JP2004068697A - 内燃機関の燃料供給制御装置 - Google Patents

内燃機関の燃料供給制御装置 Download PDF

Info

Publication number
JP2004068697A
JP2004068697A JP2002228768A JP2002228768A JP2004068697A JP 2004068697 A JP2004068697 A JP 2004068697A JP 2002228768 A JP2002228768 A JP 2002228768A JP 2002228768 A JP2002228768 A JP 2002228768A JP 2004068697 A JP2004068697 A JP 2004068697A
Authority
JP
Japan
Prior art keywords
assist air
exhaust
intake
fuel
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002228768A
Other languages
English (en)
Inventor
Takashi Matsumoto
松本 崇志
Kiyoshi Fujiwara
藤原 清
Akira Hasegawa
長谷川 亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002228768A priority Critical patent/JP2004068697A/ja
Publication of JP2004068697A publication Critical patent/JP2004068697A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

【課題】吸気管噴射を行う場合、充分に燃料を微粒子化しないと、壁面付着により目標空燃比に対して実空燃比がずれたり、壁面付着の燃料が筒内に流入してエミッションが悪化する。
【解決手段】予混合燃料噴射弁17近傍に吸気噴射管34を設置して、ターボチャージャ50下流から取入れた吸気を用いてアシストエアを行い、噴射される燃料を微粒子化する。この時、機関負荷、機関回転数、吸気圧、過給圧、吸気温度等に応じて、吸気噴射管34から噴射される吸気の流量を調整する。また、排気通路より取入れた排気、及び吸気と排気と双方を用いても同様にアシストエアを行う。更に、予混合燃料を噴射する時期を変化させて、筒内で形成される予混合気の分布を制御して、気筒内での燃焼特性を変化させる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、予混合気を形成する技術に関し、特に予混合気を形成する燃料を微粒子化する予混合燃料噴射制御装置に関する。
【0002】
【従来の技術】
吸気通路内(吸気ポート内)に燃料を噴射する際に、噴射位置周辺の温度が気筒内に比較して低いこと等により、噴射燃料の気化はあまり促進されず、気化促進のために噴射圧力を高圧化して微粒化すると、その噴射燃料の貫通性の高さにより、噴射した燃料が気化する前にポート内に付着する問題等があった。
【0003】
よって、前記問題を解決するために、実公昭63−3428号公報に、過給機下流の加圧空気をアシストエア供給管を介して燃料噴射弁近傍にアシストエアとして直接噴射し、噴射された燃料を微粒子化する技術が開示されている。また、特開平9−96256号公報には、排気再循環(EGR)を行う際に、EGRガス出口を燃料噴射弁近傍に設けて、EGRガスをアシストエアとして用いる技術が開示されている。何れの技術も圧力差を用いて、吸気ポート内でアシストエアを噴射し、この噴射したアシストエアの圧力により燃料を微粒子化する技術である。
【0004】
よって、アシストエアを用いて燃料を微粒子化可能であることから、吸気通路内に設けられた燃料噴射弁を用いて予混合燃料噴射装置を形成することができる。予混合燃料噴射装置は、内燃機関の吸気行程、若しくは吸気行程から圧縮行程にかけて、予め気筒内に燃料を噴射して混合気を形成する予混合を行うために用いられるものである。予混合は、気筒内の温度が低い状態である吸気行程で形成されるため、予混合燃料噴射装置には、噴射された燃料が微粒子化されて気化しやすい状態にある方が好ましい。
【0005】
【発明が解決しようとする課題】
アシストエアを用いて燃料を微粒子化することにより、燃料の気化は促進されるが、特にディーゼルエンジン等自己発熱により着火する内燃機関では、負荷が大きくなって気筒内が高温状態になった場合などには、気化が促進されることにより着火性能が増し、圧縮行程から上死点に到達する前に着火する過早着火が発生する場合がある。過早着火が発生すると、内燃機関に対して背圧となり、内燃機関に負荷がかかることになる。
【0006】
また、過給圧を用いて、吸気の一部をアシストエアとして用いる場合、過給圧が充分に高い状態ならば、吸気ポート内との圧力差が発生して、充分なアシストエアを噴射可能であるが、過給圧が低い場合などは、充分なアシストエアが噴射できない可能性がある。
【0007】
排気圧を用いて、EGRガスの一部をアシストエアとして用いる場合、燃焼時の圧力増加を利用してアシストエアを噴射するため、アシストエアの噴射圧は、吸気ポート内圧力より高く、好適な噴射が可能であるが、高負荷状態などの内燃機関が高温になる場合では、そのアシストエアとして噴射されるEGRガスも高温になる。本来、高温の気体を流通させるようには設計されていない吸気ポート及び燃料噴射装置では、数百度に達するEGRガスをアシストエアとして噴射することにより、故障する可能性がある。また、特に高負荷状態では、EGRガスを吸気中に流入させることにより、吸入される酸素量が低下し、これにより出力負荷が発生する可能性もある。
【0008】
本発明は上記問題に鑑みてなされたものであり、アシストエアによる燃料の微粒化制御をより効果的にして予混合燃料を内燃機関の諸状態に応じて効率よく運用することを課題とする。
【0009】
【課題を解決するための手段】
すなわち、本発明は、内燃機関の運転状態に応じアシストエアによる燃料の微粒子化制御を最適化するもので、内燃機関の運転状況を判定する手段として種々の手段を設け、この手段により判断された運転状況に応じて、アシストエアの流量調整弁の開度調整を行って、最適化制御を行うこととしたのである。
さらに、吸気あるいは排気のみでアシストエアを形成することに加え、排気と吸気双方を用いてアシストエアを形成し、内燃機関の諸状態に応じてこれら排気、及び排気と吸気の双方から形成されるアシストエアを用いて燃料を微粒化すること、及びこれら微粒子化された燃料の粒子の分布を変化させることで、予混合燃料を内燃機関の諸状態に応じて効率よく運用する。
これにより、アシストエアを用いて燃料を微粒化する際に内燃機関の諸条件に沿った粒度の燃料を形成することが可能となる。
より具体的には、第1の発明は、内燃機関に燃料を供給する燃料噴射弁と、内燃機関に空気を供給する吸気通路に設けられて空気を圧縮して供給する過給機と、前記過給機下流から、燃料噴射弁の燃料噴射孔近傍にアシストエアを案内するアシストエア通路と、このアシストエア通路に流れるアシストエアの流量を調整する流量調整弁と、この流量調整弁を機関運転状況に応じたアシストエア流量である目標アシストエア流量となるように目標開度に設定する流量調整弁制御手段と、を備え、前記流量調整弁制御手段は、吸気温度、過給機の過給圧、及び燃料噴射弁の燃料噴射孔周りの吸気圧力とを基準にアシストエア通路を流れる実アシストエア流量を算出する実アシストエア流量算出手段と、前記実アシストエア流量算出手段により算出された実アシストエア流量が前記目標アシストエア流量となるように前記流量調整弁の目標開度を補正する流量調整弁開度補正手段と、を有する内燃機関の燃料供給制御装置とした。
【0010】
燃料噴射弁近傍でアシストエアを、その流量を調整して噴射することにより、燃料が微細化されると共にその微細化された燃料の粒度が調整可能となる。よって、このアシストエアの流量を、機関運転状況に応じた適正な流量になるように、補正して噴射する。
【0011】
前記実アシストエア流量算出手段は、機関温度、過給機の過給圧、及び燃料噴射弁の燃料噴射孔周りの吸気圧力とを基準にアシストエア通路を流れる実アシストエア流量を算出しても良い。
【0012】
吸気の一部を利用してアシストエアを形成するには、過給機等の吸気圧力を上昇させる装置を用いて噴射圧力をかけ、この過給機の下流側に流入孔を設ける。そして、この流入孔から、吸気ポート内に設けられた燃料噴射弁の近傍に設けられた噴出孔までの間を、流量調整弁を有したアシストエア通路により連結する。
【0013】
このアシストエア通路は、吸気通路に比べてその負荷損失が小さくなるように設けることにより、吸気通路との間に圧力差が生じ、この圧力差により、吸気ポート内にアシストエアを噴射可能となる。この時、流入孔を設ける場所としては、過給機から、過給機の下流側に設けられるスロットル弁迄の間であることが好ましい。スロットル弁が設けられていることで吸気通路内に負荷損失が発生し、アシストエア通路との圧力差が発生するからである。また、流入孔は、望ましくは吸気流方向と水平に設けられ、その流入孔の開口部が、漏斗状に設けられて、より多くの吸気を取込めるようにしても良い。
【0014】
この流量調整弁は、その稼働状態の1状態として、機関温度、吸気温度に応じて開度を所定の開度に固定した状態とするか、開度を可変状態とするか何れかの状態を選択するようにしても良い。ここで固定状態では、例えば前記機関温度、吸気温度それぞれが所定の温度以下にある場合、予混合燃料を最大限微粒子化して気化性能を上げ、低温時の着火性能を向上させることができる。
【0015】
流量調整弁が可変稼働状態とした場合には、機関回転数、機関負荷等の機関運転状況に応じて、目標アシストエア流量(目標流量)が流入可能な目標開度に設定する。機関回転数が上昇すると、吸気の流速が早くなるため、噴射された予混合燃料の粒径があまり小さくなくても充分に吸気と混合されて気化が促進される。また、機関負荷が大きくなると、噴射される燃料量は多くなるが、これと同時に内燃機関の発熱量も大きくなり、気筒内の温度も上昇するため、噴射された燃料の気化が良好になるので、機関負荷が大きい場合にも、噴射された予混合燃料の微粒子化は必ずしも必要とはならない。よって、流量調整弁の目標開度の設定としては、機関回転数、機関負荷の上昇に応じて、噴射された予混合燃料を微粒子化しないように、その開度を小さくし、アシストエアの流量を少なくする。
【0016】
前記流量調整弁の開度が定めらたことにより、この定められた開度と、過給圧、吸気ポート内圧、及び、吸気温度、若しくは機関温度から、アシストエアの流量(実流量)を算出する。
【0017】
この算出した実流量に対して、前記目標アシストエア流量と実流量が略同じ噴射量となるように、前記流量調整弁の開度を微調整して、アシストエアを噴射する。
【0018】
また、前記内燃機関は、流量調整弁の開度に応じて変化する内燃機関の気筒内圧力を算出する実気筒内圧力算出手段と、機関運転状況に応じた気筒内圧力を算出する目標気筒内圧力算出手段と、を更に備え、前記流量調整弁制御手段は、前記実気筒内圧力算出手段により算出した実気筒内圧力が、前記目標気筒内圧力算出手段により算出された目標気筒内圧力となるように前記流量調整弁の開度を調整する流量調整弁開度補正手段と、を備えてもよい。
【0019】
また、前記内燃機関は、流量調整弁の開度に応じて変化する内燃機関の気筒内圧力を算出する実気筒内圧力算出手段と、クランクシャフトのクランク角の変化量を算出するクランク角算出手段と、前記クランク角算出手段により算出されたクランク角に対する気筒内圧力変化を算出する実圧力変化率算出手段と、機関運転状況に応じた気筒内圧力変化を算出する目標圧力変化率算出手段と、前記実圧力変化率算出手段により算出した実圧力変化率が、前記目標圧力変化率算出手段により算出された目標圧力変化率となるように前記流量調整弁の開度を調整する流量調整弁開度補正手段と、を備えてもよい。
【0020】
前記流量調整弁の開度を変化させて、アシストエアの噴射量を制御することにより、予混合燃料の粒度を制御することが可能となる。この粒度を制御することにより、気筒内での燃料の燃焼性を制御することが可能となり、これは着火遅れの制御を行っていることになる。即ち着火遅れの制御を、前記アシストエア量の制御で行うことが可能となる。アシストエア量の噴射量を増やして噴射燃料を微粒子化すると、燃焼性が増し、燃焼速度が上昇する。燃焼速度が上昇すると、気筒内圧力が上昇するため、この圧力に基づいてアシストエア量が制御可能となる。
【0021】
具体的には、目標流量調整弁開度設定手段により流量調整弁の開度を設定した後に、気筒内圧力(実気筒内圧力)を測定する。この実気筒内圧力に対し、機関負荷、及び機関回転数から、目標気筒内圧力を算出する。この目標気筒内圧力は、ある機関負荷、機関回転数の時に、過早着火を起すことなく好適に燃焼を行うことが可能となる圧力であり、実験的に求めることが可能な値である。
【0022】
そして、実気筒内圧力と目標気筒内圧力が、略同値となるように、流量調整弁の開度を微調整して、予混合燃料の粒度を制御し、気筒内圧力を変化させる。
【0023】
また、圧力による制御をより正確に行うならば、クランク角あたりの圧力変化率を基にして、前記圧力によるアシストエア量の制御と同様の制御を行っても良い。クランク角あたりの圧力変化率を求めることにより、より精密な圧力の挙動を測定することとなり、この測定結果を反映させることにより、圧力制御の精密性を向上させることが可能となる。
【0024】
このクランク角あたりの圧力変化率に応じてアシストエア量を制御するには、目標流量調整弁開度設定手段により流量調整弁の開度を設定した後に、クランク角あたりの気筒内圧力変化率(実気筒内圧力変化率)を測定する。この実気筒内圧力変化率に対し、機関負荷、及び機関回転数から、目標気筒内圧力変化率を算出する。
【0025】
また、第2の発明では、内燃機関に燃料を供給する燃料噴射弁と、内燃機関から排気を排出する排気通路に設けられ排気を浄化する排気浄化装置と、この排気浄化装置下流に設けられて排気を冷却する排気冷却装置と、前記排気浄化装置と前記排気冷却装置との間の排気通路から燃料噴射孔近傍にアシストエアを案内する第1アシストエア通路と、前記排気冷却装置下流の排気通路から燃料噴射孔近傍にアシストエアを案内する第2アシストエア通路と、前記第1アシストエア通路と第2アシストエア通路とを流れるアシストエアの流量をそれぞれ独立して調整する流量調整弁と、を備えた排気アシストエア噴射装置を備えた。
【0026】
第1の発明では、アシストエアを噴射する場合に吸気を用いた。これに対して第2の発明では、浄化された排気を取込んで、これを排気圧と吸気圧の差により、燃料噴射弁近傍より噴射する。
【0027】
そして、第3の発明では、前記第2の発明で示した排気アシストエア噴射装置を用いて燃料供給制御を行う装置として、第2の発明で示した排気アシストエア噴射装置と、排気冷却装置の上流側の排気温度を測定する排気温度測定手段と、前記排気温度測定手段によって測定された排気温度に応じて、アシストエアを案内するアシストエア通路を選択するアシストエア通路選択手段と、このアシストエア通路選択手段により選択したアシストエア通路の流量を調整する流量調整弁を機関運転状況に応じたアシストエア流量である目標アシストエア流量となるように目標開度に設定する流量調整弁制御手段と、を備え、前記流量調整弁制御手段は、排気温度、排気通路の排気圧、及び燃料噴射弁の燃料噴射孔周りの吸気圧力とを基準にアシストエア通路を流れる実アシストエア流量を算出する実アシストエア流量算出手段と、前記実アシストエア流量算出手段により算出された実アシストエア流量が前記目標アシストエア流量となるように前記流量調整弁の目標開度を補正する流量調整弁開度補正手段と、を備えた内燃機関の燃料供給制御装置を有した。
【0028】
第1の発明と同様に、燃料噴射弁近傍でアシストエアを、その流量を調整して噴射することにより、燃料が微細化されると共にその微細化された燃料の粒度が調整可能となる。よって、このアシストエアの流量を、機関運転状況に応じた適正な流量になるように、補正して噴射する。また、排気温度に応じて、排気を取込む箇所を変化させ、状況によってはアシストエアの噴射を行わない。
【0029】
前記実アシストエア流量算出手段は、機関温度、排気通路の排気圧、及び燃料噴射弁の燃料噴射孔周りの吸気圧力とを基準にアシストエア通路を流れる実アシストエア流量を算出しても良い。
【0030】
排気アシストエア噴射装置は、排気通路より排気の一部を分流し、その排気を吸気ポートに設けられた燃料噴射弁近傍よりアシストエアとして噴射する装置である。この排気アシストエア噴射装置は、排気通路内に設けられた煤等の微粒子を除外する排気浄化装置の下流より排気を取入れる。この排気浄化装置下流より排気を取入れることにより、吸気中に微粒子状の不純物が流入するのを防止可能となる。また、排気を取入れる場所は、排気浄化装置下流に設けられた排気を冷却する排気冷却装置の上流側、及び下流側の2カ所に流入孔を設け、この流入孔からとしたほうがよい。この2カ所の流入孔とすることにより、異なる温度領域の排気を取入れることが可能となるからである。
【0031】
各取入箇所となる流入孔には、アシストエア通路が設けられ、このアシストエア通路にはそれぞれ流量調整弁が設けられる。この流量調整弁は、それぞれ排気冷却装置上流の第1アシストエア通路と排気冷却装置下流の第2アシストエア通路に設けられて、開閉することにより、排気冷却装置上流、若しくは下流からの排気取入を切換えることが可能となる。
【0032】
また、この排気冷却装置上流と下流とに設けられた第1アシストエア通路と第2アシストエア通路とは、連結されて、1本のアシストエア通路として、吸気ポート内に排気を噴射することが好ましい。そして、この連結されたアシストエア通路には、更に流量調整弁が設けられ、この流量調整弁弁を段階的に開度を設定することにより、アシストエアの噴射量を設定することが好ましい。即ち、排気冷却装置上流に設けられた第1アシストエア通路、下流に設けられた第2アシストエア通路には、開閉のみを行う流量調整弁を設置し、吸気ポート内に排気を噴射するアシストエア通路には、流れる流量を調整する流量調整弁を設置するのが好ましい。
【0033】
排気アシストエア噴射装置を備えた燃料供給制御装置において、このアシストエア通路に設けられた流量調整弁は、その稼働状態の1状態として、機関温度、吸気温度に応じて開度を所定の開度に固定した状態とするか、開度を可変状態とするか何れかの状態を選択するようにしても良い。ここで固定状態では、例えば前記機関温度、吸気温度それぞれが所定の温度以下にある場合、予混合燃料を最大限微粒子化して気化性能を上げ、低温時の着火性能を向上させることができる。
【0034】
流量調整弁が可変稼働状態となった場合には、機関回転数、機関負荷に応じて、目標アシストエア流量(目標流量)が流入可能な目標開度に設定する。機関回転数が上昇すると、吸気の流速が早くなるため、噴射された予混合燃料の粒径があまり小さくなくても充分に吸気と混合されて気化が促進される。また、機関負荷が大きくなると、噴射される燃料量は多くなるが、これと同時に内燃機関の発熱量も大きくなり、気筒内の温度も上昇するため、噴射された燃料の気化は良好になるので、機関負荷が大きい場合にも、噴射された予混合燃料の微粒子化は必ずしも必要とはならない。よって、流量調整弁の稼働量の設定としては、機関回転数、機関負荷の上昇に応じて、噴射された予混合燃料を微粒子化しないように、その開度を小さくし、アシストエアの流量を少なくする。
【0035】
また、排気冷却装置の上流に設けられた第1アシストエア通路と下流に設けられた第2アシストエア通路は、排気温度に応じてその排気を案内する通路を選択する。一般に吸気ポート内に設けられる燃料噴射弁は、高温耐久性に優れるものではない。アシストエアとして噴射される排気温度が、この燃料噴射弁が耐えられる温度以上であると、排気をアシストエアとして噴射することが不可能となる。よって、排気冷却装置下流においても、その排気温度が燃料噴射弁が耐えられる温度以上になるのならば、排気冷却装置の上流に設けられた第1アシストエア通路と下流に設けられた第2アシストエア通路を共に閉止し、アシストエアとしての排気噴射を停止する。
【0036】
次に、排気冷却装置上流の温度は前記燃料噴射弁が耐えられる温度以上であるが、排気冷却装置下流では燃料噴射弁が耐えられる温度以下となっている場合には、排気冷却装置下流の第2アシストエア通路よりアシストエアを導いて、冷却された排気をアシストエアとして用いることが可能となる。また、排気浄化装置下流にて、既に排気温度が充分に下がっている状態であるならば、より高い温度の排気を用いた方が、噴射燃料を微粒子化して気化性能を向上させることが可能となるので、排気冷却装置上流の第1アシストエア通路よりアシストエアを導いて、より高温の排気をアシストエアとして噴射可能となる。
【0037】
前記アシストエア通路が定められると共に、流量調整弁の開度が定めらたことにより、この定められた開度と、過給圧、吸気ポート内圧、及び、吸気温度、若しくは機関温度から、アシストエアの流量(実流量)を算出する。
【0038】
この算出した実流量に対して、前記目標アシストエア流量と実流量が略同じ噴射量となるように、前記流量調整弁の開度を微調整して、アシストエアを噴射する。
【0039】
また、前記内燃機関は、前記流量調整弁の開度に応じて変化する内燃機関の気筒内圧力を算出する実気筒内圧力算出手段と、機関運転状況に応じた気筒内圧力を算出する目標気筒内圧力算出手段と、を更に備え、前記流量調整弁制御手段は、前記実気筒内圧力算出手段により算出した実気筒内圧力が、前記目標気筒内圧力算出手段により算出された目標気筒内圧力となるように前記流量調整弁の開度を調整する流量調整弁開度補正手段と、を備えてもよい。
【0040】
また、前記内燃機関は、流量調整弁の開度に応じて変化する内燃機関の気筒内圧力を算出する実気筒内圧力算出手段と、クランクシャフトのクランク角の変化量を算出するクランク角算出手段と、前記クランク角算出手段により算出されたクランク角に対する気筒内圧力変化を算出する実圧力変化率算出手段と、機関運転状況に応じた気筒内圧力変化を算出する目標圧力変化率算出手段と、前記実圧力変化率算出手段により算出した実圧力変化率が、前記目標圧力変化率算出手段により算出された目標圧力変化率となるように前記流量調整弁の開度を調整する流量調整弁開度補正手段と、を備えてもよい。
【0041】
前記流量調整弁の開度を変化させて、アシストエアの噴射量を制御することにより、予混合燃料の粒度を制御することが可能となる。この粒度を制御することにより、気筒内での燃料の燃焼性を制御することが可能となり、これは即ち着火遅れの制御を行っていることになる。よって、逆に、着火遅れの制御に、前記アシストエア量の制御を利用することが可能となる。噴射燃料を微粒子化すると、燃焼性が増し、燃焼速度が上昇する。燃焼速度が上昇すると、気筒内圧力が上昇するため、この圧力に基づいてアシストエア量が制御可能となる。
【0042】
具体的には、目標流量調整弁開度設定手段により流量調整弁の開度を設定した後に、気筒内圧力(実気筒内圧力)を測定する。この実気筒内圧力に対し、機関負荷、及び機関回転数から、目標気筒内圧力を算出する。この目標気筒内圧力は、ある機関負荷、機関回転数の時に、過早着火を起すことなく好適に燃焼を行うことが可能となる圧力であり、実験的に求めることが可能な値である。
