JP2004085264A - 造波装置 - Google Patents

造波装置 Download PDF

Info

Publication number
JP2004085264A
JP2004085264A JP2002243862A JP2002243862A JP2004085264A JP 2004085264 A JP2004085264 A JP 2004085264A JP 2002243862 A JP2002243862 A JP 2002243862A JP 2002243862 A JP2002243862 A JP 2002243862A JP 2004085264 A JP2004085264 A JP 2004085264A
Authority
JP
Japan
Prior art keywords
wave
making
command
height
wave height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002243862A
Other languages
English (en)
Other versions
JP3806379B2 (ja
Inventor
Ikuo Yamamoto
山本 郁夫
Yuji Ota
太田 裕二
Masayuki Hashimoto
橋本 雅之
Yojiro Wada
和田 洋二郎
Kazunari Yamashita
山下 一成
Masami Matsuura
松浦 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002243862A priority Critical patent/JP3806379B2/ja
Publication of JP2004085264A publication Critical patent/JP2004085264A/ja
Application granted granted Critical
Publication of JP3806379B2 publication Critical patent/JP3806379B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】水槽内に、所望の特性を有する波をより正確に造り出す造波装置を提供する。
【解決手段】制御部11、モーションコントローラ12及び造波ドライブユニット13を備える造波装置を用いる。制御部11は、造波条件信号に基づいて造波演算を行い、波高を示す波高指令c1を出力する。モーションコントローラ12は、波高指令c1に基づいて、フィードバック制御及びフィードフォワード制御を行う。そして、波高指令c1に対応する造波指令wcを出力する。造波ドライブユニット13は、水槽14内に設けられ、波高計22を備える。そして、造波指令wcに基づいて動作し、水槽14内に波を造り、波高計22で検出される波高検出値ηをモーションコントローラ12へ出力する。モーションコントローラ12は、波高指令c1と造波ドライブユニット13から出力された波高検出値ηとに基づいて、複数の造波指令wcを出力する。
【選択図】   図2

