JP2004087705A - ダイボンディング装置及びダイボンディング方法 - Google Patents

ダイボンディング装置及びダイボンディング方法 Download PDF

Info

Publication number
JP2004087705A
JP2004087705A JP2002245503A JP2002245503A JP2004087705A JP 2004087705 A JP2004087705 A JP 2004087705A JP 2002245503 A JP2002245503 A JP 2002245503A JP 2002245503 A JP2002245503 A JP 2002245503A JP 2004087705 A JP2004087705 A JP 2004087705A
Authority
JP
Japan
Prior art keywords
temperature
heating
substrate
cooling
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002245503A
Other languages
English (en)
Inventor
Masaru Saito
斉藤 勝
Hiroshi Anzai
安西 洋
Naoyuki Hachiman
八幡 直幸
Sumio Goto
後藤 純夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juki Corp
Original Assignee
Juki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juki Corp filed Critical Juki Corp
Priority to JP2002245503A priority Critical patent/JP2004087705A/ja
Publication of JP2004087705A publication Critical patent/JP2004087705A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/83048Thermal treatments, e.g. annealing, controlled pre-heating or pre-cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83948Thermal treatments, e.g. annealing, controlled cooling

Abstract

【課題】ダイボンディング工程の作業時間を短縮すること。
【解決手段】半導体チップT及び基板Sを加熱する加熱手段6と、基板を搬送する基板搬送手段13と、半導体チップを搬送するチップ搬送手段15と、これらの動作制御を行う動作制御手段7とを備え、この動作制御手段7は、加熱手段6を、維持すべき最低温度である第一の予熱温度以上に常時維持すると共に、第一の予熱温度よりも高くロウ材の融点より低い第二の予熱温度までと第二の予熱温度からロウ材の融点より高い接合温度までとに段階的に昇温する段階加熱制御部71と、加熱手段6への基板Sの供給と半導体チップTの供給とを完了するまでに、第一の予熱温度から第二の予熱温度への昇温を完了させる予熱制御部73とを有している。
【選択図】   図3