【0043】
そして、実気筒内圧力と目標気筒内圧力が略同値となるように、流量調整弁の開度を補正して予混合燃料の粒度を制御し、気筒内圧力を変化させる。
【0044】
また、圧力による制御をより正確に行うならば、クランク角あたりの圧力変化率を基にして、前記圧力によるアシストエア量の制御と同様の制御を行っても良い。クランク角あたりの圧力変化率を求めることにより、より精密な圧力の挙動を測定することとなり、この測定結果を反映させることにより、圧力制御の精密性を向上させることが可能となる。
【0045】
このクランク角あたりの圧力変化率に応じてアシストエア量を制御するには、目標流量調整弁開度設定手段により流量調整弁の開度を設定した後に、クランク角あたりの気筒内圧力変化率(実気筒内圧力変化率)を測定する。この実気筒内圧力変化率に対し、機関負荷、及び機関回転数から、目標気筒内圧力変化率を算出する。
【0046】
前記内燃機関は、前記流量調整弁開度補正手段により補正された流量調整弁の開度に応じて、内燃機関に供給される空気量を補正する吸入空気量制御手段を備えてもよい。
【0047】
また、前記内燃機関は、排気の一部を吸気に環流させる排気循環装置を備えると共に、前記流量調整弁開度補正手段により補正された流量調整弁の開度に応じて、吸気に環流される排気量を補正する排気環流量制御手段とを備えてもよい。
【0048】
排気循環装置を用いて、EGRガスとして排気を吸気中に再循環させる場合、排気の一部をアシストエアとして用いると、予め設定してあるEGR率に対して、アシストエアの排気が流入することにより、大きくずれる問題がある。そこで排気の流入量から、吸入吸気量を補正する値を定め、この補正値を目標となる吸気量に乗じた値が、実際の吸入空気量となるようにする。
【0049】
また、排気循環装置を用いていなくても、排気をアシストエアとして用いることにより、吸気中の酸素濃度は低下する。よって、この低下を防ぐために、吸入空気量を補正しても良い。
【0050】
第4の発明では、内燃機関に燃料を供給する燃料噴射弁と、内燃機関に空気を供給する吸気通路に設けられて空気を圧縮して供給する過給機と、前記過給機下流から、燃料噴射弁の燃料噴射孔近傍にアシストエアを案内する第1アシストエア通路と、内燃機関から排気を排出する排気通路に設けられ排気を浄化する排気浄化装置と、この排気浄化装置下流に設けられて排気を冷却する排気冷却装置と、前記排気浄化装置下流から前記排気冷却装置上流までの排気通路から燃料噴射孔近傍にアシストエアを案内する第2アシストエア通路と、前記排気冷却装置下流の排気通路から燃料噴射孔近傍にアシストエアを案内する第3アシストエア通路と、前記第1アシストエア通路と第2アシストエア通路と第3アシストエア通路とを流れるアシストエアの流量をそれぞれ独立して調整する流量調整弁と、を備える吸排気アシストエア噴射装置とした。
【0051】
前記第1の発明では、吸気を用いてアシストエアの噴射を行い、第2の発明では排気を用いてアシストエアの噴射を行った。これに対して第4の発明では、吸気と排気との双方を用いて、アシストエアの噴射を行う。
【0052】
そして、第5の発明では、前記第4の発明で示した吸排気アシストエア噴射装置を用いて燃料供給制御を行う装置として、第4の発明で示した吸排気アシストエア噴射装置と、排気冷却装置上流の排気温度を測定する排気温度測定手段と、前記排気温度測定手段によって測定された排気温度に応じて、アシストエアを案内するアシストエア通路を選択するアシストエア通路選択手段と、このアシストエア通路選択手段により選択したアシストエア通路の流量を調整する流量調整弁を機関運転状況に応じたアシストエア流量である目標アシストエア流量となるように目標開度に設定する流量調整弁制御手段と、を備え、前記流量調整弁制御手段は、アシストエア通路選択手段により選択したアシストエア通路に応じた、排気温度と排気通路の排気圧及び燃料噴射弁の燃料噴射孔周りの吸気圧力か、吸気温度と過給機の過給圧及び燃料噴射弁の燃料噴射孔周りの吸気圧力か、の何れかを基準にしてアシストエア通路を流れる実アシストエア流量を算出する実アシストエア流量算出手段と、前記実アシストエア流量算出手段により算出された実アシストエア流量が前記目標アシストエア流量となるように前記流量調整弁の目標開度を補正する流量調整弁開度補正手段と、を有する内燃機関の燃料供給制御装置とした。
【0053】
第1の発明及び第3の発明と同様に、燃料噴射弁近傍でアシストエアを、その流量を調整して噴射することにより、燃料が微細化されると共にその微細化された燃料の粒度が調整可能となる。よって、このアシストエアの流量を、機関運転状況に応じた適正な流量になるように、補正して噴射する。また、排気温度に応じて、排気を取込む箇所を変化させてアシストエアとして用いるか、若しくは吸気をアシストエアとして用いて、噴射された燃料の微細化を促進する。
【0054】
前記実アシストエア流量算出手段は、アシストエア通路選択手段により選択したアシストエア通路に応じた、機関温度と過給機の過給圧及び燃料噴射弁の燃料噴射孔周りの吸気圧力か、機関温度と排気通路の排気圧及び燃料噴射弁の燃料噴射孔周りの吸気圧力か、の何れかを基準にアシストエア通路を流れる実アシストエア流量を算出してもよい。
【0055】
前記燃料供給制御装置に用いられる吸排気アシストエア噴射装置は、排気通路より排気の一部を分流する共に、過給機下流より吸気の一部を分流し、この排気と吸気とを内燃機関の出力、温度に応じて選択し、吸気ポートに設けられた燃料噴射弁近傍よりアシストエアとして噴射する装置である。
【0056】
吸気の一部を利用してアシストエアを形成するには、過給機等の吸気圧力を上昇させる装置を用いて噴射圧力をかけ、この過給機の下流側に流入孔を設ける。そして、この流入孔から、吸気ポート内に設けられた燃料噴射弁の近傍に設けられた噴出孔までの間を、流量調整弁を有した第1アシストエア通路により連結する。
【0057】
この第1アシストエア通路は、吸気通路に比べてその負荷損失が小さくなるようにすることにより、吸気通路との間に圧力差が生じ、この圧力差により、吸気ポート内にアシストエアを噴射可能となる。この時、流入孔を設ける場所としては、過給機より下流側で吸気通路内に設けられるスロットル弁より上流であることが好ましい。スロットル弁が設けられていることで吸気通路内に負荷損失が発生し、第1アシストエア通路との圧力差が発生するからである。また、流入孔は、望ましくは吸気流方向と水平に設けられ、その流入孔の開口部が、漏斗状に設けられて、より多くの吸気を取込めるようにしても良い。
【0058】
次に、この吸排気アシストエア噴射装置に含まれる排気を流入させる装置では、排気通路内に設けられた煤等の微粒子を除外する排気浄化装置の下流より排気を取入れる。この排気浄化装置下流より排気を取入れることにより、吸気中に微粒子状の不純物が流入するのを防止可能となる。また、排気を取入れる場所は、排気浄化装置下流に設けられた排気を冷却する排気冷却装置の上流側、及び下流側の2カ所に流入孔を設け、この流入孔からとする。この2カ所の流入孔とすることにより、異なる温度領域の排気を取入れることが可能となる。
【0059】
各排気の取入箇所となる流入孔には、アシストエア通路が設けられ、このアシストエア通路にはそれぞれ流量調整弁が設けられる。この流量調整弁は、それぞれ排気冷却装置上流の第2アシストエア通路と排気冷却装置下流の第3アシストエア通路に設けられて、開閉することにより、排気冷却装置上流、若しくは下流からの排気取入を切換えることが可能となる。
【0060】
また、この排気冷却装置上流と下流とに設けられた第2アシストエア通路と第3アシストエア通路とは、連結されて、1本のアシストエア通路として、吸気ポート内に排気を噴射することが好ましい。。そして、この連結されたアシストエア通路には、更に流量調整弁が設けられ、この流量調整弁弁を段階的に開度を設定することにより、アシストエアの噴射量を設定することが好ましい。即ち、排気冷却装置上流に設けられた第2アシストエア通路、下流に設けられた第3アシストエア通路には、開閉のみを行う流量調整弁を設置し、吸気ポート内に排気を噴射するアシストエア通路には、流れる流量を調整する流量調整弁を設置するのが好ましい。
【0061】
前記吸排気アシストエア噴射装置を備えた燃料供給制御装置において、このアシストエア通路に設けられた流量調整弁は、その稼働状態の1状態として、機関温度、吸気温度に応じて開度を所定の開度に固定した状態とするか、開度を可変状態とするか何れかの状態を選択するようにしても良い。ここで固定状態では、例えば前記機関温度、吸気温度それぞれが所定の温度以下にある場合、予混合燃料を最大限微粒子化して気化性能を上げ、低温時の着火性能を向上させることができる。
【0062】
流量調整弁が可変稼働状態となった場合には、機関回転数、機関負荷に応じて、目標アシストエア流量(目標流量)が流入可能な目標開度に設定する。機関回転数が上昇すると、吸気の流速が早くなるため、噴射された予混合燃料の粒径があまり小さくなくても充分に吸気と混合されて気化が促進される。また、機関負荷が大きくなると、噴射される燃料量は多くなるが、これと同時に内燃機関の発熱量も大きくなり、気筒内の温度も上昇するため、高温の排気を用いたアシストエアは行わないほうがよい。
【0063】
また、第1アシストエア通路、第2アシストエア通路、第3アシストエア通路については、排気温度に応じてその通路を選択する。一般に吸気ポート内に設けられる燃料噴射弁は、高温に対する耐久性はあまり考慮されていない。よって、アシストエアとして噴射される排気温度が、この燃料噴射弁が耐えられる温度以上であると、排気をアシストエアとして噴射することが不可能となる。従って、排気冷却装置下流においても、その排気温度が燃料噴射弁が耐えられる温度以上になるのならば、第1アシストエア通路より吸気を導いてアシストエアを噴射する。次に、排気冷却装置上流の温度は前記燃料噴射弁が耐えられない温度であるが、排気冷却装置下流では、排気が冷却されて燃料噴射弁が耐えられる温度となっている場合には、第3アシストエア通路より冷却された排気を導いてアシストエアとして用いることが可能となる。また、排気浄化装置下流にて、既に排気温度が充分に下がっている状態であるならば、より高い温度の排気を用いた方が、噴射燃料を微粒子化して気化性能を向上させることが可能となるので、第2アシストエア通路より冷却された排気を導いて、より高温の排気をアシストエアとして噴射可能となる。
【0064】
前記アシストエア通路が定められると共に、流量調整弁の開度が定めらたことにより、この定められた開度と、過給圧、吸気ポート内圧、及び、吸気温度、若しくは機関温度から、アシストエアの流量(実流量)を算出する。
【0065】
この算出した実流量に対して、前記目標アシストエア流量と実流量が略同じ噴射量となるように、前記流量調整弁の開度を微調整して、アシストエアを噴射する。
【0066】
また、前記内燃機関は、流量調整弁の開度に応じて変化する内燃機関の気筒内圧力を算出する実気筒内圧力算出手段と、機関運転状況に応じた気筒内圧力を算出する目標気筒内圧力算出手段と、を更に備え、前記流量調整弁制御手段は、前記実気筒内圧力算出手段により算出した実気筒内圧力が、前記目標気筒内圧力算出手段により算出された目標気筒内圧力となるように前記流量調整弁の開度を調整する流量調整弁開度補正手段と、を備えてもよい。
【0067】
また、前記内燃機関は、流量調整弁の開度に応じて変化する内燃機関の気筒内圧力を算出する実気筒内圧力算出手段と、クランクシャフトのクランク角の変化量を算出するクランク角算出手段と、前記クランク角算出手段により算出されたクランク角に対する気筒内圧力変化を算出する実圧力変化率算出手段と、機関運転状況に応じた気筒内圧力変化を算出する目標圧力変化率算出手段と、前記実圧力変化率算出手段により算出した実圧力変化率が、前記目標圧力変化率算出手段により算出された目標圧力変化率となるように前記流量調整弁の開度を調整する流量調整弁開度補正手段と、を備えてもよい。
【0068】
前記流量調整弁の開度を変化させることにより、予混合燃料の粒度を制御することが可能となる。この粒度を制御することにより、気筒内での燃料の燃焼性を制御することが可能となり、これは即ち着火遅れの制御を行っていることになる。よって、逆に、着火遅れの制御に、前記アシストエア量の制御を利用することが可能となる。噴射燃料を微粒子化すると、燃焼性が増し、燃焼速度が上昇する。燃焼速度が上昇すると、気筒内圧力が上昇するため、この圧力に基づいてアシストエア量を制御する。
【0069】
具体的には、目標流量調整弁開度設定手段により流量調整弁の開度を設定した後に、気筒内圧力(実気筒内圧力)を測定する。この実気筒内圧力に対し、機関負荷、及び機関回転数から、目標気筒内圧力を算出する。この目標気筒内圧力は、ある機関負荷、機関回転数の時に、過早着火を起すことなく好適に燃焼を行うことが可能となる圧力であり、実験的に求めることが可能な値である。
【0070】
そして、実気筒内圧力と目標気筒内圧力が、略同値となるように、流量調整弁の開度を微調整して、予混合燃料の粒度を制御し、気筒内圧力を変化させる。
【0071】
また、圧力による制御をより正確に行うならば、クランク角あたりの圧力変化率を基にして、前記圧力によるアシストエア量の制御と同様の制御を行っても良い。クランク角あたりの圧力変化率を求めることにより、より精密な圧力の挙動を測定することとなり、この測定結果を反映させることにより、圧力制御の精密性を向上させることが可能となる。
【0072】
このクランク角あたりの圧力変化率に応じてアシストエア量を制御するには、目標流量調整弁開度設定手段により流量調整弁の開度を設定した後に、クランク角あたりの気筒内圧力変化率(実気筒内圧力変化率)を測定する。この実気筒内圧力変化率に対し、機関負荷、及び機関回転数から、目標気筒内圧力変化率を算出する。
【0073】
前記内燃機関は、流量調整弁開度補正手段により補正された流量調整弁の開度に応じて、内燃機関に供給される空気量を補正する吸入空気量制御手段を備えてもよい。
【0074】
また、前記内燃機関は、排気の一部を吸気に環流させる排気循環装置を備えると共に、流量調整弁開度補正手段により補正された流量調整弁の開度に応じて、吸気に環流される排気量を補正する排気環流量制御手段とを備えてもよい。
【0075】
排気循環装置を用いて、EGRガスとして排気を吸気中に再循環させる場合、過給機下流から吸気を流入してアシストエアを行う場合には、特にEGRガスについて考慮する必要はないが、排気通路から排気を流入してアシストエアとして用いると、予め設定してあるEGR率に対して、アシストエアの排気が流入することにより、大きくずれる問題がある。そこで、排気の流入量に応じて、吸入吸気量を補正する値を定め、この補正値を目標となる吸気量に乗じた値が、実際の吸入空気量となるようにする。
【0076】
また、排気循環装置を用いていなくても、排気をアシストエアとして用いることにより、吸気中の酸素濃度は低下する。よって、この低下を防ぐために、吸入空気量を補正しても良い。
【0077】
第6の発明では、内燃機関に燃料を供給する燃料噴射弁と、内燃機関に空気を供給する吸気通路に設けられて、前記吸気通路と内燃機関に設けられた気筒内とを閉止、連通させる弁となる吸気バルブと、機関状況に応じて燃料噴射弁の燃料噴射時期を設定する燃料噴射時期設定手段と、を備え、この燃料噴射時期設定手段は、さらに吸気バルブの開度に応じて燃料噴射を行うとした。
【0078】
吸気バルブの開度に応じて燃料噴射を行うことにより、噴射された燃料の分布を変化させることが可能となる。よって、燃料噴射時期は、機関状況と共に、この吸気バルブ開度を考慮して、設定する。
【0079】
特にディーゼル機関等において、吸気ポートで燃料噴射を行う場合、排気性能を確保するために、噴射圧力を高くする必要がある。噴射圧力が高くなると噴射時間が短くなるため、噴射の時期的な自由度が増す。この自由度が増した状態で、吸気行程に燃料噴射を行う予混合燃料噴射を実行する。この予混合燃料の噴射時期が、吸気行程初期の吸気バルブが開き始めている時では、噴射燃料のうち、その粒径が大きいものが、吸気バルブより遠方、即ち、ピストン面近傍に滞留することになる。これに対して、吸気行程中期の吸気バルブが全開となっている時では、噴射燃料のうち、その粒径の大きなものが、吸気バルブ近傍に停留することになる。
【0080】
一般に軽負荷状態では、ピストン近傍に滞留する燃料が少ない方がスモーク、煤等は少ない傾向がある。逆に高負荷状態では、吸気バルブ近傍に滞留する燃料が少ない方がスモーク、煤等の発生が抑制される。よって、 内燃機関の負荷状態を算出して、その負荷状態に応じた燃料噴射時期、好適には、負荷が上昇するに伴い、燃料噴射時期を早める設定とする。また、機関回転数が高くなると、同一タイミングで気筒内に噴射燃料を流入させるには、燃料噴射時期を早める必要があるので、前記負荷状態と共に、機関回転数に応じても燃料噴射時期を早める。
【0081】
前記燃料噴射時期設定手段によって、噴射時期を吸気バルブの開時初期と全開時とした場合に、開時初期に噴射される燃料量が多くなるように噴射量を偏向させる噴射量偏向手段と、を備えても良い。
【0082】
また、特に高負荷状態では、噴射される燃料が多くなるため、必然的に予混合燃料量も多くなる。この多くなった予混合燃料を一回で噴射すると、気筒内に流入する予混合気の偏りが大きくなりすぎて、弊害が生じる。よって、高負荷状態で噴射燃料量が多くなる場合には、予混合燃料の噴射時期を吸気行程初期にすると共に、噴射燃料を分割して噴射回数を複数回とする。そしてこの分割された燃料のうち、最初に噴射される燃料量を最も多くする。その後、残りの燃料を噴射することにより、噴射燃料により形成される予混合気の偏りを抑制することが可能になる。
【0083】
【発明の実施の形態】
(実施の形態1)
第1の発明に係る内燃機関の燃料供給制御装置を、ディーゼルエンジンシステムに適用した実施の形態について説明する。
【0084】
図1において、内燃機関(以下、エンジンという)1は、燃料供給系10、吸気系30及び排気系40等を主要部として構成される直列4気筒のディーゼルエンジンシステムである。以下、本ディーゼルエンジンシステムの構成について説明する。
【0085】
燃料供給系10は、サプライポンプ11、蓄圧室(コモンレール)12a、12b、主燃料噴射弁13、予混合燃料噴射弁17、機関燃料通路P1及び予混合燃料通路P2等を備えて構成される。
【0086】
サプライポンプ11は燃料タンク(図外)からくみ上げた燃料を高圧にし、機関燃料通路P1を介してコモンレール12aに供給する。コモンレール12aはサプライポンプ11から供給された高圧燃料を所定の圧力に保持(蓄圧)する機能を有し、この蓄圧した燃料を各主燃料噴射弁13に分配する。主燃料噴射弁13はその内部に電磁ソレノイド(図外)を備えた電磁弁であり、適宜開弁して燃料を供給噴射する。
【0087】
他方、サプライポンプ11は、燃料タンクからくみ上げた燃料の一部を予混合燃料通路P2を介してコモンレール12bに供給し、このコモンレール12bで蓄圧された後に予混合燃料噴射弁17に分配される。予混合燃料噴射弁17は主燃料噴射弁13と同様な電磁弁であり、吸気ポート33内に、エンジン1の吸気行程中で、燃料を噴射する。
【0088】
吸気系30は、各気筒内に供給される吸入空気の通路(吸気通路)を形成する。一方、排気系40は、各気筒内から排出される排気ガスの通路(排気通路)を形成する。
【0089】
また、このエンジン1には、周知の過給機(ターボチャージャ)50が備えられている。ターボチャージャ50は、シャフト51を介して連結されたタービンホイール52とコンプレッサ53とを備える。一方のコンプレッサ53は吸気系30内の吸気に晒され、他方のタービンホイール52は排気系40内の排気ガスに晒されている。このような構成を有するターボチャージャ50は、タービンホイール52が受ける排気流(排気圧)を利用してコンプレッサ53を回転させ、吸気圧を高める効果(過給効果)を有する。
【0090】
吸気系30において、ターボチャージャ50の下流に設けられたインタークーラ31は、過給によって昇温した吸入空気を強制冷却する。インタークーラ31よりも更に下流に設けられたスロットル弁32は、その開度を無段階に調節することができる電子制御式の流量調整弁であり、所定の条件下において吸気通路の流路面積を絞り、同吸入空気の供給量を調整(低減)する機能を有する。
【0091】
また、エンジン1には、吸気系30及び排気系40をバイパスする排気環流通路(EGR通路)60が形成されている。具体的には、EGR通路60は排気系40におけるターボチャージャ50上流の排気集合管40aと吸気系30におけるスロットル弁32の下流側を連通している。このEGR通路60は、排気ガスの一部を適宜吸気系30に戻す機能を有する。EGR通路60には、電子制御によって無段階に開閉され、同通路を流れる排気流量を自在に調節することが可能なEGR弁61と、EGR通路60を通過(環流)する排気ガスを冷却するためのEGRクーラ62が設けられている。
【0092】
また、排気系40において、燃焼室より接続する排気集合管40a、タービンホイール52が設けられた部位より下流側には、排気ガスの流路に沿って排気通路40b、その下流にNOx触媒ケーシング42、更に下流に排気通路40cが順次連結されている。NOx触媒ケーシング42には、排気ガス中に含まれる微粒子を除去するパティキュレートフィルタ、及びこのパティキュレートフィルタ上に担持されてNOx等の有害成分を浄化する吸蔵還元型NOx触媒が収容されている。
【0093】
吸気系30には、ターボチャージャ50下流近傍に流入孔が設けられて、予混合燃料噴射弁17に設けられた吸気噴射管34まで連通するアシストエア通路となる吸気支管35が設けられている。この吸気噴射管34には、任意に開度が変化可能な流量調整弁36が設けられて、吸気噴射管34より噴射される吸気量であるアシストエア量を制御する。
【0094】
また、エンジン1の各部位には、各種センサが取り付けられており、当該部位の環境条件やエンジン1の運転状態に関する信号を出力する。
【0095】
すなわち、レール圧センサ70a、レール圧センサ70bは、コモンレール12a、コモンレール12b内に蓄えられている燃料の圧力に応じた検出信号を出力する。水温センサ71は、エンジン1内に設けられた冷却水路(図外)を流れる冷却水の温度を測定する。エアフローメータ72は、吸気系30内のスロットル弁32上流において吸入空気の流量(吸気量)に応じた検出信号を出力する。酸素濃度(A/F)センサ73は、排気系40の触媒ケーシング42上流において排気ガス中の酸素濃度に応じて連続的に変化する検出信号を出力する。気筒内圧センサ74はシリンダヘッドとシリンダブロックとの間に挟持されるガスケット内に担持され、気筒内に臨んで気筒内圧を測定する。過給圧センサ75はターボチャージャ下流においてターボチャージャの過給圧力を測定する。吸気温度センサ78は吸気通路内に設けられて吸気の温度を測定する。吸気圧センサ79は、吸気ポート近傍に設けられて、吸気ポート位置での吸気圧を測定する。
【0096】
また、アクセル開度センサ76はアクセルペダル(図外)に取り付けられ、同ペダルの踏込量に応じてエンジン1において要求する仕事量の基となる検出信号を出力する。クランク角センサ77は、エンジン1の出力軸(クランクシャフト)が一定角度回転する毎に検出信号(パルス)を出力する。これら各センサ70〜79は、電子制御装置(ECU)80と電気的に接続されている。