Description

【0001】
【発明の属する技術分野】
本発明は、造波装置に関し、特に所望の波高を有する波を再現する造波装置に関する。
【0002】
【従来の技術】
大規模な水槽で用いる造波装置は、複数の造波器(造波板)を有し、それらが水中で移動することにより波を造り出す。水槽中で造り出された波は、水槽の壁面で反射した波と互いに干渉する。そのため、造波板を水槽内で単純に、周期的に移動させるだけでは所望の波を造り出すことは困難である。水槽内に設置された造波装置において、所望の特性を有する波を正確に造り出すように造波板を適切に駆動することが可能な技術が望まれている。
【0003】
また、水槽内の造波装置で波を造り出して使用した後、波の無い静止した水面に戻したい場合、造波装置を停止するだけでは、その波が消えるまでに時間がかかる。短時間で水槽内の波を無くし、静止した水面を得ることが可能な技術が望まれている。
【0004】
【発明が解決しようとする課題】
従って、本発明の目的は、水槽内に所望の特性を有する波を正確に造り出すように制御を行なうことが可能な造波装置を提供することである。
【0005】
本発明の他の目的は、水槽内の波を効率的に無くすように制御を行なうことが可能な造波装置を提供することである。
【0006】
本発明の更に他の目的は、造波方法に依らずに、水槽内の造波及び消波を自在に制御することが可能な造波装置を提供することである。
【0007】
【課題を解決するための手段】
以下に、[発明の実施の形態]で使用される番号・符号を用いて、課題を解決するための手段を説明する。これらの番号・符号は、[特許請求の範囲]の記載と[発明の実施の形態]との対応関係を明らかにするために括弧付きで付加されたものである。ただし、それらの番号・符号を、[特許請求の範囲]に記載されている発明の技術的範囲の解釈に用いてはならない。
【0008】
従って、上記課題を解決するために、本発明の造波装置は、制御部(11)と、モーションコントローラ(12)と、複数の造波ドライブユニット(13)とを具備する。
制御部(11)は、造り出す波の条件である造波条件信号に基づいて造波演算を行ない、波の高さとしての波高を示す複数の波高指令(c1)を出力する。モーションコントローラ(12)は、複数の波高指令(c1)の各々に基づいて、フィードバック制御及びフィードフォワード制御を行う。そして、複数の波高指令(c1)の各々に対応する複数の造波指令(wc)を出力する。複数の造波ドライブユニット(13)の各々は、水槽(14)内に設けられ、波高を検出する波高計(22)を備える。そして、複数の造波指令(wc)のうちの対応するものに基づいて動作する。また、水槽(14)内の水に波を造る。加えて、波高計(22)で検出される波高検出値(η)をモーションコントローラ(12)へ出力する。
そして、モーションコントローラ(12)は、複数の波高指令(c1)の各々と、複数の造波ドライブユニット(13)の各々のうちの対応するものから出力された波高検出値(η)とに基づいて、複数の造波指令(wc)を出力する。
【0009】
また、本発明の造波装置は、モーションコントローラ(12)が、フィードフォワード制御部(10)と、フィードバック制御部(9)とを具備する。
フィードフォワード制御部(10)は、波高指令(c1)に基づいて、造波指令(wc)を補正する造波補正指令(S5)を出力する。フィードバック制御部(9)は、波高指令(c1)と波高検出値(η)と造波補正指令(S5)とに基づいて、造波指令(wc)を出力する。
【0010】
また、本発明の造波装置は、フィードバック制御部(9)が、PID制御部(6)と、加算部(7)とを具備する。
PID制御部(6)は、波高指令(c1)と波高検出値(η)とに基づいて、比例制御、積分制御及び微分制御の少なくとも一つを用いて、仮造波指令(S3)を出力する。加算部(7)は、仮造波指令(S3)と造波補正指令(S5)とに基づいて、造波指令(wc)を出力する。
【0011】
また、本発明の造波装置は、複数の造波ドライブユニット(13)の各々が、水槽(14)内を移動し、水槽(14)内の水に波を形成する造波板(23)を更に備える。
そして、波高検出値(η)は、造波板(23)の変位(X)に基づいて補正される。
【0012】
更に、本発明の造波装置は、複数の造波ドライブユニット(13)の各々が、造波板(23)を駆動するモータ(20)を更に備える。
そして、造波指令(wc)は、モータ(20)の動作を制御する信号である。
【0013】
更に、本発明の造波装置は、造波板(23)が、ピストン型(23−1)、フラップ型(23−2)及びプランジャ型(23−3)のいずれか1つである。
【0014】
上記課題を解決するための、本発明の造波方法は、(a)〜(d)ステップを具備する。
ここで、(a)ステップは、水槽(14)内で造波板(23)を移動させて造り出す波の条件としての造波条件信号に基づいて、造波演算を行い、波の高さとしての波高を示す波高指令(c1)を出力する。(b)ステップは、波高指令(c1)と、水槽(14)内で検出された波高としての波高検出値(η)とに基づいて、フィードバック制御及びフィードフォワード制御を行い、造波指令(wc)を出力する。(c)ステップは、造波指令(wc)に基づいて造波板(23)を駆動し、水槽(14)内の水に波を造る。(d)ステップは、造られた波の波高を検出し、波高検出値(η)として出力する。
【0015】
また、本発明の造波方法は、(b)ステップが、(e)〜(f)ステップを具備する。
ここで、(e)ステップは、波高指令(c1)に基づいて、造波指令(wc)を補正する造波補正指令(S5)を出力する。(f)ステップは、波高指令(c1)と波高検出値(η)と造波補正指令(S5)とに基づいて、造波指令(wc)を出力する。
【0016】
更に、本発明の造波方法は、(f)ステップが、(g)〜(h)ステップを具備する。
ここで、(g)ステップは、波高指令(c1)と波高検出値(η)とに基づいて、比例制御、積分制御及び微分制御の少なくとも一つを用いて、仮造波指令(S3)を出力する。(h)ステップは、仮造波指令(S3)と造波補正指令(S5)とに基づいて、造波指令(wc)を出力する。
【0017】