Description

【0001】
【発明の属する技術分野】
本発明は、半導体チップを基板に接合するダイボンディング装置に関するものである。
【0002】
【従来の技術】
近年の半導体の需要の増大化に伴い、その製造については自動化が進んでいる。半導体の製造工程の中には、半導体チップをロウ材により基板に接合するダイボンディング工程というものがあるが、かかる工程についても自動化が行われている。
【0003】
半導体としての半導体レーザ素子の製造工程におけるダイボンディング工程を行う場合を例に従来のダイボンディング装置100を図5及び図6により説明する。この半導体レーザ素子は、例えばGaAlAs系の半導体レーザチップTと、外部への接続リードを備えるリード基板(図示略)と、これらの間に介挿される銅やシリコンからなるサブマウントSとを備えている。そして、ダイボンディング装置100は、サブマウントSに対する半導体レーザチップTのダイボンディングを行うものである。サブマウントSには半導体レーザチップTのボンディング位置に予めロウ材のとしてのAu−Sn系又はAu−Si系の共晶ハンダ膜Hが形成されており、ダイボンディング装置100は、かかるボンディング位置において半導体レーザチップTを加圧して加熱することでこれらを接合する。
【0004】
具体的には、ダイボンディング装置100は、載置面上に載置されたサブマウントSを吸着保持すると共に下方から加熱するヒータステージ101と、ヒータステージ101の載置面上のサブマウントSの撮像を行う図示しないカメラと、撮像画像に基づいてサブマウントSの位置調節を行う図示しないX−Yテーブルと、半導体レーザチップTを保持して搬送すると共にヒータステージ101上のサブマウントSに半導体レーザチップTを加圧するチップノズル102と、ヒータステージ101上のサブマウントSを冷却エアの吹きつけにより冷却する図示しない冷却手段とを備えている。
【0005】
図6はダイボンディング作業の各工程におけるヒータステージ101の設定目標温度の変化を示しており、この図に基づいてダイボンディング装置100の動作説明を行う。
まず、予めプリヒート温度である100[℃]に加熱状態を維持されたヒータステージ101上にサブマウントSが載置される。そして、このサブマウントSをカメラにて撮像し、その撮像データからサブマウントSの目標位置までのズレ量を認識した上でX−Yテーブルによりヒータステージ101を移動してサブマウントSの位置調節を行う。そして、サブマウントSの位置が決まると、チップノズル102は半導体レーザチップTを真空吸着して保持し、サブマウントS上まで搬送し、下降して半導体レーザチップTをサブマウントS上において加圧する。
そして、ヒータステージ101をプリヒート温度から目標加熱温度である360[℃]まで昇温させる。この目標加熱温度は共晶ハンダの溶融する温度が280[℃]であること及びサブマウントSの共晶ハンダ膜がヒータステージ101と直接接触する面とは反対側の面に形成されていることを考慮した値である。ヒータステージ101は、かかる目標加熱温度に到達後、その温度を1[sec]維持される。これにより、サブマウントSの共晶ハンダ膜は溶融する。
その後、冷却手段によりヒータステージ101上のサブマウントS及び半導体レーザチップTは冷却され、共晶ハンダ膜が凝固することにより半導体レーザチップTはサブマウントS上に接合される。さらに、冷却手段による冷却はもとのプリヒート温度である100[℃]になるまで継続され、その後、チップノズル102により半導体レーザチップTはサブマウントSと共に保持され、ダイボンディング後の格納位置に搬送される。
【0006】
【発明が解決しようとする課題】
しかしながら、従来のダイボンディング装置100は、ヒータステージ101をプリヒート温度で維持した状態でサブマウントSの載置,サブマウントSの位置決め,半導体レーザチップTの搬送及び加圧を行い、その後、目標加熱温度まで加熱するという工程を経て共晶ハンダ膜を溶融させるため、プリヒート温度から目標加熱温度まで昇温させるための所用時間がダイボンディング工程全体の作業時間の短縮化の妨げとなっていた。
この場合、プリヒート温度から目標加熱温度まで急速に加熱して昇温させると、ヒータステージ101の熱源の負担が大きくなり、当該熱源の耐久性を行う可能性があること、また急速な加熱はヒータステージやその周囲の熱膨張等を伴うためにこれらの耐久性をも損なう可能性があること、さらには加熱の対象となるサブマウントSや半導体レーザチップTへの耐久性をも損なう可能性があること等から、急速加熱を行うには限界があった。例えば、上記ダイボンディング装置100にあっては、その熱源の昇温速度は200[℃/sec]であり、プリヒート温度100[℃]から目標加熱温度360[℃]に到達するには1.3[sec]の時間を要していた。
【0007】
また、プリヒート温度を初めから高く設定すれば加熱すべき温度幅が狭くなり、加熱時間の短縮化を図ることが可能となるが、その場合、ヒータステージ101全体が常に一定の高温状態が継続されることとなり、その結果,装置の耐久性を損なう可能性が生じるため、プリヒート温度を高く設定することには限界があった。特に、上記ダイボンディング装置100のようにカメラによる撮像画像に基づいてサブマウントSの位置決めを行う構成の場合、プリヒート温度が高く設定されると、ヒータステージ101上のサブマウントを撮像する際に周囲の雰囲気の加熱によりゆらぎ現象が発生し、サブマウントSの現在位置の認識精度を損ない、精度の高いダイボンディングを行えなくなるため、プリヒート温度を高く設定することはより困難であった。
【0008】
また、上記従来例では、その冷却工程において、冷却手段がヒータステージ101上に冷却エアを吹き付けるため、そのような状況下でヒータステージ101上のサブマウントS及び半導体レーザチップTをチップノズル102を保持し搬送しようとすれば、冷却エアに煽られてサブマウントS及び半導体レーザチップTはチップノズル102から脱落してしまう。従って、従来はヒータステージ101がプリヒート温度まで冷却を完了してからサブマウントS及び半導体レーザチップTをヒータステージ101上から除去していた。このため、ヒータステージ101の冷却時間に加えてサブマウントS及び半導体レーザチップTの除去する作業の所要時間が必要となり、かかる観点からもダイボンディング工程全体の作業時間の短縮化の妨げとなっていた。特に上記ダイボンディング装置100では、冷却手段による降温速度は35[℃/sec]であり、昇温速度と比較して遅く、目標加熱温度360[℃]からプリヒート温度100[℃]まで冷却するには7.4[sec]の時間を要していた。
【0009】
本発明は、ダイボンディング工程の処理時間の迅速化を図ることをその目的とする。
【0010】
【課題を解決するための手段】
請求項1記載の発明は、半導体チップ(T)と基板(S)とを加熱して、それらに介在するロウ材により接合するダイボンディング装置(20)であって、半導体チップ及び基板を加熱する加熱手段(6)と、基板を保持し加熱手段に供給する基板搬送手段(15)と、半導体チップを保持し加熱手段に供給するチップ搬送手段(13)と、これらの動作制御を行う動作制御手段(7)と、を備え、動作制御手段は、加熱手段を、維持すべき最低温度である第一の予熱温度以上に常時維持すると共に、第一の予熱温度よりも高くロウ材の融点より低い第二の予熱温度までと第二の予熱温度からロウ材の融点より高い接合温度までとに段階的に昇温する段階加熱制御部(71)と、加熱手段への基板の供給と半導体チップの供給とを完了するまでに、第一の予熱温度から第二の予熱温度への昇温を完了させる予熱制御部(73)とを有する、という構成を採っている。
【0011】
ここで、上記「半導体チップ」には、半導体レーザチップ,ICチップ,LSIチップ等のように半導体に該当する素子の電子回路が形成されるチップ全般を示すものとする。
また「基板」とは、アルミナ基板やセラミック基板を含む上述の半導体チップがダイボンディングされる基板全般をいうものとする。従って、アルミナ基板,セラミック基板,半導体レーザチップに対するサブマウント等も「基板」の概念に含むものとする。
【0012】
上記構成によれば、まず、加熱手段が第一の予熱温度に昇温される。また、先行する半導体チップと基板との接合が既に行われている場合には、前回のダイボンディングにより既に加熱手段は第一の予熱温度に維持されている。この第一の予熱温度は、加熱手段がすぐにダイボンディング処理を開始できるように常時維持されるべき最低温度である。かかる第一の予熱温度はダイボンディング処理において出発点であることを考慮すれば、予め高温に設定されていることが処理の迅速化には望ましいが、ダイボンディング装置が稼動されている限り加熱手段はこの第一の予熱温度未満となることはないことも考慮すれば装置の保守性の面からはその高温化には限界があり、これら二つの観点から妥当な温度設定が成されることが望ましい。