【0097】
図2に示すように、ECU80は中央演算処理装置(CPU)81、読み出し専用メモリ(ROM)82、ランダムアクセスメモリ(RAM)83及び運転停止後も記憶した情報が消去されないバックアップRAM84、タイマカウンタ85等と、A/D変換器を含む入力ポート86と、出力ポート87とが、双方向性バス88により接続されて構成される論理演算回路を備える。
【0098】
ECU80は、前記各種センサの検出信号を入力ポート86を介して入力し、これら信号に基づいてECU80に有するCPU81において、ROM82に記憶されているプログラムから、エンジン1の燃料噴射等についての基本制御を行う等、エンジン1の運転状態に関係する各種制御を行う。
【0099】
尚、主燃料噴射弁13を通じて各気筒に燃料を供給する燃料供給系10、吸気系30に備えられた吸気噴射管34、及びこれら吸気系30や燃料供給系10の機能を制御するECU80等は、併せて本実施の形態に係るエンジン1の燃料供給制御装置を構成する。前記燃料供給制御等は、当該制御に関する指令信号を出力するECU80を含め、この燃料供給制御装置を構成する各種部材の作動を通じて実施される。すなわち、ECU80とりわけ中央演算処理装置(CPU)81によって、第1の発明他の構成である流量調整弁制御手段、実アシストエア流量算出手段、流量調整弁開度補正手段、実気筒内圧力算出手段、目標気筒内圧力算出手段、流量調整弁開度補正手段、クランク角算出手段、実圧力変化率算出手段、目標圧力変化率算出手段、アシストエア通路選択手段等が実現される。
【0100】
予混合燃料は、エンジン1の吸気行程で、主燃料噴射弁13より噴射される燃料とは別に、予混合燃料噴射弁17より噴射される燃料である。この予混合燃料噴射を行うことにより、主燃料噴射を噴射するだけでは形成不可能な、燃料と吸気とが好適に混合された混合気を形成可能である。しかし、本実施の形態1での予混合燃料噴射は、吸気ポート33内で噴射されるため、微粒子化されない状態で噴射された予混合燃料は、噴射位置である吸気ポート33近傍に付着し、好適な混合気が形成されない場合がある。よって、吸気の一部をアシストエアとして用いて噴射された燃料に対して噴射し、燃料の微粒子化を促進する。
【0101】
予混合燃料近傍にてアシストエアを噴射する場合には、ターボチャージャ50下流近傍より吸気を取込む。このターボチャージャ50位置から予混合燃料噴射弁17が設けられている吸気ポート33までの間には、インタークーラ31、スロットル弁32が設けられており、これらが吸気負荷となって、圧力差が生じること、及びターボチャージャ50下流近傍は、吸気通路の断面が狭いのに対して、吸気ポート33付近は吸気通路の断面が広いため、動圧に差が生じること等により、ターボチャージャ50下流近傍と、吸気ポート33との間には、圧力差が生じる。この圧力差を噴射圧として、吸気噴射管34より、アシストエアを噴射する。
【0102】
噴射された燃料に、この吸気噴射管34よりアシストエアが噴射されることにより、燃料は微粒子化されると共に吸気と混合され、吸気ポート33内に、好適な状態で燃料が供されることになる。この吸気噴射管34と、予混合燃料噴射弁17との形態としては、図3に示すように、燃料の噴射孔近傍にアシストエアの噴射孔を設けると共に、アシストエアの噴射孔孔部に逆止弁を取付けた形態とすることができる。この形態であるならば、吸気圧の変動により、燃料の一部が吸気支管35内に逆流することを防止可能となる。
【0103】
以下、上記形態を取る予混合燃料噴射弁17にて予混合燃料を噴射する際、予混合燃料噴射弁17近傍に設けた吸気噴射管34より、アシストエアとして吸気を噴射し、予混合燃料を微粒子化する制御について説明する。
【0104】
(第1制御)
前述したように、予混合燃料噴射弁17で噴射する燃料に、吸気噴射管34からアシストエアを噴射することにより噴射燃料を微粒子化して、気化しやすい燃料を形成可能となる。しかし、例えば高負荷状態、高回転状態等において、気筒内の温度が高くなっている状態で、予混合噴射燃料の気化促進を行うと、逆に燃料が早く着火しすぎて(過早着火)、ピストンが上死点まで上昇する前に燃焼が開始する可能性がある。上死点前で燃焼が始ることにより、ピストンに背圧がかかり、エンジン1の出力が低下する。よって、高負荷状態では、過度の燃料の微粒子化は行わない方が好ましい。
【0105】
これに対して、軽負荷時や、特にエンジン1の始動後の低温時などでは、吸気噴射管34から最大限アシストエアを噴射して、噴射燃料の微粒子化を促進することにより、着火性の向上、排気、燃費の向上が期待できる。即ち、図5に示すように、高負荷高回転であれば燃料の粒径を大きくし、低負荷低回転で有れば燃料の粒径を小さくする。これらエンジン1の諸状態に応じてアシストエアの制御を行う。
【0106】
当該第1制御を行うにあたり、当該制御に係るフローチャートを図4に示す。S401〜S403では、流量調整弁制御手段で、流量調整弁36の開度を設定する。先ずS401では、エンジン1が暖機状態であるかどうかを判断する。具体的には、水温センサ71及び、吸気温度センサ78で測定する機関温度、吸気温度が、所定の温度である0℃以上であるかどうかを判断する。ここで機関温度及び吸気温度が0℃より低いのならば、S402へ進んで流量調整弁36の開度:AAを、全開状態の90゜に設定し、アシストエアの噴射による予混合燃料の微粒子化を最大限行う。また、機関温度、吸気温度が0℃以上であるならば、S403へ進む。
【0107】
S403では、機関回転数、機関負荷に基づいて、図6に示すマップより、目標となる流量調整弁の開度:AATRGを算出し、流量調整弁36の開度:AA=AATRGとした後に、S404へ進む。
【0108】
S404では、実アシストエア流量算出手段として、過給圧:P3、吸気圧:P0、吸気温度T3、及び目標開度:AATAGより、吸気噴射管34より、実アシストエア流量:Gaaを算出する。その後にS405へ進む。
【0109】
S405〜S407では、流量調整弁開度補正手段として、実アシストエア流量と、目標アシストエア流量とを比較、補正する。S405で、図7に示すマップより、機関回転数及び機関負荷から、目標となるアシストエア流量:GaaTRGを算出し、前記実アシストエア流量と目標アシストエア流量との差:tを算出する。この差が−5%より小さいので有れば、アシストエア流量が少なすぎ、微粒子化が進まない状態となる。よって、S406へ進んで、流量調整弁の開度を1大きくした後にS404へ戻り、当チャートを繰返す。また、実アシストエア流量と目標アシストエア流量との差が、5%より大きい場合には、アシストエアの流量が多く、微粒子化が進みすぎて、過早着火等が発生する可能性が生じる。よって、S407へ進んで、流量調整弁の開度を1小さくした後にS404へ戻り、当チャートを繰返す。
【0110】
前記実アシストエア流量と目標アシストエア流量との差:tが略同じ値、±5%以内に収るので有れば、その流量調整弁34の開度で好適な燃料の微粒子化が進んでいると判断され、当該チャートを終了する。
【0111】
(第2制御)
前記第1制御では、流量調整弁制御手段による制御から目標流量調整弁開度を算出した後に、、実アシストエア流算出手段により算出した実アシストエア流量と目標アシストエア流量とに基づいて制御を行い、流量調整弁開度補正手段により流量調整弁の開度を補正した。これに対して第2制御では、気筒内圧センサで測定した気筒内圧:Pに基づいて制御を行う。
【0112】
吸気噴射管34を用いてアシストエアの噴射を行い、燃料を微粒子化して気筒内に流入させることにより、混合気の燃焼性は向上する。混合気の燃焼性が向上すると、燃焼温度が上昇し、この燃焼温度の上昇に起因して、気筒内圧も上昇することになる。即ち、燃料の微粒子化と気筒内圧は比例する関係にある。よって、逆に気筒内圧を測定し、この測定した実気筒内圧が、内燃機関の稼働状態に応じた目標気筒内圧と同一になるように制御する。
【0113】
当該第2制御を行うにあたり、当該制御に係るフローチャートを図8に示す。S801〜S803迄のチャートは、S401〜S403のチャートと同様に、S801で機関温度、吸気温度に応じて、S802へ進んで流量調整弁の開度を90°に固定するか、S803へ進んで、機関回転数、機関負荷に応じて、目標流量調整弁開度を設定する。
【0114】
S803へ進んで、目標流量調整弁開度を設定した場合、次にS804へ進んで実気筒内圧力算出手段となる気筒内圧センサ74で実気筒内圧:Pを測定する。そしてS805へ進む。
【0115】
S805〜S807では、流量調整弁開度補正手段として、実気筒内圧と、目標気筒内圧とを比較して、アシストエア流量を補正する。目標気筒内圧力算出手段として、S805で、図9に示すマップより、機関回転数及び機関負荷に応じて、目標気筒内圧:PTRGを算出する。そして、前期実気筒内圧と、目標気筒内圧との差:tを算出する。この差が−5%より小さいので有れば、アシストエアの流量が少なく、微粒子化が進まずに、気筒内圧が高まらない状態となる。よって、S806へ進んで、流量調整弁の開度を1大きくした後にS804へ戻り、当チャートを繰返す。また、実気筒内圧と目標気筒内圧との差が、5%より大きい場合には、アシストエアの流量が多く、微粒子化が進みすぎて気筒内圧が高くなりすぎる。よって、S807へ進んで、流量調整弁の開度を1小さくした後にS804へ戻り、当チャートを繰返す。
【0116】
前期実気筒内圧と目標気筒内圧との差:tが略同じ値、±5%以内に収るので有れば、その流量調整弁34の開度で好適な燃料の微粒子化が進んでいると判断され、当該チャートを終了する。
【0117】
(第3制御)
第3制御では、前期第2制御で用いた気筒内圧に変えて、気筒内圧のクランク角あたりの変化量である気筒内圧力変化率に基づいて制御を行う。この気筒内圧力変化率は、前述のようにクランク角あたりの圧力変化を測定するため、エンジン1の吸気行程における圧力の微妙な変化に対応することが可能となり、前期第2制御の圧力による制御よりもより精密な圧力制御を行うことが可能となる。
【0118】
当該第3制御を行うにあたり、当該制御に係るフローチャートを図10に示す。S1001〜S1003迄のチャートは、S401〜S403及びS801〜S803のチャートと同様に、S1001で機関温度、吸気温度に応じて、S1002へ進んで流量調整弁の開度を90°に固定するか、S1003へ進んで、機関回転数、機関負荷に応じて、目標流量調整弁開度を設定する。
【0119】
S1003へ進んで、目標流量調整弁開度を設定した場合、次にS1004へ進んで実気筒内圧力算出手段として、気筒内圧センサ74で気筒内圧を測定すると共に、クランク角センサ77でクランク角を測定し、実圧力変化率算出手段として、この気筒内圧とクランク角から実気筒内圧力変化率:dP/dθを算出する。そしてS1005へ進む。
【0120】
S1005〜S1007では、流量調整弁開度補正手段として、実気筒内圧力変化と、目標気筒内圧力変化とを比較して、アシストエア流量を補正する。目標圧力変化率算出手段として、S1005で、図11に示すマップより、機関回転数及び機関負荷に応じて、目標気筒内圧力変化率:(dP/dθ)TRGを算出する。そして、前期実気筒内圧力変化率と、目標気筒内圧力変化率との差:tを算出する。この差が−5%より小さいので有れば、アシストエアの流量が少なく、微粒子化が進まずに、気筒内圧が高まらない状態となる。よって、S1006へ進んで、流量調整弁の開度を1大きくした後にS1004へ戻り、当チャートを繰返す。また、実気筒内圧力変化率と目標気筒内圧力変化率との差が、5%より大きい場合には、アシストエアの流量が多く、微粒子化が進みすぎて気筒内圧が高くなりすぎる。よって、S1007へ進んで、流量調整弁の開度を1小さくした後にS1004へ戻り、当チャートを繰返す。
【0121】
前期実気筒内圧力変化率と目標気筒内圧力変化率との差:tが略同じ値、±5%以内に収るので有れば、その流量調整弁34の開度で好適な燃料の微粒子化が進んでいると判断され、当該チャートを終了する。
【0122】
(実施の形態2)
次に、第2の発明及び第3の発明に係る内燃機関の燃料供給制御装置の第2の実施形態として、ディーゼルエンジンシステムに適用した実施の形態2について説明する。
【0123】
図12において、内燃機関(以下、エンジンという)101は、燃料供給系110、吸気系130及び排気系140等を主要部として構成される直列4気筒のディーゼルエンジンシステムである。以下、本ディーゼルエンジンシステムの構成について説明する。
【0124】
燃料供給系110は、サプライポンプ111、蓄圧室(コモンレール)112a、112b主燃料噴射弁113、予混合燃料噴射弁117、機関燃料通路P11及び予混合燃料通路P12等を備えて構成される。
【0125】
サプライポンプ111は燃料タンク(図外)からくみ上げた燃料を高圧にし、機関燃料通路P11を介してコモンレール112a、に供給する。コモンレール112aはサプライポンプ111から供給された高圧燃料を所定の圧力に保持(蓄圧)する機能を有し、この蓄圧した燃料を各主燃料噴射弁13に分配する。主燃料噴射弁113はその内部に電磁ソレノイド(図外)を備えた電磁弁であり、適宜開弁して燃料を供給噴射する。
【0126】
他方、サプライポンプ111は、燃料タンクからくみ上げた燃料の一部を予混合燃料通路P12を介してコモンレール112bに供給し、このコモンレール112bで蓄圧された後に予混合燃料噴射弁17に分配される。予混合燃料噴射弁117は主燃料噴射弁113と同様な電磁弁であり、吸気ポート133内に、エンジン101の吸気行程中で、燃料を噴射する。
【0127】
吸気系130は、各気筒内に供給される吸入空気の通路(吸気通路)を形成する。一方、排気系140は、各気筒から排出される排気ガスの通路(排気通路)を形成する。
【0128】
また、このエンジン101には、周知の過給機(ターボチャージャ)150が備えられている。ターボチャージャ150は、シャフト151を介して連結されたタービンホイール152とコンプレッサ153とを備える。一方のコンプレッサ153は吸気系130内の吸気に晒され、他方のタービンホイール152は排気系140内の排気ガスに晒されている。このような構成を有するターボチャージャ150は、タービンホイール152が受ける排気流(排気圧)を利用してコンプレッサ153を回転させ、吸気圧を高める効果(過給効果)を有する。
【0129】
吸気系130において、ターボチャージャ150の下流に設けられたインタークーラ131は、過給によって昇温した吸入空気を強制冷却する。インタークーラ131よりも更に下流に設けられたスロットル弁132は、その開度を無段階に調節することができる電子制御式の流量調整弁であり、所定の条件下において吸気通路の流路面積を絞り、同吸入空気の供給量を調整(低減)する機能を有する。
【0130】
また、エンジン101には、吸気系130及び排気系140をバイパスする排気環流通路(EGR通路)160が形成されている。具体的には、EGR通路160は排気系140におけるターボチャージャ150上流の排気集合管140aと吸気系130におけるスロットル弁132の下流側を連通している。このEGR通路160は、排気ガスの一部を適宜吸気系130に戻す機能を有する。EGR通路160には、電子制御によって無段階に開閉され、同通路を流れる排気流量を自在に調節することが可能なEGR弁161と、EGR通路160を通過(環流)する排気ガスを冷却するためのEGRクーラ162が設けられている。
【0131】
また、排気系140において、燃焼室より接続する排気集合管140a、タービンホイール152が設けられた部位より下流側には、排気ガスの流路に沿って排気通路140b、その下流にNOx触媒ケーシング142、更に下流にクーラ143が設けられた排気通路140cが順次連結されている。このクーラ143はEGRクーラ162と同様に、排気を冷却する。また、NOx触媒ケーシング142には、排気ガス中に含まれる微粒子を除去するパティキュレートフィルタ、及びこのパティキュレートフィルタ上に担持されてNOx等の有害成分を浄化する吸蔵還元型NOx触媒が収容されている。
【0132】
排気系140に設けられたNOx触媒ケーシング142とクーラ143との間、及びクーラ143の下流側には、第1アシストエア通路となる第1排気支管144a、及び第2アシストエア通路となる第2排気支管144bが設けられている。各排気支管は、それぞれに排気支管の開状態、閉状態を制御する第2流量調整弁145a、及び第2流量調整弁145bが設けられた後に、排気支管146に連結され、この排気支管146に設けられた排気流量を制御する第3流量調整弁145cを介して、排気支管146端部に設置された排気噴射管134より吸気ポート133内の予混合燃料噴射弁117近傍に噴射される。
【0133】
また、エンジン101の各部位には、各種センサが取り付けられており、当該部位の環境条件やエンジン101の運転状態に関する信号を出力する。
【0134】
すなわち、レール圧センサ170a、レール圧センサ170bは、コモンレール112a、コモンレール112b内に蓄えられている燃料の圧力に応じた検出信号を出力する。水温センサ171は、エンジン1内に設けられた冷却水路(図外)を流れる冷却水の温度を測定する。エアフローメータ172は、吸気系130内のスロットル弁132上流において吸入空気の流量(吸気量)に応じた検出信号を出力する。酸素濃度(A/F)センサ173は、排気系140の触媒ケーシング142上流において排気ガス中の酸素濃度に応じて連続的に変化する検出信号を出力する。気筒内圧センサ174はシリンダヘッドとシリンダブロックとの間に挟持されるガスケット内に担持され、気筒内に臨んで気筒内圧を測定する。排気圧センサ175はNOx触媒ケーシング142下流において排気通路内の排気圧力を測定する。吸気温度センサ178は吸気通路内に設けられて吸気の温度を測定する。排気温度センサ179は、NOx触媒ケーシング142下流に設けられて、排気通路内での排気温度を測定する。吸気圧センサ190は、吸気ポート近傍に設けられて、吸気ポート位置での吸気圧を測定する。
【0135】
また、アクセル開度センサ176はアクセルペダル(図外)に取り付けられ、同ペダルの踏込量に応じてエンジン101において要求する仕事量の基となる検出信号を出力する。クランク角センサ177は、エンジン101の出力軸(クランクシャフト)が一定角度回転する毎に検出信号(パルス)を出力する。これら各センサ170〜179は、電子制御装置(ECU)180と電気的に接続されている。
【0136】
図13に示すように、ECU180は中央演算処理装置(CPU)181、読み出し専用メモリ(ROM)182、ランダムアクセスメモリ(RAM)183及び運転停止後も記憶した情報が消去されないバックアップRAM184、タイマカウンタ185等と、A/D変換器を含む入力ポート186と、出力ポート187とが、双方向性バス188により接続されて構成される論理演算回路を備える。
【0137】
ECU180は、前記各種センサの検出信号を入力ポート186を介して入力し、これら信号に基づいてECU180に有するCPU181において、ROM182に記憶されているプログラムから、エンジン101の燃料噴射等についての基本制御を行う等、エンジン101の運転状態に関係する各種制御を行う。
【0138】
尚、主燃料噴射弁113を通じて各気筒に燃料を供給する燃料供給系110、吸気系130に備えられた排気噴射管134、及びこれら吸気系130や燃料供給系110の機能を制御するECU180等は、併せて本実施の形態に係るエンジン1の燃料供給制御装置を構成する。前記燃料供給制御等は、当該制御に関する指令信号を出力するECU180を含め、この燃料供給制御装置を構成する各種部材の作動を通じて実施される。
【0139】
前期実施の形態1においては、吸気の一部を用いてアシストエアとし、このアシストエアにより、噴射される予混合燃料の微粒子化を促進した。これに対して当該実施の形態2では、排気の一部を用いてアシストエアとし、噴射される予混合燃料の微粒子化を促進する。排気は、吸気と燃料とを混合した混合気が燃焼したものであるため、燃焼による急激な体積膨張に起因して、圧力が上昇し、少なくとも吸気ポート133位置の吸気圧力より高圧になる。また、急激な体積膨張によって排気は高速で大気中に押出され、この時に高い圧力を生じることになる。よって、この圧力差を利用して吸気ポート133位置で排気をアシストエアとして噴射する。
【0140】
予混合燃料近傍にて排気をアシストエアとして噴射する場合には、NOx触媒ケーシング142とクーラ143との間にある第1排気支管144a、若しくはクーラ143下流にある第2排気支管144bより排気を取込む。この取込まれた排気は、第1流量調整弁145a、若しくは第2流量調整弁145bを介して排気支管146に流れ込み、この排気支管146に設けられた第3流量調整弁145cを介して、吸気噴射管134より、吸気ポート133内に設けられた予混合燃料噴射弁117近傍にて噴射される。
【0141】
噴射された予混合燃料に、この吸気噴射管134よりアシストエアが噴射されることにより、燃料は微粒子化すると共にアシストエアである排気と混合され、吸気ポート133内に、好適な状態で燃料が噴射されることになる。この吸気噴射管134と、予混合燃料噴射弁117との形態としては、図14、図15に示すように、燃料噴射孔の中心に対して方線上にその吸気噴射管134の噴射孔を設けることができる。この形態であるならば、予混合燃料噴射弁117より噴射される燃料が、回転すると共に拡散して噴射され、より広範囲に均一な燃料を噴射可能となる。
【0142】
以下、上記形態を取る予混合燃料噴射弁117にて予混合燃料を噴射する際、予混合燃料噴射弁117近傍に設けた排気噴射管134より、アシストエアとして排気を噴射し、予混合燃料を微粒子化する制御について説明する。
【0143】
(第1制御)
前述したように、予混合燃料噴射弁117で噴射する燃料に、吸気噴射管134からアシストエアを噴射することにより噴射燃料を微粒子化して、気化しやすい燃料を形成可能となる。しかし、例えば高負荷状態、高回転状態等において、気筒内の温度が高くなっている状態で、噴射燃料の気化促進を行うと、過早着火が発生し、ピストンが上死点まで上昇する前に燃焼が開始する可能性がある。上死点前で燃焼が始ることにより、ピストンに背圧がかかり、エンジン1の出力が低下する。また、排気をアシストエアとして予混合噴射燃料の気化促進を行うと、結果として、吸気中の酸素濃度が低下することになる。燃料噴射量の少ない低負荷時では、必要とされる酸素量も少なくなるため、吸気中に排気を混入させることは可能であり、EGR装置等で排気の一部を吸気中に取入れて燃焼性能改質を行うこともある。しかし高負荷時では、必要とされる酸素量も多くなるため、吸気中に排気を多量に混入すると、酸素不足に起因する不完全燃焼が発生する可能性がある。よって、高負荷状態では、排気をアシストエアとして燃料の微粒子化を行うことは、エンジン1の諸性状から鑑みてあまり好適ではない。
【0144】
また、排気は、混合気が燃焼したものであるので、この排気は燃焼熱によって必然的に高温になる。これに対して、予混合燃料噴射弁117は、燃料を微粒子化するために、その噴射孔箇所が微小かつ精密に作られており、この噴射孔周辺に高熱が与えられると、熱による膨張等で、歪み等が発生し、燃料の噴射性能が阻害される場合がある。よって、予混合燃料を微細化するために噴射するアシストエアの温度が、この予混合燃料噴射弁117が耐えうる温度より高温になるのならば、排気をアシストエアとしての予混合燃料の微粒子化は実行不可能となる。