上記課題を解決するための、本発明に関わるプログラムは、(i)〜(k)ステップを具備する方法をコンピュータに実行させる。
ここで、(i)ステップは、水槽(14)内で造波板(23)を移動させて造り出す波の条件としての造波条件信号に基づいて、造波演算を行い、波の高さとしての波高を示す波高指令(c1)を算出する。(j)ステップは、水槽(14)内で検出された波高としての波高検出値(η)を受信する。(k)ステップは、波高指令(c1)と波高検出値(η)とに基づいて、フィードバック制御及びフィードフォワード制御を行い、造波板(23)を駆動する造波指令(wc)を算出する。
【0018】
また、本発明に関わるプログラムは、(k)ステップが、(l)〜(m)ステップを具備する上記の方法をコンピュータに実行させる。
ここで、(l)ステップは、波高指令(c1)に基づいて、造波指令(wc)を補正する造波補正指令(S5)を出力する。(m)ステップは、波高指令(c1)と波高検出値(η)と造波補正指令(S5)とに基づいて、造波指令(wc)を出力する。
【0019】
更に、本発明に関わるプログラムは、(m)ステップが、(n)〜(o)ステップを具備する上記の方法をコンピュータに実行させる。
ここで、(n)ステップは、波高指令(c1)と波高検出値(η)とに基づいて、比例制御、積分制御及び微分制御の少なくとも一つを用いて、仮造波指令(S3)を出力する。(o)ステップは、仮造波指令(S3)と造波補正指令(S5)とに基づいて、造波指令(wc)を出力する。
【0020】
なお、上記造波方法及びプログラムの有するステップは、矛盾の生じない限り、各ステップ間の順番の変更が可能である。
【0021】
【発明の実施の形態】
以下、本発明である造波装置の実施の形態に関して、添付図面を参照して説明する。
本実施例において、実験水槽に使用される造波装置を例に示して説明するが、他の貯水施設やプールのような造波が必要な施設においても、適用可能である。
【0022】
本発明である造波装置の実施の形態に構成について添付図面を参照して説明する。
図1は、本発明である造波装置の実施の形態の構成を示す図である。造波装置1は、制御部11、モーションコントローラ12、造波ドライブユニット13(13−1〜13−6)を具備し、実験水槽14に波を形成する。
【0023】
制御部11は、ワークステーションに例示される情報処理装置である。記憶装置、入出力装置、表示装置及び通信装置を含む。造波装置1全般に関する制御を行う。
制御部11は、また、ユーザーからの入力、外部からの受信、記憶装置からの読み出しなどにより、造波装置1において造り出す波の条件(造波条件)を示す造波条件信号を取得する。造波条件としては、波の高さである波高(振幅)、波の周期(周波数)、波の速度などである。次に、造波条件信号に基づいて造波演算を行う。続いて、各造波ドライブユニット13−1〜13−6毎に、それらの近傍における波の高さの目標としての波高を算出する。そして、各造波ドライブユニット13−1〜13−6毎の目標の波高を示す複数の波高指令を出力する。ここで、複数の波高指令の各々は、制御時間毎の波高の時系列データである。必要に応じて、その他の指令も出力する。
【0024】
モーションコントローラ12は、ワークステーションに例示される情報処理装置である。記憶装置、入出力装置、表示装置及び通信装置を含む。制御部11に含まれていても良い。モーションコントローラ12は、制御部11から出力される制御信号に基づいて、造波ドライブユニット13(13−1〜13−6)の動作を制御する。
モーションコントローラ12は、制御部11から出力された造波ドライブユニット13−1〜13−6向けの複数の波高指令を受信する。次に、複数の波高指令の各々と、その複数の波高指令の各々に対応する造波ドライブユニット13−1〜13−6の各々から出力される波高検出値(後述)とに基づいて、フィードバック制御及びフィードフォワード制御を行う(後述)。そして、造波ドライブユニット13−1〜13−6の各々に対応する複数の造波指令を出力する。造波指令は、造波ドライブユニット13を駆動するための信号であり、造波ドライブユニット13のサーボアンプ16(後述)に対するモータ回転数指令である。
【0025】
造波ドライブユニット13(13−1〜13−6)は、実験水槽14内に複数設けられ、波を形成する造波部(後述)と、造波部を駆動する駆動部(後述)とを有する。造波部前面近傍の波の高さとしての波高を検出する波高計を備えている。モーションコントローラ12からの制御信号に基づいて、実験水槽14内に波を形成する。
造波ドライブユニット13の各々において、モーションコントローラ12から出力された複数の造波指令のうちの対応するものに基づいて、駆動部が駆動する。駆動部の動作により、造波部が実験水槽14の縁部で振動する。そして、造波部の振動により、実験水槽14内の水に波が製造される。製造された波の波高は、造波部に設けられた波高計で検出され、波高検出値としてモーションコントローラ12へ出力される。
【0026】
次に、図2を参照して、造波装置の制御について説明する。
図2は、本発明の造波装置の実施の形態における制御に関わる構成を示す図である。制御部11、モーションコントローラ12、造波ドライブユニット13(13−1〜13−6)を具備する。
制御部11は、既述の通りなので、その説明を省略する。
【0027】
モーションコントローラ12は、制御部11から出力された複数の波高指令cの各々と、その複数の波高指令の各々に対応する造波ドライブユニット13−1〜13−6の各々から出力される波高検出値ηとに基づいて、フィードバック制御及びフィードフォワード制御を行う。そして、造波ドライブユニット13−1〜13−6の各々に対応する複数の造波指令wcを出力する。
また、過熱検知センサ17(後述)及びストロークセンサ18−1〜18−2(後述)の出力に基づいて、サーボモータ20(後述)及び造波板23(後述)の動作を制限する。
【0028】
造波ドライブユニット13(13−1〜13−6)は、造波部と駆動部とを有する。
