2009164389A (ja) 半導体レーザ及びこれを用いた記録再生用ピックアップ装置、並びに、半導体レーザの製造方法
JPH10270791A (ja) 光情報処理装置およびこれに適した半導体発光装置
JPH10154843A (ja) 半導体レーザ素子及びそれを用いた光ディスク装置
JP4613374B2 (ja) 半導体レーザ
JP2004296635A (ja) 半導体レーザ装置およびその製造方法および光ディスク装置
JP3710313B2 (ja) 半導体レーザ素子
JPH09246662A (ja) 半導体レーザ
JP2018037491A (ja) 半導体レーザ素子
JP2002223038A (ja) 半導体レーザ装置
JP2000232255A (ja) 半導体レーザ装置およびその製造方法
JP2007080934A (ja) 半導体レーザ

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20060815