【0013】
次に、第一の予熱温度に維持された加熱手段に対して、基板供給手段により基板が供給される。さらに、供給された基板に対して、チップ供給手段により半導体チップが供給される。そして、少なくとも、この半導体チップの供給が完了するまでに、加熱手段の第一の予熱温度から第二の予熱温度までの昇温を開始し、且つ第二の予熱温度までの昇温を完了させる。かかる第二の予熱温度は、第一の予熱温度より高く,ロウ材の融点よりも低い値である。この第二の予熱温度から接合温度までの温度差が小さい方がダイボンディング工程全体の迅速化を図ることができるので、ロウ材が溶融しない範囲で融点により近い温度とすることが望ましい。
【0014】
そして、ロウ材が溶融する前の状態で基板に半導体チップが供給され、その後、加熱手段は、第二の予熱温度から接合温度まで昇温させる。これにより、基板と半導体チップとの間のロウ材が溶融する。その後、加熱手段は第一の予熱温度に戻されることによりロウ材が凝固して、基板と半導体チップとが接合される。
【0015】
請求項2記載の発明は、請求項1記載の発明と同様の構成を備えると共に、加熱手段に供給された基板を撮像する撮像手段(16)と、この撮像手段により取得された撮像データに基づいて基板の位置調整を行う位置調整手段(5)とを備え、第一の予熱温度を、撮像された画像の精度を損なうゆらぎの影響を排除可能な温度以下に設定し、動作制御手段は、第二の予熱温度への昇温を開始する前に撮像を完了させる撮像制御部(7)を有する、という構成を採っている。
【0016】
上記構成では、請求項1記載の発明と同様の動作が行われると共に、加熱手段へ基板が供給されると、半導体チップの供給以前に基板の撮像が行われる。そして、この撮像により取得された撮像データに基づいて基板位置にズレがある場合等には基板の位置調整が行われる。そして、調整後の基板に対して半導体チップが供給される。
ここで、撮像に際し、その撮像対象の周囲の雰囲気が加熱されると屈折率変化により撮像像を正確に得られなくなる場合がある。そして、加熱温度が高くなればなるほどその傾向が顕著となる。そこで、揺らぎによる基板の位置調整における誤差が当該位置調整の許容範囲内となる温度以下に第一の予熱温度を設定している。なお、「排除可能な温度」とは、例えば、ゆらぎを抑制する対策を講じた場合には、その対策が実施されている状態での誤差が許容範囲となる温度を意味する。
さらに、撮像は第二の予熱温度弊の昇温を開始する前に完了するので、ゆらぎ発生の影響の少ない第一の予熱温度での環境化で撮像されることとなり、その結果、基板の位置調整は高い精度で行われる。
【0017】
請求項3記載の発明は、請求項1又は2記載の発明と同様の構成を備えると共に、接合終了後の加熱手段を冷却エアの吹きつけにより冷却する冷却手段と、加熱手段の温度を検出する温度検出手段と、を備え、動作制御手段は、温度検出手段によりロウ材の凝固点を下回る温度が検出されると接合された基板及び半導体チップを加熱手段から除去する動作制御を行う除去制御部(74)と、基板及び半導体チップが除去の開始から加熱手段から離れるまでの間は冷却手段の吹きつけの圧力を減圧し又は吹きつけを停止する冷却制御部(75)とを備える、という構成を採っている。
【0018】
上記構成では、請求項1又は2記載の発明と同様の動作が行われると共に、加熱手段が接合温度まで昇温され、ロウ材が溶融した後は加熱を停止する。そして、第一の予熱温度まで降温されるが、自然冷却では時間を要するので冷却エアブローにより冷却される。その際、加熱済みの基板と半導体チップも加熱手段と共に冷却されることとなる。そして、加熱済みの基板と半導体チップとは、ロウ材の凝固点以下となった時点で加熱手段から除去される。ロウ材の凝固点以下となれば基板と半導体チップとの接合は十分な強度を発揮できるので、これらの除去作業を行っても、接合不良は生じないからである。
そして、半導体チップ及び基板の除去作業時には、これらが保持された状態で加熱手段から所定の格納位置まで搬送される。このとき、保持され搬送途中の半導体チップ及び基板が冷却エアのブローにより飛ばされないように吹きつけ圧力を一時的に減圧するか或いは吹きつけを中断する。かかる吹きつけを減圧する場合には、その減圧圧力は、半導体チップ等が除去搬送される際に吹き飛ばされない圧力まで減圧される。また、かかる減圧又は中断状態は少なくとも、接合状態の基板及び半導体チップが除去のために保持された時点からエアブローに半導体チップ等が曝されない程度に加熱手段から離れるまで継続される。
【0019】
請求項4記載の発明は、加熱手段により半導体チップと基板とを加熱して、それらに介在するロウ材により接合するダイボンディング装置によるダイボンディング方法であって、加熱手段を、維持すべき最低温度である第一の予熱温度に設定する初期温度設定工程と、加熱手段に基板を供給する基板供給工程と、加熱手段に半導体チップを供給するチップ供給工程と、加熱手段を、第一の予熱温度からロウ材の融点より低い第二の予熱温度まで昇温する第一次昇温工程と、加熱手段を、第二の予熱温度からロウ材の融点より高い接合温度まで昇温する第二次昇温工程と、を備え、基板供給工程及びチップ供給工程の完了までに第一次昇温工程を完了させる、という構成を採っている。
【0020】
上記構成において、「半導体チップ」,「基板」,「第一の予熱温度」,「第二の予熱温度」の語については請求項1記載の構成の説明と同様である。
上記初期温度設定工程では、加熱手段が常温から第一の予熱温度に昇温される。また、先行する半導体チップと基板との接合が既に行われている場合には、前回のダイボンディングにより既に加熱手段は第一の予熱温度に維持されている。そして、初期温度設定工程において常温から第一の予熱温度に昇温する場合には、次の基板供給工程を平行して同時に行っても良い。
そして、基板供給工程の完了後、チップ供給工程に移行する。一方、第一次昇温工程は、基板供給工程又はチップ供給工程の進行中に平行に行われ、且つこれらの供給工程が完了するまでに第一次昇温工程は完了される。つまり、加熱手段に基板と半導体チップとが供給された時点で加熱手段は第二の予熱温度まで昇温されている状態となる。
次に、第二次昇温工程に移行して、接合温度まで加熱されることにより基板と半導体チップとの間に介在するロウ材は溶融し、その後凝固して接合が完了する。
このように、加熱手段に基板と半導体チップとが供給された時点で加熱手段は第二の予熱温度まで昇温されているので、迅速に接合温度までの昇温を行うことができ、ダイボンディング作業の迅速化が図られる。
【0021】
請求項5記載の発明は、請求項4記載の発明と同様の構成を備えると共に、基板供給工程完了後、撮像手段により加熱手段に供給された基板を撮像する撮像工程と、この撮像工程により取得された撮像データに基づいて基板の位置調整を行う位置調整工程と、を備え、初期温度設定工程における第一の予熱温度を、撮像された画像の精度を損なうゆらぎの影響を排除可能な温度以下に設定し、第一次昇温工程の開始までに撮像工程を完了させる、という構成を採っている。
【0022】
上記構成において、「ゆらぎ」,「排除可能な温度」の語については請求項2記載の構成の説明と同様である。
上記構成では、請求項4記載の発明と同様の動作が行われると共に、加熱手段へ基板が供給されると、半導体チップの供給が行われる前に、基板の撮像と位置調整が行われる。そして、撮像はゆらぎの影響の少ない第一の予熱温度下で行われるので、基板の位置調整は高い精度で行われる。
【0023】
請求項6記載の発明は、請求項4又は5記載の発明と同様の構成を備えると共に、第二次昇温工程完了後に加熱手段を冷却エアの吹きつけにより冷却する冷却工程と、冷却工程の開始から継続的に加熱手段の温度を検出する冷却温度測定工程と、冷却工程の途中で冷却温度測定工程によりロウ材の凝固点を下回る温度が検出されると、接合された基板及び半導体チップを加熱手段から除去する除去工程と、を備え、冷却工程に、除去工程の開始から当該除去工程によって半導体チップ及び基板が加熱手段から離れるまでの間は冷却工程による冷却エアの吹きつけの圧力を減圧し又は吹きつけを停止する冷却抑制期間を設ける、という構成を採っている。
【0024】
上記構成では、加圧手段,基板及び半導体チップが冷却される冷却工程と冷却温度測定工程とが平行して行われる。さらに、ロウ材の凝固点を下回る温度が検出されると、除去工程が冷却工程と共に平行して行われる。そして、この除去工程中の開始と共に冷却抑制期間となり、冷却エアの吹きつけ圧力が減圧されるので、搬送される半導体チップ及び基板が過度の冷却エアの吹きつけに曝されず、良好に搬送される。
【0025】
【発明の実施の形態】
(実施の形態の全体構成)