【0145】
これに対して、軽負荷時や、特にエンジン101の始動後の低温時などでは、吸気噴射管134から最大限アシストエアを噴射して、噴射燃料の微粒子化を促進することにより、着火性の向上、燃費の向上が期待できる。特に、低温時などは、高温のアシストエアを噴射して予混合燃料を微粒子化することにより、燃料温度を上昇させ、燃料の気化を促進することができる。よって当該実施の形態2においても、図5に示すように、高負荷高回転であれば燃料の粒径を大きくし、低負荷低回転で有れば燃料の粒径を小さくする。そして、これらエンジン101の諸状態に応じてアシストエアの制御を行う。
【0146】
当該第1制御を行うにあたり、当該制御に係るフローチャートを図16に示す。S1601〜S1608では、流量調整弁制御手段で、流量調整弁136の開度を設定する。先ず、S1601でエンジン101が暖機状態であるかどうかを判断する。具体的には、水温センサ171及び、吸気温度センサ178で測定する機関温度、吸気温度が、所定の温度である0℃以上であるかどうかを判断する。ここで機関温度及び吸気温度が0℃より低いのならば、S1602へ進んで第3流量調整弁145cの開度:AAを、全開状態の90゜に設定すると共に、第1流量調整弁145aを開き、第2流量調整弁145bを閉じる。この時には、NOx触媒ケーシング142とクーラ143との間から、高温な排気を取入れると共に、第3流量調整弁145cの開度を全開とすることにより、アシストエアの噴射による予混合燃料の微粒子化を最大限行う。また、機関温度、吸気温度が0℃以上であるならば、S1603へ進む。
【0147】
S1603〜S1608では、アシストエア通路選択手段により、排気温度に応じたアシストエア通路を選定する。S1603では、排気温度:T4が第1の所定温度である300℃以下かどうかを定める。ここで排気温度が300℃よりも高ければ、S1604へ進んでクーラ143により排気温度を下げたとしても予混合燃料噴射弁117が絶えうる温度より高いと判断され、第1流量調整弁145a、第2流量調整弁145b双方を閉じてアシストエアの噴射を行わずに当該チャートを終了する。また、排気温度が300℃より低いと判断されればS1605へ進む。S1605では、排気温度:T4が第2の所定温度である100℃以上であるかどうかを定める。ここで排気温度が100℃より低ければ、S1606へ進んで第1流量調整弁145aを開けると共に第2流量調整弁145bを閉じて、クーラ143で冷却前の排気を用いるとした後に、S1608へ進む。また排気温度が100℃以上であるならば、S1607へ進んで、第1流量調整弁145aを閉じると共に第2流量調整弁145bを開けて、クーラ143で冷却後の排気をアシストエアとして用いるとした後に、S1608へ進む。
【0148】
S1608では、機関回転数、機関負荷に基づいて、図17に示すマップより、目標となる流量調整弁の開度:AATRGを算出し、第3流量調整弁145cの開度:AA=AATRGとした後に、S1609へ進む。
【0149】
S1609では、実アシストエア流算出手段として、排気圧:P4、吸気圧:P0、排気温度T4、及び目標開度:AATRGより、吸気噴射管134より実アシストエア流量:Gaaを算出する。その後にS1610へ進む。
【0150】
S1610〜S1612では、流量調整弁開度補正手段として、実アシストエア流量と、目標アシストエア流量とを比較、補正する。S1610では、図18に示すマップより、機関回転数及び機関負荷から、目標となるアシストエア流量:GaaTRGを算出し、前記実アシストエア流量と目標アシストエア流量との差:tを算出する。この差が−5%より小さいので有れば、アシストエアの流量が少なく、微粒子化が進まない状態となる。よって、S1611へ進んで、第3流量調整弁145cの開度を1大きくした後にS1609へ戻り、当チャートを繰返す。また、実アシストエア流量と目標アシストエア流量との差が、5%より大きい場合には、アシストエアの流量が多く、微粒子化が進みすぎて、過早着火等が発生する可能性が生じる。よって、S1612へ進んで、第3流量調整弁145cの開度を1小さくした後にS1609へ戻り、当チャートを繰返す。
【0151】
前記実アシストエア流量と目標アシストエア流量との差:tが略同じ値、±5%以内に収るのであれば、その第3流量調整弁145cの開度で好適な燃料の微粒子化が進んでいると判断され、当該チャートを終了する。
【0152】
(第2制御)
前記第1制御では、目標流量調整弁開度を算出した後に、アシストエア吸気流量に基づいて制御を行い、流量調整弁の開度を微調整した。これに対して第2制御では、気筒内圧センサで測定した気筒内圧:Pに基づいて制御を行う。
【0153】
実施の形態1の第2制御で示したように、燃料の微粒子化と当内圧は比例関係にある。よって、当該実施の形態2の第2制御においても、測定した実気筒内圧が、内燃機関の稼働状態に応じた目標気筒内圧と同一になるように制御する。
【0154】
当該第2制御を行うにあたり、当該制御に係るフローチャートを図19に示す。S1901〜S1908迄のチャートは、S1601〜S1608のチャートと同様に、S1901で機関温度、吸気温度に応じて、S1902へ進んで第3流量調整弁145cの開度を90°に固定すると共に第1流量調整弁145aを開け、第2流量調整弁145bを閉じるか、S1903へ進むか選択し、S1903〜S1907で排気温度:T4に応じて、第1流量調整弁145aと第2流量調整弁145bとの開閉を選択し、その後S1908へ進んで、機関回転数、機関負荷に応じて、目標流量調整弁開度:AATRGを設定する。
【0155】
S1908へ進んで、目標流量調整弁開度を設定した場合、次にS1909へ進んで実気筒内圧力算出手段となる気筒内圧センサ174で実気筒内圧:Pを測定する。そしてS1910へ進む。
【0156】
S1910〜S1912では、流量調整弁開度補正手段として、実気筒内圧と、目標気筒内圧とを比較して、アシストエア流量を補正する。目標気筒内圧力算出手段として、S1910で、図20に示すマップより、機関回転数及び機関負荷に応じて、目標気筒内圧:PTRGを算出する。そして、前期実気筒内圧と、目標気筒内圧との差:tを算出する。この差が−5%より小さいので有れば、アシストエアの流量が少なく、微粒子化が進まずに、気筒内圧が高まらない状態となる。よって、S1911へ進んで、第3流量調整弁145cの開度を1大きくした後にS1909へ戻り、当チャートを繰返す。また、実気筒内圧と目標気筒内圧との差が、5%より大きい場合には、アシストエアの流量が多く、微粒子化が進みすぎて気筒内圧が高くなりすぎる。よって、S1912へ進んで、第3流量調整弁145cの開度を1小さくした後にS1909へ戻り、当チャートを繰返す。
【0157】
前期実気筒内圧と目標気筒内圧との差:tが略同じ値、±5%以内に収るので有れば、第3流量調整弁145cの開度で好適な燃料の微粒子化が進んでいると判断され、当該チャートを終了する。
【0158】
(第3制御)
第3制御では、前期第2制御で用いた気筒内圧に変えて、気筒内圧のクランク角あたりの変化量である気筒内圧力変化率に基づいて制御を行う。この気筒内圧力変化率は、前述のようにクランク角あたりの圧力変化を測定するため、エンジン1の吸気行程における圧力の微妙な変化に対応することが可能となり、前期第2制御の圧力による制御よりもより精密な圧力制御を行うことが可能となる。
【0159】
当該第3制御を行うにあたり、当該制御に係るフローチャートを図21に示す。S2101〜S2108迄のチャートは、S1601〜S1608及びS1901〜S1908のチャートと同様に、S2101で機関温度、吸気温度に応じて、S2102へ進んで第3流量調整弁145cの開度を90°に固定する。そして第1流量調整弁145aを開け、第2流量調整弁145bを閉じるか、S2103へ進むか選択し、S2103〜S2107で排気温度:T4に応じて、第1流量調整弁145aと第2流量調整弁145bとの開閉を選択する。その後S2108へ進んで、機関回転数、機関負荷に応じて、目標流量調整弁開度:AATRGを設定する。
【0160】
S2108へ進んで、目標流量調整弁開度を設定した場合、次にS2109へ進んで実気筒内圧力算出手段として、気筒内圧センサ174で気筒内圧を測定すると共に、クランク角センサ177でクランク角を測定し、実圧力変化率算出手段として、この気筒内圧とクランク角から気筒内圧力変化率dP/dθを算出する。そしてS2110へ進む。
【0161】
S2110〜S2112は、流量調整弁開度補正手段として、実気筒内圧力変化と、目標気筒内圧力変化とを比較して、アシストエア流量を補正する。目標圧力変化率算出手段として、S2110で、図22に示すマップより、機関回転数及び機関負荷に応じて、目標気筒内圧力変化率:(dP/dθ)TRGを算出する。そして、前期実気筒内圧力変化率と、目標気筒内圧力変化率との差:tを算出する。この差が−5%より小さいので有れば、アシストエアの流量が少なく、微粒子化が進まずに、気筒内圧が高まらない状態となる。よって、S2111へ進んで、第3流量調整弁145cの開度を1大きくした後にS2109へ戻り、当チャートを繰返す。また、実気筒内圧力変化率と目標気筒内圧力変化率との差が、5%より大きい場合には、アシストエアの流量が多く、微粒子化が進みすぎて気筒内圧が高くなりすぎる。よって、S2112へ進んで、第3流量調整弁145cの開度を1小さくした後にS2109へ戻り、当チャートを繰返す。
【0162】
前期実気筒内圧力変化率と目標気筒内圧力変化率との差:tが略同じ値、±5%以内に収るので有れば、第3流量調整弁145cの開度で好適な燃料の微粒子化が進んでいると判断され、当該チャートを終了する。
【0163】
当該実施の形態2では、その吸気中に排気をEGRガスとして混入する。このEGRガスを吸気に混入する、即ち排気の成分であるCO等の不活性ガスが混入されることにより、吸気全体の活性が低下し、この吸気が混合気となって燃焼した際に、急激な温度上昇を抑えることが可能となる。しかし、このEGRガスはその流量によっては、逆に不完全燃焼を生じさせる場合があるため、そのEGRガスの吸気に対する割合(EGR率)は制御された値となる。
【0164】
これに対して、当該実施の形態2においては、排気をアシストエアと用いることにより、予混合燃料の微粒子化が可能となるが、結果として吸気のEGR率をずらすことになる。よって、吸入空気量制御手段として、図23に示す表で、第3流量調整弁145cの開度:AAに応じて、修正係数:Kを設定し、この修正係数を、予めECU180に記憶されている、機関出力状態に応じた目標空気量:GNに乗じて、新たに修正空気量を算出し、この算出された修正空気量に応じて、スロットル弁132の開度を設定し、EGR率のずれを補正する。
【0165】
また、前記EGR率のずれを補正するために、排気環流量制御手段として、算出された実アシストエア流量分だけ、EGRガスの流量を減じても良い。
【0166】
(実施の形態3)
次に、第4の発明及び第5の発明に係る内燃機関の燃料供給制御装置の第3の実施形態として、ディーゼルエンジンシステムに適用した実施の形態3について説明する。
【0167】
図24において、内燃機関(以下、エンジンという)201は、燃料供給系210、吸気系230及び排気系240等を主要部として構成される直列4気筒のディーゼルエンジンシステムである。以下、本ディーゼルエンジンシステムの構成について説明する。
【0168】
燃料供給系210は、サプライポンプ211、蓄圧室(コモンレール)212a、212b、主燃料噴射弁213、予混合燃料噴射弁217、機関燃料通路P21及び予混合燃料通路P22等を備えて構成される。
【0169】
サプライポンプ211は燃料タンク(図外)からくみ上げた燃料を高圧にし、機関燃料通路P21を介してコモンレール212aに供給する。コモンレール212aはサプライポンプ111から供給された高圧燃料を所定の圧力に保持(蓄圧)する機能を有し、この蓄圧した燃料を各主燃料噴射弁213に分配する。主燃料噴射弁213はその内部に電磁ソレノイド(図外)を備えた電磁弁であり、適宜開弁して燃料を供給噴射する。
【0170】
他方、サプライポンプ211は、燃料タンクからくみ上げた燃料の一部を予混合燃料通路P22を介してコモンレール212bに供給し、このコモンレール212bで蓄圧された後に予混合燃料噴射弁217に分配される。予混合燃料噴射弁217は主燃料噴射弁213と同様な電磁弁であり、吸気ポート233内に、エンジン201の吸気行程中で、燃料を噴射する。
【0171】
吸気系230は、各気筒内に供給される吸入空気の通路(吸気通路)を形成する。一方、排気系240は、各気筒から排出される排気ガスの通路(排気通路)を形成する。
【0172】
また、このエンジン201には、周知の過給機(ターボチャージャ)250が備えられている。ターボチャージャ250は、シャフト251を介して連結されたタービンホイール252とコンプレッサ253とを備える。一方のコンプレッサ253は吸気系230内の吸気に晒され、他方のタービンホイール252は排気系240内の排気ガスに晒されている。このような構成を有するターボチャージャ250は、タービンホイール252が受ける排気流(排気圧)を利用してコンプレッサ253を回転させ、吸気圧を高める効果(過給効果)を有する。
【0173】
吸気系230において、ターボチャージャ250の下流に設けられたインタークーラ231は、過給によって昇温した吸入空気を強制冷却する。インタークーラ231よりも更に下流に設けられたスロットル弁232は、その開度を無段階に調節することができる電子制御式の流量調整弁であり、所定の条件下において吸気通路の流路面積を絞り、同吸入空気の供給量を調整(低減)する機能を有する。
【0174】
また、エンジン201には、吸気系230及び排気系240をバイパスする排気環流通路(EGR通路)260が形成されている。具体的には、EGR通路260は排気系240におけるターボチャージャ250上流の排気集合管240aと吸気系230におけるスロットル弁232の下流側を連通している。このEGR通路260は、排気ガスの一部を適宜吸気系230に戻す機能を有する。EGR通路260には、電子制御によって無段階に開閉され、同通路を流れる排気流量を自在に調節することが可能なEGR弁261と、EGR通路260を通過(環流)する排気ガスを冷却するためのEGRクーラ262が設けられている。
【0175】
また、排気系240において、燃焼室より接続する排気集合管240a、タービンホイール252が設けられた部位より下流側には、排気ガスの流路に沿って排気通路240b、その下流にNOx触媒ケーシング242、更に下流にクーラ243が設けられた排気通路240cが順次連結されている。クーラ243は、EGRクーラ262と同様に排気を冷却する。またNOx触媒ケーシング242には、排気ガス中に含まれる微粒子を除去するパティキュレートフィルタ、及びこのパティキュレートフィルタ上に担持されてNOx等の有害成分を浄化する吸蔵還元型NOx触媒が収容されている。
【0176】
吸気系230には、ターボチャージャ250下流近傍に流入孔が設けられて、予混合燃料噴射弁217に設けられた吸排気噴射管234まで連通する吸気支管235が設けられている。この吸排気噴射管234の吸気側上流には、任意に開度が変化可能な第4流量調整弁245dが設けられて、吸排気噴射管234より噴射されるアシストエア流量を制御する。
【0177】
排気系240に設けられたNOx触媒ケーシング242とクーラ243との間、及びクーラ243の下流側には、第1排気支管244a、及び第2排気支管244bが設けられている。各排気支管は、それぞれに排気支管の開状態、閉状態を制御する第一流量調整弁245a、及び第2流量調整弁245bが設けられた後に、排気支管246に連結される。この排気支管246に設けられた排気流量を制御する第3流量調整弁245cを介して連通した前記吸排気噴射管234より吸気ポート233内の予混合燃料噴射弁217近傍にアシストエが噴射される。
【0178】
また、エンジン201の各部位には、各種センサが取り付けられており、当該部位の環境条件やエンジン201の運転状態に関する信号を出力する。
【0179】
すなわち、レール圧センサ270a、レール圧センサ270bは、コモンレール212a、コモンレール212b内に蓄えられている燃料の圧力に応じた検出信号を出力する。水温センサ271は、エンジン201内に設けられた冷却水路(図外)を流れる冷却水の温度を測定する。エアフローメータ272は、吸気系230内のスロットル弁232上流において吸入空気の流量(吸気量)に応じた検出信号を出力する。酸素濃度(A/F)センサ273は、排気系240の触媒ケーシング242上流において排気ガス中の酸素濃度に応じて連続的に変化する検出信号を出力する。気筒内圧センサ274はシリンダヘッドとシリンダブロックとの間に挟持されるガスケット内に担持され、気筒内に臨んで気筒内圧を測定する。排気圧センサ275はNOx触媒ケーシング142下流において排気通路内の排気圧力を測定する。吸気温度センサ278は吸気通路内に設けられて吸気の温度を測定する。排気温度センサ279は、NOx触媒ケーシング142下流に設けられて、排気通路内での排気温度を測定する。吸気圧センサ290は、吸気ポート近傍に設けられて、吸気ポート位置での吸気圧を測定する。過給圧センサ291はターボチャージャ下流においてターボチャージャの過給圧力を測定する。
【0180】
また、アクセル開度センサ276はアクセルペダル(図外)に取り付けられ、同ペダルの踏込量に応じてエンジン201において要求する仕事量の基となる検出信号を出力する。クランク角センサ277は、エンジン201の出力軸(クランクシャフト)が一定角度回転する毎に検出信号(パルス)を出力する。これら各センサ270〜279、290は、電子制御装置(ECU)280と電気的に接続されている。
【0181】
図25に示すように、ECU280は中央演算処理装置(CPU)281、読み出し専用メモリ(ROM)282、ランダムアクセスメモリ(RAM)283及び運転停止後も記憶した情報が消去されないバックアップRAM284、タイマカウンタ285等と、A/D変換器を含む入力ポート286と、出力ポート287とが、双方向性バス288により接続されて構成される論理演算回路を備える。
【0182】
ECU280は、前記各種センサの検出信号を入力ポート286を介して入力し、これら信号に基づいてECU280に有するCPU281において、ROM282に記憶されているプログラムから、エンジン201の燃料噴射等についての基本制御を行う等、エンジン201の運転状態に関係する各種制御を行う。
【0183】
尚、主燃料噴射弁213を通じて各気筒に燃料を供給する燃料供給系210、吸気系230に備えられた吸排気噴射管234、及びこれら吸気系230や燃料供給系210の機能を制御するECU280等は、併せて本実施の形態に係るエンジン201の燃料供給制御装置を構成する。前記燃料供給制御等は、当該制御に関する指令信号を出力するECU280を含め、この燃料供給制御装置を構成する各種部材の作動を通じて実施される。
【0184】
前期実施の形態1においては、吸気の一部を用いてアシストエアとし、このアシストエアにより、噴射される予混合燃料の微粒子化を促進した。また前期実施の形態2では、排気の一部を用いてアシストエアとし、噴射される予混合燃料の微粒子化を促進した。吸気の一部をアシストエアとして用いる利点として、高負荷状態、高回転状態等の、気筒内が高温になる状態においても、アシストエアを行うこと、アシストエアを行っても、吸気中のEGR率が変化しないことが例示できる。排気の一部をアシストエアと して用いる利点として、期間温度が低温状態においても、高温の排気を用いて好適なアシストエアを行えること、等が例示できる。当該実施の形態3では、前期実施の形態1における利点と、前期実施の形態2における利点とを組み合わせより好適なアシストエアを形成する。
【0185】
予混合燃料近傍にて排気、若しくは吸気をアシストエアとして噴射する吸吸気噴射管234は、排気支管246と吸気支管235がそれぞれ連結されており、排気支管246を通して排気、吸気支管235を通して吸気がアシストエアとして噴射される。
【0186】
前期排気支管246に流入する排気は、NOx触媒ケーシング242とクーラ243との間にある第1排気支管244a、若しくはクーラ243下流にある第2排気支管244bより取り込まれる。この取込まれた排気は、第1流量調整弁245a、若しくは第2流量調整弁245bを介して排気支管246に流れ込み、この排気支管246に設けられた第3流量調整弁245cを介して、吸吸気噴射管234より、吸気ポート233内に設けられた予混合燃料噴射弁217近傍にてアシストエアとして噴射される。
【0187】
前期吸気支管235に流入する吸気は、、ターボチャージャ250下流近傍より取り込まれる。そして第4流量調整弁245dを介して、吸吸気噴射管234より、吸気ポート233内に設けられた予混合燃料噴射弁217近傍にてアシストエアとして噴射される。
【0188】
前記予混合燃料噴射弁217より噴射された予混合燃料に、この吸吸気噴射管234よりアシストエアが噴射されることにより、燃料は微粒子化すると共にアシストエアと混合され、吸気ポート233内に、好適な状態で燃料が噴射されることになる。この吸吸気噴射管234と、予混合燃料噴射弁217との形態としては、図26に示すように、噴射孔の出口付近に半球状の混合室を設け、そこでアシストエアと燃料とを混合する。この形態であるならば、予混合燃料噴射弁217より噴射される燃料が、半球内で充分に混合された後に噴射され、より微細化された燃料を噴射可能となる。
【0189】
以下、上記形態を取る予混合燃料噴射弁217にて予混合燃料を噴射する際、予混合燃料噴射弁217近傍に設けた吸排気噴射管234より、アシストエアを噴射し、予混合燃料を微粒子化する制御について説明する。
【0190】
(第1制御)
前述したように、予混合燃料噴射弁217で噴射する燃料に、吸吸気噴射管234からアシストエアを噴射することにより噴射燃料を微粒子化して、気化しやすい燃料を形成可能となる。しかし、例えば高負荷状態、高回転状態等において、気筒内の温度が高くなっている状態では、高温で、不活性ガスを含む排気をアシストエアとして用いるとエンジン1の不調を招く場合がある。また、逆に低負荷状態、低回転状態、特に低温状態で、その雰囲気温度が低温で噴射圧が低圧となりがちな吸気をアシストエアとして用いると気筒内に充分気化した燃料を流入させることは難しく、結果として燃焼性が悪化し、不完全燃焼となって煤等が発生する場合がある。
【0191】
また、これとは逆に、高負荷状態、高回転状態において吸気をアシストエアとして用いると、不活性ガス等の成分が含まれないために、エンジン1の不調を招くことはない。逆に低負荷状態、低回転状態、特に低温状態で、排気をアシストエアとして用いると、高温の排気により噴射燃料が微粒子化されると共に活性化されて、低温時においても気化しやすい状態となる。よって当該実施の形態3においても、図5に示すように、高負荷高回転であれば燃料の粒径を大きくし、低負荷低回転で有れば燃料の粒径を小さくする。さらに当該実施の形態3では、これら噴射燃料の微粒子化を行うと共に、これらエンジン201の諸状態に応じて吸気と排気とを適宜切換えてアシストエアの制御を行う。
【0192】