造波部は、駆動部に駆動され波を造り出す。造波板23とフローティング波高計22とを含む。造波板23は、駆動部のボールネジ19のナット部に取り付けられ、ボールネジ19が駆動されることにより振動し、波を造り出す。フローティング波高計22は、造波板23の前方(造波する側)に取り付けられ、造波板23の前方近傍の波高を計測し、波高検出値としてモーションコントローラ12へ出力する。水面に浮かせるフロートポインタは、水面に浮いた状態において、下側ほど水面に平行な断面積が小さくなっており、波の周波数が高い場合でも、水面の変化に対する応答性が高くなっている。
【0029】
駆動部は、造波部を駆動する。サーボアンプ16、サーボモータ20、過熱検知センサ17、ストロークセンサ18−1〜18−2、ボールネジ19及び位置センサ21を含む。サーボアンプ16は、モーションコントローラ12からの造波指令wcを増幅し、その指令をサーボモータ20へ出力する。サーボモータ20は、サーボアンプ16からの増幅された造波指令wcに基づいて、順逆両方向に回転動作する。ボールネジ19は、サーボモータ20の回転動作に基づいて回転し、そのナット部を前後に移動させる。
過熱検知センサ17は、サーボモータ20の温度を測定し、モーションコントローラ12へ出力している。モーションコントローラ12は、サーボモータ20の温度が、予め設定された値以上になった場合には、サーボモータ20の動作を休止させる等の処置を行なう。ストロークセンサ18−1〜18−2は、造波板23のストロークの両端部に位置する位置検出センサであり、造波板23が所定のストローク範囲を超えた場合、その結果をモーションコントローラ12へ出力する。モーションコントローラ12は、その場合、動作範囲を変更する等の処置を行なう。位置センサ21は、造波板23の正確な位置を検出し、造波板変位Xとしてモーションコントローラ12へ出力される。
【0030】
次に、造波の仕方と、その造波部の構成について説明する。
図5は、造波部を含む実験水槽断面を示している。図5(a)は、ピストン型の造波部、図5(b)は、フラップ型の造波部、図5(c)は、プランジャ型の造波部を示す。
【0031】
図5(a)のピストン型では、造波板23−1(ピストン型の造波板)が、概ね鉛直方向(静止水面に垂直な方向)に保持される。そして、駆動機構Pの動作に応じて、そのままの姿勢で所定の距離を進み、再び元の位置まで戻るという動作を繰り返す。ピストン型は、水深が浅く、水の抵抗が小さい場合に適用される。
波高計22は、造波板23−1において、波を造る側に設置される。造波板23−1は、静止水面に対して常に垂直な向きで駆動されるので、波高計22も静止水面に対して概ね垂直な向きで計測する。
【0032】
図5(b)のフラップ型では、造波板23−2(フラップ型の造波板)が、その一端側を固定(支点Q)され、概ね鉛直方向(静止水面に垂直な方向)に保持される。そして、駆動部Pの動作に応じて、造波板23−2の他端が、支点Qを中心とした所定の長さの円弧を描くように、往復運動を繰り返す。フラップ型は、水深が深く、水の抵抗が大きい場合に適用される。
波高計22は、造波板23−2において、波を造る側に設置される。造波板23−2は、静止水面に対する角度が、周期的に変動するように駆動されるので、波高計22も静止水面に対する角度が、周期的に変動する。
【0033】
図5(c)のプランジャ型では、造波板23−3(プランジャ型の造波板)が、駆動機構の動作に応じて水面を叩くような上下方向の動作を繰り返す。プランジャ型は、駆動機構を置くための奥行きスペースが少ない場合に適用される。
波高計22は、造波板23−3に設置することが困難であるため、別の治具に取り付けて、造波板23−3の近傍に固定的に設置される。
【0034】
次に、図3を参照して、造波装置の制御について更に説明する。
図3(a)は、本発明の造波装置の実施の形態における波高の制御に関わるブロック図である。フィードバック制御部9及びフィードフォワード制御部10を備える。
【0035】
フィードバック制御部9は、乗算部2、乗算部3、減算部4、加算部5、PID制御部6、加算部7及びリミッタ部8を含む。
乗算部2は、位置センサ21から出力される造波板23の位置である造波板変位Xに、所定のゲインKを乗算し、フローティング波高計22からの波高検出値ηを補正する波高補正値αを算出する。すなわち、
α=K・X   (1)
である。
【0036】
減算部4は、フローティング波高計22からの波高検出値ηから波高補正値αを減算し、補正された波高検出値c5を算出する。すなわち、
c5=η−α   (2)
である。
【0037】
乗算部3は、波高指令c1と補正係数c3とを乗算し、補正された波高指令c2を算出する。すなわち、
c2=c1・c3   (3)
である。
ここで、補正係数c3は、図3(b)に示すような値を取る。図3(b)は、補正係数c3の時間変化を示すグラフであり、縦軸がc3、横軸が造波開始からの時間を示す。補正係数c3は、造波の開始から所定の時間tまでの間に、0から緩やかに1.0へ達する。これは、造波の開始段階で、波高指令を急激に上昇させないようにするために用いている。従って、所定の時間t経過後(定常状態)では、c2=c1である。なお、初期の造波の乱れが問題ない場合には、補正係数c3を用いなくても良い。
【0038】
加算部5は、波高指令c1の基準高さ(波高0cmとする水深)c0と補正された波高指令c2(基準高さからの変位(±)で示される波高指令)とを加えた絶対的な波高指令(実験水槽10の底面からの波高指令)と、補正された波高検出値c5(実験水槽10の底面からの波高検出値)との偏差としての波高偏差erを算出する。すなわち、
er=c2+c0−c5   (4)
である。
また、波高指令c1と補正された波高検出値c5との基準が同じであれば、基準高さc0は用いない。
【0039】
PID制御部6は、波高偏差erに基づいて、比例制御、積分制御及び微分制御の少なくとも一つを用いて、仮造波指令S3を算出する。なお、加算部5は、PID制御部6に含まれていても良い。
【0040】
加算部7は、フィードフォワード制御部10から出力された造波補正指令S5(後述)と仮造波指令S3とを加算して、造波指令wcとして出力する。造波指令wcは、サーボモータ20を駆動するための電圧指令である。すなわち、
wc=S3+S5   (5)
である。
【0041】
リミッタ部8は、造波指令wcの値が所定の範囲(サーボモータ20の駆動用の電圧指令の許容範囲)に収まっている場合、そのまま出力する。所定の範囲を超えている場合には、造波指令wcに最も近い所定の範囲内の値を改めて造波指令wcとして、出力する。