本発明の実施の形態を図1〜図3に基づいて説明する。本実施形態たるダイボンディング装置20は、半導体チップとしての半導体レーザチップTを基板としてのサブマウントSに対してダイボンディングするための装置である。かかるダイボンディング装置20は、ダイボンディング前のサブマウントSを複数載置可能なサブマウントトレー2をその上部に備えるサブマウントトレーステージ1と、ダイボンディング前の半導体レーザチップTを複数載置可能な半導体レーザチップトレー4をその上部に備えるチップトレーステージ3と、上方からの加圧によりサブマウントSに蒸着されたハンダ層の酸化膜を破壊するための作業をその上面で行うサブステージ9と、サブステージ9の上面に載置されたサブマウントSに対して上方から加圧を行うマウント加圧機構11と、熱源であるヒータ6aを内蔵する加熱手段としてのヒータステージ6と、このヒータステージ6をX方向及びY方向に移動して位置決めする位置調整手段としてのX−Yテーブル5と、サブマウントSを保持して所定位置まで搬送する基板搬送手段としてのサブマウントヘッド15と、半導体レーザチップTを保持すると共に所定位置に搬送するチップ搬送手段としてのチップヘッド13と、ヒータステージ6上のサブマウントSの位置認識を行うための撮像手段としてのカメラ16と、上記各構成の動作制御を行う動作制御手段7とを備えている。
【0026】
(各ステージ)
上記各ステージ1,9,6,3は、サブマウントトレーステージ1,サブステージ9,ヒータステージ6,チップトレーステージ3の順番でX方向に沿って一列に並んで配設されている。そして、各ステージ1,9,6,3はいずれもその用途に応じてサブマウントS又は半導体レーザチップTを載置できるようにその上面部が水平且つ平坦に形成されている。
【0027】
また、ステージ1,9,3はその位置が固定されているが、ヒータステージ6のみはX−Yテーブル5によってX方向及びY方向に沿って位置調節可能に支持されている。さらに、ヒータステージ6は、前述したようにヒータ6aを内蔵しているので、その上面に載置されたサブマウントS及び半導体レーザチップTを加熱することが可能となっている。また、ヒータステージ6には図示しない温度検出手段としての熱センサが内蔵されており、ヒータステージ6の現在温度が動作制御手段7に常時出力されている。
【0028】
さらに、ヒータ6aは動作制御手段7の動作制御により、第一の予熱温度と第二の予熱温度と接合温度とに温度調節が可能である。この第一の予熱温度とは、ヒータステージ6を当該温度に維持し且つ後述するゆらぎ対策を実施した環境下で生じるゆらぎによるサブマウントSの位置調整における誤差が許容範囲内となることを条件に設定される温度である。第一の予熱温度から第二の予熱温度までの昇温時間の短縮化を図るためには、上記条件を満たす範囲でより高温であることが望ましい。本実施形態ではこの第一の予熱温度は100[℃]に設定されている。
【0029】
サブマウントSの半導体レーザチップTがダイボンディングされる面にはロウ材としての共晶ハンダ膜が形成されている。そして、接合温度とはかかる共晶ハンダの融点よりも高い温度に設定される。加熱手段としてのヒータステージ6は、サブマウントSに対して共晶ハンダ膜とは反対側の面から加熱を行うので、これを考慮して、共晶ハンダの融点である280[℃]よりも高い360[℃]を接合温度としている。
【0030】
そして、第二の予熱温度は、第一の予熱温度より高く,共晶ハンダの融点よりも低い値に設定される。この第二の予熱温度から接合温度までの温度差が小さい方がダイボンディング工程全体の迅速化を図ることができるので、ロウ材が溶融しない範囲で融点により近い温度とすることが望ましい。本実施形態ではこの第二の予熱温度は250[℃]に設定されている。
【0031】
また、ヒータステージ6とサブステージ9とは、いずれも、その上面にバキュームエアを通すことにより空気吸入を行う吸引孔が設けられている。これは、各ステージ6,9上での作業時において、サブマウントSを所定位置で吸着し、位置ズレを防ぐためのものである。
【0032】
また、ヒータステージ6の近傍には図示しない不活性ガス供給手段と冷却手段とが設けられている。不活性ガス供給手段は、不活性ガスである窒素ガスの供給源とヒータステージ6上に向けられた吹き出しノズルとを有しており、サブマウントSに半導体レーザチップTをボンディングする際にこれらに窒素ガスの吹きつけを行う。
【0033】
また、冷却手段は、冷却エアの供給源とヒータステージ6上に向けられた吹き出しノズルとを有しており、サブマウントSに半導体レーザチップTをボンディングした後にその加熱された状態を冷却エアの吹きつけにより冷却する。また、冷却エアの供給源は、動作制御手段7の制御によりその吹きつけ圧力の変更調節が可能となっている。さらに、この冷却手段は、前述したゆらぎの抑制手段としての機能をも有している。即ち、ゆらぎの発生原因は、ヒータステージ6上の雰囲気が加熱されることにより生じる気体の屈折率変化である。このため、ヒータステージ6のサブマウントSの載置面上に冷却手段による冷却エアの吹きつけを行うことにより加熱された気体がヒータステージ6上から排除され、より正常な屈折率の気体を介して撮像を行うことが可能となる。
【0034】
(マウント加圧機構)
マウント加圧機構11は、サブステージ9の上方に配設されている。そして、後述する図示しないXYZガントリ及びこれにより移動するマウントヘッド15との衝突を回避し,またそれらの可動を妨げないように、マウント加圧機構11は、Z軸昇降機構(図示略)によりZ方向に沿って移動可能に支持され、上方に退避することが可能である。
【0035】
また、このマウント加圧機構11自体も当該加圧機構11からZ方向に沿って突出移動と退避移動とが可能な加圧治具10を有している。この加圧治具10は、その突出移動(下方への移動)により、その下端部の端面がサブステージ9上のサブマウントSに当接し、加圧することが可能となっている。かかるマウント加圧機構11による上方からの加圧は、サブステージ9上に載置されたサブマウントSの上面に蒸着形成されたハンダ層の酸化膜を破壊するために行われるものである。従って、加圧治具10は、酸化膜の破壊に好適であるように、その下端部の端面に凹凸が形成されるような素材,具体的には他孔質セラミック等により形成されている。また、この加圧治具10は、サブマウントSを全体的に加圧できるように、その下端部の端面がサブマウントSの上面よりも大きく設定されている。
【0036】
(サブマウントヘッド)
サブマウントヘッド15は、図示を省略したXYZガントリにより、X方向,Y方向,Z方向に沿って移動し位置決め可能に支持されている。このサブマウントヘッド15は、下方に突出した状態でサブマウントノズル14を有している。かかるサブマウントノズル14は、超硬である金属素材により形成されており、その下端部の端面から上端部にかけて貫通穴が形成されている。そして、サブマウントノズル14の上端部は図示しない電磁弁を介して図示しないエジェクター等の空気吸引手段と接続されており、その貫通穴にバキュームエアを通すことにより、その下端部の端面にサブマウントSを吸着保持することを可能としている。また、電磁弁は動作制御手段7によりサブマウントノズル14を空気吸引手段と大気開放側とに切り替え可能であり、空気吸引手段側に接続したときにバキュームエアを貫通穴に通してサブマウントSを吸着可能状態とし、大気開放側に接続したときにサブマウントノズル14内を大気圧状態とし、吸着可能状態を解除する。
【0037】
(チップヘッド)
チップヘッド13は、図示を省略したXYZガントリにより、X方向,Y方向,Z方向に沿って移動し位置決め可能に支持されている。なお、このXYZガントリは、前述したマウントヘッド15を支持するXYZガントリと共用化が図られている。つまり、XYZガントリは、X方向とY方向の移動についてはチップヘッド13もマウントヘッド15も共通する構成により実行し、Z方向への移動についてはチップヘッド13とマウントヘッド15とについてそれぞれ個別に実行する構成を備えている。
【0038】
上記チップヘッド13は、下方に突出した状態で保持部材としてのチップノズル12を有している。このチップノズル12は、その下端部の端面から上端部にかけて図示しない貫通穴が形成されている。そして、チップノズル12の上端部は図示しない電磁弁を介して図示しないエジェクター等の空気吸引手段と接続されており、その貫通穴にバキュームエアを通すことにより、その下端部の端面に半導体レーザチップTを吸着保持することを可能としている。
【0039】
また、チップヘッド13は、チップノズル12をZ方向に沿って駆動させる図示しない加圧手段としてのチップ加圧機構を備えている。これにより、半導体レーザチップTをサブマウントSにダイボンディングする際に加圧することを可能としている。さらに、チップノズル12における半導体レーザチップTの加圧状態及び加圧力を検出する図示しない加圧検出手段が加圧手段には併設されている。かかる加圧検出手段は、例えば、チップヘッド13がチップノズル12を弾性体を介して支持すると共に当該チップノズル12をサブマウントS側に押し付けたときの反力による弾性体の変形量から測定できる。