当該第1制御を行うにあたり、当該制御に係るフローチャートを図27に示す。S2701〜S1707では、流量調整弁制御手段で、流量調整弁236の開度を設定する。先ず、S2701でエンジン201で、機関回転数:Ne、機関負荷:Q、機関温度:Tw、吸気温度:Taに基づいて、図28に示されたマップより、負荷と回転数に応じた領域を選定する。それと共に図29に示されたマップより、第3流量調整弁245c、若しくは第4流量調整弁245d何れかの開度:AAの目標流量調整弁開度:AATRGを算出する。
【0193】
次に、S2702で、領域分けを行い、その後各領域に適合した各流量調整弁の稼働状態を選択する。この領域分けで、領域1及び領域2なら、排気を用いてアシストエアを行い、それ以外の領域ならば吸気を用いてアシストエアを行う。S2702で領域1及び領域2以外と判断された状態、即ち高負荷高回転状態なら、S2704へ進んで、第1流量調整弁245aと第2流量調整弁245cを双方閉じ、第4流量調整弁245dのみを開けて、吸気を用いたアシストエアを行うとした後にS2708へ進む。またS2702で領域1及び領域2と判断されたらS2703へ進む。
【0194】
S2703〜S2707では、アシストエア通路選択手段により、排気温度に応じたアシストエア通路を選定する。S2703では、排気温度に基づいて、各流量調整弁の稼働状態を選択する。排気温度センサ279で測定した排気温度:T4が第1の所定の温度である300℃より高いならば、クーラ243を介しても吸排気噴射管234で絶えられる温度以下には低下しないと推定されて、S2704へ進んだ後にS2708へ進む。また、S2703で排気温度が300℃以下ならS2705へ進む。
【0195】
S2705では排気温度が第2の所定の温度である100℃以上であるかどうかを判断する。ここで、排気温度が100℃よりも低いならば、特にクーラ243で排気を冷却せずともアシストエアに排気を用いることが可能であるので、S2706へ進んで、第1流量調整弁245aを開け、第2流量調整弁245bを閉じ、かつ、第4流量調整弁245dを閉じて、第3流量調整弁245cで流量を調整してアシストエアを行うとした後にS2708へ進む。また、排気温度が100℃以上で有れば、排気をそのままアシストエアとしては使えず、一端クーラ243を介した後に用いる必要があるので、S2707へ進んで、第1流量調整弁245aを閉じ、第2流量調整弁245bを開け、かつ第4流量調整弁245dを閉じて、第3流量調整弁245cで流量を調整してアシストエアを行うとした後にS2708へ進む。
【0196】
S2708では、実アシストエア流算出手段として、吸気圧:P0、排気圧:P4、過給圧P3、吸気温度:T3、排気温度:T4及び目標流量調整弁開度:AATRGから、実アシストエア流量:Gaaを算出する。
【0197】
S2709〜S2711では、流量調整弁開度補正手段として、実アシストエア流量と、目標アシストエア流量とを比較、補正する。S2709では、図30に示すマップより、機関回転数及び機関負荷から、目標となる目標アシストエア流量:GaaTRGを算出し、前記実アシストエア流量と目標アシストエア流量との差:tを算出する。この差が−5%より小さいので有れば、アシストエアの流量が少なく、微粒子化が進まない状態となる。よって、S2710へ進んで、その時の領域に応じた第3流量調整弁245cか第4流量調整弁245dの何れかの開度を1大きくした後にS2708へ戻り、当チャートを繰返す。また、実アシストエア流量と目標アシストエア流量との差が、5%より大きい場合には、アシストエアの流量が多く、微粒子化が進みすぎて、過早着火等が発生する可能性が生じる。よって、S2711へ進んで、その時の領域に応じた第3流量調整弁245cか第4流量調整弁245dの何れかの開度開度を1小さくした後にS2708へ戻り、当チャートを繰返す。
【0198】
前記実アシストエア流量と目標アシストエア流量との差:tが略同じ値、±5%以内に収るので有れば、その時の領域に応じた第3流量調整弁245cか第4流量調整弁245dの何れかの開度で好適な燃料の微粒子化が進んでいると判断され、当該チャートを終了する。
【0199】
(第2制御)
前記第1制御では、目標流量調整弁開度を算出した後に、アシストエア流量に基づいて制御を行い、流量調整弁の開度を微調整した。これに対して第2制御では、気筒内圧センサで測定した気筒内圧:Pに基づいて制御を行う。
【0200】
実施の形態1の第2制御及び実施の形態2の第2制御双方で示したように、燃料の微粒子化と当内圧は比例関係にある。よって、当該実施の形態3の第2制御においても、測定した実気筒内圧が、内燃機関の稼働状態に応じた目標気筒内圧と同一になるように制御する。
【0201】
当該第2制御を行うにあたり、当該制御に係るフローチャートを図31に示す。S3101〜S3107迄のチャートは、S2701〜S2707のチャートと同様に、S2701で機関回転数:Ne、機関負荷:Q、機関温度:Tw、吸気温度:Taに基づいて、負荷と回転数に応じた領域を選定する。それと共に第3流量調整弁245c、若しくは第4流量調整弁245d何れかの開度:AAの目標流量調整弁開度:AATRGを算出する。その後にS3102、S3103、S3105で機関負荷及び機関回転数に応じて領域分けを行い、更に排気温度に応じて、各流量調整弁の稼働状態を選択(S3104,S3106、S3107)する。その後にS3108へ進む。
【0202】
S3108へ進んで、実気筒内圧力算出手段となる気筒内圧センサ274で実気筒内圧:Pを測定する。そしてS3109へ進む。
【0203】
S3109〜S3111では、流量調整弁開度補正手段として、実気筒内圧と、目標気筒内圧とを比較して、アシストエア流量を補正する。目標気筒内圧力算出手段として、S3109で、図32に示すマップより、機関回転数及び機関負荷に応じて、目標気筒内圧:PTRGを算出する。そして、前期実気筒内圧と、目標気筒内圧との差:tを算出する。この差が−5%より小さいので有れば、アシストエアの流量が少なく、微粒子化が進まずに、気筒内圧が高まらない状態となる。よって、S3110へ進んで、その時の領域に応じた第3流量調整弁245cか第4流量調整弁245dの何れかの開度を1大きくした後にS3108へ戻り、当チャートを繰返す。また、実気筒内圧と目標気筒内圧との差が、5%より大きい場合には、アシストエアの流量が多く、微粒子化が進みすぎて気筒内圧が高くなりすぎる。よって、S3111へ進んで、その時の領域に応じた第3流量調整弁245cか第4流量調整弁245dの何れかの開度を1小さくした後にS3108へ戻り、当チャートを繰返す。
【0204】
前期実気筒内圧と目標気筒内圧との差:tが略同じ値、±5%以内に収るので有れば、その時の領域に応じた第3流量調整弁245cか第4流量調整弁245dの何れかの開度で好適な燃料の微粒子化が進んでいると判断され、当該チャートを終了する。
【0205】
(第3制御)
第3制御では、前期第2制御で、用いた気筒内圧に変えて、気筒内圧のクランク角あたりの変化量である気筒内圧力変化率に基づいて制御を行う。この気筒内圧力変化率は、前述のようにクランク角あたりの圧力変化を測定するため、エンジン1の吸気行程における圧力の微妙な変化に対応することが可能となり、前期第2制御の圧力による制御よりもより精密な圧力制御を行うことが可能となる。
【0206】
当該第3制御を行うにあたり、当該制御に係るフローチャートを図33に示す。S3301〜S3307迄のチャートは、S2701〜S2707及びS3101〜S3107のチャートと同様に、S3301で機関回転数:Ne、機関負荷:Q、機関温度:Tw、吸気温度:Taに基づいて、負荷と回転数に応じた領域を選定する。それと共に第3流量調整弁245c、若しくは第4流量調整弁245d何れかの開度:AAの目標流量調整弁開度:AATRGを算出する。その後にS3302、S3303、S3305で機関負荷及び機関回転数に応じて領域分けを行い、更に排気温度に応じて、各流量調整弁の稼働状態を選択する(S3304,S3306、S3307)。その後にS3308へ進む。
【0207】
S3308へ進んで実気筒内圧力算出手段として、気筒内圧センサ274で実気筒内圧:Pを測定すると共に、クランク角センサ277でクランク角を測定し、実圧力変化率算出手段として、この気筒内圧とクランク角から気筒内圧力変化率dP/dθを算出する。そしてS3309へ進む。
【0208】
S3309〜S3311は、流量調整弁開度補正手段として、実気筒内圧力変化と、目標気筒内圧力変化とを比較して、アシストエア流量を補正する。目標圧力変化率算出手段として、S3309で、図34に示すマップより、機関回転数及び機関負荷に応じて、目標気筒内圧力変化率:(dP/dθ)TRGを算出する。そして、前期実気筒内圧力変化率と、目標気筒内圧力変化率との差:tを算出する。この差が−5%より小さいので有れば、アシストエアの流量が少なく、微粒子化が進まずに、気筒内圧が高まらない状態となる。よって、S3310へ進んで、その時の領域に応じた第3流量調整弁245cか第4流量調整弁245dの何れかの開度を1大きくした後にS3308へ戻り、当チャートを繰返す。また、実気筒内圧力変化率と目標気筒内圧力変化率との差が、5%より大きい場合には、アシストエアの流量が多く、微粒子化が進みすぎて気筒内圧が高くなりすぎる。よって、S3311へ進んで、その時の領域に応じた第3流量調整弁245cか第4流量調整弁245dの何れかの開度を1小さくした後にS3308へ戻り、当チャートを繰返す。
【0209】
前期実気筒内圧力変化率と目標気筒内圧力変化率との差:tが略同じ値、±5%以内に収るので有れば、その時の領域に応じた第3流量調整弁245cか第4流量調整弁245dの何れかの開度で好適な燃料の微粒子化が進んでいると判断され、当該チャートを終了する。
【0210】
当該実施の形態3においても、その吸気中に排気をEGRガスとして混入し、このEGRガスの混入と共に、排気を用いたアシストエアを行う場合がある。この場合には、実施の形態2と同様に、吸入空気量制御手段により、EGR率の補正に用いた図23に示す表に基づいて、吸入空気量を制御して、EGR率のずれの補正を行っても良い。
【0211】
また、前記EGR率のずれを補正するために、排気環流量制御手段として、算出された実アシストエア流量分だけ、EGRガスの流量を減じても良い。
【0212】
また、当該実施の形態3に示した第1制御では、そのエンジン201に多々のセンサを設けて特性を把握し、第3流量調整弁245c及び第4流量調整弁245dの開度を微調整している。これに対して当該実施の形態3に示した第2制御及び第3制御では、気筒内圧、若しくは気筒内圧とクランク角のみから第3流量調整弁245c及び第4流量調整弁245dの開度を微調整しており、センサの個数を減らして、制御を簡単にするという利点がある。
【0213】
(実施の形態4)
前記実施の形態1〜実施の形態3では、アシストエアを噴射して、予混合を形成するために噴射された予混合燃料の微粒子化を促進することにより、供給された燃料の燃焼性を制御した。これ対して、当該実施の形態4では、第6の発明に基づいて、予混合燃料が吸気ポート内で噴射されて微粒子化し、気筒内に取込まれる時の燃料の粒度分布を制御して、燃料の燃焼性を制御する。
【0214】
吸気行程初期、吸気バルブが未だ開いている状態で予混合燃料を噴射すると燃費が良くなり、吸気行程中期、吸気バルブが完全に開ききった状態で予混合燃料を噴射すると、燃費が悪くなるのは公知の技術として存在する。これは、吸気バルブが完全に開ききった状態で噴射した時に、気筒内面に付着(ボアフラッシング)して、燃料希釈量が急増することから、燃料が気筒内面付近に集中して停滞していると考えられる。よって、図35に示すように、吸気行程初期においては、噴射燃料中のその粒子が大きな燃料がピストン面周辺に漂って、その粒子が小さな燃料が気筒内面周辺に漂うようになる。また、、図36に示すように吸気行程中期では、その粒子が大きな燃料が気筒内面周辺に漂って、その粒子が小さな燃料がピストン面周辺に漂うようになる。
【0215】
このことから、噴射時期を変えることにより予混合気中の粒度分布を制御することが可能になる。よって、以下、図1に示したエンジン1に基づいて、当該実施の形態4における制御を説明する。
【0216】
図1に示したエンジン1は実施の形態1において説明した内燃機関であり、予混合燃料噴射弁17が吸気ポート33に設けられており、吸気行程において、この吸気ポート33内にて予混合気が形成された後に、前記与混合気が気筒内に流入される。図37に示すように、吸気ポート33は、吸気バルブ23により気筒内と遮断されている。そしてこの吸気バルブ23が開くことにより、予混合気が気筒内に流入可能となる。
【0217】
この吸気バルブ23はシリンダヘッド22に設けられている吸気ポート33の気筒内面側開口を塞ぐ形で取付けられており、吸気時には、吸気バルブ23が押下げられて発生する隙間より、予混合気等の吸気が気筒内部に流入する。よって、この押下げられて開口する吸気バルブ23に対して、吸気バルブ23が押下げられて発生する隙間より気筒内に流入する吸気の流速は、吸気行程初期と、吸気行程中期とにおいて異なってくる。これは即ち、吸気行程初期では、発生する隙間が小さいにも関わらず、吸気の動力となる気筒内の負圧は大きくなる。これにより吸気行程初期の流速は極めて早いものになる。吸気行程中期では、吸気バルブ23は完全に開ききった状態であり、その開口も最大となる。よって、気筒内の負圧も特に高くはならず、流速も早くはならない。
【0218】
よって、吸気行程初期の予混合燃料噴射では、その時に形成される早い流速のため、予混合気中に含まれる比較的粒子の大きな燃料が、その早い流速に乗じて気筒内に流入されるため、貫通性が優れるものとなり、吸気バルブ23位置から見て最も遠くの位置にある、ピストン20の気筒内面周辺、若しくはピストン20の気筒内面に設けられた燃焼室24内まで到達することが可能となる。よって、燃料の粒子の分布としては、比較的大きな粒子を含む多数の粒子が燃焼室24周辺に漂うことになり、小さな粒子からなる比較的少量の粒子が吸気バルブ23周辺及び気筒内壁面周辺の気筒内に漂うことになる。
【0219】
また、吸気行程中期の予混合燃料噴射では、流速があまり早くないため、比較的粒子の大きな燃料ほど、その貫通性は優れたものにならず、吸気バルブ23周辺を漂うことになる。よって、燃料の粒子の分布としては、比較的大きな粒子を含む多数の粒子が吸気バルブ23周辺及び気筒内壁面周辺を漂うことになり、小さな粒子からなる比較的少量の粒子が燃焼室24周辺を漂うことになる。
【0220】
内燃機関が低負荷状態である時には、噴射される燃料量は少なくなる。この状態では、その燃料量が少ないために、着火性が悪くなる場合があり、着火したとしても、全ての燃料が燃焼せずに、途中で失火する場合もある。よって、この低負荷状態では、着火箇所となる気筒内、特に気筒内壁面位置に高濃度の燃料があるほうが、燃料の着火性が優れるものになる。
【0221】
内燃機関が高負荷状態である時には、噴射される燃料量は多くなる。この状態では、その多い燃料のために、着火性は向上するが、逆に着火性が向上することにより、過早着火や、ノッキングが発生することになる。この過早着火等は、気筒内で加熱されやすい部分、即ち燃焼により熱せられて高温になっている気筒内壁面等から発生する場合が多い。よって、この高負荷状態においては、予混合燃料噴射によって噴射された燃料が、気筒内壁面周辺ではなく気筒内中心部分となる燃焼室24周辺に有るほうが好ましい。
【0222】
また、機関回転数が上昇すると、時間あたりの発生熱量が多くなって高温となることにより、前記過早着火、ノッキング等が生じやすくなる。よって、機関回転数が上昇した場合も、高負荷状態と同様に、予混合燃料噴射によって噴射された燃料が、気筒内壁面周辺ではなく気筒内中心部分となる燃焼室24周辺に有るほうが好ましい。
【0223】
以上より、機関負荷が高い状態、及び機関回転数が高い状態においては、燃料噴射時期設定手段により燃料噴射時期を変化させ、吸気バルブ23より流入した予混合気が、燃焼室24周辺に停滞する吸気行程初期に予混合燃料噴射を行うことが好適であり、機関負荷が低い状態、及び機関回転数が低い状態においては、同じく燃料噴射時期設定手段により燃料噴射時期を変化させ、吸気バルブ23より流入した予混合気が、吸気バルブ23周辺、及び気筒内壁面周辺に停滞する吸気行程中期に予混合燃料噴射を行うことが好適である。
【0224】
また、高負荷状態において予混合燃料噴射を行う場合に、その噴射燃料が多すぎると、吸気ポート33内に付着する可能性があること、及び多量の噴射燃料を気筒内に一度に流入させることによって気筒内の燃料分布が偏りすぎ、均一な燃焼を行うことが出来なくなる場合がある。よって、この偏りをなくすために、噴射回数を分割して、一回あたりの噴射量を減らし、形成される予混合気の濃度分布に局所的な高濃度箇所が出来ないようにする。
【0225】
具体的な方法としては、先ず、一回で噴射できる最大燃料量:Qmax=20と定め、これ以上の噴射燃料量が要求されれば分割するように設定する。そして図39に示すように、低負荷状態、即ち予混合燃料噴射量:Qpo=5の時なら、吸気行程中期に一回噴射を行う。中負荷状態、即ち予混合燃料噴射量:Qpo=15なら吸気行程初期に一回噴射を行う。そして高負荷状態、即ち予混合燃料噴射量:Qpo=25の場合には、複数回噴射する必要があるため、噴射量偏向手段により吸気行程初期の噴射量が多くなるようにする。具体的には、吸気行程初期にQpo=20の燃料を噴射し、その後吸気行程中期にQpo=5の燃料を噴射する。以上により、予混合燃料噴射量が多くなったとしても分割して燃料噴射が可能となる。
【0226】
本実施の形態4では、実施の形態1に示した内燃機関を用いて説明したが、これに限るものでは無く、実施の形態2及び実施の形態3に示した内燃機関においても同様の制御を行うことが可能である。特に当該実施の形態4については、排気を環流するEGR装置に依存せずに予混合燃料の気筒内での粒度分布を制御可能となるため、EGRガスを流入させることが不可能な高負荷高回転領域においても実施可能である。また、当該実施の形態4では、実施の形態1〜3が予混合燃料を微粒子化することにより気筒内での燃焼性を変化させていたのに対して、形成された予混合燃料の粒度分布、濃度分布を制御して気筒内での燃焼性を変化させるものである。よって、実施の形態1〜3を実施できない状態においても当該実施の形態4を実行することにより、噴射された燃料を制御し、気筒内での燃焼性を任意に調整することが可能である。また、実施の形態1〜3と実施の形態4とをそれぞれ組合わせることにより、より広い範囲で制御することが可能となる。
【0227】
当該実施の形態ではディーゼル内燃機関に基づいて説明したものであるが、これに限るものではなく、ガソリン内燃機関においても当該発明を実施することは可能である。また、当該発明においては、ポート内にて予混合燃料噴射を行い、この燃料を微細化するためにアシストエアを用いたが、予混合噴射だけに限れば、気筒内に設けた燃料噴射弁と、その燃料噴射弁近傍に設けたアシストエア噴出孔より、気筒内が負圧状態となる吸気行程において、アシストエアを噴出可能となる。特に、気筒内が負圧になることにより、吸気と排気との双方をアシストエアとして利用可能となる。
【0228】
【発明の効果】
本願発明に係る燃料供給制御装置を用いることにより、燃料を内燃機関の諸状態に応じてアシストエアにより微粒化することで予混合燃料を内燃機関の諸状態に応じて効率よく運用することが可能となる。
【0229】
また、排気及び、排気と吸気双方を用いてアシストエアを形成し、内燃機関の諸状態に応じてこれら排気、及び排気と吸気の双方から形成されるアシストエアを用いて燃料を微粒化すること、及びこれら微粒子化された燃料の粒子の分布を変化させることで、予混合燃料を内燃機関の諸状態に応じて効率よく運用することが可能となる。
【0230】
これは当該発明で、アシストエアに用いられる排気と吸気は、それぞれ単独で用いた形態においても、燃料を微粒子化するに際して、充分な効果を発揮するが、吸気と排気双方を用いる形態では、低負荷低回転状態から、高負荷高回転状態まででアシストエアを行うことが可能となり、より優れたものとなるからである。また、予混合燃料噴射時期を変化させることにより、予混合気の濃度分布を変えることにより、筒内の燃焼性を変化させることが可能となるが、この予混合燃料噴射時期を変化させることは、前記アシストエアと、独立して行える制御であるため、単独で用いて気筒内の燃焼性を改善しても良いが、アシストエアと平行して用いることにより、更なる燃焼性の改善を図ることが可能となる。
【0231】
よって、これらの装置を用いることにより、アシストエアを用いて燃料を微粒化する際に内燃機関の諸条件に沿った粒度の燃料を形成するようアシストエアを制御することが可能となる。
【図面の簡単な説明】
【図1】当該実施の形態1に係る内燃機関の概略構成図。
【図2】同実施の形態1に係るECU周りの概念図。
【図3】同実施の形態1に係る予混合燃料噴射弁と吸気噴射管との構成図。
【図4】同実施の形態1に係る第1制御のフローチャート。
【図5】同実施の形態1に係る機関状態と要求燃料粒径の関係を示すグラフ。
【図6】同実施の形態1に係る機関状態と目標流量調整弁開度の関係を示すグラフ。
【図7】同実施の形態1に係る機関状態と目標アシストエア流量の関係を示す
グラフ。
【図8】同実施の形態1に係る第2制御のフローチャート。
【図9】同実施の形態1に係る機関状態と気筒内圧の関係を示すグラフ。
【図10】同実施の形態1に係る第3制御のフローチャート。
【図11】同実施の形態1に係る機関状態と気筒内圧変化率の関係を示すグラ
フ。
【図12】当該実施の形態2に係る内燃機関の概略構成図。
【図13】同実施の形態2に係るECU周りの概念図。
【図14】同実施の形態2に係る予混合燃料噴射弁と吸気噴射管との構成図。
【図15】同実施の形態2に係る予混合燃料噴射弁と吸気噴射管との構成図。
【図16】同実施の形態2に係る第1制御のフローチャート。
【図17】同実施の形態2に係る機関状態と目標流量調整弁開度の関係を示す
グラフ。
【図18】同実施の形態2に係る機関状態と目標流量調整弁開度の関係を示す
グラフ。
【図19】同実施の形態2に係る第2制御のフローチャート。
【図20】同実施の形態2に係る機関状態と気筒内圧の関係を示すグラフ。
【図21】同実施の形態2に係る第3制御のフローチャート。
【図22】同実施の形態2に係る機関状態と気筒内圧変化率の関係を示すグラ
フ。
【図23】同実施の形態2に係るスロットル弁開度のの補正値を算出する表。
【図24】当該 実施の形態3に係る内燃機関の概略構成図。
【図25】同実施の形態3に係るECU周りの概念図。
【図26】同実施の形態3に係る予混合燃料噴射弁と吸気噴射管との構成図。
【図27】同実施の形態3に係る第1制御のフローチャート。
【図28】同実施の形態3に係る機関状態と機関状態に応じた領域の関係を示
すグラフ。
【図29】同実施の形態3に係る機関状態と目標流量調整弁開度の関係を示す
グラフ。
【図30】同実施の形態3に係る機関状態と目標流量調整弁開度の関係を示す
グラフ。
【図31】同実施の形態3に係る第2制御のフローチャート。
【図32】同実施の形態3に係る機関状態と気筒内圧の関係を示すグラフ。
【図33】同実施の形態3に係る第3制御のフローチャート。
【図34】同実施の形態3に係る機関状態と気筒内圧変化率の関係を示すグラ
フ。
【図35】当該実施の形態4に係る吸気行程初期の気筒内の燃料分布を表す図