【0042】
フィードフォワード制御部10は、波高指令c1に基づいて、仮造波指令を補正する造波補正指令S5をフィードバック制御部9へ出力する。ただし、
S5=G(s)・c1   (6)
G(s):フィードフォワード制御部10の伝達関数。
である。
すなわち、次の制御サイクルにおいて用いる波高指令c1を事前に取り出して、その波高指令c1を前の制御サイクルの(仮)造波指令に(加算部7で)加えるというフィードフォワードな制御を行うことにより、正確な造波を行うことが可能となる。
【0043】
次に、PID制御部6について更に説明する。
図4は、PID制御部6の例を示すブロック図である。図4(a)のPID制御部6は、比例部31と微分部32を含む。比例部31は、波高偏差erに基づいて、比例制御(ゲイン:K)により指令S1を出力する。すなわち、
S1=K・er   (7)
である。
また、微分部32は、指令S1に基づいて、微分制御(ゲイン:K)により仮造波指令S3を算出している。すなわち、
S3=K・s・S1   (8)
である。ただし、sはラプラス変換演算子である。
【0044】
また、図4(b)のPID制御部6は、比例部31と、積分部33と、加算部34と、微分部35とを含む。比例部31は、波高偏差erに基づいて、比例制御(ゲイン:K)により指令S1を出力する。すなわち、上記(7)式と同様である。
積分部33は、波高偏差erに基づいて、積分制御(ゲイン:K)により指令S2を出力する。すなわち、
S2=K・er/s   (9)
である。
加算部34は、指令S1と指令S2とを加算して、指令S3’を出力する。すなわち、
S3’=S1+S2   (10)
微分部35は、指令S3’に基づいて、微分制御(ゲイン:K)を行い、仮造波指令S3を出力する。すなわち、
S3=K・s・S3’   (11)
である。
【0045】
なお、造波装置の制御は、図6のような構成を用いても実施可能である。
図6は、本発明の造波装置の実施の形態における波高の制御に関わる他のブロック図である。フィードバック制御部9及びフィードフォワード制御部10を備える。
図3(a)と比較して、加算部5’において、補正された波高検出値c5の替わりに造波板変位Xを用いている点が、図3(a)と異なる。その他は、図3(a)と同様であるので、その説明を省略する。
【0046】
また、上記各部における制御(各式)において、次元や単位を合わせるための係数を掛けても良い。
【0047】
次に、本発明である造波装置の実施の形態に動作について、図1〜図4を参照して説明する。ここでは、図3(a)及び図4(a)に示されるブロック線図を有する制御を行うものとする。また、本実施例では、図5(a)のピストン型の造波方法を用い、1で示すような実験水槽14内における規則波及び一方向波の造波を行う場合について説明する。
【0048】
まず、図3及び図4の制御に関わるゲインを調整する。
(1)ステップS01
造波板変位Xの範囲を、通常の駆動範囲よりも狭く(例示:通常の駆動可能範囲1000mmに対して200mm)設定する。設定範囲は、通常の駆動可能範囲の5〜20%である。
(2)ステップS02
比例部31のゲインK(の値)を調整する。造波を行い、造波の傾向(例示:波高及び波くずれ(波の頂上部が壊れ、きれいな波とならない現象)等)を計測する。そのとき、造波は、一方向規則波で行い、波の振幅は大きくしない(例示:通常の振幅可能範囲500mmに対して100mm)。波の振幅範囲は、通常の振幅可能範囲の10〜20%である。
造波板23によって動きが異なる場合は、各造波板23毎に、ゲインKの値を調整する。フローティング波高計22のノイズによってゲインを上げられないことが予想されるので、一番ゲインが低い軸に合わせていく(ゲインを低めに設定する)。
そして、生成された波と目的とする波との相違を少なくするようにゲインKの値を調整する。
(3)ステップS03
ゲインKの調整後に、同様の方法でゲインKを調整し、造波の傾向を計測する。
(4)ステップS04
ある程度ゲインが調整できたら、波形を計測し、波高、周期、吸収率などを計測する。生成波形が目的波と異なる場合は、ステップS02及びステップS03へ戻り、再度ゲインK及びKを調整する。
【0049】
ここで、波高制御におけるゲインKは、ω/Aを電気的に模擬した増幅器の伝達関数である。Aは規則波における造波特性関数である。
図7は、ω/A、Aと周波数f(=ω/2π)との関係を示すグラフである。縦軸は、ω/A及びA、横軸は、周波数fである。規則波における造波特性関数は、例えばフラップ型の波造波装置であれば、以下の式で表される。
A=[{4sinh(2πh/L)}/(2πh/L)]・[{1−cosh(2πh/L)+(2πh/L)sinh(2πh/L)}/{4πh/L+sinh(4πh/L)}]
ここでは、周期1秒ではω/A=3.29、1.2秒では3.09、1.5秒では3.15となるので、ゲインKの最初の目安を3として、上記ゲインKの調整を行った。
【0050】
上記方法により、図3(a)及び図4の制御に関わるゲインを適切に調整することが出来る。
なお、その他のゲインの調整は、上記(1)〜(4)の調整終了後に、必要に応じて行う。
【0051】
次に、造波装置の動作について説明する。
(0)ステップS10
ユーザーからの入力、外部からの受信、記憶装置からの読み出しなどにより、造波条件を示す造波条件信号が制御部11へ入力される。
【0052】
(1)ステップS11
制御部11での造波条件信号に基づいた造波演算により、各造波ドライブユニット13(13−1〜13−6)に対応する複数の波高指令が算出される。各造波ドライブユニット13毎の波高指令c1は、モーションコントローラ12へ出力される。同時に、補正係数c3及び基準高さc0がモーションコントローラ12へ出力される。
【0053】
(2)ステップS12
モーションコントローラ12において、各造波ドライブユニット13毎の波高指令c1と補正係数c3とが、乗算部3により乗算(式(3))され、補正された波高指令c2が出力される。
【0054】
(3)ステップS13