【0040】
(動作制御手段)
図2は、ダイボンディング装置20の制御系を示すブロック図である。動作制御手段7は、CPU,ROM,RAM等を含む演算装置で構成され、これらに所定のプログラムが入力されることにより、ヒータ6a,X−Yテーブル5,マウント加圧機構11,チップ加圧機構,Z軸昇降機構,不活性ガス供給手段,XYZガントリ,サブマウントヘッド用の空気吸引手段,チップヘッド用の空気吸引手段,冷却手段に対して下記に示す動作に従って動作制御を実行する。
【0041】
また、この動作制御手段7は、通常はヒータステージ6を第一の予熱温度に維持すると共にダイボンディング処理を実行する場合には第一の予熱温度から第二の予熱温度までと第二の予熱温度から接合温度までとに段階的に昇温する段階加熱制御部71と、第一の予熱温度から第二の予熱温度への昇温を開始する前に撮像を完了させる撮像制御部72と、ヒータステージ6への半導体レーザチップTの供給を完了するまでに第一の予熱温度から第二の予熱温度への昇温を完了させる予熱制御部73と、冷却手段による冷却が開始され,熱センサにより共晶ハンダの凝固点を下回る温度が検出されるとチップヘッド13により接合されたサブマウントS及び半導体レーザチップTをヒータステージ6から除去する動作制御を行う除去制御部74と、サブマウントS及び半導体レーザチップTが少なくともヒータステージ6からの除去の開始から除去されるまでの間は冷却手段の吹きつけの圧力を減圧する冷却制御部75とを備えている。
【0042】
上記段階加熱制御部71は、前述したようにヒータステージ6を第一の予熱温度,第二の予熱温度,接合温度の三段階の温度に設定する。前述したヒータステージ6のヒータ6aはセラミックヒータであり、これに対して各設定温度となるように予め定められた電圧を加える制御を行うことにより温度の切換が行われる。
【0043】
上記撮像制御部72は、XYZガントリが示すマウントヘッド15の現在位置からサブマウントSがヒータステージ6に載置されたことを認識すると、カメラ16に対して撮像指令信号を出力すると共に同信号を段階加熱制御部71にも出力する。これを受けて段階加熱制御部71は、第一の予熱温度から第二の予熱温度へ昇温させる制御を開始する。従って、結果的に、第一の予熱温度から第二の予熱温度への昇温を開始する前にカメラ16による撮像が完了される。
【0044】
予熱制御部73は、ヒータステージ6への半導体レーザチップTの搬送指令信号を所定のタイミングでチップヘッド13に出力する。かかる半導体レーザチップTの搬送動作に比べて、第一の予熱温度から第二の予熱温度への昇温に要する時間は十分に短いので、例えば、これらを同時に開始させれば、ヒータステージ6への半導体レーザチップTの供給を完了するまでに第一の予熱温度から第二の予熱温度への昇温が完了される。
【0045】
除去制御部74及び冷却制御部75は、冷却手段による冷却の開始されると、熱センサの検出信号に基づいて、その検出温度が第二の予熱温度よりも低くなったか否かを常時監視する。そして、熱センサの検出温度が第二の予熱温度を下回ると、冷却制御部75は、冷却手段の冷却エアの吹きつけ圧力を正常値よりも低減し、除去制御部74はチップヘッド13に動作指令信号を出力してヒータステージ6上の半導体レーザチップT及びサブマウントSを吸着保持させ、所定の格納位置まで搬送させる。
さらに、冷却制御部75はXYZガントリが示すチップヘッド13の現在位置から、チップヘッド13が冷却エアの吹きつけを受ける範囲から脱したことを認識すると、再び冷却エアの吹きつけ圧力をもとの正常値に戻す。さらに、ヒータステージ6の温度監視を継続し、第一の予熱温度が検出されると、冷却手段を停止させる。
【0046】
(ダイボンディング装置の動作)
次にダイボンディング装置20の動作説明を行う。図3はヒータステージ6の温度制御による温度変化を示し、縦軸は温度、横軸は時間を示す。また図4はダイボンディング装置20の加熱処理以降の動作を示すフローチャートである。
前述したように、このダイボンディング装置20は、サブマウントS上に半導体レーザチップTをダイボンディングさせることを目的とする装置である。そして、サブマウントSは窒化アルミニウム又はシリコンから形成されており、半導体レーザチップTを接合する面(図1における上面)の表面にはAu−Snからなる共晶ハンダ膜が3[μm]程度蒸着されている。また、半導体レーザチップTは、例えば、GaAlAs系であり、大きさは縦400[μm],横250[μm],厚さ80〜130[μm]程度のものを対象とする(無論、これに限定されるものではない)。そして、ダイボンディング装置20は、サブマウントSの共晶ハンダ膜を加熱し溶融させることにより半導体レーザチップTを固着させるものである。
【0047】
まず、サブマウントヘッド15のサブマウントノズル14が吸引状態となるように電磁弁が切り替えられ、XYZガントリによりサブマウントヘッド15をサブマウントトレーステージ1上のいずれかのサブマウントSに位置決めする。そして、サブマウントヘッド15をZ方向に沿って下降させ、サブマウントノズル14先端にサブマウントSを吸着させる。
【0048】
そして、サブマウントヘッド15をサブステージ9に搬送し、ステージ9上の所定位置にサブマウントSを載置し、電磁弁を大気開放側に切り替えて、サブマウントSを吸着状態から開放する。その後、サブマウントヘッド15はマウント加圧機構11の邪魔とならないようにサブステージ9上から退避させる。一方、サブステージ9の吸引孔を吸引状態としてサブマウントSをステージ上の所定位置に吸着保持させる。
【0049】
次に、マウント加圧機構11がZ軸昇降機構により加圧作業を行うための所定高さまで下降され、その高さが決まると、加圧治具10を下降させて、その端面によりサブステージ9上のサブマウントSを1〜2[N]の加圧力にて加圧する。かかる加圧力の設定は、例えば、マウント加圧機構11が加圧治具10を弾性体を介して支持すると共に当該治具10をサブマウントSに押し付けたときの反力による弾性体の変形量から測定できる。
そして、かかる加圧によりサブマウントSのハンダ膜の表面に形成されていた酸化膜が破壊される。
【0050】
加圧が済むと、マウント加圧機構11はZ軸昇降機構により退避位置まで退避させられる。そして、再びマウントヘッド15がXYZガントリによりサブステージ9上のサブマウントSに位置決めされ、電磁弁を吸引状態に切り替えてサブマウントノズル14によりサブマウントSを吸着する。また、このときサブステージ9の吸引孔は吸引状態を解除する。
【0051】
ここから、図3,4を参照して説明する。ヒータステージ6のヒータ6aは、段階加熱制御部71により、予め第一の予熱温度である100[℃]に加熱されている(ステップS1:初期温度設定工程)。そして、温度維持されたヒータステージ6上にサブマウントヘッド15が位置決めされ、電磁弁を大気開放側に切り替えて、サブマウントSを吸着状態から開放する。その後、サブマウントヘッド15はチップヘッド13の邪魔とならないようにヒータステージ6上から退避させる。一方、ヒータステージ6の吸引孔を吸引状態としてサブマウントSをステージ上の所定位置に吸着保持させる(ステップS1:基板供給工程)。
【0052】
その後、冷却手段を作動させてヒータステージ6上面の高温空気を吹き飛ばすことによりゆらぎ対策を実行しながら、撮像制御部72の動作指令に従って、カメラ16によりヒータステージ6上のサブマウントSを撮像する(ステップS2:撮像工程)。また、撮像制御部72は、段階加熱制御部71及び予熱制御部73に対しても撮像の動作指令を伝え、前者には第二の予熱温度への昇温制御を促し、後者にはチップヘッド13へのチップ供給動作の開始を促す。
【0053】
段階加熱制御部71は、撮像制御部72の撮像指令を受けてヒータステージ6のヒータ6aを第一の予熱温度から第二の予熱温度への昇温制御を開始する(ステップS3:第一次昇温工程の開始)。
また、予熱制御部73は、撮像制御部72の撮像指令を受けて、XYZガントリの駆動によりチップヘッド13のチップトレーステージ3上への搬送を開始する(ステップS4:チップ供給工程の開始)。
【0054】
かかる第一次昇温工程とチップ供給工程が実行されている間に、撮像により取得された撮像データからヒータステージ6又はサブマウントS又は双方に付されたマーク(図示略)を利用して、或いはヒータステージ6の上面及びサブマウントSの外形(エッジ)を利用してサブマウントSがヒータステージ6の上面において所定位置にあるか否かを認識する。もし、位置ズレが許容範囲外の時にはX−Yテーブル5を作動させてサブマウントSの位置修正を行う(ステップS5:位置調整工程)。