【図36】同実施の形態4に係る吸気行程中期の気筒内の燃料分布を表す図。
【図37】同実施の形態4に係る内燃機関の断面概略構成図。
【図38】同実施の形態4に係る機関状態と噴射タイミングの関係を示すグラ
フ。
【図39】同実施の形態4に係る各負荷状態における噴射時期を示すグラフ。
【符号の説明】
1 エンジン
10 燃料供給系
11 サプライポンプ
12a コモンレール
12b コモンレール
13 主燃料噴射弁
17 予混合燃料噴射弁
20 ピストン
22 シリンダヘッド
23 吸気バルブ
24 燃焼室
30 吸気系
31 インタークーラ
32 スロットル弁
33 吸気ポート
34 吸気噴射管
34 流量調整弁
35 吸気支管
36 流量調整弁
40 排気系
40a 排気集合管
40b 排気通路
40c 排気通路
42 触媒ケーシング
50 ターボチャージャ
51 シャフト
52 タービンホイール
53 コンプレッサ
60 EGR通路
61 EGR弁
62 EGRクーラ
70a レール圧センサ
70b レール圧センサ
71 水温センサ
72 エアフローメータ
73 酸素濃度センサ
74 気筒内圧センサ
75 過給圧センサ
76 アクセル開度センサ
77 クランク角センサ
78 吸気温度センサ
79 吸気圧センサ
80 電子制御装置(ECU)
81  中央演算処理装置(CPU)
82  読み出し専用メモリ(ROM)
83  ランダムアクセスメモリ(RAM)
84 バックアップRAM
85 タイマカウンタ
86 入力ポート
87 出力ポート
88 双方向性バス
101 エンジン
110 燃料供給系
111 サプライポンプ
112a コモンレール
112b コモンレール
113 主燃料噴射弁
117 予混合燃料噴射弁
130 吸気系
131 インタークーラ
132 スロットル弁
133 吸気ポート
134 排気噴射管
140 排気系
140a 排気集合管
140b 排気通路
140c 排気通路
142 触媒ケーシング
143 クーラ
144a 排気支管
144b 排気支管
145a 第1流量調整弁
145b 第2流量調整弁
145c 第3流量調整弁
146 排気支管
150 ターボチャージャ
151 シャフト
152 タービンホイール
153 コンプレッサ
160 EGR通路
161 EGR弁
162 EGRクーラ
170a レール圧センサ
170b レール圧センサ
171 水温センサ
172 エアフローメータ
173 酸素濃度センサ
174 気筒内圧センサ
175 排気圧センサ
176 アクセル開度センサ
177 クランク角センサ
178 吸気温度センサ
179 排気温度センサ
180 電子制御装置(ECU)
181  中央演算処理装置(CPU)
182  読み出し専用メモリ(ROM)
183  ランダムアクセスメモリ(RAM)
184 バックアップRAM
185 タイマカウンタ
186 入力ポート
187 出力ポート
188 双方向性バス
190 吸気圧センサ
201 エンジン
210 燃料供給系
211 サプライポンプ
212a コモンレール
212b コモンレール
213 主燃料噴射弁
217 予混合燃料噴射弁
220 各燃焼室
230 吸気系
231 インタークーラ
232 スロットル弁
233 吸気ポート
234 吸排気噴射管
235 吸気支管
240 排気系
240a 排気集合管
240b 排気通路
240c 排気通路
242 触媒ケーシング
243 クーラ
244a 排気支管
244b 排気支管
245a 第1流量調整弁
245b 第2流量調整弁
245c 第3流量調整弁
245d 第4流量調整弁
246 排気支管
250 ターボチャージャ
251 シャフト
252 タービンホイール
253 コンプレッサ
260 EGR通路
261 EGR弁
262 EGRクーラ
270a レール圧センサ
270b レール圧センサ
271 水温センサ
272 エアフローメータ
273 酸素濃度センサ
274 気筒内圧センサ
275 排気圧センサ
276 アクセル開度センサ
277 クランク角センサ
278 吸気温度センサ
279 排気温度センサ
285 タイマカウンタ
286 入力ポート
287 出力ポート
288 双方向性バス
290 吸気圧センサ
288 排気圧センサ
P1 機関燃料通路
P11 機関燃料通路
P12 予混合燃料通路
P2 予混合燃料通路
P21 機関燃料通路
P22 予混合燃料通路

Claims (20)

  1. 内燃機関に燃料を供給する燃料噴射弁と、
    内燃機関に空気を供給する吸気通路に設けられて空気を圧縮して供給する過給機と、
    前記過給機下流から、燃料噴射弁の燃料噴射孔近傍にアシストエアを案内するアシストエア通路と、
    このアシストエア通路に流れるアシストエアの流量を調整する流量調整弁と、この流量調整弁を機関運転状況に応じたアシストエア流量である目標アシストエア流量となるように目標開度に設定する流量調整弁制御手段と、を備え、
    前記流量調整弁制御手段は、吸気温度、過給機の過給圧、及び燃料噴射弁の燃料噴射孔周りの吸気圧力とを基準にアシストエア通路を流れる実アシストエア流量を算出する実アシストエア流量算出手段と、
    前記実アシストエア流量算出手段により算出された実アシストエア流量が前記目標アシストエア流量となるように前記流量調整弁の目標開度を補正する流量調整弁開度補正手段と、を有する内燃機関の燃料供給制御装置。
  2. 前記実アシストエア流量算出手段は、機関温度、過給機の過給圧、及び燃料噴射弁の燃料噴射孔周りの吸気圧力とを基準にアシストエア通路を流れる実アシストエア流量を算出する請求項1に記載の内燃機関の燃料供給制御装置。
  3. 流量調整弁の開度に応じて変化する内燃機関の気筒内圧力を算出する実気筒内圧力算出手段と、
    機関運転状況に応じた気筒内圧力を算出する目標気筒内圧力算出手段と、を更に備え、
    前記流量調整弁制御手段は、前記実気筒内圧力算出手段により算出した実気筒内圧力が、前記目標気筒内圧力算出手段により算出された目標気筒内圧力となるように前記流量調整弁の開度を調整する流量調整弁開度補正手段と、を備えた請求項1または請求項2に記載の内燃機関の燃料供給制御装置。
  4. 流量調整弁の開度に応じて変化する内燃機関の気筒内圧力を算出する実気筒内圧力算出手段と、
    クランクシャフトのクランク角の変化量を算出するクランク角算出手段と、
    前記クランク角算出手段により算出されたクランク角に対する気筒内圧力変化を算出する実圧力変化率算出手段と、
    機関運転状況に応じた気筒内圧力変化を算出する目標圧力変化率算出手段と、前記実圧力変化率算出手段により算出した実圧力変化率が、前記目標圧力変化率算出手段により算出された目標圧力変化率となるように前記流量調整弁の開度を調整する流量調整弁開度補正手段と、を備えた請求項1または請求項2に記載の内燃機関の燃料供給制御装置。
  5. 内燃機関に燃料を供給する燃料噴射弁と、
    内燃機関から排気を排出する排気通路に設けられ排気を浄化する排気浄化装置と、この排気浄化装置下流に設けられて排気を冷却する排気冷却装置と、
    前記排気浄化装置と前記排気冷却装置との間の排気通路から燃料噴射孔近傍にアシストエアを案内する第1アシストエア通路と、
    前記排気冷却装置下流の排気通路から燃料噴射孔近傍にアシストエアを案内する第2アシストエア通路と、
    前記第1アシストエア通路と第2アシストエア通路とを流れるアシストエアの流量をそれぞれ独立して調整する流量調整弁と、を備えた排気アシストエア噴射装置。
  6. 内燃機関に燃料を供給する燃料噴射弁と、内燃機関から排気を排出する排気通路に設けられ排気を浄化する排気浄化装置と、この排気浄化装置下流に設けられて排気を冷却する排気冷却装置と、前記排気浄化装置と前記排気冷却装置との間の排気通路から燃料噴射孔近傍にアシストエアを案内する第1アシストエア通路と、前記排気冷却装置下流の排気通路から燃料噴射孔近傍にアシストエアを案内する第2アシストエア通路と、前記第1アシストエア通路と第2アシストエア通路とを流れるアシストエアの流量をそれぞれ独立して調整する流量調整弁と、を備えた排気アシストエア噴射装置と、
    排気冷却装置の上流側の排気温度を測定する排気温度測定手段と、
    前記排気温度測定手段によって測定された排気温度に応じて、アシストエアを案内するアシストエア通路を選択するアシストエア通路選択手段と、
    このアシストエア通路選択手段により選択したアシストエア通路の流量を調整する流量調整弁を機関運転状況に応じたアシストエア流量である目標アシストエア流量となるように目標開度に設定する流量調整弁制御手段と、を備え、
    前記流量調整弁制御手段は、排気温度、排気通路の排気圧、及び燃料噴射弁の燃料噴射孔周りの吸気圧力とを基準にアシストエア通路を流れる実アシストエア流量を算出する実アシストエア流量算出手段と、
    前記実アシストエア流量算出手段により算出された実アシストエア流量が前記目標アシストエア流量となるように前記流量調整弁の目標開度を補正する流量調整弁開度補正手段と、を備えた内燃機関の燃料供給制御装置。
  7. 前記実アシストエア流量算出手段は、機関温度、排気通路の排気圧、及び燃料噴射弁の燃料噴射孔周りの吸気圧力とを基準にアシストエア通路を流れる実アシストエア流量を算出する請求項6に記載の内燃機関の燃料供給制御装置。
  8. 前記流量調整弁の開度に応じて変化する内燃機関の気筒内圧力を算出する実気筒内圧力算出手段と、
    機関運転状況に応じた気筒内圧力を算出する目標気筒内圧力算出手段と、を更に備え、
    前記流量調整弁制御手段は、前記実気筒内圧力算出手段により算出した実気筒内圧力が、前記目標気筒内圧力算出手段により算出された目標気筒内圧力となるように前記流量調整弁の開度を調整する流量調整弁開度補正手段と、を備えた請求項6または請求項7に記載の内燃機関の燃料供給制御装置。
  9. 流量調整弁の開度に応じて変化する内燃機関の気筒内圧力を算出する実気筒内圧力算出手段と、
    クランクシャフトのクランク角の変化量を算出するクランク角算出手段と、
    前記クランク角算出手段により算出されたクランク角に対する気筒内圧力変化を算出する実圧力変化率算出手段と、
    機関運転状況に応じた気筒内圧力変化を算出する目標圧力変化率算出手段と、前記実圧力変化率算出手段により算出した実圧力変化率が、前記目標圧力変化率算出手段により算出された目標圧力変化率となるように前記流量調整弁の開度を調整する流量調整弁開度補正手段と、を備えた請求項6または請求項7に記載の内燃機関の燃料供給制御装置。
  10. 前記流量調整弁開度補正手段により補正された流量調整弁の開度に応じて、内燃機関に供給される空気量を補正する吸入空気量制御手段を備えた請求項6から請求項9のいずれかに記載の燃料供給制御装置。
  11. 排気の一部を吸気に環流させる排気循環装置を備えると共に、前記流量調整弁開度補正手段により補正された流量調整弁の開度に応じて、吸気に環流される排気量を補正する排気環流量制御手段とを備えた請求項6から請求項9のいずれかに記載の燃料供給制御装置。
  12. 内燃機関に燃料を供給する燃料噴射弁と、
    内燃機関に空気を供給する吸気通路に設けられて空気を圧縮して供給する過給機と、
    前記過給機下流から、燃料噴射弁の燃料噴射孔近傍にアシストエアを案内する第1アシストエア通路と、
    内燃機関から排気を排出する排気通路に設けられ排気を浄化する排気浄化装置と、この排気浄化装置下流に設けられて排気を冷却する排気冷却装置と、
    前記排気浄化装置下流から前記排気冷却装置上流までの排気通路から燃料噴射孔近傍にアシストエアを案内する第2アシストエア通路と、
    前記排気冷却装置下流の排気通路から燃料噴射孔近傍にアシストエアを案内する第3アシストエア通路と、
    前記第1アシストエア通路と第2アシストエア通路と第3アシストエア通路とを流れるアシストエアの流量をそれぞれ独立して調整する流量調整弁と、を備える吸排気アシストエア噴射装置。
  13. 内燃機関に燃料を供給する燃料噴射弁と、内燃機関に空気を供給する吸気通路に設けられて空気を圧縮して供給する過給機と、前記過給機下流から、燃料噴射弁の燃料噴射孔近傍にアシストエアを案内する第1アシストエア通路と、内燃機関から排気を排出する排気通路に設けられ排気を浄化する排気浄化装置と、この排気浄化装置下流に設けられて排気を冷却する排気冷却装置と、前記排気浄化装置下流から前記排気冷却装置上流までの排気通路から燃料噴射孔近傍にアシストエアを案内する第2アシストエア通路と、前記排気冷却装置下流の排気通路から燃料噴射孔近傍にアシストエアを案内する第3アシストエア通路と、前記第1アシストエア通路と第2アシストエア通路と第3アシストエア通路とを流れるアシストエアの流量をそれぞれ独立して調整する流量調整弁と、を備える吸排気アシストエア噴射装置と、
    排気冷却装置上流の排気温度を測定する排気温度測定手段と、
    前記排気温度測定手段によって測定された排気温度に応じて、アシストエアを案内するアシストエア通路を選択するアシストエア通路選択手段と、
    このアシストエア通路選択手段により選択したアシストエア通路の流量を調整する流量調整弁を機関運転状況に応じたアシストエア流量である目標アシストエア流量となるように目標開度に設定する流量調整弁制御手段と、を備え、
    前記流量調整弁制御手段は、アシストエア通路選択手段により選択したアシストエア通路に応じた、排気温度と排気通路の排気圧及び燃料噴射弁の燃料噴射孔周りの吸気圧力か、吸気温度と過給機の過給圧及び燃料噴射弁の燃料噴射孔周りの吸気圧力か、の何れかを基準にしてアシストエア通路を流れる実アシストエア流量を算出する実アシストエア流量算出手段と、
    前記実アシストエア流量算出手段により算出された実アシストエア流量が前記目標アシストエア流量となるように前記流量調整弁の目標開度を補正する流量調整弁開度補正手段と、を有する内燃機関の燃料供給制御装置。
  14. 前記実アシストエア流量算出手段は、アシストエア通路選択手段により選択したアシストエア通路に応じた、機関温度と過給機の過給圧及び燃料噴射弁の燃料噴射孔周りの吸気圧力か、機関温度と排気通路の排気圧及び燃料噴射弁の燃料噴射孔周りの吸気圧力か、の何れかを基準にアシストエア通路を流れる実アシストエア流量を算出する請求項13に記載の内燃機関の燃料供給制御装置。
  15. 流量調整弁の開度に応じて変化する内燃機関の気筒内圧力を算出する実気筒内圧力算出手段と、
    機関運転状況に応じた気筒内圧力を算出する目標気筒内圧力算出手段と、を更に備え、
    前記流量調整弁制御手段は、前記実気筒内圧力算出手段により算出した実気筒内圧力が、前記目標気筒内圧力算出手段により算出された目標気筒内圧力となるように前記流量調整弁の開度を調整する流量調整弁開度補正手段と、を備えた請求項13または請求項14に記載の内燃機関の燃料供給制御装置。
  16. 流量調整弁の開度に応じて変化する内燃機関の気筒内圧力を算出する実気筒内圧力算出手段と、
    クランクシャフトのクランク角の変化量を算出するクランク角算出手段と、
    前記クランク角算出手段により算出されたクランク角に対する気筒内圧力変化を算出する実圧力変化率算出手段と、
    機関運転状況に応じた気筒内圧力変化を算出する目標圧力変化率算出手段と、前記実圧力変化率算出手段により算出した実圧力変化率が、前記目標圧力変化率算出手段により算出された目標圧力変化率となるように前記流量調整弁の開度を調整する流量調整弁開度補正手段と、を備えた請求項13または請求項14に記載の内燃機関の燃料供給制御装置。
  17. 流量調整弁開度補正手段により補正された流量調整弁の開度に応じて、内燃機関に供給される空気量を補正する吸入空気量制御手段を備えた請求項13から請求項16のいずれかに記載の内燃機関の燃料供給制御装置。
  18. 排気の一部を吸気に環流させる排気循環装置を備えると共に、流量調整弁開度補正手段により補正された流量調整弁の開度に応じて、吸気に環流される排気量を補正する排気環流量制御手段とを備えた請求項13から請求項16のいずれかに記載の内燃機関の燃料供給制御装置。
  19. 内燃機関に燃料を供給する燃料噴射弁と、
    内燃機関に空気を供給する吸気通路に設けられて、前記吸気通路と内燃機関に設けられた気筒内との弁となる吸気バルブと、
    機関状況に応じて燃料噴射弁の燃料噴射時期を設定する燃料噴射時期設定手段と、を備え、
    この燃料噴射時期設定手段は、さらに吸気バルブの開度に応じて燃料噴射を行う内燃機関の燃料供給制御装置。
  20. 前記燃料噴射時期設定手段によって、噴射時期を吸気バルブの開時初期と全開時とした場合に、開時初期に噴射される燃料量が多くなるように噴射量を偏向させる噴射量偏向手段と、を備えた請求項19に記載の燃料供給制御装置。
JP2002228768A 2002-08-06 2002-08-06 内燃機関の燃料供給制御装置 Withdrawn JP2004068697A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228768A JP2004068697A (ja) 2002-08-06 2002-08-06 内燃機関の燃料供給制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002228768A JP2004068697A (ja) 2002-08-06 2002-08-06 内燃機関の燃料供給制御装置

Publications (1)

Publication Number Publication Date
JP2004068697A true JP2004068697A (ja) 2004-03-04

Family

ID=32015366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228768A Withdrawn JP2004068697A (ja) 2002-08-06 2002-08-06 内燃機関の燃料供給制御装置

Country Status (1)

Country Link
JP (1) JP2004068697A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242074A (ja) * 2005-03-02 2006-09-14 Toyota Motor Corp 予混合燃焼圧縮着火内燃機関
JP2007040147A (ja) * 2005-08-02 2007-02-15 Toyota Motor Corp 予混合圧縮着火内燃機関
JP2008075485A (ja) * 2006-09-20 2008-04-03 Denso Corp 過給圧制御装置
JPWO2006100938A1 (ja) * 2005-03-18 2008-09-04 トヨタ自動車株式会社 2系統燃料噴射式内燃機関
JP2011080398A (ja) * 2009-10-06 2011-04-21 Mitsubishi Electric Corp 電動過給機の制御装置
CN105201673A (zh) * 2014-06-23 2015-12-30 丰田自动车株式会社 用于内燃机的控制器

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242074A (ja) * 2005-03-02 2006-09-14 Toyota Motor Corp 予混合燃焼圧縮着火内燃機関
JP4552696B2 (ja) * 2005-03-02 2010-09-29 トヨタ自動車株式会社 予混合燃焼圧縮着火内燃機関
JPWO2006100938A1 (ja) * 2005-03-18 2008-09-04 トヨタ自動車株式会社 2系統燃料噴射式内燃機関
JP4542135B2 (ja) * 2005-03-18 2010-09-08 トヨタ自動車株式会社 2系統燃料噴射式内燃機関
JP2007040147A (ja) * 2005-08-02 2007-02-15 Toyota Motor Corp 予混合圧縮着火内燃機関
JP4586670B2 (ja) * 2005-08-02 2010-11-24 トヨタ自動車株式会社 予混合圧縮着火内燃機関
JP2008075485A (ja) * 2006-09-20 2008-04-03 Denso Corp 過給圧制御装置
JP4556932B2 (ja) * 2006-09-20 2010-10-06 株式会社デンソー 過給圧制御装置
JP2011080398A (ja) * 2009-10-06 2011-04-21 Mitsubishi Electric Corp 電動過給機の制御装置
CN105201673A (zh) * 2014-06-23 2015-12-30 丰田自动车株式会社 用于内燃机的控制器
JP2016008530A (ja) * 2014-06-23 2016-01-18 トヨタ自動車株式会社 内燃機関の制御装置

Similar Documents

Publication Publication Date Title
JP4848024B2 (ja) 内燃機関の制御装置
JP5482716B2 (ja) ディーゼルエンジンの制御装置及びディーゼルエンジンの制御方法
US8607564B2 (en) Automobile-mount diesel engine with turbocharger and method of controlling the diesel engine
US7273045B2 (en) System and method for reducing NOx emissions during transient conditions in a diesel fueled vehicle with EGR
US9371795B2 (en) Combustion control apparatus of internal combustion engine
US8667952B2 (en) Method and device for controlling diesel engine with forced induction system
JP4928512B2 (ja) 内燃機関の制御装置
US10995692B2 (en) Internal combustion engine and control device for internal combustion engine
WO2006090884A1 (ja) 内燃機関
JP6642539B2 (ja) 圧縮着火式エンジンの制御装置
US8315777B2 (en) Control apparatus and control method for internal combustion engine
JP2019506561A (ja) ユニフロー掃気式2サイクル対向ピストンエンジンの燃料リミッタ
JP2012031845A (ja) ディーゼルエンジン及びディーゼルエンジンの制御方法
JP2005090468A (ja) 予混合圧縮自着火内燃機関のegr装置、および、予混合圧縮自着火内燃機関の着火時期制御方法
JP2006233898A (ja) Egr装置
US11933215B2 (en) Hydrogen opposed-piston engine
JP6089639B2 (ja) 天然ガスエンジン及び天然ガスエンジンの運転方法
CN108603457B (zh) 内燃机的控制方法以及控制装置
JP2004068697A (ja) 内燃機関の燃料供給制御装置
JP2015108326A (ja) 排気ガス還流制御装置
JP2019190440A (ja) 内燃機関の制御装置
JP2012041892A (ja) ディーゼルエンジン
JP7445099B2 (ja) ディーゼルエンジン
JP2004316557A (ja) 圧縮着火式内燃機関
JP2016061171A (ja) エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050713

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061219