また、モーションコントローラ12において、乗算部2により位置センサ21からの造波板変位Xに所定のゲインKを乗算された波高補正値αと、フローティング波高計22からの波高検出値ηとが、減算部4により減算(式(2))され、補正された波高検出値c5が出力される。
【0055】
(4)ステップS14
加算部5により、基準高さc0と補正された波高指令c2とを加えた絶対的な波高指令と、補正された波高検出値c5との偏差としての波高偏差er(式(4))が出力される。
【0056】
(5)ステップS15
PID制御部6において、比例部31により、波高偏差erに基づいて、指令S1(式(7))が出力される。そして、微分部32により、指令S1に基づいて、仮造波指令S3(式(8))が出力される。
【0057】
(6)ステップS16
フィードフォワード制御部10により、波高指令c1に基づいて、仮造波指令を補正する造波補正指令S5(式(6))がフィードバック制御部9の加算部7へ出力される。
【0058】
(7)ステップS17
加算部7により、造波補正指令S5と仮造波指令S3とが加算(式(5))され、造波指令wcが出力される。ただし、リミッタ部8により、造波指令wcの値が所定の範囲に収まるように制御される。
【0059】
造波ドライブユニット13毎に、上記ステップS12〜ステップS17が行われる。そして、造波ドライブユニット13毎の造波指令wcが、対応する造波ドライブユニット13−1〜13−6のいずれか一つへ出力される。
【0060】
(8)ステップS18
造波ドライブユニット13の各々において、モーションコントローラ12から出力された造波指令wcは、サーボアンプ16で増幅され、サーボモータ20へ出力される。そして、増幅された造波指令wcに基づいて、サーボモータ20が回転駆動される。
【0061】
(9)ステップS19
サーボモータ20の回転により、ボールネジ19が回転駆動され、それにより、ボールネジ19のナット部が前後に移動する。ボールネジ19のナット部の移動により、造波板23が前後に移動し、実験水槽14の水に波が造り出される。
【0062】
(10)ステップS20
位置センサ21により、造波板23の変位である造波板変位Xが計測される。造波板変位Xは、モーションコントローラ12の乗算部2へ出力される。また、フローティング波高計22により、造波板23前面近傍の波高検出値ηが計測される。そして、波高検出値ηは、モーションコントローラ12の減算部4へ出力される。
【0063】
ステップS20の後、再びステップS11へ戻り、ステップS11〜ステップS20を繰り返す。なお、ステップS20での造波板変位X及び波高検出値ηは、ステップS13で用いる。
【0064】
以上の動作により、造波装置1による実験水槽14における造波が行われる。このとき、造波方法は図5(a)〜図5(c)のいずれの場合にも適用が可能である。
【0065】
次に、上記の造波装置1による造波結果について説明する。
図8は、実験水槽14内の、造波板23から5m離れた場所で計測された波高の時間変化を示すグラフである。縦軸は波高、横軸は時間である。図8(a)は、実験水槽14内での反射を考慮しない場合であり、図8(b)は、本発明に関する造波の制御を用いた場合である。ここでは、時間10sec.から造波を開始し、一定の振幅(波高)を有する波を形成するように制御している。
図8(a)の場合に比較して、図8(b)の場合のほうが、より正確に一定波高の波を形成することが出来る。すなわち、本発明の造波装置1により、非常に安定した波形を得ることが出来る。
なお、実験水槽14内での反射がある場合でも、実施可能である。
【0066】
図9は、実験水槽14内の、造波板23から5m離れた場所で計測された波高の時間変化を示すグラフである。縦軸は波高、横軸は時間である。図9(a)は、実験水槽14内での反射を考慮しない場合であり、図9(b)は、本発明に関する造波の制御を用いた場合である。ここでは、時間10sec.から造波を開始し、時間80sec.前後までは本発明に関する造波の制御を用いて一定の振幅(波高)を有する波を形成するように安定した造波を行っている。そして、時間80sec.前後で、波高をゼロにする指令を出力し、波高をゼロにする制御を行っている。
図9(a)の場合に比較して、図9(b)の場合のほうが、より短時間に波高をゼロにすることが出来る。すなわち、本発明の造波装置1により、非常に短時間の間に、波高を概ねゼロの状態にすることが可能となる。
なお、実験水槽14内での反射がある場合でも、実施可能である。
【0067】
【発明の効果】
本発明の造波装置を用いることで、造波装置を設置した水槽内に、所望の特性を有する波を正確に造り出すことが可能となる。
【図面の簡単な説明】
【図1】本発明である造波装置の実施の形態の構成を示す図である。
【図2】本発明の造波装置の実施の形態における制御に関わる構成を示す図である。
【図3】(a)本発明の造波装置の実施の形態における波高の制御に関わるブロック図である。
(b)補正係数c3の時間変化を示すグラフである。
【図4】(a)(b)PID制御部の例を示すブロック図である。
【図5】造波部を含む実験水槽断面を示している。図5(a)は、ピストン型の造波部、図5(b)は、フラップ型の造波部、図5(c)は、プランジャ型の造波部
【図6】本発明の造波装置の実施の形態における波高の制御に関わる他のブロック図である。
【図7】ω/A、Aと周波数fとの関係を示すグラフである。
【図8】造波板から5m離れた場所で計測された波高の時間変化を示すグラフである。
【図9】造波板から5m離れた場所で計測された波高の時間変化を示すグラフである。
【符号の説明】
1  造波装置
2  乗算部
3  乗算部
4  加算部
5  加算部
6  PID制御部
7  加算部
8  リミッタ部
9  フィードバック制御部
10  フィードフォワード制御部
11  制御部
12  モーションコントローラ
13(13−1〜13−6)  造波ドライブユニット
14  実験水槽
16  サーボアンプ
17  過熱検知センサ
18−1〜18−2  ストロークセンサ
19  ボールネジ
20  サーボモータ
21  位置センサ
22  フローティング波高計
23  造波板
31  比例部
32、35  微分部
33  積分部
34  加算部