【0055】
一方、段階加熱制御部71は、ヒータステージ6のヒータ6aにより昇温を完了すると、第二の予熱温度でヒータステージ6を維持する(ステップS6:第一次昇温工程の完了)。
また、チップトレーステージ3に到着したチップヘッド13は、予熱制御部73の動作指令信号に従って、チップノズル12の電磁弁が吸引状態に切り替えられ、その下端部の端面に半導体レーザチップTを吸着する。さらに、チップヘッド13はヒータステージ6上に搬送され、サブマウントS上に半導体レーザチップTを載置する(ステップS7:チップ供給工程の完了)。
【0056】
さらにチップヘッド13は、チップ加圧機構によりチップノズル12を介して半導体レーザチップTを0.3〜0.5[N]程度の荷重で加圧する。また、かかる加圧時において、動作制御手段7の動作指令信号に従って電磁弁が大気開放側に切り替えられ、チップノズル12内への大気の流動が停止され、大気流動による熱損失が抑えられるので、ボンディング時における半導体レーザチップTの局所的な温度格差が抑制される。
【0057】
また、上記半導体レーザチップTの加圧と同時に、不活性ガス供給手段が作動し、ヒータステージ6上に窒素ガスが吹き付けられる。そして、これと同時に、段階加熱制御部71は、ヒータ6aによりサブマウントSのAu−Snハンダ膜の溶融温度である280[℃]を考慮した接合温度である360[℃]まで加熱する(ステップS8:第二次昇温工程の開始)。さらに、段階加熱制御部71は、ヒータ6aが接合温度まで加熱されると、かかる接合温度状態を1[sec]維持してサブマウントSの共晶ハンダ膜を溶融させ、その後、ヒータ6aの通電を切り、加熱を停止する(ステップS9:第二次昇温工程の完了)。
【0058】
その後、冷却工程に移行する。即ち、冷却手段の作動が開始され、ヒータステージ6上に正常値である0.5[MPa]のエア圧で冷却エアの吹きつけが行われ、ヒータステージ6と共に半導体レーザチップTと及びサブマウントSの冷却が行われる(ステップS10:冷却工程の開始)。また、熱センサがヒータステージ6の現在温度に基づく検出信号を絶えず、除去制御部74及び冷却制御部75に出力する(冷却温度測定工程)。
【0059】
冷却手段により第二の予熱温度である250[℃]になると共晶ハンダは溶融状態から凝固状態となり、半導体レーザチップTがサブマウントS上に接合される。また、この第二の予熱温度が検出されると(ステップS11)、冷却制御部75は、冷却手段の冷却エアの吹きつけ圧力を減圧させる(例えば0.2[MPa])(ステップS12:冷却工程の冷却抑制期間の開始)。
【0060】
そして、除去制御部74は、チップヘッド13の電磁弁を吸引状態に切り替えてチップノズル12に半導体レーザチップTをサブマウントSごと吸着させる。このときヒータステージ6の吸引孔は吸引状態を解除する。さらに、XYZガントリにより図示しないダイボンディング済みの格納トレーにチップヘッド13を搬送し、吸着を解除させて、当該トレーに半導体レーザチップTがダイボンディングされたサブマウントSを格納する(ステップS13:除去工程)。
【0061】
また、冷却制御部75は、ヒータステージ6の近傍からサブマウントS及び半導体レーザチップTが離れると、冷却手段のエア圧を再び正常値である0.5[MPa]に戻す(ステップS14:冷却工程の冷却抑制期間の完了)。さらに、冷却制御部75は熱センサ出力の監視を続け(ステップS15)、検出温度が第一の予熱温度である100[℃]となった時点で冷却手段を停止させる(冷却工程の完了)。また、新たなサブマウントSに半導体レーザチップTのダイボンディング処理が継続して行われる場合には、段階加熱制御部71はヒータ6aの通電を再開し、第一の予熱温度を維持する。
【0062】
(ダイボンディング装置の効果)
以上のように、ダイボンディング装置20では、ヒータステージ6に半導体レーザチップTを供給するまでにヒータステージ6を第二の予熱温度まで昇温してしまうので接合温度との温度差を小さくすることができ、その後に続く接合温度までの昇温時間を短縮することができる。従って、ダイボンディング処理全体の迅速化を図ることが可能となる。
【0063】
また、第一の予熱温度をゆらぎの影響をあまり受けない温度とし、かかる第一の予熱温度の時にカメラによるサブマウントSの撮像を行う構成のため、サブマウントSの位置認識が正確に行われ、サブマウントSに対する半導体レーザチップTの接合精度を向上することが可能である。
【0064】
また、第二の予熱温度を共晶ハンダの融点温度手前としたので、第二次昇温工程以前にサブマウントS上に半導体レーザチップTを載置することにより、共晶ハンダ膜が溶融するまでに半導体レーザチップTを供給でき、その後の第二次昇温工程において、サブマウントSと半導体レーザチップTを一体的に加熱することができ、良好な接合を行うことが可能である。
【0065】
さらに、冷却工程において、冷却抑制期間を設けたことにより、冷却エアの吹きつけを継続したままサブマウントS及び半導体レーザチップTをヒータステージ6から除去することができ、冷却時間と除去作業時間とのオーバーラップにより処理時間の短縮化が図られ、ダイボンディング処理全体の迅速化を図ることが可能となる。
【0066】
(その他)
上記実施形態では、加熱手段としてセラミックヒータを用いたヒータステージ6を使用しているが、他の加熱手段を使用しても良い。このほか電熱線による接合,レーザ接合,ハロゲンランプによる接合,Nガスによる接合を行っても良い。
【0067】
上記実施形態では、冷却制御部75は冷却抑制期間において、冷却手段の冷却エアの吹きつけ圧力の減圧を行っているが、半導体レーザチップT及びサブマウントSのヒータステージ6からの除去の開始から冷却エアの影響を受けない距離を離れるまでの期間について冷却エアの吹きつけを中断する動作制御を行う構成としても良い。このように構成した場合にあっても、半導体レーザチップTがヒータステージ6から所定距離離れてから格納を完了するまでの作業時間が短縮される。
【0068】
【発明の効果】
本発明は、加圧手段への基板と半導体チップの供給が完了するまでにロウ材が溶融しない範囲である第二の予熱温度まで昇温を終了させてしまうので、基板及び半導体チップの供給完了以降は、第二の予熱温度から接合温度までの小さな温度幅での昇温を行えば良い。このため、基板及び半導体チップの供給後に第一の予熱温度から接合温度までの昇温を行う場合と比較して、ダイボンディング工程全体の処理時間を短縮し、処理の迅速化を図ることが可能となる。
【0069】
また、ゆらぎの排除可能な温度を第一の予熱温度とし、かかる環境下で加熱手段へ供給された基板の撮像を行い、その結果により基板の位置調整を行う構成の場合には、ゆらぎの影響の少ない撮像データを取得することができ、ダイボンディング作業の迅速化に加えて、基板と半導体チップをの相互の位置関係について精度の向上を図ることが可能となる。
【0070】
また、加熱手段が接合温度まで昇温された後に冷却エアの吹きつけにより冷却すると共に当該冷却の途中で冷却エアの吹きつけ圧力を一時的に低減して半導体チップ等を加熱手段から除去する工程の場合には、加熱手段の冷却が継続的に行われる過程の中で半導体チップ等の除去作業も完了するので、従来の如く、冷却と半導体チップ等の除去作業完了までの双方の所要時間を要する場合と比較して、これらの作業時間を短縮することが可能となり、ダイボンディング作業全体の迅速化を図ることが可能となる。
また、冷却の途中で冷却エアの吹きつけを中断して半導体チップ等を加熱手段から除去する工程の場合にあっても、半導体チップ及び基板が加熱手段を離れるまでの短期間しか中断しないので、従来の如く、冷却と半導体チップ等の除去作業完了までの双方の所要時間を要する場合と比較して、これらの作業時間を短縮することが可能となり、ダイボンディング作業全体の迅速化を図ることが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態の全体構成を示す概略構成図である。
【図2】実施形態の制御系を示すブロック図である。
【図3】実施形態によるダイボンディング作業の各工程におけるヒータステージの設定目標温度の変化を示している。
【図4】実施形態の制御動作を示すフローチャートである。
【図5】従来例の要部を示す部分説明図である。
【図6】従来例によるダイボンディング作業の各工程におけるヒータステージの設定目標温度の変化を示している。
【符号の説明】
5 X−Yテーブル(位置調整手段)
6 ヒータステージ(加熱手段)
7 動作制御手段
13 チップヘッド(チップ搬送手段)
15 マウントヘッド(基板搬送手段)
20 ダイボンディング装置
71 段階加熱制御部
72 撮像制御部
73 予熱制御部
74 除去制御部
75 冷却制御部
S サブマウント(基板)
T 半導体レーザチップ(半導体チップ)

Claims (6)

  1. 半導体チップと基板とを加熱して、それらに介在するロウ材により接合するダイボンディング装置であって、
    前記半導体チップ及び基板を加熱する加熱手段と、前記基板を保持し前記加熱手段に供給する基板搬送手段と、前記半導体チップを保持し前記加熱手段に供給するチップ搬送手段と、これらの動作制御を行う動作制御手段とを備え、
    前記動作制御手段は、
    前記加熱手段を、維持すべき最低温度である第一の予熱温度以上に常時維持すると共に、前記第一の予熱温度よりも高く前記ロウ材の融点より低い第二の予熱温度までと第二の予熱温度からロウ材の融点より高い接合温度までとに段階的に昇温する段階加熱制御部と、
    前記加熱手段への基板の供給と半導体チップの供給とを完了するまでに、前記第一の予熱温度から前記第二の予熱温度への昇温を完了させる予熱制御部とを有することを特徴とするダイボンディング装置。
  2. 前記加熱手段に供給された基板を撮像する撮像手段と、この撮像手段により取得された撮像データに基づいて前記基板の位置調整を行う位置調整手段とを備え、
    前記第一の予熱温度を、撮像された画像の精度を損なうゆらぎの影響を排除可能な温度以下に設定し、
    前記動作制御手段は、前記第二の予熱温度への昇温を開始する前に前記撮像を完了させる撮像制御部を有することを特徴とする請求項1記載のダイボンディング装置。
  3. 接合終了後の前記加熱手段を冷却エアの吹きつけにより冷却する冷却手段と、前記加熱手段の温度を検出する温度検出手段とを備え、
    前記動作制御手段は、
    前記温度検出手段により前記ロウ材の凝固点を下回る温度が検出されると接合された前記基板及び半導体チップを前記加熱手段から除去する動作制御を行う除去制御部と、
    前記基板及び半導体チップが前記除去の開始から前記加熱手段から離れるまでの間は前記冷却手段の吹きつけの圧力を減圧し又は吹きつけを停止する冷却制御部とを備えることを特徴とする請求項1又は2記載のダイボンディング装置。
  4. 加熱手段により半導体チップと基板とを加熱して、それらに介在するロウ材により接合するダイボンディング装置によるダイボンディング方法であって、
    前記加熱手段を、維持すべき最低温度である第一の予熱温度に設定する初期温度設定工程と、
    前記加熱手段に前記基板を供給する基板供給工程と、
    前記加熱手段に前記半導体チップを供給するチップ供給工程と、
    前記加熱手段を、前記第一の予熱温度から前記ロウ材の融点より低い第二の予熱温度まで昇温する第一次昇温工程と、
    前記加熱手段を、前記第二の予熱温度から前記ロウ材の融点より高い接合温度まで昇温する第二次昇温工程とを備え、
    前記基板供給工程及びチップ供給工程の完了までに前記第一次昇温工程を完了させることを特徴とするダイボンディング方法。
  5. 前記基板供給工程完了後、撮像手段により前記加熱手段に供給された基板を撮像する撮像工程と、
    この撮像工程により取得された撮像データに基づいて前記基板の位置調整を行う位置調整工程とを備え、
    前記初期温度設定工程における第一の予熱温度を、撮像された画像の精度を損なうゆらぎの影響を排除可能な温度以下に設定し、
    前記第一次昇温工程の開始までに前記撮像工程を完了させることを特徴とする請求項4記載のダイボンディング方法。
  6. 前記第二次昇温工程完了後に前記加熱手段を冷却エアの吹きつけにより冷却する冷却工程と、
    前記冷却工程の開始から継続的に前記加熱手段の温度を検出する冷却温度測定工程と、
    前記冷却工程の途中で前記冷却温度測定工程により前記ロウ材の凝固点を下回る温度が検出されると、接合された前記基板及び半導体チップを前記加熱手段から除去する除去工程とを備え、
    前記冷却工程に、前記除去工程の開始から当該除去工程によって前記半導体チップ及び基板が前記加熱手段から離れるまでの間は前記冷却工程による冷却エアの吹きつけの圧力を減圧し又は吹きつけを停止する冷却抑制期間を設けたことを特徴とする請求項4又は5記載のダイボンディング方法。
JP2002245503A 2002-08-26 2002-08-26 ダイボンディング装置及びダイボンディング方法 Pending JP2004087705A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002245503A JP2004087705A (ja) 2002-08-26 2002-08-26 ダイボンディング装置及びダイボンディング方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002245503A JP2004087705A (ja) 2002-08-26 2002-08-26 ダイボンディング装置及びダイボンディング方法

Publications (1)

Publication Number Publication Date
JP2004087705A true JP2004087705A (ja) 2004-03-18

Family

ID=32053676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002245503A Pending JP2004087705A (ja) 2002-08-26 2002-08-26 ダイボンディング装置及びダイボンディング方法

Country Status (1)

Country Link
JP (1) JP2004087705A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344682A (ja) * 2005-06-07 2006-12-21 Stanley Electric Co Ltd 半導体発光装置の製造方法
WO2015045935A1 (ja) * 2013-09-25 2015-04-02 東レエンジニアリング株式会社 ボンディング装置
EP3163601A3 (en) * 2009-01-23 2017-08-09 Nichia Corporation Method of producing a semiconductor device by bonding silver or silver oxide on a surface of a semiconductor element with silver oxide on a surface of a base
JP2020080382A (ja) * 2018-11-13 2020-05-28 キヤノンマシナリー株式会社 ボンディング装置、ダイボンダ、及びボンディング方法
CN117206681A (zh) * 2023-11-09 2023-12-12 迈为技术(珠海)有限公司 一种芯片激光焊接设备及其焊接方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344682A (ja) * 2005-06-07 2006-12-21 Stanley Electric Co Ltd 半導体発光装置の製造方法
JP4699811B2 (ja) * 2005-06-07 2011-06-15 スタンレー電気株式会社 半導体発光装置の製造方法
EP3163601A3 (en) * 2009-01-23 2017-08-09 Nichia Corporation Method of producing a semiconductor device by bonding silver or silver oxide on a surface of a semiconductor element with silver oxide on a surface of a base
EP3151268A3 (en) * 2009-01-23 2017-08-09 Nichia Corporation Method of producing a semiconductor device by bonding silver oxide on a surface of a semiconductor element with silver or silver oxide on a surface of a base
EP3163602A3 (en) * 2009-01-23 2017-08-09 Nichia Corporation Method of producing a semiconductor device by bonding silver on a surface of a semiconductor element with silver on a surface of a base in air or in an oxygen environment
WO2015045935A1 (ja) * 2013-09-25 2015-04-02 東レエンジニアリング株式会社 ボンディング装置
JP2015065328A (ja) * 2013-09-25 2015-04-09 東レエンジニアリング株式会社 ボンディング装置
JP2020080382A (ja) * 2018-11-13 2020-05-28 キヤノンマシナリー株式会社 ボンディング装置、ダイボンダ、及びボンディング方法
CN117206681A (zh) * 2023-11-09 2023-12-12 迈为技术(珠海)有限公司 一种芯片激光焊接设备及其焊接方法
CN117206681B (zh) * 2023-11-09 2024-04-12 迈为技术(珠海)有限公司 一种芯片激光焊接设备及其焊接方法

Similar Documents

Publication Publication Date Title
JP4736355B2 (ja) 部品実装方法
US20090127315A1 (en) Apparatus and method for manufacturing semiconductor device
CN105189409B (zh) 金属-陶瓷板层压体的制造装置及制造方法、功率模块用基板的制造装置及制造方法
KR20140001118A (ko) 본딩장치
US20090020593A1 (en) Method and Apparatus for Manufacturing Solder Mounting Structure
JP4372605B2 (ja) 電子部品搭載装置および電子部品搭載方法
KR20010039744A (ko) 땜납 제거 장치 및 방법
JP4482598B2 (ja) ボンディング装置、ボンディング装置の補正量算出方法及びボンディング方法
JPH09153525A (ja) ボンディング装置およびボンディング方法
JP2004087705A (ja) ダイボンディング装置及びダイボンディング方法
JP6325053B2 (ja) 接合システム、接合方法、および半導体デバイスの製造方法
JP2007059652A (ja) 電子部品実装方法
JP6083041B2 (ja) 接合方法、接合システム、および半導体デバイスの製造方法
JP2014007329A (ja) ボンディング装置
JPH08204327A (ja) 実装装置
JPH10125728A (ja) ボンディング方法
JP2001230275A (ja) 半導体集積回路装置の製造方法
JP2004158491A (ja) ダイボンディング装置
JP5042146B2 (ja) フリップチップボンダ装置
JP2004039802A (ja) 半導体装置の製造方法および半導体製造装置
JP2004087704A (ja) ダイボンディング装置
JP2000349099A (ja) はんだ接合方法および、半導体装置の製造方法
JP2947220B2 (ja) フリップチップ接続方法及びフリップチップ搭載装置
JP7202115B2 (ja) 実装装置および実装方法
JP4732894B2 (ja) ボンディング方法及びボンディング装置