Claims (12)

  1. 造り出す波の条件である造波条件信号に基づいて造波演算を行ない、前記波の高さとしての波高を示す複数の波高指令を出力する制御部と、
    モーションコントローラと、
    水槽内に設けられた複数の造波ドライブユニットと、
    を具備し、
    前記モーションコントローラは、前記複数の波高指令の各々に基づいて、フィードバック制御及びフィードフォワード制御を行い、前記複数の波高指令の各々に対応する複数の造波指令を出力し、
    前記複数の造波ドライブユニットの各々は、前記波高を検出する波高計を備え、前記複数の造波指令のうちの対応するものに基づいて動作し、前記水槽内の水に前記波を造り、前記波高計で検出される波高検出値を前記モーションコントローラへ出力し、
    前記モーションコントローラは、前記複数の波高指令の各々と、前記複数の造波ドライブユニットの各々のうちの対応するものから出力された前記波高検出値とに基づいて、前記複数の造波指令を出力する、
    造波装置。
  2. 前記モーションコントローラは、
    前記波高指令に基づいて、前記造波指令を補正する造波補正指令を出力するフィードフォワード制御部と、
    前記波高指令と前記波高検出値と前記造波補正指令とに基づいて、前記造波指令を出力するフィードバック制御部と、
    を具備する、
    請求項1に記載の造波装置。
  3. 前記フィードバック制御部は、
    前記波高指令と前記波高検出値とに基づいて、比例制御、積分制御及び微分制御の少なくとも一つを用いて、仮造波指令を出力するPID制御部と、
    前記仮造波指令と前記造波補正指令とに基づいて、前記造波指令を出力する加算部と、
    を具備する、
    請求項2に記載の造波装置。
  4. 前記複数の造波ドライブユニットの各々は、前記水槽内を移動し、前記水槽内の前記水に前記波を形成する造波板を更に備え、
    前記波高検出値は、前記造波板の変位に基づいて補正される、
    請求項1乃至3のいずれか一項に記載の造波装置。
  5. 前記複数の造波ドライブユニットの各々は、前記造波板を駆動するモータを更に備え、
    前記造波指令は、前記モータの動作を制御する信号である、
    請求項1乃至4のいずれか一項に記載の造波装置。
  6. 前記造波板は、ピストン型、フラップ型及びプランジャ型のいずれか1つである、
    請求項1乃至5のいずれか一項に記載の造波装置。
  7. (a)水槽内で造波板を移動させて造り出す波の条件としての造波条件信号に基づいて、造波演算を行い、前記波の高さとしての波高を示す波高指令を出力するステップと、
    (b)前記波高指令と、前記水槽内で検出された波高としての波高検出値とに基づいて、フィードバック制御及びフィードフォワード制御を行い、造波指令を出力するステップと、
    (c)前記造波指令に基づいて前記造波板を駆動し、前記水槽内の水に前記波を造るステップと、
    (d)前記造られた波の波高を検出し、前記波高検出値として出力するステップと、
    を具備する、
    造波方法。
  8. 前記(b)ステップは、
    (e)前記波高指令に基づいて、前記造波指令を補正する造波補正指令を出力するステップと、
    (f)前記波高指令と前記波高検出値と前記造波補正指令とに基づいて、前記造波指令を出力するステップと、
    を具備する、
    請求項7に記載の造波方法。
  9. 前記(f)ステップは、
    (g)前記波高指令と前記波高検出値とに基づいて、比例制御、積分制御及び微分制御の少なくとも一つを用いて、仮造波指令を出力するステップと、
    (h)前記仮造波指令と前記造波補正指令とに基づいて、前記造波指令を出力するステップと、
    を具備する、
    請求項8に記載の造波方法。
  10. (i)水槽内で造波板を移動させて造り出す波の条件としての造波条件信号に基づいて、造波演算を行い、前記波の高さとしての波高を示す波高指令を算出するステップと、
    (j)前記水槽内で検出された波高としての波高検出値を受信するステップと、
    (k)前記波高指令と前記波高検出値とに基づいて、フィードバック制御及びフィードフォワード制御を行い、前記造波板を駆動する造波指令を算出するステップと、
    を具備する方法をコンピュータに実行させるためのプログラム。
  11. 前記(k)ステップは、
    (l)前記波高指令に基づいて、前記造波指令を補正する造波補正指令を出力するステップと、
    (m)前記波高指令と前記波高検出値と前記造波補正指令とに基づいて、前記造波指令を出力するステップと、
    を具備する請求項10に記載の方法をコンピュータに実行させるためのプログラム。
  12. 前記(m)ステップは、
    (n)前記波高指令と前記波高検出値とに基づいて、比例制御、積分制御及び微分制御の少なくとも一つを用いて、仮造波指令を出力するステップと、
    (o)前記仮造波指令と前記造波補正指令とに基づいて、前記造波指令を出力するステップと、
    を具備する請求項11に記載の方法をコンピュータに実行させるためのプログラム。
JP2002243862A 2002-08-23 2002-08-23 造波装置 Expired - Fee Related JP3806379B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002243862A JP3806379B2 (ja) 2002-08-23 2002-08-23 造波装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002243862A JP3806379B2 (ja) 2002-08-23 2002-08-23 造波装置

Publications (2)

Publication Number Publication Date
JP2004085264A true JP2004085264A (ja) 2004-03-18
JP3806379B2 JP3806379B2 (ja) 2006-08-09

Family

ID=32052518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002243862A Expired - Fee Related JP3806379B2 (ja) 2002-08-23 2002-08-23 造波装置

Country Status (1)

Country Link
JP (1) JP3806379B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102536618A (zh) * 2011-12-27 2012-07-04 上海瑞华(集团)有限公司 一种模拟波浪的闭环控制装置
CN102591210A (zh) * 2012-02-10 2012-07-18 上海瑞华(集团)有限公司 一种模拟水域仿真系统及其方法
CN104075866A (zh) * 2014-06-26 2014-10-01 水利部交通运输部国家能源局南京水利科学研究院 离心模型试验波浪循环荷载模拟设备及其测试方法
KR101506631B1 (ko) 2012-11-21 2015-03-30 대우조선해양 주식회사 선상 수영장

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102536618A (zh) * 2011-12-27 2012-07-04 上海瑞华(集团)有限公司 一种模拟波浪的闭环控制装置
CN102591210A (zh) * 2012-02-10 2012-07-18 上海瑞华(集团)有限公司 一种模拟水域仿真系统及其方法
KR101506631B1 (ko) 2012-11-21 2015-03-30 대우조선해양 주식회사 선상 수영장
CN104075866A (zh) * 2014-06-26 2014-10-01 水利部交通运输部国家能源局南京水利科学研究院 离心模型试验波浪循环荷载模拟设备及其测试方法

Also Published As

Publication number Publication date
JP3806379B2 (ja) 2006-08-09

Similar Documents

Publication Publication Date Title
US9683839B2 (en) Method of correcting measurement error of shape measuring apparatus, and shape measuring apparatus
JP2006323361A5 (ja)
JP5452720B2 (ja) モータ制御装置
JP5269158B2 (ja) 制御方法及び制御装置
CN110799309A (zh) 具有配置相关动力学的系统的振动控制
JP2017102617A (ja) 補正装置、補正装置の制御方法、情報処理プログラム、および記録媒体
JP6545390B2 (ja) パラレルリンク機構の制御装置
JP2010079845A (ja) 数値制御装置
WO2008065836A1 (fr) Contrôleur de moteur et procédé permettant d'ajuster un filtre de sortie et dispositif permettant d'ajuster un filtre de sortie
JP2004085264A (ja) 造波装置
WO2004008624A1 (ja) サーボ制御装置のゲイン調整方法
JP5127767B2 (ja) 駆動制御装置
WO2011086879A1 (ja) 粘度の測定方法および粘度測定装置
JP2008054448A5 (ja)
JP7135483B2 (ja) 電動機の制御装置
WO2020162200A1 (ja) 制御装置および制御プログラム
JPWO2015079499A1 (ja) 機械装置の設計改善作業を支援する方法及び装置
JP4636271B2 (ja) サーボ制御装置とその調整方法
JP2010130854A (ja) リニアモータの推力リップル補償装置およびその補償方法
JP4078396B2 (ja) 位置決め制御装置
JP3026173B2 (ja) モールドオシレーション駆動制御装置
JP2004317208A (ja) 吸収造波装置
JP2003274684A (ja) サーボ制御装置
JP6416820B2 (ja) 制御系を自律的に安定化して自動調整を行う機能を有するサーボ制御装置
CN114759855A (zh) 一种运动控制方法及装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060512

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees