JP2004061640A - 電子写真用導電性部材及びこれを用いた装置 - Google Patents

電子写真用導電性部材及びこれを用いた装置 Download PDF

Info

Publication number
JP2004061640A
JP2004061640A JP2002216839A JP2002216839A JP2004061640A JP 2004061640 A JP2004061640 A JP 2004061640A JP 2002216839 A JP2002216839 A JP 2002216839A JP 2002216839 A JP2002216839 A JP 2002216839A JP 2004061640 A JP2004061640 A JP 2004061640A
Authority
JP
Japan
Prior art keywords
layer
conductive member
charging
particles
outermost layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002216839A
Other languages
English (en)
Inventor
Tomoji Ishihara
石原 友司
Shinji Doi
土井 信治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Canon Chemicals Inc
Original Assignee
Canon Inc
Canon Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Canon Chemicals Inc filed Critical Canon Inc
Priority to JP2002216839A priority Critical patent/JP2004061640A/ja
Publication of JP2004061640A publication Critical patent/JP2004061640A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolls And Other Rotary Bodies (AREA)
  • Developing For Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

【課題】電子写真装置の小型化に適し、長期間良好な画質を得ることのできる電子写真用導電性部材及びそれを用いた装置を提供する。
【解決手段】支持体とその上方に設けられた1層以上の高分子化合物を主体とする層とを有する電子写真用導電性部材であって、前記高分子化合物を主体とする層の最大厚さ/前記支持体の最大厚さ≦0.4で、かつJISA硬度が30°以上95°以下であり、なおかつ表面粗さがRa≧0.2μmかつRz≦50μmである。その際に好ましくは前記高分子化合物を主体とする層のうち最も外側にある層(最外層)が、粒径の異なる粒子を2種以上含有する。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明は例えば複写機、プリンター、ファックス等の電子写真装置に用いられる電子写真用導電性部材及びそれを用いた装置に関するものであり、特には、帯電用途に好適に用いられるものである。
【0002】
【従来の技術】
電子写真装置には、さまざまな目的/用途に導電性部材が使用されている。代表的な例としては、帯電工程において感光体を所定の極性及び電位にする帯電部材が挙げられる。帯電部材は、ローラー、ブレード、ブラシ、ベルト、フィルム、シート、チップ等の形状のものがあり、被帯電体(特には感光体)表面に対向(接触または近接)させて、直流電圧や、直流電圧と交流電圧の重畳電圧を印加して使用されている。
【0003】
帯電部材は、安定した生産性の観点からローラー形状 (帯電ローラー)が好んで使用され、支持体として芯金を使用しその周囲にゴム、エラストマー等を主体としてなるソリッドやスポンジの弾性層と、エラストマーや樹脂等を主体としてなる最外層とを有する構成が一般的である。弾性層は導電性付与材によって体積抵抗値を10〜1010Ωcm程度に調整され、最外層は10〜1013Ωcm程度になるよう導電性付与材を添加したり、導電性付与材を添加しない場合には厚みを薄くしたりするなどして。この抵抗範囲になるよう調整される。このようにして得られた帯電ローラーとしては10〜1012Ωcm程度の体積抵抗値が好ましく、印加電圧依存性や電圧印加時間依存性や環境依存性等に対して変化が小さいほど好ましく、これらを達成するために様々な検討がなされた結果、印加電圧依存性(印加電圧10V〜1000Vの範囲)、電圧印加時間依存性(印加直後から1時間後の範囲)、環境依存性(15℃10%RH〜30℃80%RHの範囲)などがいずれも1桁以内であるものが実用に供されている。これらの帯電部材に使用されるゴム、エラストマー、樹脂等の高分子化合物としては、既知の材料であれば基本的に使用することができ、硬度、表面性、耐候性、耐熱性、耐永久変形性、寸法等必要に応じて調整、制御する。
【0004】
周知の通り、電子写真装置の画像形成に用いられる感光体の帯電方式には直流電圧のみを印加する方式と、直流電圧と交流電圧の重畳電圧を印加する方式とがある。画質向上の点では、感光体電位のムラ軽減に絶大な効果を有する重畳電圧を印加する方式が好ましい。しかしながら交流を重畳する帯電方式固有の問題として帯電音がある。この現象は交流の電圧や周波数に依存して発生するものであり、これらに対応するために例えば、特開平4−303860号公報や特開平7−152222号公報のように、最外層に高分子粒子などを添加し表面を荒らす提案がなされている。
【0005】
しかしながら、特開平4−303860号公報では弾性粒子を使用しているため帯電部材が感光体に押し付けられた時に弾性粒子の変形を生じるため特に回転しているような動的状態にあっては形状的に不安定になるだけでなく、周囲の結着樹脂との間に微小な隙間を生じやすい。一方、特開平7−152222号公報では、架橋タイプのアクリル樹脂を用いているために前述の現象は軽減されるが、粒径が35〜100μmと大きいため、均一な帯電性という意味では不利な方向である。これらの技術は帯電安定性に優れる重畳電圧印加方式においては画像上大きな問題とはならないものの、直流電圧のみを印加する帯電方式においては、画像上の欠陥として顕在化することが多い。
【0006】
また、情報の出力手段としてのプリンター、複写機、ファックス等の電子写真装置は、様々な場所や環境で使用されるようになり、それらの状況において良好な画像を長期にわたって供給することが強く望まれている。良好な画像を得るためには、当然のことながら電子写真装置を構成する各部品が良好な特性を有することが必要であり、種々の用途に使用される帯電部材においても高画質、高耐久性を目的として、種々の検討がなされている。これらの検討によれば、帯電部材としての必要な機能を得るには、ゴム、エラストマー、樹脂等に必要に応じて加えた添加剤による機能材料化技術と形状や状態や構成を調整する制御技術とが不可欠である。従って、ゴム、エラストマー、樹脂等からなる機能材料層はその機能を十分発揮するためには所定の大きさや厚さを確保する必要がある。大きいほど、あるいは厚いほど、機能材料層の寄与度は大きいために、良好な特性を得るためには有利である。
【0007】
一方で、省スペース、省エネルギー、省資源等の重要性が高まっており、この観点から電子写真装置の小型化が望まれている。そのためには電子写真装置に用いられる各部品の小型化が必須であり、当然帯電部材や感光体も小型化する必要がある。例えば、帯電部材を小型化するためには、機能材料層や支持体の薄肉化や小径化が必要であるが、この動向は前述した流れと相反する傾向がある。さらに、電子写真装置に用いられる電源としては直流電圧のみで制御する方が交流電圧を使用する場合に対し、小型化、コスト、省エネルギー、等の面で優れている。
【0008】
すなわち、小型でなおかつパフォーマンスに優れる電子写真装置を得るための技術の重要性が増大しているといえる。この電子写真装置に用いられる帯電部材には、帯電性能を安定的に発揮するために帯電部材の静的状態(外部から力の働いていない状態)及び動的状態(回転等の相対移動している状態や当接などで加圧されている状態、あるいはこれらが複合された状態)のいずれにおいても安定した形状を長期にわたって保持しうることが強く求められると同時に、直流電圧のみを印加する電子写真装置においても良好な画像を得るための技術開発が必要であった。
【0009】
【発明が解決しようとする課題】
本発明の課題は、上述のような問題に鑑み為されたものであり、電子写真装置の小型化に適し、様々な場所や環境においても良好な画質を長期間にわたって得ることのできる電子写真用導電性部材及びそれを用いた装置を提供することである。
【0010】
また、本発明の別の課題は、高解像度(概ね600dpi以上で、特には1200dpi以上)や高速(概ねプロセススピードが90mm/sec.以上で、特には120mm/sec.以上)、あるいは2種以上のプロセススピードを有する電子写真装置において、安定した導電特性を有する電子写真用導電性部材及びそれを用いた装置を提供することである。
【0011】
更に本発明の課題は直流電圧のみを印加して画像形成を行なう場合においても良好な導電特性を有する電子写真用導電性部材及びそれを用いた装置を提供することである。
【0012】
【課題を解決するための手段】
本発明の電子写真用導電性部材は種々の用途に様々な形状/構成で使用することができるが、帯電ローラーを代表例にして以下説明する。
【0013】
帯電ローラーを小型化するには、帯電ローラーの外径を小さくする(小径化)ことが必要であるが、その手段としては、主に芯金の径を小さくする方法、主に弾性層の厚さを薄くする方法、あるいはこれらを合せた方法、等が挙げられる。
【0014】
本発明のように、帯電ローラーを小径化した場合には、帯電ローラーが感光体に接触する幅は狭くなるとともに曲率が小さくなるために、帯電ローラーの小径化は帯電を安定して行なうためには不利な方向であり、感光体をも小径化した場合においてはなおさらその傾向が大きい。
【0015】
このような状態においても安定した帯電性能を得るために、本発明者らは鋭意検討を重ねた結果、帯電性能を安定的に発揮するために帯電部材の静的状態(外部から力の働いていない状態)及び動的状態(回転等の相対移動している状態や当接などで加圧されている状態、あるいはこれらが複合された状態)のいずれにおいても安定した形状を長期にわたって保持しうることが必要であること、具体的には、帯電効率を上げたり、放電面積を実質的に増やしたりすることが重要であり、そのためには、帯電ローラーの硬度を高めにすることで高精度化を図るとともに、帯電ローラーの表面状態を従来とは異なる観点で微小に制御する必要があることを見出し、本発明に至ったものである。
【0016】
すなわち、本発明は、支持体とその上方に設けられた高分子化合物を主体とする層とを有する電子写真用導電性部材であって、高分子化合物を主体とする層の最大厚さ/前記支持体の最大厚さ≦0.4 であり、かつJISA硬度が30°以上95°以下であり、なおかつ表面粗さが Ra≧0.2μm かつ Rz≦50μm であることを特徴とする電子写真用導電性部材であり、構成上の制約はないが、高分子化合物を主体とする層が2層以上であることが好ましく、中でも樹脂やエラストマー等の高分子化合物を主体としてなる最外層と、それよりも内側に設けられたエラストマーやゴム等の高分子化合物を主体としてなる弾性層とを有する構成が好適である。また、帯電ローラーが感光体に接触していない場合においては当接幅の問題はないが、曲率が小さくなることに起因する問題は残るため同様のことが言える。
【0017】
本発明においては、前述の通り、帯電ローラーの表面状態を従来とは異なる観点で微小に制御する必要がある。従来から、表面性をあらわす指標としては、Ra、Rz、Rmax、Rk、Ry、Sm等があり、それぞれの指標において好適な範囲を規定しているが、本発明においては複数の指標の組み合わせにおいて特に優れた効果が得られることを見出した。すなわち、全体的な大きな周期の粗さの指標と1周期内の粗さの指標が適当な範囲の組み合わせにおいて適度に同期することが好ましい。すなわち本発明においては、全体的な大きな周期の粗さの指標に相当するものがRzであり、1周期内の粗さの指標に相当するものがRaであるといえ、本発明では、Ra≧0.2μmかつRz≦50μmであることが必要である。このような範囲とすることによって、帯電効率の向上や実質的な放電面積の拡大、あるいは当接状態の安定化や摩擦係数の安定化等による静的または動的接触状態の安定化が図られるために優れた帯電性能が得られるものと考えられる。Rzが50μmより大きい場合にはいわゆる荒れすぎた状態となり、それに起因する画像濃度ムラが発生する場合が多く、一方Raが0.2μm未満では帯電効率の向上や実質的な放電面積の拡大の効果が不充分であるので好ましくない。このような観点から、より好ましくは、0.2≦Ra≦2.0μmかつ5.0≦Rz≦25μmである。
【0018】
この時、表面状態を微小に制御するためには帯電ローラーの硬度を高めにすることが重要である。このような手段によって高精度化を達成できるという効果が得られるわけであるが、本発明においては前記効果以外に、動的状態においても形状安定性が増したり、長期にわたって使用しても表面状態の変化が小さくなったりするという予想外の効果も得られることが判明した。これらの効果によって、特に耐久性が大きく向上するという付加的な効果が得られるのでより好ましい。そのためには、帯電部材のJISA硬度が30°以上95°以下であることが必要であり、より好ましくは、40°以上90°以下である。30°未満では本効果が得られず95°より大きいと感光体へのトナー融着が発生しやすいだけでなく、あまりにも変形しにくくなってしまうため感光体の回転にたいして適度な追従性が失われその結果摩擦抵抗力が増加し、帯電ローラー表面の初期の表面状態が磨耗などで変化しやすくなってしまう傾向があるため好ましくない。
【0019】
このように、帯電ローラーの表面状態を微小に制御する方法としては、高分子化合物を主体とする層のうち最も外側にある層(最外層)が、粒径の異なる粒子を2種以上含有することが非常に有効な手法である。この場合に、粒径が10倍以上異なることが好ましく、より好ましくは50倍以上である。さらに、最も大きな粒子の粒径が7.5μm以上で、最も小さな粒子の粒径が5μm以下であれば一層好ましい。また、最も大きな粒子があまり大きすぎると画像にポチ状の濃度ムラとして発生することがあったり、最も小さい粒子があまり小さいと添加効果が不十分となったりすることもあるので、より一層好ましくは最も大きな粒子の粒径が10μm以上で28μm以下、最も小さな粒子の粒径が0.01μm以上0.5μm以下である。
【0020】
これらの粒子の添加量には特に制限はなく、本発明の粗さの範囲に入るように適正に調節されるが、通常は、それぞれ150質量部以下であることが望ましく、粒径(μm)×添加量(質量部)≦1500であればなおさら好ましい。
【0021】
ところで、帯電ローラー最外層の表面状態は、その直下の表面状態の影響を受けやすい。つまり、最外層の表面状態を微小に制御するためには、その直下の層の表面状態をも微小に制御することが望まれ、その直下の層の表面凹凸差と最外層に添加する粒子の粒径との間に密接な関係があることが判明した。具体的には、最外層中に含有される最も大きな粒子が、その直下の層の表面凹凸差の1.5倍以上8倍以下の粒径であることが好ましい。言うまでもないことであるが、直下の層とは弾性層の場合、樹脂層の場合、芯金等の支持体の場合等、帯電ローラーの構成によって様々である。また、表面凹凸差とはRzやRaといった指標ではなく、断面形状の測定から得られる凹部と凸部との差であって、概念的にはRmaxとSm値を合算したものに近い。従って直下の層の表面状態を考慮して、粒子の粒径を調整し最適な組み合わせとなるような2種以上の粒子を最外層に添加すればよい。このような最外層においては、大きい粒子が下方に多く存在し、上方に向かうに従って小さい粒子の存在が増大することになるために、最外層表面の表面状態を微小に制御できるものである。
【0022】
その方法としては、体積平均径が異なる2種以上の粒子を混合する方法、2ピーク以上の粒度分布を有する粒子を使用する方法、粒度分布がブロードな粒子を添加する方法、等があるが、連続的な粒径の変化よりもある程度段階的に変化する方が表面状態の制御しやすさの面で優れているので、粒度分布がシャープで体積平均径が異なる2種以上の粒子を混合する方法が好ましい。この場合、粒子の材質(有機/無機、種類)、形状(真円、楕円、扁平、異形、等)、性状(比表面積、中空、弾性、硬度、等)等に特に制限は無く、同一材質であっても良いが、最も大きな粒子が高分子粒子、最も小さな粒子が金属酸化物であることが望ましい。本発明に使用される、最も大きな粒子としては例えばエラストマーやゴム粒子や樹脂粒子があるが、特に好ましい粒子の形態としては高硬度の樹脂粒子である。本発明の特徴は、粒子によって帯電ローラー表面の性状を微小に制御することにあるため、硬いほど外力や経時変化に対する安定性が高いからである。また、特に金属酸化物やカーボンブラックのように結着樹脂の硬度を向上する作用のある物質を添加してある場合には、粒子を添加することによって硬度が低下することがある。この理由は明確ではないが、結着樹脂中に粒子が含まれることによって、層の単位断面積あたりの金属酸化物やカーボンブラック添加剤の量が相対的に低下するために生じるものと考えられる。
【0023】
このような影響を軽減するためにも粒子の硬度は高いことが好ましい。この場合、粒子表面を結着樹脂が覆っていれば、例えば感光体の削れや傷等、感光体への直接的な悪影響はない。粒子表面を覆う結着樹脂は0.1μm以上あればよく、0.5μm以上であれば好ましい。このような粒子としては例えば、スチレン−(メタ)アクリル系共重合樹脂、ポリエステル樹脂,スチレン−ブタジエン共重合樹脂、アクリル樹脂、エポキシ樹脂、ふっ素樹脂、シリコーン樹脂、ポリビニルブチラール、ポリアリレート(ビスフェノールAとフタル酸の縮重合体等)、ポリアミド、ポリイミド、ポリカーボネート、ウレタン樹脂、メタクリル樹脂、スチレン−アクリロニトリル系共重合樹脂、等の粒子があり、なかでもアクリル樹脂粒子は外的環境(温度、湿度、荷重、耐候性、耐光性、等)に優れているので好適である。
【0024】
これらの樹脂粒子は重合法や粉砕法等で製造されるが、真円に近いほど好ましいので重合法で製造されたものの方が好ましい。更にいえば、これらの樹脂粒子中に粉体やワックス類、電荷制御剤、等の添加剤を含有していてもよく、トナー(粉砕法、重合法いずれでもよいが重合法が好ましい)であってもよい。トナーの場合は、帯電部材を用いる電子写真装置に使用されるトナーであることが好ましい。カラー画像を出力する電子写真装置の帯電部材にこれらの樹脂粒子(トナー含む)を添加する場合、各色のステーションには、それぞれ同色の粉体を添加する(例えば、黒色粉体を添加した帯電部材はブラックのステーションで使用し、黄色の粉体を添加した帯電部材はイエローのステーションで使用する、という意味)ことが望ましい。また、本発明に使用される、最も小さな粒子としては例えばSi、Al、Mg、Ti、Zn、Sn、Ba、等の酸化物や炭酸塩、あるいはカーボンブラックや金属粉など、さらにはこれらの表面処理品などがあり、粉体抵抗に関わらず使用することができるが、シリカが最も好ましい。
【0025】
更には前記組み合わせに追加してその中間の粒径を有する粒子をも含有し、なおかつ中間の粒径を有する粒子が最も低い抵抗を有する構成であることが特に望ましい。中間の粒径を有する粒子は、導電性付与材として使用することもできる。
【0026】
また、最外層を溶剤や水に溶解、分散、乳化し塗料化して用いる場合には、これらの溶媒に対して安定な構造を有する粒子が好ましく、例えば架橋構造や網目構造を有する粒子が適する。この場合にはエラストマーやゴム粒子では高分子粒子自体の膨潤や添加剤などの抽出が起こりやすく、粒子自体の特性を十分に発揮しきれない場合があるので注意を要する。いずれにしろ、溶媒との相互作用を考慮して、溶媒種あるいは高分子種を選択することが好ましい。さらには、最外層を塗料化することは、チクソ性付与物質を添加すると粒子や添加剤の沈降や浮き上がりなどの分離を軽減することができ、塗料の安定性が飛躍的に高まり、好ましい。チクソ性付与物質としては、例えばシリカをあげることができる。
【0027】
一方、本発明の帯電ローラーの帯電効率を更に向上するためには、最外層に抵抗が1,000倍以上異なる2種以上の粒子を含有することが好ましく、さらに好ましくは100,000倍以上である。この場合に、最も大きな粒子の抵抗が1×1010Ωcm以上であればなお好適であり、最外層に使用される結着材料の抵抗よりも低ければなおさら好ましい。このような粒子を添加することによって帯電効率が向上する理由は明確ではないが、一般に最外層に結着材料として使用される高分子化合物は高抵抗物質であり、中抵抗領域で使用するためには低抵抗な導電性付与物質を添加する。
【0028】
すなわち、高抵抗物質と低抵抗物質との両極端な材料が共存することによってミクロに見れば抵抗物質の偏りがあるものと考えられる。従って、本発明のように2種以上の抵抗の異なる粒子を添加することで、ミクロな抵抗差を緩和することができるためと推測される。すなわち、従来の方法では、高抵抗物質のとなりに低抵抗物質が多く存在するためその抵抗差は大きく、本発明では、高抵抗物質−中抵抗物質−低抵抗物質となるので各々隣り合った物質間における抵抗差は従来よりも小さくなると考えられ、ミクロ的な意味での抵抗均一性が向上して帯電効率向上に結びついているものと考えられる。
【0029】
本発明に使用される粒子は表面処理されていることが好ましい。表面処理によって疎水性が増大し物性や電気特性の環境変動が小さくなる(向上する)、あるいは塗料に分散して使用する時に分散性や塗料経時安定性が向上するといった利点を有するからである。また、表面処理の種類や状態あるいは程度を調整することによって粒子の抵抗も調整できるために、どのような材料であっても任意の抵抗に調整して使用できるという別の優れた効果もある。粒子を表面処理する方法としては特に制限はないが、例えば、カップリング剤(例えば、シリコーン系、チタン系、アルミニウム系、等)処理、オイル焼付け、水酸基との反応性を有する化合物(例えば、イソシアネート、アミン、メラミン系,等)による処理、ドープ、エネルギー線(例えば、紫外線、赤外線、X線、電子線、プラズマ処理、等)照射による表面変性、加熱による表面結晶構造調整、等を挙げることができる。ところで、本発明のように帯電ローラーを小径化した場合において、大径の場合と同程度の使用枚数を得ようとすると、帯電ローラーの回転数が多くなる。従って、帯電ローラーの表面汚れや帯電ローラーの表面削れ等の耐久性に関して厳しい方向となる。
【0030】
これらに対応するには、帯電ローラーの最外層を表面処理することが有用である。表面処理の方法としては特に制限はないが、物理的な処理方法及び化学的な処理方法をあげることができる。物理的な処理方法としては、例えば、砥石、砥粒、ブラシ、バフがけ、サンドペーパー、ラッピングテープ、フィニシングテープ、等による表面研磨やブラスト処理などによる表面粗し、等を挙げることができる。化学的な処理方法としては、例えば、カップリング剤(例えば、シリコーン系、チタン系、アルミニウム系、等)処理、オイル焼付け、水酸基との反応性を有する化合物(例えば、イソシアネート、アミン、メラミン系,等)を含浸したり接触したりすることによる処理、ドープ、エッチング、ハロゲン化、エネルギー線(例えば、紫外線、赤外線、X線、電子線、プラズマ処理、等)照射による表面変性や改質、加熱による表面結晶構造調整、等を挙げることができる。
【0031】
このように、最外層を表面処理することによって、より綿密な表面状態の制御が可能になるので非常に好ましい。もちろん前述のような粒子を添加して最外層の表面状態を微小に制御した後、その最外層表面をこれらの方法によって処理すれば一層好ましい。特に、表面研磨によって処理を行なう場合にはある程度目の細かい研磨材を用いることが好ましい。
【0032】
また、帯電ローラーの最外層を表面処理することによって、最外層の仕事関数やイオン化ポテンシャル、極性等を調整することができるので、目的に応じた表面設計が可能になるという大きな利点をも得ることができるので非常に好ましい。このような新たな効果をより一層高めるためには、添加する粉体の表面処理を行なうことが望ましい。表面処理方法としては、最外層の表面処理方法と同様の方法で行なうことができる。当然ではあるが、粉体と最外層の表面処理を適宜組み合わせることによって優れた効果を得ることができる。
【0033】
さらに、最外層が離型性物質を含有することによってそれらの効果が一層相乗的に発揮される。すなわち、離型性物質によって表面汚れを付きにくくかつ落ちやすくすることが可能であるだけでなく、摩擦係数を低減することができるために帯電ローラー表面の削れにも効果がある。また、摩擦係数低減の別な効果として、ギア等の動力伝達系に作用する負荷を低減できるのでそれらの耐久性も向上し、なおかつスティックスリップ等の不規則な回転をなくすことができるので、ギアの磨耗や帯電ローラーの回転ばらつきによる画像ムラ(低周波数ピッチであらわれる濃度ムラや、規則性のない濃度ムラ)が軽減できるという新たな効果も有する。
【0034】
帯電ローラーを電子写真装置に組み込んで使用する場合には、帯電ローラーの最外層中の離型性物質含有率が感光体の最外層中の離型性物質含有率よりも大きいことが好ましい。特に感光体の最外層中に離型剤物質が含有されないような場合にてこの効果は顕著である。使用される離型性材料には特に制限がなく、無機化合物(へきかい性や摺動性を有するもの)や有機化合物(ワックス類、低分子量ポリマー、あるいはシリコーン化合物、含フッ素化合物、等)があるが、特に主鎖が炭化水素重合体で側鎖に珪素を有する化合物が、離型効果と安定性(ブリードやブルームを起しにくく、効果が長持ちする)の観点から好ましく、代表的な例として、主鎖がアクリル系重合体で、側鎖にシロキサン結合を有する化合物をグラフトした構造を有するものが最適である。
【0035】
最外層の更なる高離型性や低汚れ付着性、加えて摩擦係数の低減化や制御等が必要な場合、本発明の範囲に入る程度に固体状や液体状の添加剤を最外層中に添加することが好ましい。これらの添加剤の例としては、例えば、いわゆる固体潤滑剤、滑剤、樹脂微粒子、無機粉体、オイル類を挙げることができる。
【0036】
いわゆる固体潤滑剤の代表的な例としては基本構成単位が平板状構造や層状の化合物、例えば、グラファイト、二硫化モリブデン、窒化ほう素、マイカ、クレイ等、及びそれらの変成物や高分子とのハイブリッド化物を挙げることができる。ハイブリッド化物として例えばクレイとナイロン6とのハイブリッド化物は弾性率やガスバリア性に特に優れているので本発明に最適である。
【0037】
また、滑剤としては、例えば、パラフィンワックス、ポリオレフィンワックス等の脂肪族炭化水素系化合物や高級脂肪酸、脂肪族アルコール類、あるいは、脂肪酸アミドや脂肪酸エステル類、金属石けん類、更には構造中にフッ素やシリコーンを含有する有機化合物(代表的にはシリコーン変性されたアクリル酸重合物)等をあげることができる。さらには、例えば、フッ素樹脂、シリコーン樹脂、アクリル樹脂、ポリアミド、オレフィン樹脂等の樹脂微粒子類や例えば、二酸化ケイ素、酸化チタン、ハイドロタルサイト、炭素粉末等の無機粉体、あるいはシリコーンオイル(無変性あるいは各種変性)、エステル系可塑剤等のオイル類等を挙げることができる。これらを1種以上適宜使用することで、所望の効果を得ることができる。特に導電剤、粗し剤、その他充填剤を最外層に添加した場合には、シリコーンオイルを用いるとレベリング剤として作用するので、塗膜不良をなくすことができ好ましい。シリコーンオイルの種類や添加量はもちろんバインダーや添加剤との関係で決定されるものであるが、通常バインダーに対し1ppm以上10,000ppm以下が好ましく、10ppm以上1,000ppm以下であればなおさら好ましい。また使用されるシリコーンオイルの粘度は、25℃において1〜10,000CSの範囲が適するが、5〜1,000CSであれば好ましく、さらには10〜500CSであれば一層好ましい。
【0038】
なかでも特に、粉体の添加物を使用した場合には、それらの効果を飛躍的に増大するために、最外層の表面を研磨することは非常に有効であるので好ましい。
【0039】
これらの帯電ローラーにおいて、最外層中に占める結着材料の割合が25体積%以上であることが特に有用である。なお、結着材料と粒子、及び/又は結着材料と離型性物質とが、同様の官能基や分子構造を有することは好ましい。例えば、本発明のように結着材料がアクリルウレタン樹脂で最も大きな粒子がアクリル粒子の組合せ、さらに離型性物質として主鎖がアクリル系重合体で、側鎖にシロキサン結合を有する化合物を添加することが挙げられる。
【0040】
本発明に用いられる帯電ローラーの構成としては特に限定はないが、最も多い例としては、支持体として任意の断面形状が円である芯金(金属)を用い、前記芯金の周囲に直接または接着剤を介し間接的に略同心円状に設けられたエラストマーまたはゴムを主体とする弾性層とその周囲に直接または接着層を介し間接的にエラストマーまたは樹脂を主体としてなる最外層を有する構成、または支持体として任意の断面形状が円である芯金(金属)を用い、前記芯金の周囲に直接または接着剤を介し間接的に略同心円状に設けられたエラストマーまたはゴムを主体とする弾性層からなる構成である。前者が最も一般的であり、後者は弾性層が最外層を意味し通常弾性層の表面処理を施す。そして樹脂、エラストマー、ゴム等の高分子化合物を主体としてなる層の方が芯金の長さよりも5mm以上短く、かつ高分子化合物を主体としてなる層の長手方向に厚み分布を有していることが好ましく、長手方向の中心の厚みが最も大きく両端部に向かうにつれ連続的に小さくなる形状(いわゆるクラウン形状)であればなおさら好ましい。
【0041】
クラウン形状を付与するには、弾性層をクラウン形状にする、及び/又は上層(最外層でも良い)に厚み分布を付与する、等の方法があるが、扱いやすさの点で前者が好ましい。前者の場合、弾性層の表面を研磨することでクラウン形状としてもよいし、あらかじめ逆形状を付与した金型などを用いてクラウン形状とし研磨をしなくともよい。研磨する場合には、砥石の種類(材質、粗さ、径、幅)や方法(湿式/乾式、トラバース、回転数等の条件)に限定はないが、特には、弾性層の長手方向長さよりも大きな幅を有する研磨手段によって研磨されることが時間短縮の面で好ましい。この方法では、予め砥石に逆クラウン形状を付与して使用するが、最後に弾性層から砥石を離す直前に軽く左右に揺動することが好ましい。その結果、左右に余裕代が必要となるので、弾性層の方が芯金の長さよりも5mm以上短いことが好ましい。
【0042】
本発明の範囲に入るように調整されたかぎりにおいて、本発明に使用される材料には何ら制限はない。
【0043】
すなわち、支持体としては、例えば金属(鉄、アルミニウム、アルミニウム合金、銅、亜鉛、ステンレススチール、バナジウム、モリブデン、クロム、チタン、ニッケル、インジウム、金及び白金など)、導電性高分子等の支持体自体が導電性を有するものや、これらの導電性物質を真空蒸着やメッキなどで表面に被膜を形成した金属、樹脂(例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリエチレンテレフタレート、スチレン樹脂、ABS樹脂、及びアクリル樹脂など)、繊維、紙等や、樹脂に導電性粒子(例えば、カーボンブラック、酸化スズ、金属粉等)を分散したもの等を用いることができるが、一般的には、鉄またはステンレススチールにニッケルメッキを施したものや、更にその上にクロムメッキを施したものが使用されているが、コスト面で鉄にニッケルメッキを施したものが好ましい。
【0044】
ニッケルが表面に存在する支持体を用いれば、硫黄(あるいは加熱により硫黄を放出する化合物)を使ったゴムとともに加熱し加硫することによって、接着剤を用いなくともある程度の接着性が得られることがある。この場合の接着性は支持体の表面粗さの影響を受け、支持体の表面粗さが概ねRz>5μmでは比較的強固に、概ねRz≦5μmでは比較的弱くなる。したがって、加熱後両端を切断除去する場合には、その部分のRzを5μm以下に、ゴム部と接触する部分のRzを5μm以上にした、ニッケルメッキ支持体を用いれば接着剤なしでも使用することができる。また、支持体上でゴムと接着してほしくない場所をあらかじめ不活性化処理(加熱や離型剤塗布)しておけば、切断後の除去が簡単である。接着剤を用いる場合には支持体表面のRzに特に制限はないが、一般的にはRzが5μm(できれば3μm)以下が好ましく使用される。支持体の形状としては、円柱状、ドラム状、シート状及びベルト状などが挙げられるが、適用される電子写真装置に最も適した形状であることが好ましい。
【0045】
また、高分子化合物を主体としてなる層は、結着材料としての高分子化合物に、粒子や導電性付与材、さらにはその他添加剤を添加して構成される。これらの各種材料や組み合わせは本発明の範囲を満たす限りにおいて何ら制限なく自由である。例えば、高分子化合物を主体としてなる層に使用される結着材料としての高分子化合物としては、樹脂(熱硬化性、熱可塑性)、エラストマー、ゴムが使用され、構造(単独重合体、共重合体)や変性(官能基導入、水素添加)、性状(分子量及び分子量分布、固体/液体、架橋形態、分子の分岐状態、等)の有無や程度、種類等に関わらず、1種または2種以上組み合わせて使用することができる。もちろんエラストマーとゴム、樹脂とエラストマー、樹脂とゴム、樹脂とエラストマーとゴム等の組み合わせであってもよい。
【0046】
弾性層の結着材料として用いられる高分子化合物としては主としてエラストマーやゴムが好適であり、その一例としては、ゴム工業便覧<第四版>(発行所;社団法人日本ゴム協会、平成6年1月20日発行)の II原料のP.173〜P.385に開示される材料やこれらの誘導体、変性体をあげることができる。しかしながら、均一な帯電性能に特に優れた効果を有するものは高分子自体が比較的低抵抗である極性ポリマーであり、帯電部材に直流電圧のみを印加する電子写真装置において一層その傾向が大きい。
【0047】
極性ポリマーの意味するところは分子内に電子を非局在化する作用の比較的大きい置換基、官能基や原子を有するポリマーである。代表的なものとしては、エーテル結合、ウレタン結合、エステル、カルボキシル基、カルボニル基、フェニル基(及びその誘導体)、アミノ基、ニトリル基、スルフォン基、ハロゲン、等を挙げることができ、一般的に結合エネルギーが大きい。これらの基は1つ以上含有すれば好ましいが、2つ以上(あるいは2種類以上)であればなおさら好ましい。極性ポリマーでも化学的架橋を行うゴムのほうが、物理的架橋を利用するエラストマーよりは、長期形状安定性に優れるので好ましい。
【0048】
極性ゴムとしては,例えば、ヒドリンゴム、ウレタンゴム、アクリルゴム、二トリルゴム(NBR)、クロロスルフォン化ポリエチレン(CSM)等を挙げることができ、さらには、これらを例えば水素添加したり、カルボキシル変性したりしたものも使用できるが、好ましいのは、エーテル結合を含有するゴム及び/またはハロゲンを含有するゴムであり、代表例としてヒドリンゴムがあげられる。なかでもがエピクロルヒドリン、エチレンオキサイド、アリルグリシジルエーテルの少なくとも3成分(4成分以上でもよい)を共重合成分とするタイプが好適である。
【0049】
本発明において弾性層はソリッドでもスポンジでもよいが、帯電部材に直流電圧のみを印加して使用する場合においては弾性層の抵抗均一性の面から一様性の大きいソリッドタイプが好ましく、直流電圧に交流電圧を重畳して印加する場合においては帯電音防止の面からスポンジタイプで空孔率が大きいほど好ましい。特に放電を利用して感光体を帯電する用途に用いられる場合にその傾向が大きい。
【0050】
本発明においては弾性層に、老化防止剤、酸化防止剤、加水分解防止剤等を添加することが好ましい。具体的には、便覧ゴム・プラスチック配合薬品新訂版(発行所:株式会社ラバーダイジェスト社、2001年4月27日発行)の5.老化防止剤,酸化防止剤,オゾン劣化防止剤や6.紫外線吸収剤,光安定剤に記述されている全てのものを、1種で又は2種以上併用して、概ね総量が0.1〜10質量部添加して使用することができる。もちろん汚染性はないほど好ましい。ヒドリンゴムに代表されるような、分子中にエーテル結合を有するゴムの場合には特に、2−メルカプトベンズイミダゾール等のイミダゾール系やジブチルジチオカルバミン酸ニッケル等のジチオカルバミン酸塩系の老化防止剤を使用することが好ましい。これらは単独で使用してもよいが,2種併用したりあるいはその他の老化防止剤と組み合わせると相乗的な効果を発揮する。
【0051】
なお言うまでもないことであるが、弾性層や最外層、場合によってはこれらの間に設けた層のいずれにおいても、特定の目的を達成するために必要に応じて種々の添加剤を何種類でも添加することができる(既知のもの、およびそれらをベースとした各種変性物や誘導体)。その例としては、導電性付与材料、絶縁性材料、電荷調整材料、着色材料、加工助材、架橋(加硫)剤、架橋(加硫)助剤、活性剤、離型剤、滑剤、粘着付与剤、酸化防止剤、架橋(加硫)促進剤、発泡剤、発泡助剤、防黴剤、安定剤、補強剤、充填剤、老化防止剤、加水分解防止剤、可塑剤、軟化剤、表面粗し材料、磁性材料等が挙げられる。
【0052】
添加剤の種類や量は、目的や添加剤の作用効率によっておのずと決定されるが、その代表的な例として、便覧ゴム・プラスチック配合薬品新訂版(発行所:株式会社ラバーダイジェスト社、2001年4月27日発行)に記載されているもの(P.1〜P.622)やゴム工業便覧<第四版>(発行所;社団法人日本ゴム協会、平成6年1月20日発行)の III配合薬品〜 VI副資材(P.387〜P.596)に記載されているもの、あるいは機能性添加材料の新展開(発行;株式会社東レリサーチセンター、1993年4月1日発行)に記載されているもの(第1章 難燃性付与剤〜第9章 その他)を1種で又は2種以上併用して使用することができる。
【0053】
弾性層の物性としては本発明の帯電部材としての物性を満たす限りにおいて特に制限はないが、当然好ましい物性、特性がある。本発明の事例をもってして全てについて述べることは不可能であるので、特に代表的なことだけを記述する。まずはいわゆる基本特性についてであるが、これには硬度(JISA)、引張り強さ(通常破断時を表す;Mpa)、伸び(通常破断時を表す;%)があげられる。部材としての硬度は、ゴム又はエラストマーの硬度の影響を大きく受けるが、それ以外にも成形されたときの弾性層の厚さや支持体の種類の影響を受けるので、一般的には導電性材の弾性層としての硬度と上記基本特性の硬度とは必ずしも相関性がないが、通常基本特性の硬度(JISA)を80°以下(好ましくは75°以下)にすれば本発明の範囲に入ることが多い。また、引張り強さや伸びは部材として形を保持できる程度であれば十分であり、例えば引張り強さは0.4Mpa以上、伸びは10%以上であればよく、いわゆる機械的物性が大きく、粘弾性特性の弾性成分が大きいほど好ましい。
【0054】
一方、最外層の結着材料として用いられる高分子化合物としては主として樹脂やエラストマーが好適であり、エラストマーの一例としては前述した弾性層に使用されるものが同様にして用いられる。樹脂としては特に制限がなく従来公知の材料が用いられる。一例としては、高離型性や低汚れ付着性の材料が特に好ましく、例えば、ポリアミド系高分子化合物(例えば、ナイロン6、ナイロン66、ナイロン610等、あるいはこれらからなる共重合ナイロン、さらにはメトキシメチル化ナイロンやエトキシメチル化ナイロンに代表されるアルコキシアルキル化ナイロンなどの変性ナイロン)、フッ素系高分子化合物(含フッ素化合物)、イミド系高分子化合物、ウレタン系高分子化合物(エーテル系やエステル系のウレタン、あるいはアクリルやシリコーンやふっ素等で変成された変性ウレタン等、分子中にウレタン結合を有する化合物)、ビニル系高分子化合物(例えば、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルアセタール、ポリビニルエーテル、N−ビニル高分子、ビニリデン等及びこれらの変成物や誘導体がある。更に具体的には、ポリ酢酸ビニルは酢酸ビニルの単独あるいは共重合体である。
【0055】
ポリビニルアルコールはさまざまなケン化度のものがあり、さらにはアセタール化、アセチル化、脱水等の反応物を含む。ポリビニルアセタールはポリビニルアルコールとアルデヒドとの反応物であり、各々の種類によりさまざまな構造があるが、代表的なものとしてポリビニルブチラール、ポリビニルホルマールがある。ポリビニルエーテルとしては例えばポリビニルイソブチルエーテル、ポリアリールビニルエーテル、ポリビニルチオエーテル等が在り、N−ビニル高分子としては例えばポリビニルカルバゾール、ポリビニルピロリドン、ポリ−N−ビニルフタルイミド、ポリビニルアミン等がある)、スチレン系高分子化合物(少なくともスチレンを含有する高分子で、例えば、ポリスチレン、スチレン−ブタジエン共重合樹脂、スチレン−アクリロニトリル系共重合樹脂、等がある)、シリコーン系高分子化合物、オレフィン系高分子化合物、エポキシ系高分子化合物、アクリル系高分子化合物(少なくともアクリル酸またはメタクリル酸、またはそれらの誘導体、エステル、塩類を含有する高分子で、例えば、アクリル樹脂、メタクリル樹脂、スチレン−(メタ)アクリル系共重合樹脂、等がある)、ポリエステル系高分子化合物、ポリビニルブチラール、ポリアリレート(ビスフェノールAとフタル酸の縮重合体等)、ポリカーボネート、等をあげることができ、1種類でも2種以上の混合物や共重合物として使用することができる。なかでも水酸基及び/又はアミノ基を有する化合物と、前記水酸基またはアミノ基を有する化合物と反応性を有する官能基を含有する化合物又はその誘導体との反応物であることが好ましく、さらに該最外層のガラス転移温度(Tg)が40℃以上100℃以下であればなおさら好適である。
【0056】
本発明における水酸基及び/又はアミノ基を有する化合物の代表例としては、少なくとも両末端に水酸基を有する化合物(以下、ポリオールという)があげられ、また、前記水酸基またはアミノ基を有する化合物と反応性を有する官能基を含有する化合物又はその誘導体の代表例としては、少なくとも2つ以上のイソシアネートを有する化合物(以下ポリイソシアネートという)をあげることができる。
【0057】
本発明において使用されるポリオールに特に制限はなく、例えば、ポリウレタン樹脂ハンドブック(発行所;日刊工業新聞社、昭和62年9月25日発行)にかかれているポリオール全てが使用できるが、特に主鎖が(メタ)アクリル酸及び/又はそのエステルとスチレンとの共重合体を主体とし、少なくともその両末端に水酸基を有するポリオール(以下、アクリルポリオールという)が好ましい。
【0058】
また、ポリイソシアネートとしても特に制限はなく、やはりポリウレタン樹脂ハンドブック(発行所;日刊工業新聞社、昭和62年9月25日発行)にかかれているイソシアネート全てが使用できるが、特にヘキサメチレンジイソシアネートを含有するものが耐候性や機械的特性の観点から好ましい。ところでイソシアネートは空気中や溶液中の水分によって失活したり、温度に敏感すぎたりすることがあるのでイソシアネート部をブロックしたもの(以下、ブロックイソシアネートという)が望ましく、イソシアヌレート体やビューレット体であれば非常に望ましい。加えてポリオール中の水分量が3質量%以下、好ましくは1質量%以下、いっそう好ましくは0.5質量%以下であることが望ましい。
【0059】
ブロックイソシアネートでない場合には、ポリオール中の水分量を上記範囲に制御することが特に重要であるが、ブロックイソシアネートであってもこの範囲内にしたほうが塗膜の物性は安定するので好ましい。
【0060】
上記において、[NCO]/[OH]がモル比で0.6以上1.2以下である場合、表面層の機械的強度を増大し耐磨耗性を向上させるので好ましい。(ブロックイソシアネートの場合には、NCOに換算した値をいう)また、弾性層からの染み出し物をブロックする効果も向上し、さらには、表層自身の反応度が向上するので分子量が1000程度の低重合成分が減少するので、いずれも感光体汚染に対して大きな効果がある。
【0061】
加えて、反応性(反応度や重合度等)を制御するために適正な触媒(特には、有機スズ系化合物が好適)を添加すればいっそう好ましい。触媒量は特に限定はないが、種々の検討の結果、ポリオール100質量部に対して0.01〜10質量部がもっとも良いことが判明した。
【0062】
さらに、[NCO]/[OH]がモル比で0.6以上1.2以下であれば、表面層のTgを本発明の範囲にすることが比較的容易であるが、ポリオールの種類や分子量、ポリイソシアネートの種類や分子量、導電性付与剤や他の添加剤の種類や添加量、下層の熱伝導率、製造条件,等によって表面層のTgは変動するので、処方内容、構成、製造条件を最適なバランスをその都度取ることが必要である。
【0063】
また、最外層としては、耐絶縁破壊性や高結合エネルギーを有する高分子化合物や添加剤等から構成されていることが好ましく、窒素酸化物を構成する酸素ガスや窒素ガスに対する低ガス透過性(ガス透過係数が、5.0×10−8cm・cm/cm・sec・cmHg以下)を有していたりすれば最外層だけでなく下層への影響を軽減できるので好ましい。さらに、放電時に発生する紫外線によって導電性部材最外層のイオンが励起され分子状態が変化することによる導電性の変化が生じる場合がある。このような現象を防ぐためには、放電で生じる紫外線のエネルギーに対して安定なレベルの仕事関数の最外層であることが望ましく、具体的には最外層はすくなくとも5.50eV以上の仕事関数(Wf)を有することが好ましい。さらには仕事関数測定曲線の傾きγ(cps/eV)が5以上であれば好ましい。
【0064】
更に、気体や液体を吸収あるいは吸着する特性を有する物質(吸着材)を少なくとも最外層に添加することも最外層への影響や最外層を透過して下方の層への影響などを低減するのに効果がある。同様の意味で、最外層の吸水率は小さい方が好ましく、ASTMD570に準拠した時の吸水率(条件は23℃/60%RHとする)が1.5%以下(好ましくは1.0%以下)であることが望ましい。
【0065】
加えて、最外層の線膨張係数も小さい方が環境変化に対する形状安定化効果に優れるので好ましく、ASTMD696に準拠した時の線膨張係数が、1×10−2−1以下(好ましくは1×10−4−1以下)であることが望ましい。
【0066】
最外層の厚さとしては、平均膜厚が1000μm以下(好ましくは500μm以下、より好ましくは150μm以下、なかでも5μm以上50μm以下の場合において非常にすぐれた効果を得ることができるので最適である)が望ましく、さらには、平均膜厚の±10%以内の範囲に最大膜厚と最小膜厚が入っていると一層望ましい。また、最外層の厚さがある程度薄い場合等では所定の特性を安定して保持するためには最外層にはある程度の高物性が要求され、4×10Pa以上の100%モジュラスを有する最外層であれば特に良好な結果が得られるし、耐摩耗性が良好であれば一層好ましい。
【0067】
ところで、本発明の帯電部材に使用される導電性付与剤としては特に制限がなく、既知のものを使用することができ、一例として、カーボン類、金属類、(複)金属酸化物類、導電性高分子類、イオン性物質類、界面活性剤類、等があり、その代表例をあげると、機能性添加材料の新展開(発行所;株式会社東レリサーチセンター、1993年4月1日発行)の第2章 帯電防止剤・導電性付与剤(P43〜78)記載の各種材料や、カーボンブラックの特性と最適配合および利用技術(発行所;株式会社技術情報協会、1997年8月30日発行の第1版第2刷)の第4章 各種カーボンブラックと特性、第3節 導電性カーボンブラックの基本性能と導電メカニズム(P87〜110)記載の各種材料やこれらの誘導体や変性物であってもよいが、もちろんこれらに限定されるものではない。導電性付与材は1種でも2種以上併用でもよく、さらには導電機構の異なるもの同士を適宜組み合わせて(例えば、同一層中にイオン導電系と電子導電系を併用したり、あるいは、上層に電子導電系を用いて、下層にイオン導電系を用いて構成として組み合わせたりする、等)使用してもよい。しかしながら、電子写真用導電性部材においては、最外層や弾性層に使用される結着材料としての高分子化合物の種類(樹脂、エラストマー、ゴム)に応じて、使用される導電性付与材としては特に好ましい形態がある。
【0068】
すなわち、結着材料としての高分子化合物が樹脂である場合、導電性付与剤は特に電子導電性を有する粉体が好ましく、導電性付与能を損なわない範囲で粒径が小さくかつなるべく樹脂抵抗に近いものを選択すれば、より均一な分散型樹脂状態に近づくので一層好ましい。この観点からは、一次粒径が10μm以下(望ましくは1μm以下、さらに望ましくは0.1μm以下)で粉体抵抗が1×10Ωcm以下(かつ0.1Ωcm以上であれば一層望ましい)であることが望ましい。このような材料を最外層に用いた場合、導電性付与剤の添加量(2種以上の場合は合計)がある程度以上であれば、最外層中に一定の比率で、かつ、ある程度均一な状態で存在することになるので、最外層が磨耗したとしても均一に磨耗するので、磨耗ムラに伴う不具合が生じないので一層好ましい。従って最外層全体中に5体積%含有されることが好ましい(10体積%以上であればさらに好ましい)。また、含有率の増大とともに表面、あるいは表面近傍への存在比率も高まるので、摩擦係数も低減することができ、本発明の範囲にすることが容易になるという効果も得ることができる。含有率が16体積%以上であれば両者の効果を得やすいのでより好ましく、22体積%以上であればなおさら好ましい。磨耗状態の均一性の面からは添加する粒子の種類は少ないほどよい(1種類であれば最善)が、2種以上の場合はなるべく同じような体積を占めるようにするほうが望ましい。
【0069】
このような導電性付与材の代表的なものとしては、金属酸化物がある。金属酸化物には、酸化スズ(酸素欠損型や酸化アンチモンドープ、タングステンドープを含む)や酸化チタン(酸素欠損型や酸化アンチモン及び/又は酸化スズドープ、タングステンドープを含む)、酸化亜鉛(酸素欠損型や酸化アンチモン及び/又は酸化スズドープ、タングステンドープを含む)、酸化インジウム(酸素欠損型や酸化アンチモン及び/又は酸化スズドープ、タングステンドープを含む)や酸化鉄(マグネタイト、フェライト)、表面をカーボンコートしたシリカ等を挙げることができる。導電性付与性能や長期の導電性安定性あるいは非粘着性(離型性)の面からは酸化スズがもっとも好ましく、なかでも酸化アンチモンドープしたタイプは安定性が高い。一方、酸素欠損型も好ましいが、酸化されやすいために抵抗が変化しやすいという傾向があり、表面処理等で疎水化処理を施すことが有効である。導電性付与剤の分散性の観点からは比表面積が100m/g以下であれば良好な結果得られるので好ましく、さらには表面処理を施すことも有効である。
【0070】
表面処理の代表的なものとしてカップリング剤処理がある。導電性付与剤を表面処理すれば樹脂への分散性が向上するので好ましいだけでなく、表面処理剤としてカップリング剤を用いると樹脂と導電性付与剤の間の結合力が強まり(化学的な結合が生じるためと考えられる)、樹脂強度が向上するので、耐磨耗性が一層向上して好ましい。さらには疎水性をも付与できるため、導電性付与剤として金属や金属酸化物を使用する場合は表面の酸化を防ぐことができ、またカーボンブラックなどを使用する場合には表面への水分吸着を制御でき、いずれの場合でも導電性の長期安定性や環境安定性が保持できるのでより好ましい。なかでも、シラン系カップリング剤が分散性向上と機械的強度向上のバランス面からもっとも好ましく、表面処理された導電性付与剤の比表面積が70m/g以下、さらには表面処理前の導電性付与剤の比表面積をB(m/g)、表面処理後の導電性付与剤の比表面積をB(m/g)とした時に、0.25≦B/B<1.0とすればなおさらよい。
【0071】
一方、結着材料としての高分子化合物がエラストマーまたはゴムである場合、導電性付与剤は特にイオン導電剤やノニオン系導電剤が好ましく、特にイオン導電剤が望ましい。もちろん目標とする抵抗値によってはイオン導電剤を添加しなくともよいが、イオン導電性の挙動を示す高分子化合物を結着材料として用いることが望まれる。イオン導電剤は電気抵抗の印加電圧依存性を小さくすることができるため本発明の範囲にすることが容易となる。イオン導電剤としてはアニオン系、カチオン系、両性のものがあるが、好ましい例としては、陽イオンとしては第四級アンモニウムイオン、陰イオンとしては過塩素酸イオンがあげられ、なかでも下記化学式で表される過塩素酸の第四級アンモニウム塩が最も好ましい。
【0072】
【化1】
Figure 2004061640
式中、R、R、R、Rは、水素、アルキル基、ヒドロキシアルキル基のいずれかである。
【0073】
過塩素酸の第四級アンモニウム塩の中でも、特に、R=Rで炭素が1個以上、Rは炭素が5個以上、Rはヒドロキシ基を含有し炭素が2個以上である構造のものが、印加電圧依存性や環境変動を小さくすることができるので好ましい。その理由は概略以下のように推定される。すなわち、安定した導電性を得るためには安定した分散性を得ることが重要である。そのためには、イオン導電剤とゴムとの相溶性が良い方が好ましく、それぞれの分子内に同じ(又は同様の)構造を有することが好ましい。例えば、エーテル結合を有するゴムの場合にはイオン導電剤も分子中にエーテル結合を有するものが好ましく、ニトリル基を有するゴムの場合にはイオン導電剤も分子中にニトリル基(あるいはチオシアン酸基)結合を有するものが好ましく、ハロゲンを有するゴムの場合にはイオン導電剤も分子中にハロゲンを有するものが好ましく、カルボキシル基を有するゴムの場合にはイオン導電剤も分子中にカルボキシル基を有するものが好ましく、アミノ基を有するゴムの場合にはイオン導電剤も分子中にアミノ基を有するものが好ましく、これらが1つでもよいが、2つ以上であれば(多いほど)より好ましい。
【0074】
これらの置換基等はなるべく分子量が多い方が相溶性は向上して好ましいが,一方で導電性が低下する傾向があるので、ゴムの種類と最適に組み合わせるようにイオン導電剤の構造や添加量を設定することが重要である。特に本発明に示す構造の四級アンモニウム過塩素酸塩は潮解性が小さいため空気中の水分量の影響をうけにくく、広範囲の環境において使用でき、特に30℃、85%RHから15℃、10%RHにかけての導電性の環境安定性は優れている。また、例えばヒドリンゴム等のエーテル結合を有するゴムと組み合わせたときにはその良好な分散性と相俟って、30℃、85%RHから15℃、10%RHにおける抵抗比(最大抵抗/最小抵抗)が8倍程度以内という、いっそう優れた安定性を示す。また、同様にして、印加電圧依存性も小さくなり、低電圧から高電圧にかけての広い範囲で抵抗値変化が少ない。このような材料を弾性層に用いた場合、例えば金属ドラムに当接回転して直流電圧を10V印加、500V印加、1000V時の抵抗比(最大抵抗/最小抵抗)は5倍程度以内であり、非常に安定性が高く、印加電圧の変動が発生するような場合においても良好な帯電特性を示すことがわかる。このような理由から、 弾性層はいわゆる導電性カーボン類を含有しないほうがよいが,ソフトカーボンを含有したほうがよい。ソフトカーボンが存在するとゴムの熱伝導性が良くなるので、加硫時のゴムへの熱伝導性や、表層塗工後の乾燥時にゴム側からの熱の伝わり方も良くなるともに均一になるので、加硫反応や表層の反応もばらつきなく進みやすく、その結果部分的な反応ムラのない均一な膜が得やすいからである。つまり、弾性層にソフトカーボンを添加するのは特に加熱する工程を経て作製される場合に適する。従って、多量であるほど良いが、あまり多くなるとソフトカーボンとはいえ導電性や硬度への影響が出てくるので,最適なバランスを取る必要があり、なるべく高抵抗のカーボンをなるべく多く添加することが好ましい。
【0075】
さらに重要なことは、最外層や弾性層(場合によってはその他の層)は種々の外的要因に対して安定性が高いことである。安定性の指標としては、ある外的要因にさらす前後の物性の変化率あるいは変化量という形で表わすことが多い。安定性が高いということは、変化率あるいは変化量が小さいということであり理想的には0である。変化率あるいは変化量を0又は小にするには、安定な材料を使用することが好ましいが、別の方法として、変化率あるいは変化量が増大方向に動くものと、逆に減少方向に動くものとを組み合わせて、見かけ上0または小さな値にする手法が取られることがある。もちろん前者のほうが好ましい。外的要因としては、エネルギー(例えば、低温や高温等の熱、電気、イオン、紫外線、太陽光、X線、電子線、圧縮力、伸張力、ねじり、等)や液体(例えば、有機溶剤、酸、アルカリ、水、エステルや鉱物油等のオイルや油脂、界面活性剤、等)や気体(例えば、前記各種液体の蒸気、酸素、オゾン、等)との接触があげられる。
【0076】
これらに対応するには、安定な構造のものを選択することが重要であるが、当然全てに対して良好であることは理論的に困難と思われるので、比較的バランスの良いバインダーを選択した後、レベルアップしたい特性、物性に効果のあるものを添加する手法が通常である。これらは、例えば、老化防止剤であったり、離型性物質であったり、充填剤や補強剤あるいは可塑剤や軟化剤であったり、様々である。ところで、外的要因に関連する試験方法としては、ゴム試験法<新版>(発行所;社団法人日本ゴム協会、昭和63年5月1日発行の第2版)に述べられている内容を参照し、適宜試験条件を設定すればよい。この試験方法は基本的に所定の形状を有するテストピースを用いた試験であるため再現性の高い優れた方法であるが、同一試験であっても試験条件によって得られる結果や数字は当然ながら異なるので、何種類かのサンプルを用意し相対的な比較をして全体的な傾向の中で議論をすることが好ましい。導電性部材の形状で評価する場合においても同様である。
【0077】
また、寸法(径、長さ、厚さ、重量、体積)、状態、特性(物理的特性、化学的特性、電気的特性)等は意識的に分布を付与しない限りバラツキや振れ等は極力小さい(理想的には0、できれば目標値や中心値に対して±10%以内、好ましくは±5%以内)方がよいことは自明のことである。
【0078】
このようにして構成される帯電ローラーの特性としては、23℃、60%RHの環境において、静摩擦係数1.0以下、動摩擦係数0.5以下が望ましい。静摩擦係数が1.0以下であれば静的状態での負荷が低減され、動摩擦係数が0.50以下であれば動的状態での負荷が低減されるので、電子写真装置の駆動系(ギアやシャフト、その他の動力伝達部材)へのトルク低減が達成されるので駆動系部材の摩耗や劣化が減り、高耐久化に貢献することができるだけでなく、摩擦力が安定するためピッチ性も発生しにくくなるので、画像も均一なものが得られやすい。当然静摩擦係数と動摩擦係数とは近い値ほど好ましく、動摩擦係数の時間的変化も小さいほど静的及び動的状態におけるニップ状態の均一化の効果が得られるので好ましい。
【0079】
また、本発明の帯電部材の電気的特性としては、電気抵抗値が、温度15〜30℃かつ相対湿度10〜80%RHの範囲において、1×10Ω〜1×1011Ωの範囲でばらつきが小さいほど好ましく、さらに15℃、10%RHの環境における電気抵抗値が、直流電圧−10Vを印加した時に5×10Ω以下、かつ、直流電圧−500Vを印加した時に1×10Ω以上で、であればなおさらよい。
【0080】
また、温度変化及び/又は湿度変化に対して電気抵抗値の変動が小さいことが好ましく、特には高温高湿(30℃/80%RH)から低温低湿(15℃/10%RH)の範囲において電気抵抗値の変動が10倍以内(より好ましくは8倍以内、一層好ましくは5倍以内)であることが望ましい。さらに、電気抵抗値の印加電圧依存性が小さいほど好ましく、印加電圧依存性としては、30℃/80%RH、23℃/65%RH、15℃/10%RHの各環境下において導電性部材の各々の環境における電気抵抗値を印加電圧200V(直流)から1000V(直流)の範囲において100Vおきに測定した時の最大値と最小値の比が10倍以内(好ましくは8倍以内、より好ましくは5倍以内)であることが一層望ましい。加えて、電気抵抗値の時間依存性が小さいほど好ましい。すなわち、電圧印加直後から60秒間における電気抵抗値の時間的変化を観察した時に、その間における最大値と最小値の比が10倍以内、好ましくは8倍以内、より好ましくは5倍以内であることが特に望ましい。
【0081】
本発明の導電性部材には電気抵抗値以外にも好ましい電気特性がある。すなわち、導電性部材と感光体を相対移動あるいは回転させながら導電性部材に交流電圧(ピーク間電圧Vpp)を印加して流れる交流電流(Iac)を測定し、Vpp(単位:kVpp)をx軸、Iac(単位:μA)をy軸としてグラフに示し、IacとVppの関係をy=f(x)と表わす時、 0≦x≦0.5 の範囲ではf(x)=ax(aは正の数)なる一次式で近似され、かつ 1.0≦x≦3.0 の範囲ではxが大きくなるに従ってf(x)の接線の傾きが大きくなったり、 1.8≦x≦2.2 の範囲の任意の一点xにおいて、 1.05×ax≦f(x)≦1.50×ax の関係にあったりすることが好ましく、このような電気特性を有していれば安定な放電特性を示すので良好な画像を長期にわたって得ることができる。
【0082】
さらには、導電性部材に、交流電圧を印加した時の複素誘電率及び誘電正接(誘電的なtanδのことで、本発明ではtanδと表わす)が次式で表わされる時、23℃/65%RHの環境下において、誘電正接が2以下であったり、誘電損率が周波数1×10Hz以上1×10Hz以下の範囲に変曲点または肩を有したりすることが一層好ましい。
【0083】
【数1】
Figure 2004061640
式中、ε:複素誘電率、  ε’:誘電率、  ε”:誘電損率、  tanδ:誘電正接である。
【0084】
このような特性/構成を有する帯電ローラーは、感光体に接触または近接して用いられる電子写真装置に適し、特に、直流電圧のみを印加する電子写真装置や独立したクリーニング機構を有さない(いわゆるクリーナーレスシステム)電子写真装置、あるいは重合法によって得られたトナーを使用する電子写真装置、接触現像方式の電子写真装置等に用いられて特に優れた効果を発揮する。さらには、帯電ローラーを再使用する場合において好適である。
【0085】
上述の様な電子写真装置では静的、動的な形状安定性を有する帯電ローラーを使用することが有効である。特に本発明のように高分子化合物を主体としてなる層、なかでも弾性層の厚みが薄い(肉厚が2.5mm以下)帯電ローラーにおいてその効果は顕著である。このような帯電ローラーを得るためには、帯電ローラーが所定の圧力(当接力)によって感光体に圧接された時、感光体との当接部(ニップ部)の幅の分布が中心値に対して±20%以内になるように、高分子化合物を主体とする層の厚み分布及び/又は当接力を調整すればよい。すなわち、ニップ形状を測定してニップ面積を求め、ニップ部長さで除せば平均のニップ幅が算出される。平均のニップ幅を中心値とし、最大ニップ幅および最大ニップ幅が、中心値に対し±20%以内になるように調整するのである。具体的には、帯電ローラーを感光体に押し付けるのにバネを使用する場合には、バネ定数と弾性層のヤング率、硬度、圧縮時のS−S曲線、厚みやクラウン形状のバランスを最適化したりして当接力(総荷重、線圧、面圧、等)や回転速度(帯電ローラーの回転速度、帯電ローラーと感光体の速度差または相対速度、等)との整合性を調整することによって、静的、動的状態の形状安定性を図ることができる。
【0086】
このような制御を行なうためには、電子写真用導電性部材を、自重にて平板に押し付けた時の当接部の面積をSa(cm)、当接部の最大幅をXa(cm)、当接部の最小幅をYa(cm)、高分子化合物を主体とする層の長手方向における最大幅をLa(cm)とし、かつ総荷重800gにて平板に押し付けた時の当接部の面積をSb(cm)、当接部の最大幅をXb(cm)、当接部の最小幅をYb(cm)、高分子化合物を主体とする層の長手方向における最大幅をLb(cm)とした時に、La(Xa+Ya)≦2Sa≦3La(Xa+Ya)、かつ3Lb(Xb+Yb)≦4Sb≦5Lb(Xb+Yb)であることが好ましい。
【0087】
ところで本発明においては、帯電部材最外層に含有される最も大きな粒子の粒径が、現像材の粒径の2倍以上であることが好ましい。帯電部材最外層に含有される最も大きな粒子が最外層の結着材料より高硬度の場合には、帯電部材が所定の当接力で感光体に押し付けられていると最も大きな粒子がある部分では変形量が小さくなる傾向があるために感光体に押し付けられる力が大きくなり、両者の間に現像剤があった場合に強い力で押し付けられることになり、感光体への融着などが発生しやすいからである。また、帯電部材と感光体が接触する場合や接触しない場合のいずれであっても、最も大きな粒子の電気抵抗が、結着材料(導電剤等を含む)に比べ高いため、最も大きな粒子が存在する付近に、現像剤が静電的に引き寄せられやすく帯電部材表面の現像剤付着(汚れ)となりやすく、さらには不均一な現像剤付着による画像濃度ムラに結びつきやすいからである。
【0088】
この現象は、耐久寿命が長いほど(概ね5000枚以上)、プロセススピードが大きいほど(概ね90mm/sec以上)、または帯電部材が独立した回転駆動機構を有さず感光体に従動して回転する装置であるほど、あるいは独立したクリーニング機構を有さない装置であるほど、さらには、感光体の最大外径/帯電部材の最大外径=n(nは自然数)の関係にある装置であるほどこの傾向が強いので本発明が有効である。即ちnが自然数であるということは、帯電部材と感光体が接触(対向)したときの帯電部材上の任意の一点は、回転に伴う相対移動により再び感光体上の同一点に接触(対向)するからである。つまり一旦接触した点は常に感光体の同一の点との接触を繰り返すということになるので上述した影響を蓄積しやすいからである。加えて同様の意味で、弾性を有する現像担持体を感光体に接触させて使用した電子写真装置において、感光体の最大外径/現像部材の最大外径=m(mは自然数)で、かつ1.0<n/m<2.0である電子写真装置に特に有効である。なお、本発明における自然数とは、小数点以下2桁目を四捨五入して整数になる場合をいう。
【0089】
更に加えて、帯電部材に使用されている弾性層の研磨方向と感光体の回転方向が順目であることが一層望ましい。通常、弾性層を有する帯電部材の製法としては、芯金の周囲に弾性層を形成し、必要に応じて更にその周囲に1層以上の層を設ける。弾性層の形成方法としては特に制限がなく当業者が採用している方法が用いられ、例えば、ゴム工業便覧<第四版>(発行所;社団法人日本ゴム協会、平成6年1月20日発行)の VIIゴム加工の基礎技術〜 IX設備および機械(P567〜1181)に記載されているような手段,方法を基礎にして最適な工程を設計すればよい。なかでも代表的な方法としては、押出し方法を用いたり金型を用いて成形、加硫した後、表面を研磨したり、場合によっては研磨せずにそのまま用いる方法がある。加硫時の熱源やエネルギー源に制限はなく、加圧蒸気、熱風、加熱ビーズ、加熱液体や溶融塩、エネルギー線(電子線、紫外線、赤外線、マイクロ波など)等いずれも使用できるが、熱風やマイクロ波が簡便性の面で好ましい。具体例としては、予め接着剤を塗布した支持体としての芯金(支持体の電気抵抗値をR(Ω)、支持体にプライマーや接着剤を塗布したときの電気抵抗値R(Ω)としたときに、R/R≦10、かつR≦10であることが好ましい。この時接着剤またはプライマーの塗布厚さはそれらの体積抵抗率によって決定する。)にゴムを被覆し加硫(場合によっては発泡)したのち、長さ調整のために端部を切断除去し、表面を研磨して形成させる。なお、必要に応じて端部にC面やR面を付与してもよいことは言うまでもない。この場合、C面としては0.3〜5、R面としては、2〜10程度の範囲が好ましい。
【0090】
ところで、弾性層の表面を研磨で形成する場合には、ゴムロールを回転させながら、それとはカウンター方法に回転する砥石を押し付けて研磨する。砥石の幅は種々の種類があるが、図20に示すように弾性層の長さより狭い幅の砥石を用いる場合には、横送りして長手方向全面を研磨する必要がある。この手法でクラウン形状等の厚み分布付与を行なうには横送りの条件を調整して行なうのでNC制御などのコンピューター等により自動制御された信号を利用するのが好ましい。
【0091】
また別の方法として、図21に示すように弾性層の長さより広い幅の砥石を用いる場合があるが、この方が研磨時間の短縮に結びつきやすいので一層好ましい。この手法でクラウン形状等の厚み分布付与を行なうには砥石に逆形状を施す必要があり、その場合砥石のドレッシングをNC制御などのコンピューター等により自動制御された信号を利用するのが好ましい。その他ラッピングテープやフィニッシングテープ等を用いる方法もある。
【0092】
いずれにしてもこれらの方法により表面を研磨した弾性層には研磨目がある。10〜1000倍程度に拡大して研磨面を観察すると、図22に示すように表面がささくれ状あるいはさざなみ状になっており、砥石の回転方向になびいていることがわかる。どのような研磨方法であっても、回転運動を利用した方法である限り程度に差はあれ、この現象が発生する。本発明においては、この研磨目(ささくれ状あるいはさざなみ状のなびき)の方向が画像性に影響を及ぼしていることを見出した。
【0093】
研磨目が感光体と順方向(図23a、b、c)であれば、画像上のポチ発生が軽減されるので好ましい。これに対して、逆方向(図23d、e)の場合はポチが発生しやすく、感光体の回転速度が大きくなるにつれ、また耐久枚数が大きくなるにつれその傾向は増大する。この現象の理由としては、順方法では研磨目が寝かされる方向なので個々の研磨目の感光体との接触状態は概ね同様な状態となる。一方、逆目では逆立つようになるので接触状態が微妙にばらつくことやストレスを受けやすいなどによるものと推測される。
【0094】
このように研磨した弾性層表面に塗料を塗工するなどして1種以上の層を設けてもよい。例えば、最外層を塗工によって設ける場合は、必要な結着樹脂や粒子、導電剤、その他添加剤を加え、公知の機械(例えば、ビーズミル、ボールミル、ペイントシェーカー、攪拌機、サンドミル、ナノマイザー、等)を用いて分散/溶解して作製した塗料を、公知の方法(例えば、浸せきコーティング法、スプレーコーティング法、マイヤーバーコーティング法、ブレードコーティング法、ロールコーティング法、ビームコーティング法、リングコーティング法等のコーティング法)によって塗布し、乾燥(場合によっては硬化)することによって形成することができる。乾燥や硬化は加熱が一般的であるが、電子線、紫外線、赤外線、マイクロ波などを単独または併用して利用する方が好ましい。
【0095】
一般に塗工で塗膜を形成する場合の膜厚は、塗料の性質(固形分、粘度、溶剤種、塗料温度)と塗工条件(温度、湿度、圧力、塗工速度)等の影響を受けるので、目的とする膜厚を得るためにはこれらの条件を適正に制御することが重要である。均一な膜厚を得ようとする時あるいは意図的に膜厚分布を付与する時は、特に塗工速度を調整する(均一にしたり、調速したりする)ことが重要で、自動機を用いて、コンピューター制御されたシステムを用いることが望ましい。安定した塗膜を得るためには、塗料は適正な粘度範囲であることが必要で、0.1〜10,000cpsが好ましく、望ましくは1〜1,000cpsである。また、塗工時に塗料循環機を用いる場合には、動的粘度が小さくなるように設計することが好ましい。さらには、塗料に用いる溶剤はあまり沸点が低くない方がポットライフ向上の面で優れ、80℃以上、できれば95℃以上の沸点を有する溶剤を使用することがよい。特に、自動塗工機を用いて大量に塗料を使用する場合、塗料が直接大気に接する部分の面積は小さいほど塗料の粘度変化が小さくなるので好ましい。このような観点からはリングコーティング法が適する。
【0096】
これら帯電部材の製造工程において、芯金に塗布するプライマーや接着剤は被覆するゴムの長さよりも両端部を短くすれば切断後の除去がしやすい、離型性を向上するために各種離型剤を全面または部分的に使用する、あるいは塗工前に表面を種々の手段で洗浄する、異物不良を減少するためにクラス10,000以下のクリーンルームやクリーンブースなどのように塵埃を制御した環境下で塗工する、塗工時の風乾条件(温度、湿度、風量、風向き、蒸気圧)を調整する、等の類の、いわゆる作業性を向上したり、不良率を軽減するための工程改善を状況に応じて実施するのは改めていうまでもなく当然である。
【0097】
ところで、感光体表面の微少な電位ムラは必ずしも画像の微少ムラとして発生するわけでなく現像条件と密接な関係がある。本発明の帯電部材を、帯電工程及び現像工程で印加される電圧が直流電圧のみであり、現像工程で印加される直流電圧が、感光体の暗部電位と明部電位の中間値よりも暗部電位側にある電子写真装置に用いると、良好な画像を得るために相乗的な効果があり、非常に有用である。また、本発明の電子写真用導電性部材は優れた帯電付与性を有するので帯電前の感光体電位がある程度のばらつきを持ったまま帯電工程に突入する機構を有する(すなわち、帯電前に感光体の電位を均平化する手段(たとえば前露光や除電)を有さない)電子写真装置に特に好適である。
【0098】
本発明の導電性部材を使用した電子写真装置に用いられる感光体は、特に制限なく従来公知のものを使用することができるが、導電性部材との組み合わせで好ましい形態や特性が存在し、導電性支持体上に感光層を設けた構成を基本としている。
【0099】
感光層としては、例えば、有機光導電体、アモルファスシリコン、セレン等の光導電体を必要に応じて結着剤とともに塗料化して塗布したり、真空蒸着等によったりして形成されるが、電荷発生物質と電荷輸送物質を同一の層に含有する単一層型、及び電荷発生物質を含有する電荷発生層と電荷輸送物質を含有する電荷輸送層を有する積層型に大別される。積層型は、更に、導電性支持体、電荷発生層及び電荷輸送層をこの順に有するタイプと、導電性支持体、電荷輸送層及び電荷発生層をこの順に有するタイプに分けられる。本発明においては、有機光導電体を用いた積層型、特に電荷発生層の上に電荷輸送層を積層したタイプであることが好ましい。
【0100】
導電性支持体としては、例えば、金属、導電性高分子等の支持体自体が導電性を有するものや、これらの導電性物質を真空蒸着やメッキなどで表面に被膜を形成した金属、樹脂、繊維、紙等や、樹脂に導電性粒子(例えば、カーボンブラック、酸化スズ、金属粉等)を分散したもの等を用いることができるが、一般的にはアルミニウムで、形状としては、ドラム状、シート状及びベルト状などが挙げられるが、適用される電子写真装置に最も適した形状であることが好ましい。
【0101】
導電性支持体と感光層の間に、バリアー機能と接着機能を有する下引層を設けることもできる。下引層はカゼイン、ポリビニルアルコール、ニトロセルロース、エチレン−アクリル酸コポリマー、ポリアミド、ポリウレタン、ゼラチン、酸化アルミニウムなどによって形成できる。下引層の膜厚は5μm以下、好ましくは0.5〜3μmが適当である。下引層はその機能を発揮するためには、1×10Ωcm以上であることが望ましい。
【0102】
電荷発生層は、電荷発生物質を導電性支持体上に真空蒸着するか、電荷発生物質を適当な溶剤を用いてバインダー樹脂中に分散した溶液を、導電性支持体上に公知の方法によって塗布し、乾燥することによって形成することができる。膜厚は5μm以下であることが好ましく、特には0.1〜1μmであることが好ましい。
【0103】
電荷発生物質としては、アゾ系顔料、フタロシアニン系顔料、インジゴ系顔料、多環キノン系顔料、ペリレン系顔料、スクワリリウム系色素、ピリリウム系色素、トリフェニルメタン系色素などが挙げられる。
【0104】
電荷輸送層は電荷発生層の上または下に積層され、電界の存在下、電荷発生層から電荷キャリアを受け取り、これを輸送する機能を有している。電荷輸送層は、電荷輸送物質を必要に応じて適当なバインダー樹脂と共に溶剤中に溶解した溶液を塗布(例えば、電荷発生層で用いたのと同様の方法)し、乾燥することによって形成することができる。膜厚は5〜40μmであることが好ましく、特には15〜30μmであることが好ましい。
【0105】
電荷輸送物質は電子輸送物質と正孔輸送物質に大別されるが、他方有機電荷輸送物質と無機電荷輸送物質とに大別することもできるが、これらの電荷輸送物質は単独で用いても、2種以上組み合わせて用いてもよい。
【0106】
さらに、本発明においては、感光層を外部からの機械的及び化学的な影響から保護することなどを目的として感光層の上に保護層を設けることもできる。保護層としては樹脂層や、導電性粒子や電荷輸送物質を含有する樹脂層などが用いられるが、保護層上に静電潜像を形成する場合には保護層の体積抵抗値が1×1010Ωcm以上、好ましくは1×1011Ωcm以上であることが望ましい。
【0107】
保護層は例えばアクリル樹脂、ポリビニルブチラール、ポリアリレート(ビスフェノールAとフタル酸の縮重合体等)、ポリアミド、ポリイミド、ポリカーボネート、ポリエステル、ウレタン樹脂、メタクリル樹脂、スチレン−ブタジエンコポリマー、スチレン−アクリロニトリルコポリマー、スチレン−アクリル酸コポリマー等の高分子化合物を適当な有機溶剤によって溶解した液を感光層の上に塗布した後、乾燥して形成されるが、必要に応じて加熱やエネルギー線(例えば、紫外線、マイクロ波、γ線等)照射等により架橋や重合等の高分子量化を行なえば、一層すぐれた効果を得ることができる。なお、本発明においては、この保護層も感光層の一部であることとする。
【0108】
このようにして作製された感光体は、表面粗さがなるべく小さい(Rzで5μm以下)ほうがよく、また、静電容量が感光層の表面積1cm当たり50pF以上500pF以下であることが好ましい。さらには、感光体の最外層の膜厚が0.1μm以上50μm以下、感光体の最外層の体積抵抗値が1×1010Ωcm以上であれば、画質がより向上するのでなおさら一層好ましい。
【0109】
本発明の電子写真装置に使用されるトナーには特に限定はなく、従来公知の材料にて粉砕法または重合法によって製造されたトナー粒子のどちらも用いることができるし、磁性トナーまたは非磁性トナーのいずれであっても用いることができるが、導電性部材との関連において好ましい形態や性状がある。本発明の導電性部材を用いた場合、トナーのTgが35℃以上70℃以下であれば好適に使用できる。また、特に略球状であることが好ましく、下記式で表わされる形状係数SF−1が100〜160、形状係数SF−2が100〜140であることが好ましい。ここで、SF−1、SF−2については、次のように計測される。すなわち、例えば日立製作所製FE−SEM(S−800)を用い1,000倍に拡大した2μm以上のトナー像を100個無作為にサンプリングし、その画像情報はインターフェエースを介してたとえばニコレ社製画像解析装置(Luzex III)に導入し解析を行ない、下式より得られた値を定義する。
【0110】
【数2】
Figure 2004061640
ここで、式中MXLNGは粒子の絶対最大長、 PERIMEは粒子の周囲長、AREAは粒子の投影面を示す。
【0111】
形状係数SF−1が160を超える場合には、トナー粒子は球形から外れ、またはSF−2が140を超える場合には、トナー粒子の表面の凹凸が顕著となる。非球形または表面に凹凸を有しているようなトナー粒子は、撹拌によるキャリアあるいはトナー粒子同士の接触による摩擦によって表面が削り取られ、次第に球形に近づくため、形状の変化が大きくなり、形状変化が大きいため、かさ密度変化も大きく、トナー濃度検知センサーが不適切な出力をするようになりやすい。
【0112】
本発明に好ましく用いられる略球状形状のトナーの製造方法には特に限定はなく、粉砕法によって製造された不定形のトナーに機械的力や熱などのエネルギーを加えながら攪拌して略球状にしたトナーまたは重合法によって製造されたトナー粒子のどちらも用いることができるが、形状の安定性や高機能化付与等の必要がある場合には重合法が好ましい。重合法は種々の条件や減量を適正化することによって種々の特性を有する略球状形状のトナーを得ることができるが、特には懸濁重合法によって製造されることが好ましく、さらにはトナーが2層以上の構成からなることがより好ましく一旦得られた重合粒子に更に単量体を吸着せしめた後、重合開始剤を用い重合せしめるシード重合方法も本発明に好適に利用することができる。
【0113】
また、本発明に使用されるトナーのトリボ値としては好ましい範囲がある。すなわち、本発明の導電性部材が使用される電子写真装置において、現像剤坦持体表面におけるトナーのトリボ値が、感光体の帯電極性と同じで、10〜40mC/Kgの範囲であれば、安定して使用可能であり好ましい。
【0114】
本発明に使用される粉砕法によるトナー粒子の製造では、結着樹脂、着色剤、荷電制御剤等の構成材料をボールミルその他の混合機により十分混合した後、熱ロールニーダー、エクストルーダーの如き熱混錬機を用いてよく混錬し、冷却固化後、機械的に粉砕、分級することによってトナー粒子を得る。また分級後、熱風処理や機械的衝撃を与えることによる球形化処理を施したトナー粒子がより好ましい。
【0115】
また、本発明で使用される重合法で製造されたトナー粒子は、粉砕トナー粒子に比べて粒度分布がシャープであり、形状が真球に近いため、耐久に伴う形状の変化が少なく、かさ密度の変化も少ない。粉砕トナーでは、攪拌によるキャリアあるいはトナー同士の接触による摩擦によって凸凹した表面が削り取られ、球形に近づくため、形状変化が大きいのに対し、もともと真球に近い重合トナー粒子は、形状変化する要因が少なく、形状変化が少ないため、かさ密度の変化が少ない。
【0116】
本発明に使用できるトナーの外添剤としては、アルミナ、酸化チタン、シリカ、酸化ジルコニウム、酸化マグネシウム等の酸化物の他に、炭化ケイ素、チッ化ケイ素、チッ化ホウ素、チッ化アルミニウム、炭酸マグネシウム、有機ケイ素化合物が挙げられる。この中で、無機酸化物微粒子(A)としては、アルミナ、酸化チタン、酸化ジルコニウム、酸化マグネシウムあるいはこれらのシリカ処理微粒子が、温湿度に左右されずトナーの帯電を安定化させるために好ましく、更に、アルミナまたは酸化チタン微粒子あるいはそれらのシリカ表面処理微粒子がトナーの流動性を良好にするためには好ましい。更に、上記無機酸化物微粒子(A)はカップリング剤やシリコーンオイル等で疎水化処理されていることが、トナーの帯電量の温度や湿度等の環境依存性を少なくするため及びトナー表面からの遊離を防止するために良い。特に、シランカップリング剤を加水分解しながら表面処理を行ったアルミナまたは酸化チタン微粒子が、帯電の安定化、流動性の付与の点で極めて有効である。
【0117】
また、転写性および/またはクリーニング性向上のために一次粒径50nm以上(好ましくは比表面積が50m/g未満)の無機または有機の球状に近い微粒子を更に添加することも好ましい形態の一つである。例えば球状シリカ粒子、球状ポリメチルシルセスキオキサン粒子、球状樹脂粒子等が好ましく用いられる。
【0118】
本発明のトナーにおいては、実質的な悪影響を与えない範囲内で更に他の添加剤を用いることが好ましい。添加剤としては、例えばテフロン粉末、ステアリン酸亜鉛粉末、ポリフッ化ビニリデン粉末、等の滑剤粉末、例えば酸化セリウム粉末、炭化硅素粉末、チタン酸ストロンチウム粉末、等の研磨剤、例えば酸化チタン粉末、酸化アルミニウム粉末、等のケーキング防止剤、あるいは例えばカーボンブラック粉末、酸化亜鉛粉末、酸化スズ粉末、等の導電性付与剤、等を挙げることができ、さらには、逆極性の有機微粒子及び無機微粒子を現像性向上剤として少量用いることもできる。
【0119】
このようにして得られた現像剤の重量平均50%粒径(以下単に重量平均粒径という)をD50とする時、0.2≦導電性部材表面の Rz/D50≦5 の範囲であれば、導電性部材表面への現像剤成分の付着が部分的にムラになるようなことが少ないので好ましく、特には、非磁性一成分現像剤を用いた場合に好ましい。
【0120】
また、本発明の導電性部材の最外層に、トナーの電荷を制御するための電荷制御剤を含有することが好ましい。これは導電性部材表面とトナーとの摩擦による静電的な電荷を制御することができるために、導電性部材表面への現像剤成分の付着、固着を軽減できるとともに、付着や固着してしまったものでも導電性部材表面からの脱離性を向上することができるからである。このような観点から、特に感光体上に残留したトナーの極性を制御する必要がある現像同時クリーニング機構(独立したクリーニング機構を有さない、即ち、いわゆるクリーナーレスシステム)を有する電子写真装置に好適に用いることができる。
【0121】
本発明の導電性部材は、帯電装置及び、電子写真感光体、現像装置の群より選ばれた少なくとも1つを一体に支持してなる電子写真装置に着脱自在なプロセスカートリッジに好適に使用される。さらには、本発明の導電性部材は優れたリサイクル性を有するので再使用するのにも非常に適する。
【0122】
本発明の帯電用部材は、例えば、感光体の帯電や除電用途、現像剤坦持体や現像剤への電荷付与部材あるいは規制部材等の現像用途、等の導電性を必要とする用途に好ましく使用でき、中でも特に感光体の帯電用途に非常に好ましく使用できるが、例えば、定着、クリーニング等のその他の用途にも所定の条件の下に使用することができる。
【0123】
以下に本発明の実施例を示すが、当然のことながらこれらに限定されるものではない。
【0124】
【実施例】
まず本発明に使用される部材及び評価機械の構成、材質、製造方法等を説明する。
【0125】
[電子写真装置1]
図7は電子写真プロセスを利用したカラー電子写真装置(複写機あるいはレーザービームプリンター)であり、そこに用いられるタンデム式に配列された画像形成部の主要構成を図8に示す。
【0126】
図8においてカラー画像形成装置は、装置本体内に例えばイエロー、シアン、マゼンタ及びブラックの可視画像を形成することができる第1〜第4の画像形成部I、II、III 、IVがタンデムに配列された構成を有し、各画像形成部I〜IVはそれぞれ専用の光導電層を有する像担持体101a、102a、103a、104aを備えている。各像担持体101a〜104aはその周囲にそれぞれ専用の画像形成手段である、例えば一次帯電器101b、102b、103b、104b、転写器101c、102c、103c、104c、現像器101d、102d、103d、104d、露光器101e、102e、103e、104e、クリーナ101f、102f、103f、104f等が配設されている。
【0127】
また、各画像形成部I〜IVの像担持体101a〜104aの下部には、転写ベルト駆動プーリ9及び転写ベルト従動プーリ10に張架され駆動される転写ベルト8が設けられている。更に、図8において、第1画像形成部Iの右方には図に示さない給紙部が配置され、第4画像形成部IVの左方には図に示さない定着器が配置される。
【0128】
図8において、カラー画像形成を行なうには、まず第1画像形成部Iにおいて、光導電層を有する回転する像担持体101aに対して帯電器101bによって均一に電荷が付与され、矢印で示す露光器101eによって露光が行なわれ、像担持体101a上の光導電層上に潜像が形成される。次いで潜像が例えばイエロートナー用現像器101dによって潜像が現像されて顕像が形成される。
【0129】
一方、給紙部から、転写ベルト駆動プーリ9と転写ベルト従動プーリ10によって駆動される転写ベルト8によって、図示しない被転写材が第1画像形成部Iに搬送される。又、回転する像担持体101aはその光導電層上に残存するトナーが、クリーナ101fによって除去され、新たな潜像形成に備える。
【0130】
第2の画像形成部IIにおいても同様な工程が行なわれ、別色の例えばシアントナーが被転写材に転写される。そしてその後もこのような工程を連続的に、第3及び第4画像形成部III 、IVにおいても行なうことにより多色のトナーの転写を転写材に対して行ない、所望のカラー画像を形成することができる。これを電子写真装置1とした。
【0131】
このデジタル複写機は以下のような構造を有する。A4縦送り対応、解像度600dpi、プロセススピード94mm/sec.であり、感光体の帯電手段は接触式の導電性ローラー(帯電ローラー)であり、帯電ローラーには帯電バイアスとして直流電圧−1150Vを印加する。帯電前の前露光装置は取り外してある。転写手段も接触式のローラー転写方式である。
【0132】
また、現像手段は導電性ローラー(現像ローラー)を用いた接触現像方式で2成分現像剤が使用可能であり、現像バイアスして直流電圧−400Vを印加する。
【0133】
なお、このデジタル複写機は種々の外径を有する感光体、帯電ローラー、現像ローラーが評価できるように、バネ圧やギアを最適に調整して使用することができる。
【0134】
[電子写真装置2]
電子写真装置1からクリーナ101fを取り除き電子写真装置2とした。すなわち、電子写真装置2はクリーナレスシステムを有する構成である。
【0135】
[感光体製造例1]
約φ24mmのアルミニウムシリンダー上に下引き層、正電荷注入防止層、電荷発生層、電荷輸送層の順に機能層を設け、感光体1を作製した。
【0136】
下引き層はアルミニウムドラムの欠陥等をならしたり、露光の反射によるモアレの発生を防止したりするために設けられている厚さ約20μmの導電層である。
【0137】
正電荷注入防止層はアルミ基体から注入された正電荷が感光体表面に帯電された負電荷を打ち消すのを防止するために設けられ、厚さ約1μmのポリアミド樹脂によって10Ωcm程度に抵抗調整されている。電荷発生層はレーザー露光を受けることによって正負の電荷対を発生するために設けられた層であり、チタニルフタロシアニン系の顔料を樹脂に分散した厚さ約0.5μmの層である。電荷輸送層はポリカーボネート樹脂にヒドラゾンを分散した厚さ約18.5μmの層であり、P型半導体である。従って、感光体表面に帯電された負電荷はこの層を移動することはできず、電荷発生層で発生した正電荷のみを感光体表面に輸送することができる。
【0138】
この感光体の特性を測定したところ、表面の体積抵抗値(電荷輸送層単体の場合)が5×1015Ωcm、感光体表面のRz=2.1μm、静電容量C2(感光体の表面積1cm当たりで表わす)は105pF/cmであった。
【0139】
なお、静電容量は以下のように測定した。即ち、アルミニウムシリンダー上にアルミシートをまきつけ、アルミシリンダー上に感光層を塗布する場合と同条件にてアルミシート上に感光層を塗布して静電容量測定用試料を作製した。静電容量の測定はインピーダンス測定器(YHP 4192A)で行ない、感光体1cm当たりの静電容量を求めた。感光体1の外径はφ24.0mmである。
【0140】
[感光体製造例2]
約φ30mmのアルミニウムシリンダーを用いたこと以外は感光体製造例1と同様にして、感光体2を作製した。感光体2の外径はφ30.0mmである。
【0141】
[トナー製造例1]
イオン交換水に、NaPO水溶液とCaCl水溶液を所定量添加、攪拌し、燐酸カルシウム塩を含む水系媒体を得た。
【0142】
次に、下記材料を加温し、造粒機を用いて均一に溶解、分散した。
スチレン(重合性単量体)            100質量部
n−ブチルアクリレート(重合性単量体)      12.5質量部
マゼンタ着色剤                   7質量部
サリチル酸の金属化合物(荷電制御剤)        1.5質量部
飽和ポリエステル樹脂               12.5質量部
エステル系ワックス(離型剤)           23質量部
これに、重合開始剤2,2’−アゾビス(2,4−ジメチルバレロニトリル)6質量部を溶解し、重合性単量体組成物を調製した。
【0143】
前記水系媒体中に上記重合性単量体組成物を投入し、窒素雰囲気下において、加温、撹拌し、重合性単量体組成物を造粒した後、重合させた。その後残存モノマーを留去し、冷却後、塩酸を加え燐酸カルシウム塩を溶解させた後、ろ過、水洗、乾燥して、マゼンタトナー粒子Aを得た。次いで、マゼンタトナー粒子Aを風力分級にて樹脂微粒子及び樹脂超微粒子の量を調製し、マゼンタトナー粒子Bを得た。マゼンタトナー粒子BのSF−1、SF−2を測定したところ、SF−1=100、SF−2=100で、略球状形状であることが分かった。またコールターカウンター法によるマゼンタトナー粒子Bの重量平均粒径は7.8μmであった。
【0144】
マゼンタトナー粒子B100質量部と、BET比表面積200m/gの疎水性シリカ微粉体(一次平均粒径0.01μm)1.5質量部とを混合してトナー1を調製した。トナー1のSF−1=120、SF−2=110であり、コールターカウンター法による重量平均粒径は7.8μmであった。さらに、トナー1のガラス転移点(Tg)を測定した。
【0145】
[トナー製造例2]
ポリエステル樹脂            100質量部
含金属アゾ染料               3.3質量部
低分子量ポリプロピレン           6.6質量部
カーボンブラック              6.0質量部
上記材料を乾式混合した後に、160℃に設定した2軸混練押出機にて混練した。得られた混練物を冷却し、気流式粉砕機により微粉砕した後に風力分級して粒度分布の調整されたトナー組成物を得た。このトナー組成物を電子顕微鏡で観察したところ、粉砕トナー特有の不定形を呈していることが分かった。このトナー組成物に、疎水化処理された酸化チタン1.5wt%を外添して、重量平均粒径7.9μmのトナー4を作製した。
【0146】
[現像剤製造例1、2]
平均径60μmのニッケル亜鉛フェライトに、アクリル変性シリコーン樹脂をコートしたもの100質量部に対し、トナー1、2を各々6質量部、を混合し、それぞれ現像剤1、2とした。
【0147】
[現像ローラー製造例1]
φ8mmのステンレス製芯金に接着剤を介してシリコーンゴム層からなる弾性層を形成した。接着剤は1×1012Ωcm以上の抵抗値を有するものを使用したが薄く塗ってあるので、全体抵抗への影響は小さい。弾性層はカーボンブラックを添加し、1×10Ωcmに調整してある。その表面にウレタン樹脂を18μmになるように塗工し、体積抵抗値が1×10Ωcmの現像ローラー1を得た。現像ローラー1はストレート形状であるが、製造上のばらつきにより微少に外径の大小があり、最大径は16.0mmであった。
【0148】
[現像ローラー製造例2]
φ6mmのステンレス製芯金を用いたこと以外は現像ローラー製造例1と同様に行い、現像ローラー2を得た。現像ローラー2の最大径は12.0mmであった。
【0149】
[現像ローラー製造例3]
最大径を8.0mmにしたこと以外は現像ローラー製造例2と同様に行い、現像ローラー3を得た。
【0150】
これらを用いた電子写真装置を、以下に示す帯電部材と組み合わせて種々評価を行なった。
【0151】
[実施例1]
まず、以下の手順で帯電部材として使用する導電性部材を作製した。
【0152】
<導電性部材A>
(1)弾性層の作製
エピクロルヒドリンゴム(エピクロマーCG、ダイソー社製)100質量部、ステアリン酸亜鉛1質量部、酸化亜鉛5質量部、炭酸カルシウム30質量部、水酸化カルシウム2質量部、オイル処理酸化カルシウム10質量部、含水けい酸(ニプシールVN3、日本シリカ社製)2質量部、ジエチレングリコール0.5質量部、2−メルカプトベンズイミダゾール(アンテージMB、川口化学社製)1質量部、ナフテン系プロセスオイル(ダイアナプロセスオイルNM−280、出光興産社製)2質量部、重合型可塑剤(アデカサイザーPN−350、旭電化社製)3質量部、ジメチルオクチルヒドロキシエチル過塩素酸アンモニウム(導電剤)のフタル酸エステルへの溶解物 5質量部(導電剤含有量2質量部)、サーマルブラック(アサヒサーマル、旭カーボン社製)5質量部を十分冷却したニーダーで混練し、ヒドリンゴムバッチを得た。これを20℃以下に保った冷暗所で一晩熟成後、硫黄0.5質量部、ジベンゾチアジルジスルフィド(サンセラーDM、三新化学社製)1.5質量部、テトラメチルチウラムモノスルフィド(アクセルTS、川口化学社製)1.1質量部を添加、オープンロールにて混練し、ゴムコンパウンド1を得た。
【0153】
次に、長さ252mm、直径6mmの芯金(鉄にニッケルメッキ)に導電性接着剤を塗布した。導電性接着剤の塗布範囲は、230mmで両端は各11mm未塗布部分としてあった。ゴムコンパウンド1を押出し機で外径13mmに押出しながら、あらかじめ導電性接着剤を塗布した前記芯金を供給し同時押出しによって、芯金の周囲にゴムコンパウンド1を長さ240mmにわたって有する未加硫ローラーを得た。この時ゴムコンパウンド1の両端が接着剤塗布部分よりも外側に来るようにし、両端各6mmは芯金を露出しておいた。
【0154】
未加硫ローラーを加硫缶内に入れ、蒸気圧6.0kg/cmの雰囲気中に60分放置して加硫したのち、取り出して一旦冷却した。加硫缶を用いた加硫においては蒸気の凝縮やドレンの排出など充分に配慮し、必要に応じて段階的加圧を行なうなど一工夫した。段階加硫を行なう場合には、様々な加圧‐時間曲線を取ったとしても最終的に蒸気圧6.0kg/cmになってから60分間放置した。
【0155】
冷却した後、160℃のオーブン中に30分放置し二次加硫を行なった。これによって接着も一層強固になっている。
【0156】
一日放置後、両端部を切断除去してゴムを232mmに調整した。両端部は芯金に接着剤が塗布していないので切断後の除去は容易であった。次に、ゴムの周囲を研磨してクラウン形状とした。最大外径は中央部で約10mm、最小外径は両端部で約9.9mmであった。研磨は、幅250mmの砥石を使用し、ローラーとは逆のクラウン形状を付与した。なお砥石表面の回転方向はローラーの回転方向と逆で、カウンター方向で当接した。したがって、ローラー表面の研磨状態としては、ローラーが研磨機にて回転する方向に対し下流方向になびいた研磨形状を有した。砥石表面の周速はローラー表面の周速より早いことが好ましい。研磨後、両端部に半径3mmの曲率半径に相当する曲面の面取り(R3)を施し、さらに両端部を切断し最終的に、ゴム長が230mmとなるように調整し、ゴムローラー1を得た。
【0157】
(2)最外層用塗料の作製
アクリルポリオールのメチルイソブチルケトン(MIBK)溶液(アクリルポリオール分40質量%)250質量部に対して、ポリメタクリル酸メチル樹脂粒子45質量部、導電性酸化スズ120質量部、疎水性シリカ5質量部、シリコーンオイル(SH28PA、東レダウコーニングシリコーン社製)0.1質量部、シリコーン含有アクリル酸化合物0.5質量部を、メディアを用いてペイントシェーカーで12時間分散した。その後、メディアを分離し硬化剤としてヘキサメチレンジイソシアネート(HDI)3量体のブタノンオキシムブロック体とイソホロンジイソシアネート(IPDI)3量体のブタノンオキシムブロック体とが質量比で1:1.2となるように混合し、アクリルポリオールと混合イソシアネートがOH/NCO=1/1になるように添加混合してからトルエンを用いて固形分を5質量%に調整し最外層用塗料1を作製した。
【0158】
なお、ポリメタクリル酸メチル樹脂粒子は、平均粒径20μm、粉体抵抗1×1014Ωcmであった。導電性酸化スズは酸化アンチモンのドープ体でその表面をn−プロピルトリメトキシシラン処理したものであり、平均粒径0.02μm、粉体抵抗1×10Ωcm、BET60m/gであった。疎水性シリカは表面を珪素化合物で疎水化処理したものであり、平均粒径0.012μm、粉体抵抗1×1016Ωcm、BET200m/gであった。
【0159】
(3)導電性部材の作製
ゴムローラー1の表面にエアを吹き付け研磨分除去等の簡単な清掃を行なった後、2−ブタノンに浸漬して洗浄した。その後、クラス10000に塵埃を制御した部屋の中で最外層用塗料1を用いて浸せき塗工を行なった。塗工条件は、引き上げ速度20〜50mm/sec.の間で任意に調速して1回の塗工を完了した。塗工後、20℃、50%RHの雰囲気中で1時間風乾し、さらに160℃の熱風乾燥炉で1時間加熱して最外層を形成し、導電性部材Aを作製した。
【0160】
(4)物性/特性測定
[1]硬度(JIS−A硬度)
導電性部材AのJIS−A硬度は、図2に示す装置を用い荷重1kgで測定した。測定箇所は両端部及び中央部の合計3ヶ所であり、これらの単純(算術)平均をもって導電性部材AのJIS−A硬度とした。導電性部材Aは、左端部が60°、中央部が58°、右端部が60°であり、これらの単純平均59°が導電性部材AのJIS−A硬度である。
【0161】
[2]表面粗さ
導電性部材Aの表面粗さ(Rz及びRa)の測定はJISB0601に準拠し、(株)小坂研究所製surfcorder SE−3400を用い、送り速度0.5mm/s、カットオフ0.8mm、測定長2.5mmの条件で測定した。測定は導電性部材の任意の3箇所について母線(長手)方向に行い、3つの値の単純平均を導電性部材の表面粗さ(Rz及びRa)した。
【0162】
導電性部材Aについて、右端部、中央部、左端部の3箇所において測定したところ、Rzはそれぞれ22.0μm、18.3μm、17.4μmであり、これらの単純平均である19.2μmが導電性部材AのRzであった。同様にしてRaはそれぞれ1.9μm、1.8μm、1.6μmであり、これらの単純平均である1.8μmが導電性部材AのRaであった。
【0163】
[3]電気抵抗
導電性部材Aの電気抵抗を、図3の装置を用いて測定した。測定は環境(温度、湿度)に12時間以上放置して十分なじませてから、その環境下で金属ドラムに所定の荷重で押し付けた状態で、所定のスピードで回転させながら所定の電圧を印加し、電流を時間の経過とともに所定時間チャートに記録した。この時、金属ドラムの外径、荷重、印加電圧、金属ドラム及び導電性部材の回転スピード等はその導電性部材を使用する電子写真装置の条件にて行なうことが望ましいが、本発明においては簡便のため、金属ドラムはステンレス製(表面の十点平均粗さRzが5μm以下)で、その外径が30mm、荷重Wを片側500g(合計1kg)、金属ドラムの回転スピードを30rpm、導電性部材の回転は金属ドラムに従動、所定電圧を印加した。
【0164】
この時の測定チャートの一例を図−24に示すが、本発明においては電圧印加後30秒後の電流値を読み取り、それをI(A)とすると、導電性部材の抵抗値(Ω)は、Rs=|V/I|で計算される。
【0165】
導電性部材1の30℃/80%RH、23℃/65%RH、15℃/10%RHの各環境における直流電圧−500Vを印加時の電気抵抗は、各々、1.3×10Ω、2.1×10Ω、7.7×10Ωであった。また、15℃、10%RHの環境において直流電圧−10Vを印加時の電気抵抗値は5×10Ωであった。
【0166】
[4]摩擦係数
導電性部材Aの静摩擦係数及び動摩擦係数の測定は図5に示す手段にて、対ステンレススチール(表面の十点平均粗さRzが5μm以下)、回転速度は100rpm、荷重は50gの条件で測定した。
【0167】
得られたチャートから下式を用いて静摩擦係数及び動摩擦係数を計算して求めた。
【0168】
【数3】
Figure 2004061640
ここで、μS:静摩擦係数、μD:動摩擦係数、θ:導電性部材とベルトのなす角度(rad)、F<t=0>:チャート上で0秒時の力(g)、F<t=30>:チャート上で30秒時の力(g)、W:荷重(g)、である。この方法で測定したところ、μS=0.88、μD=0.45であった。
【0169】
参考までに、μDmax=0.50、μDmin=0.40であった。なお、5<t(秒)≦60の範囲において、最大値(任意の点)及び最小値(任意の点)から上式により求められる動摩擦係数(μD)の最大値をμDmax、最小値をμDminとしている。
【0170】
[5]外径/肉厚
導電性部材Aの外径はレーザー外径測定機を用いて長手方向5mm間隔で測定し、その中で最も大きな外径を最大外径、最も小さな外径を最小外径とした。最大外径と最小外径の差をクラウン量と称する。支持体として芯金を用いているので、芯金の外径を同様にしてあらかじめ測定し、ゴムが被覆されている部分において最も大きい外径を、支持体の最大厚さとした。
【0171】
このようにして測定したところ、導電性部材Aの最大外径は、10.1mm、最小外径は10.0mmで、芯金は外径6.0mmのストレート形状であった。
【0172】
従って、高分子化合物を主体とする(本例の場合は弾性層と最外層とを合せた)層の最大厚さは、(10.1−6.0)÷2=2.05mmであり、支持体の最大厚さ(本例の場合は芯金の最大外径)は6.0mmである。
【0173】
すなわち、高分子化合物を主体とする層の最大厚さ/支持体の最大厚さ=2.05/6.0=0.34である。
【0174】
<導電性部材B>
(1)弾性層の作製
最大外径を中央部で約8mm、最小外径は両端部で約7.9mmとしたこと以外はゴムローラーと同様にしてゴムローラー2を得た。
【0175】
次いで、ゴムローラー2の表面凹凸差を求めた。表面凹凸差は、ゴムローラー1上の任意の3点の断面を1000倍に拡大し、それぞれの視野における最大凹凸差を求め、それらの単純平均とした。本例の場合、視野1で8.6μm、視野2で6.3μm、視野3で6.4μmであったので、それらの単純平均である7.1μmをゴムローラー2の表面凹凸差とした。
【0176】
(2)最外層用塗料の作製
最外層用塗料1を使用した。
【0177】
(3)帯電部材の作製
ゴムローラーの代わりにゴムローラー2を用いたこと以外は、導電性部材Aと同様にして導電性部材Bを得た。
【0178】
(4)物性/特性測定:[1]〜[5]を導電性部材Aと同様に行なった。
【0179】
[1]硬度(JIS−A硬度)
JIS−A硬度は、左端部が63°、中央部が61°、右端部が62°であり、これらの単純平均62°が導電性部材BのJIS−A硬度である。
【0180】
[2]表面粗さ
Rzを右端部、中央部、左端部の3箇所において測定したところ、それぞれ22.5μm、18.7μm、18.8μmであり、これらの単純平均である20.0μmが帯電部材BのRzである。同様にしてRaはそれぞれ2.1μm、2.0μm、1.8μmであり、これらの単純平均である2.0μmが導電性部材BのRaであった。
【0181】
[3]電気抵抗
30℃/80%RH、23℃/65%RH、15℃/10%RHの各環境において直流電圧−500Vを印加時、各々、1.0×10Ω、2.0×10Ω、4.7×10Ωであった。また、15℃、10%RHの環境において直流電圧−10Vを印加時の電気抵抗値は2.3×10Ωであった。
【0182】
[4]摩擦係数
μS=0.80、μD=0.39であった。なお、μDmax=0.45、μDmin=0.30であった。
【0183】
[5]外径/肉厚
導電性部材Bの最大外径は、8.0mm、最小外径は7.9mmで、芯金は外径6.0mmのストレート形状であった。したがって、高分子化合物を主体とする(本例の場合は弾性層と最外層とを合せた)層の最大厚さは、(8.0−6.0)÷2=1.0mmであり、支持体の最大厚さ(本例の場合は芯金の最大外径)は6.0mmであった。すなわち、高分子化合物を主体とする層の最大厚さ/支持体の最大厚さ=1.0/6.0=0.17であった。
【0184】
<導電性部材C>
(1)導電性支持体の作製
ポリエーテル樹脂100質量部に導電性カーボンブラック20質量部、サーマルブラック10質量部、ステアリン酸亜鉛3質量部、酸化マグネシウム5質量部を添加し、充分加熱したニーダーで混練後、内径100mm、厚さ約100μmに押出し成形し、除冷してから長さ232mmに切断し、ベルト状の導電性支持体を得た。
【0185】
(2)最外層用塗料の作製
最外層用塗料1をMIBKで約3倍に希釈し最外層用塗料3とした。
【0186】
(3)導電性部材の作製
ゴムローラー1の代わりにベルト状の導電性支持体を用い、なおかつ最外層用塗料1の代わりに最外層用塗料3を用いたこと以外は導電性部材Aと同様にして導電性部材Cを得た。
【0187】
(4)物性/特性測定:[1]〜[5]を導電性部材Aと同様に行なった。
【0188】
[1]硬度:JIS−A硬度(単純平均)は80°であった。
【0189】
[2]表面粗さ:Rz(単純平均)は22.2μm、Ra(単純平均)は1.9μmであった。
【0190】
[3]電気抵抗:30℃/80%RH、23℃/65%RH、15℃/10%RHの各環境において直流電圧−500Vを印加時、各々、4.8×10Ω、7.0×10Ω、1.7×10Ωであった。また、15℃、10%RHの環境において直流電圧−10Vを印加時の電気抵抗値は4.2×10Ωであった。
【0191】
[4]摩擦係数:μS=0.85、μD=0.40、μDmax=0.45、μDmin=0.35であった。
【0192】
[5]外径/肉厚
高分子化合物を主体とする(本例の場合は最外層塗料3から形成された)層の最大厚さは41μmで、支持体の最大厚さ(本例の場合はベルト状の導電性支持体の最大厚さ)は103μmであった。すなわち、高分子化合物を主体とする層の最大厚さ/支持体の最大厚さ=41/103=0.40であった。なお本例の場合は、任意の断面を顕微鏡で観察してそれぞれの厚さを求めた。
【0193】
<導電性部材D>
(1)導電性支持体の作製
アルミニウムのスリーブを加工し、外径10mm、内径8mm、肉厚1mmとした。
【0194】
(2)最外層用塗料の作製
最外層用塗料1を用いた。
【0195】
(3)導電性部材の作製
ゴムローラー1の代わりにアルミニウムのスリーブを用い、なおかつ最外層用塗料1を10回繰り返して塗工したこと以外は導電性部材Aと同様にして導電性部材Dを得た。
【0196】
(4) 物性/特性測定:[1]〜[5]を導電性部材Aと同様に行なった。
【0197】
[1]硬度:JIS−A硬度(単純平均)は95°であった。
【0198】
[2]表面粗さ:Rz(単純平均)は19.1μm、Ra(単純平均)は1.7μmであった。
【0199】
[3]電気抵抗:30℃/80%RH、23℃/65%RH、15℃/10%RHの各環境において直流電圧‐500Vを印加時、各々、1.2×10Ω、2.0×10Ω、5.7×10Ωであった。また、15℃、10%RHの環境において直流電圧−10Vを印加時の電気抵抗値は3.1×10Ωであった。
【0200】
[4]摩擦係数:μS=0.85、μD=0.40、μDmax=0.45、μDmin=0.35であった。
【0201】
[5]外径/肉厚
高分子化合物を主体とする(本例の場合は最外層塗料1から形成された)層の最大厚さは0.4mmであった。また、支持体の最大厚さは本例の場合はスリーブであるので、スリーブの外径と内径から厚さを求めた結果、1mmであった。すなわち、高分子化合物を主体とする層の最大厚さ/支持体の最大厚さ=0.4/1=0.40であった。
【0202】
<導電性部材E>
(1)弾性層の作製
最大外径を中央部で約12mm、最小外径は両端部で約11.9mmとしたこと以外はゴムローラー1と同様にしてゴムローラー5を得た。
【0203】
(2)最外層用塗料の作製
最外層用塗料1を使用した。
【0204】
(3)導電性部材の作製
ゴムローラー1の代わりにゴムローラー5を用いたこと以外は、導電性部材Aと同様にして導電性部材Eを得た。
【0205】
(4)物性/特性測定:[1]〜[5]を導電性部材Aと同様に行なった。
【0206】
[1]硬度:JIS−A硬度(単純平均)は57°であった。
【0207】
[2]表面粗さ:Rz(単純平均)は20.4μm、Ra(単純平均)は1.9μmであった。
【0208】
[3]電気抵抗:30℃/80%RH、23℃/65%RH、15℃/10%RHの各環境において直流電圧‐500Vを印加時、各々、1.5×10Ω、2.2×10Ω、6.9×10Ωであった。また、15℃、10%RHの環境において直流電圧−10Vを印加時の電気抵抗値は3.1×10Ωであった。
【0209】
[4]摩擦係数:μS=0.85、μD=0.40、μDmax=0.45、μDmin=0.35であった。
【0210】
[5]外径/肉厚
導電性部材Eの最大外径は、12.0mm、最小外径は11.9mmで、芯金は外径6.0mmのストレート形状であった。したがって、高分子化合物を主体とする(本例の場合は弾性層と最外層とを合せた)層の最大厚さは、(12.0−6.0)÷2=3.0mmであり、支持体の最大厚さ(本例の場合は芯金の最大外径)は6.0mmであった。すなわち、高分子化合物を主体とする層の最大厚さ/支持体の最大厚さ=3.0/6.0=0.50であった。
【0211】
<導電性部材F>
(1)導電性支持体の作製
外径10mm、内径9.5mm、肉厚0.25mmとしたこと以外導電性部材Dと同様にした。
【0212】
(2)最外層用塗料の作製
最外層用塗料1をMIBKで1.5倍に希釈し、最外層用塗料6とした。
【0213】
(3)導電性部材の作製
導電性支持体としてのスリーブを変更し、なおかつ最外層用塗料6を3回繰り返して塗工したこと以外は導電性部材Dと同様にして導電性部材Fを得た。
【0214】
(4)物性/特性測定:[1]〜[5]を導電性部材Aと同様に行なった。
【0215】
[1]硬度:JIS−A硬度(単純平均)は98°であった。
【0216】
[2]表面粗さ:Rz(単純平均)は19.0μm、Ra(単純平均)は2.1μmであった。
【0217】
[3]電気抵抗:30℃/80%RH、23℃/65%RH、15℃/10%RHの各環境において直流電圧−500Vを印加時、各々、1.0×10Ω、2.3×10Ω、5.9×10Ωであった。また、15℃、10%RHの環境において直流電圧−10Vを印加時の電気抵抗値は9.1×10Ωであった。
【0218】
[4]摩擦係数:μS=0.75、μD=0.40、μDmax=0.45、μDmin=0.35であった。
【0219】
[5]外径/肉厚
高分子化合物を主体とする(本例の場合は最外層塗料1から形成された)層の最大厚さは0.10mmであった。また、支持体の最大厚さは本例の場合はスリーブであるので、スリーブの外径と内径から厚さを求めた結果、0.25mmであった。すなわち、高分子化合物を主体とする層の最大厚さ/支持体の最大厚さ=0.10/0.25=0.40であった。
【0220】
<導電性部材G>
(1)弾性層の作製
ナフテン系プロセスオイル(ダイアナプロセスオイルNM−280、出光興産社製)を50質量部としたこと以外はゴムローラー1と同様にしてゴムローラー7を得た。
【0221】
(2)最外層用塗料の作製
使用しなかった。
【0222】
(3)導電性部材の作製
ゴムローラー7をそのまま用いて導電性部材Gとした。
【0223】
(4)物性/特性測定:[1]〜[5]を導電性部材Aと同様に行なった。
【0224】
[1]硬度:JIS−A硬度(単純平均)は27°であった。
【0225】
[2]表面粗さ:Rz(単純平均)は15.4μm、Ra(単純平均)は3.3μmであった。
【0226】
[3]電気抵抗:30℃/80%RH、23℃/65%RH、15℃/10%RHの各環境において直流電圧−500Vを印加時、各々、2.5×10Ω、2.9×10Ω、1.9×10Ωであった。また、15℃、10%RHの環境において直流電圧−10Vを印加時の電気抵抗値は1.5×10Ωであった。
【0227】
[4]摩擦係数:μS=0.85、μD=0.40、μDmax=0.45、μDmin=0.35であった。
【0228】
[5]外径/肉厚
導電性部材Gの最大外径は、9.90mm、最小外径は9.75mmで、芯金は外径6.0mmのストレート形状であった。したがって、高分子化合物を主体とする(本例の場合は弾性層と最外層とを合せた)層の最大厚さは、(9.9−6.0)÷2=1.95mmであり、支持体の最大厚さ(本例の場合は芯金の最大外径)は6.0mmである。すなわち、高分子化合物を主体とする層の最大厚さ/支持体の最大厚さ=1.95/6.0=0.33であった。
【0229】
<導電性部材H>
(1)弾性層の作製
ゴムローラー1を使用した。
【0230】
(2)最外層用塗料の作製
ポリメタクリル酸メチル樹脂粒子を使用しなかったこと以外は最外層用塗料1と同様にして、最外層用塗料8を作製した。
【0231】
(3)導電性部材の作製
最外層用塗料1の代わりに最外層用塗料8を用いたこと以外は、導電性部材Aと同様にして導電性部材Hを得た。
【0232】
(4)物性/特性測定:[1]〜[5]を導電性部材Aと同様に行なった。
【0233】
[1]硬度:JIS−A硬度(単純平均)は64°であった。
【0234】
[2]表面粗さ:Rz(単純平均)は2.1μm、Ra(単純平均)は0.15μmであった。
【0235】
[3]電気抵抗:30℃/80%RH、23℃/65%RH、15℃/10%RHの各環境において直流電圧‐500Vを印加時、各々、2.9×10Ω、1.9×10Ω、8.9×10Ωであった。また、15℃、10%RHの環境において直流電圧−10Vを印加時の電気抵抗値は4.5×10Ωであった。
【0236】
[4]摩擦係数:μS=0.75、μD=0.40、μDmax=0.40、μDmin=0.40であった。
【0237】
[5]外径/肉厚
導電性部材Gの最大外径は、10.0mm、最小外径は9.9mmで、芯金は外径6.0mmのストレート形状であった。したがって、高分子化合物を主体とする(本例の場合は弾性層と最外層とを合せた)層の最大厚さは、(10.0−6.0)÷2=2.0mmであり、支持体の最大厚さ(本例の場合は芯金の最大外径)は6.0mmであった。すなわち、高分子化合物を主体とする層の最大厚さ/支持体の最大厚さ=2.0/6.0=0.33であった。
<導電性部材I>
(1)弾性層の作製
ゴムローラー1を使用した。
【0238】
(2)最外層用塗料の作製
ポリメタクリル酸メチル樹脂粒子として平均粒径20μmの代わりに平均粒径50μmのものを使用したこと以外は最外層用塗料1と同様にして、最外層用塗料9を作製した。
【0239】
(3)導電性部材の作製
最外層用塗料1の代わりに最外層用塗料9を用いたこと以外は、導電性部材Aと同様にして導電性部材Iを得た。
【0240】
(4)物性/特性測定:[1]〜[5]を導電性部材Aと同様に行なった。
【0241】
[1]硬度:JIS−A硬度(単純平均)は60°であった。
【0242】
[2]表面粗さ:Rz(単純平均)は35.1μm、Ra(単純平均)は2.9μmであった。
【0243】
[3]電気抵抗:30℃/80%RH、23℃/65%RH、15℃/10%RHの各環境において直流電圧−500Vを印加時、各々、1.2×10Ω、2.0×10Ω、9.5×10Ωであった。また、15℃、10%RHの環境において直流電圧−10Vを印加時の電気抵抗値は5.0×10Ωであった。
【0244】
[4]摩擦係数:μS=0.80、μD=0.45、μDmax=0.50、μDmin=0.40であった。
【0245】
[5]外径/肉厚
導電性部材Iの最大外径は、10.0mm、最小外径は9.9mmで、芯金は外径6.0mmのストレート形状であった。したがって、高分子化合物を主体とする(本例の場合は弾性層と最外層とを合せた)層の最大厚さは、(10.0−6.0)÷2=2.0mmであり、支持体の最大厚さ(本例の場合は芯金の最大外径)は6.0mmであった。すなわち、高分子化合物を主体とする層の最大厚さ/支持体の最大厚さ=2.0/6.0=0.33であった。
【0246】
これらの導電性部材を、感光体を所定電位に帯電する帯電ローラーとして用い、表1に示す組み合わせで10000枚まで耐久を行い、初期から2500枚毎にハーフトーン画像(1dot 2spaces)を画出しして帯電均一性(微小な横スジ)、ポチ状の濃度ムラ、耐久性の評価を行なった。耐久の条件は、評価モードが、3%文字原稿、A4たて送り、連続通紙とし、23℃/65%RHの環境で実施した。この時、図23bに示すように導電性部材の弾性層の研磨方向と感光体の回転方向が順目になるよう配置した。(以下、特に断らない限り順目に配置した。)なお、導電性部材(帯電ローラー)は感光体に総荷重1kg(片端500g)で押し付けている。
【0247】
この結果、導電性部材A〜Dは初期、耐久を通じて良好な画像が得られたが、導電性部材E〜Iは取り扱い上または画像上不具合が生じた。結果を表2に示す。
【0248】
【表1】
Figure 2004061640
【0249】
【表2】
Figure 2004061640
[実施例2]
まず、導電性部材を以下のように作製した。
【0250】
<導電性部材J>
(1)弾性層の作製
ゴムローラー2を使用した。
【0251】
(2)最外層用塗料の作製
ポリメタクリル酸メチル樹脂粒子として粒径10μmのものを用いたこと以外は最外層用塗料1と同様にして最外層用塗料10を作製した。
【0252】
(3)導電性部材の作製
最外層用塗料1の代わりに最外層用塗料10を用いたこと以外は導電性部材Bと同様にして導電性部材Jを得た。
【0253】
(4)物性/特性測定:[1]〜[5]を導電性部材Bと同様に行なった。
【0254】
[1]硬度:JIS−A硬度(単純平均)は60°であった。
【0255】
[2]表面粗さ:Rz(単純平均)は20.1μm、Ra(単純平均)は2.0μmであった。
【0256】
[3]電気抵抗:30℃/80%RH、23℃/65%RH、15℃/10%RHの各環境において直流電圧−500Vを印加時、各々、1.5×10Ω、2.5×10Ω、9.5×10Ωであった。また、15℃、10%RHの環境において直流電圧−10Vを印加時の電気抵抗値は5.2×10Ωであった。
【0257】
[4]摩擦係数:μS=0.70、μD=0.40、μDmax=0.45、μDmi =0.35であった。
【0258】
[5]外径/肉厚
導電性部材Jの最大外径は、8.0mm、最小外径は7.9mmで、芯金は外径6.0mmのストレート形状であった。したがって、高分子化合物を主体とする(本例の場合は弾性層と最外層とを合せた)層の最大厚さは、(8.0−6.0)÷2=1.0mmであり、支持体の最大厚さ(本例の場合は芯金の最大外径)は6.0mmであった。すなわち、高分子化合物を主体とする層の最大厚さ/支持体の最大厚さ=1.0/6.0=0.17であった。
【0259】
<導電性部材K>
(1)弾性層の作製
ゴムローラー2の表面を更にラッピングを行ない、面粗さを精密に制御し、ゴムローラー11を得た。ゴムローラー11の表面凹凸差をゴムローラー2と同様にして求めたところ2.0μmであった。
【0260】
(2)最外層用塗料の作製
最外層用塗料1を用いた。
【0261】
(3)導電性部材の作製
ゴムローラー2の代わりにゴムローラー11を用いたこと以外は導電性部材Bと同様にして導電性部材Kを得た。
【0262】
(4)物性/特性測定:[1]〜[5]を導電性部材Bと同様に行なった。
【0263】
[1]硬度:JIS−A硬度(単純平均)は59°であった。
【0264】
[2]表面粗さ:Rz(単純平均)は19.5μm、Ra(単純平均)は1.9μmであった。
【0265】
[3]電気抵抗:30℃/80%RH、23℃/65%RH、15℃/10%RHの各環境において直流電圧‐500Vを印加時、各々、1.1×10Ω、2.2×10Ω、9.3×10Ωであった。また、15℃、10%RHの環境において直流電圧−10Vを印加時の電気抵抗値は3.2×10Ωであった。
【0266】
[4]摩擦係数:μS=0.75、μD=0.45、μDmax=0.50、μDmin=0.40であった。
【0267】
[5]外径/肉厚
導電性部材Kの最大外径は、8.0mm、最小外径は7.9mmで、芯金は外径6.0mmのストレート形状であった。したがって、高分子化合物を主体とする(本例の場合は弾性層と最外層とを合せた)層の最大厚さは、(8.0−6.0)÷2=1.0mmであり、支持体の最大厚さ(本例の場合は芯金の最大外径)は6.0mmであった。すなわち、高分子化合物を主体とする層の最大厚さ/支持体の最大厚さ=1.0/6.0=0.17であった。
【0268】
<導電性部材L>
(1)弾性層の作製
ゴムローラー2を用いた。
【0269】
(2)最外層用塗料の作製
最外層用塗料1において、ポリメタクリル酸メチル樹脂粒子と疎水性シリカと導電性酸化スズとを用いることなく、代わりに平均粒径7.0μmの酸化チタン(表面を酸化スズとタングステンでドープしたもの)を150質量部と平均粒径5.5μmの酸化チタン(表面を酸化スズとタングステンでドープしたもの)を150質量部とを添加したこと以外は最外層用塗料1と同様にして最外層用塗料12を得た。
【0270】
(3)導電性部材の作製
最外層用塗料1の代わりに最外層用塗料12を用いたこと以外は導電性部材Bと同様にして導電性部材Lを得た。
【0271】
(4)物性/特性測定:[1]〜[5]を導電性部材Bと同様に行なった。
【0272】
[1]硬度:JIS−A硬度(単純平均)は80°であった。
【0273】
[2]表面粗さ:Rz(単純平均)は5.1μm、Ra(単純平均)は0.75μmであった。
【0274】
[3]電気抵抗:30℃/80%RH、23℃/65%RH、15℃/10%RHの各環境において直流電圧−500Vを印加時、各々、1.0×10Ω、3.0×10Ω、1.5×10Ωであった。また、15℃、10%RHの環境において直流電圧−10Vを印加時の電気抵抗値は5.0×10Ωであった。
【0275】
[4]摩擦係数:μS=0.65、μD=0.35、μDmax=0.40、μDmin=0.30であった。
【0276】
[5]外径/肉厚
導電性部材Lの最大外径は、8.0mm、最小外径は7.9mmで、芯金は外径6.0mmのストレート形状であった。したがって、高分子化合物を主体とする(本例の場合は弾性層と最外層とを合せた)層の最大厚さは、(8.0−6.0)÷2=1.0mmであり、支持体の最大厚さ(本例の場合は芯金の最大外径)は6.0mmであった。すなわち、高分子化合物を主体とする層の最大厚さ/支持体の最大厚さ=1.0/6.0=0.17であった。
【0277】
これらの導電性部材を、感光体を所定電位に帯電する帯電ローラーとして用い、表3に示す組み合わせで10000枚まで耐久を行ない、初期から2500枚毎にハーフトーン画像(1dot 2spaces)を画出しして帯電均一性(微小な横スジ)、ポチ状の濃度ムラ、耐久性の評価を行なった。耐久の条件は、評価モードが、3%文字原稿、A4たて送り、連続通紙とし、30℃/80%RHの環境で実施した。なお、帯電ローラーは感光体に総荷重1kg(片端500g)で押し付けている。結果を表4に示す。
【0278】
【表3】
Figure 2004061640
【0279】
【表4】
Figure 2004061640
[実施例3]
表5に示す組み合わせで10000枚まで耐久を行い、初期から2500枚毎にハーフトーン画像(1dot 2spaces)を画出しして帯電均一性(微小な横スジ)、ポチ状の濃度ムラ、耐久性の評価を行なった。耐久の条件は、評価モードが、3%文字原稿、A4たて送り、連続通紙とし、15℃/10%RHの環境で実施した。なお、帯電ローラーは感光体に総荷重1kg(片端500g)で押し付けている。結果を表6に示す。
【0280】
本実施例から、感光体と帯電部材の回転方向は、帯電部材の弾性層研磨目に対して順方向の方が帯電性能に優れることがわかる。
【0281】
【表5】
Figure 2004061640
【0282】
【表6】
Figure 2004061640
[実施例4]
まず導電性部材を以下のように作製した。
【0283】
<導電性部材P、Q>
最外層用塗料として、ポリメタクリル酸メチル樹脂粒子(平均粒径20μm)の代わりにトレフィルR(東レダウコーニング社製)10μm品および30μm品を使用したこと以外は導電性部材Bと同様にして、導電性部材P及びQを得た。
【0284】
<導電性部材R>
最外層用塗料として、ポリメタクリル酸メチル樹脂粒子(平均粒径20μm)の代わりに架橋アクリル樹脂粒子35μmを使用したこと以外は導電性部材Bと同様にして、導電性部材Rを得た。
【0285】
次いで、感光体を所定電位に帯電する帯電ローラーとして各種導電性部材を用い評価を行なった。評価は、電子写真装置の印加電圧を調節し、感光体の暗部電位が−500Vとした。(実施例1よりも絶対値で約100V低くした。従来が−600Vなら−500Vという意味である。)7.5℃/15%RHの環境において、この条件でハーフトーン画像(1dot 2spaces)を画出しし画像性を評価した。なお、帯電ローラーは感光体に総荷重1kg(片端500g)で押し付けている。組み合わせ及び結果を表7に示す。
【0286】
【表7】
Figure 2004061640
実施例4−1においては良好な結果が得られた。粒子の適度な特性と、結着樹脂との最適な組み合わせの相乗効果によるものと考えられる。
【0287】
一方で、他の例(比較例)においては種々の問題が発生した。比較例4−2では初期からポチ状濃度ムラが多発し、レベル悪い。これは弾性粒子を用いているために使用に伴う圧力と回転によってその部分の変形が生じているためであり、形状安定性に劣ることが原因と推察される。特に、停止した状態からの1枚目の画像レベルが悪く、連続で画出しをすると軽減傾向にある。すなわち、最も力のかかる状態(静的状態から動的状態ヘ移行する瞬間)において影響が大であり、動き出してしまえば力が小さくて済むので良化するものと考えられる。また、比較例4−1に示すように、弾性粒子でも粒径が小さい場合には前記現象は軽減されている。その理由としては、前記と同現象が発生しているが、小さいために画像上には現れにくいだけであると推察される。本画出し条件によって1枚間欠で100枚程度通紙することによって、画像上の不具合が発生してくることから、本質的には前記の現象を内在しているものと推定される。静から動、動から静への繰り返しによってストレスや不安定化が進行して画像上に現れるものと考えられる。さらには、比較例4−1及び4−2の場合には結着樹脂の種類と粒子の材料的な違いが大きいため両者の密着力が低いこともこれらの現象を助長させ、画像不良の原因となるものと考えられる。
【0288】
さらに、比較例4−3に示したように、架橋アクリル粒子を用いた場合には、粒径が大きすぎるために画像上にポチ上の濃度ムラが発生したものと考えられる。
【0289】
このように本比較例において発生した現象は、帯電均一性に厳しい方向の画像形成装置には不適であることを示唆し、特に直流電圧のみを印加する電子写真装置や感光体電位を低く抑えるタイプの電子写真装置に使用するのは適さない。
[実施例5]
まず導電性部材を以下のように作製した。
【0290】
<導電性部材S>
導電性部材Bを回転させながらその表面にサンドペーパー(番手は#3000)を所定の荷重で押し付け、導電性部材Bの表面を全周にわたり均一に研磨して導電性部材Sを得たので、物性/特性測定([1]〜[5])を導電性部材Aと同様に行なった。
【0291】
[1]硬度(JIS−A硬度)
JIS−A硬度は、左端部が62°、中央部が60°、右端部が60°であり、これらの単純平均61°が導電性部材SのJIS−A硬度である。
【0292】
[2]表面粗さ
Rzを右端部、中央部、左端部の3箇所において測定したところ、それぞれ9.4μm、8.7μm、8.9μmであり、これらの単純平均である9.0μmが帯電部材SのRzである。同様にしてRaはそれぞれ0.2μm、0.2μm、0.2μmであり、これらの単純平均である0.2μmが導電性部材SのRaであった。表面をサンドペーパーで研磨することでRzの値に対し、比較的小さなRaが得られる。
【0293】
[3]電気抵抗
30℃/80%RH、23℃/65%RH、15℃/10%RHの各環境において直流電圧−500Vを印加時、各々、7.0×10Ω、1.0×10Ω、2.5×10Ωであった。また、15℃、10%RHの環境において直流電圧−10Vを印加時の電気抵抗値は5.5×10Ωであった。
【0294】
[4]摩擦係数
μS=0.75、μD=0.40であった。なお、μDmax=0.45、μDmin=0.35であった。
【0295】
[5]外径/肉厚
導電性部材Sの最大外径は、8.0mm、最小外径は7.9mmで、芯金は外径6.0mmのストレート形状であった。したがって、高分子化合物を主体とする(本例の場合は弾性層と最外層とを合せた)層の最大厚さは、(8.0−6.0)÷2=1.0mmであり、支持体の最大厚さ(本例の場合は芯金の最大外径)は6.0mmであった。すなわち、高分子化合物を主体とする層の最大厚さ/支持体の最大厚さ=1.0/6.0=0.17であった。
【0296】
次いで、感光体を所定電位に帯電する帯電ローラーとして導電性部材Sを用い、表8に示す組み合わせで評価を行なった。評価は、電子写真装置の印加電圧を調節し、感光体の暗部電位を−500Vとした。23℃/65%RHの環境において、この条件でハーフトーン画像(1dot 2spaces)を画出しし画像性を評価した。なお、帯電ローラーは感光体に総荷重1kg(片端500g)で押し付けている。結果を表8に示す。
【0297】
【表8】
Figure 2004061640
【0298】
【発明の効果】
以上のように、本発明によれば、電子写真装置の小型化に適し、様々な場所や環境においても良好な画質を長期間にわたって得ることのできる電子写真用導電性部材及びそれを用いた装置を提供することができる。
【0299】
また、600dpiのような高解像度を有し、94mm/sec.のような高速のプロセススピードを有する電子写真装置において、特に小型化に適した安定した導電特性を有する電子写真用導電性部材及びそれを用いた装置を提供することができる。
【0300】
さらには、特に直流電圧のみを印加してなる帯電装置を有する電子写真装置に用いても良好な帯電特性を有する電子写真用導電性部材及びそれを用いた装置を提供することができる。
【0301】
さらに加えて、独立したクリーニング機構を有さない電子写真装置に用いても良好な帯電特性を有する電子写真用導電性部材及びそれを用いた装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の導電性部材の一例を示す断面図。
【図2】本発明の導電性部材の硬度測定器の概略図。
【図3】本発明の導電性部材の抵抗値測定器の概略図。
【図4】本発明に用いられる粒子の粉体抵抗値測定器の概略図。
【図5】本発明の導電性部材の摩擦係数測定器の一例
【図6】図5の摩擦係数測定器を用いて測定した時のチャートの一例。
【図7】本発明の導電性部材を用いた電子写真装置の例を示す概略図。タンデム方式のカラー電子写真装置である。
【図8】図15のタンデム方式のカラー電子写真装置の画像形成部の拡大図。
【図9】本発明の導電性部材を用いた電子写真装置の別の一例を示す概略図。ドラム状の中間転写方式のカラー電子写真装置である。
【図10】本発明の導電性部材を用いた電子写真装置の別の一例を示す概略図。ベルト状の中間転写方式のカラー電子写真装置である。
【図11】本発明の導電性部材を用いた電子写真装置の他の例を示す概略図。
【図12】本発明の導電性部材を用いた電子写真装置の他の例を示す概略図。
【図13】本発明の導電性部材を用いた電子写真装置の他の例を示す概略図。
【図14】本発明の導電性部材を用いた電子写真装置の他の例を示す概略図。
【図15】本発明の導電性部材を用いた電子写真装置の他の例を示す概略図。
【図16】本発明の導電性部材を用いた電子写真装置の他の例を示す概略図。
【図17】本発明の導電性部材を用いた電子写真装置の他の例を示す概略図。
【図18】本発明の導電性部材を用いた電子写真装置の他の例を示す概略図。
【図19】本発明の導電性部材を用いた電子写真装置の他の例を示す概略図。
【図20】本発明の導電性部材を構成する弾性層研磨の一例(トラバース)を示す概略図。
【図21】本発明の導電性部材を構成する弾性層研磨の別の一例を示す概略図。
【図22】本発明の導電性部材を構成する弾性層研磨における砥石の回転方向と弾性層(ゴムローラー)の回転方向の関係を示す概略図。
【図23】本発明の導電性部材の弾性層研磨目の回転方向と感光体の回転方向の関係を示す概略図。
【図24】電気抵抗の測定チャートの例を示す図である。
【符号の説明】
1  感光体
2  帯電器
2a  支持体
2b  弾性を有する層
2c  被覆層
2z  最外層
3  像露光
4  現像器
5  転写紙
6  転写装置
7  定着装置
8  クリーニング装置
9  導電性部材異物除去部材
15  転写ベルト
600  金属ドラム
601  電源
602  電流計
W  荷重
N  有効長さ

Claims (18)

  1. 支持体とその上方に設けられた1層以上の高分子化合物を主体とする層とを有する電子写真用導電性部材であって、前記高分子化合物を主体とする層の最大厚さ/前記支持体の最大厚さ≦0.4 であり、かつJISA硬度が30°以上95°以下であり、なおかつ表面粗さが Ra≧0.2μm かつ Rz≦50μm であることを特徴とする電子写真用導電性部材。
  2. 前記高分子化合物を主体とする層のうち最も外側にある層(最外層)が、粒径の異なる粒子を2種以上含有することを特徴とする請求項1に記載の電子写真用導電性部材。
  3. 前記粒径が10倍以上異なることを特徴とする請求項2に記載の電子写真用導電性部材。
  4. 最も大きな粒子の粒径が7.5μm以上であり、最も小さな粒子の粒径が5μm以下であることを特徴とする請求項2または3に記載の電子写真用導電性部材。
  5. 前記最外層中に含有される最も大きな粒子の粒径が、その直下の層の表面凹凸差の1.5倍以上8倍以下であることを特徴とする請求項2〜4のいずれかに記載の電子写真用導電性部材。
  6. 最も大きな粒子が高分子粒子であり、最も小さな粒子が金属酸化物粒子であり、かつその中間の粒径を有する粒子をも含有し、なおかつその中間の粒径を有する粒子が最も低い抵抗を有することを特徴とする請求項2〜5のいずれかに記載の電子写真用導電性部材。
  7. 抵抗が1000倍以上異なる2種以上の粒子を含有することを特徴とする請求項2〜6のいずれかに記載の電子写真用導電性部材。
  8. 最も大きな粒子の抵抗が1×1010Ωcm以上であることを特徴とする請求項2〜7のいずれかに記載の電子写真用導電性部材。
  9. 前記粒子を表面処理したことを特徴とする請求項2〜8のいずれかに記載の電子写真用導電性部材。
  10. 前記最外層を表面処理したことを特徴とする請求項2〜9のいずれかに記載の電子写真用導電性部材。
  11. 前記最外層中に占める結着材料の割合が25体積%以上であることを特徴とする請求項2〜10のいずれかに記載の電子写真用導電性部材。
  12. 前記電子写真用導電性部材は、前記支持体として任意の断面形状が円である芯金を用いており、前記芯金の周囲に直接または接着剤を介し間接的に略同心円状に設けられた1層以上の前記高分子化合物を主体とする層を有する構成であって、前記芯金の長さよりも前記層の長さの方が5mm以上短く、かつ前記層の長手方向に厚み分布を有していることを特徴とする請求項1〜11のいずれかに記載の電子写真用導電性部材。
  13. 前記高分子化合物を主体とする層の少なくとも1つはゴム弾性を有する弾性層であって、該弾性層の表面は該弾性層の長手方向長さよりも大きな幅を有する研磨手段によって研磨されたことを特徴とする請求項12に記載の電子写真用導電性部材。
  14. 少なくとも、電圧を印加した帯電装置によって感光体を帯電する帯電工程と像露光によって静電潜像を形成する工程と、この静電潜像をトナーにて可視化する現像工程とを有する電子写真装置において、少なくとも、前記感光体を所定の極性及び電位に帯電するための帯電部材として請求項1〜13のいずれかに記載の電子写真用導電性部材を使用し、前記帯電部材は前記感光体に接触または近接していることを特徴とする電子写真装置。
  15. 前記帯電部材の最外層に含有される最も大きな粒子の粒径が、現像材の粒径の2倍以上であることを特徴とする請求項14に記載の電子写真装置。
  16. 前記帯電部材の弾性層の研磨方向と前記感光体の回転方向が順目であることを特徴とする請求項14または15に記載の電子写真装置。
  17. 弾性を有する現像担持体を前記感光体に接触させて使用した電子写真装置において、前記感光体の最大外径/前記帯電部材の最大外径=n、前記感光体の最大外径/現像部材の最大外径=m とした時に、n、mが自然数で、かつ 1.0<n/m<2.0 であることを特徴とする請求項14〜16のいずれかに記載の電子写真装置。
  18. 帯電工程及び現像工程で印加される電圧が直流電圧のみであり、該現像工程で印加される直流電圧が、前記感光体の暗部電位と明部電位の中間値よりも暗部電位側にあることを特徴とする請求項14〜17のいずれかに記載の電子写真用導電性部材。
JP2002216839A 2002-07-25 2002-07-25 電子写真用導電性部材及びこれを用いた装置 Pending JP2004061640A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002216839A JP2004061640A (ja) 2002-07-25 2002-07-25 電子写真用導電性部材及びこれを用いた装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002216839A JP2004061640A (ja) 2002-07-25 2002-07-25 電子写真用導電性部材及びこれを用いた装置

Publications (1)

Publication Number Publication Date
JP2004061640A true JP2004061640A (ja) 2004-02-26

Family

ID=31938484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002216839A Pending JP2004061640A (ja) 2002-07-25 2002-07-25 電子写真用導電性部材及びこれを用いた装置

Country Status (1)

Country Link
JP (1) JP2004061640A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005316196A (ja) * 2004-04-28 2005-11-10 Canon Chemicals Inc 導電性部材および導電性部材の製造方法
JP2006227501A (ja) * 2005-02-21 2006-08-31 Canon Chemicals Inc 導電性部材の製造方法及び電子写真装置用ローラ
JP2006234899A (ja) * 2005-02-22 2006-09-07 Canon Chemicals Inc 導電性部材の製造方法および電子写真装置用ローラ
JP2007128000A (ja) * 2005-11-07 2007-05-24 Ricoh Co Ltd 帯電部材、帯電装置、プロセスカートリッジ及び画像形成装置
JP2007193206A (ja) * 2006-01-20 2007-08-02 Bridgestone Corp 導電性エンドレスベルト
US7732113B2 (en) 2005-03-28 2010-06-08 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and process for producing electrophotographic photosensitive member
WO2012008122A1 (ja) * 2010-07-13 2012-01-19 キヤノン株式会社 帯電部材およびその製造方法、電子写真装置
WO2013094089A1 (ja) * 2011-12-22 2013-06-27 キヤノン株式会社 帯電部材およびその製造方法、電子写真装置
JP2019197163A (ja) * 2018-05-10 2019-11-14 キヤノン株式会社 帯電ローラ、カートリッジ及び画像形成装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005316196A (ja) * 2004-04-28 2005-11-10 Canon Chemicals Inc 導電性部材および導電性部材の製造方法
JP2006227501A (ja) * 2005-02-21 2006-08-31 Canon Chemicals Inc 導電性部材の製造方法及び電子写真装置用ローラ
JP2006234899A (ja) * 2005-02-22 2006-09-07 Canon Chemicals Inc 導電性部材の製造方法および電子写真装置用ローラ
US7732113B2 (en) 2005-03-28 2010-06-08 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and process for producing electrophotographic photosensitive member
JP2007128000A (ja) * 2005-11-07 2007-05-24 Ricoh Co Ltd 帯電部材、帯電装置、プロセスカートリッジ及び画像形成装置
JP2007193206A (ja) * 2006-01-20 2007-08-02 Bridgestone Corp 導電性エンドレスベルト
WO2012008122A1 (ja) * 2010-07-13 2012-01-19 キヤノン株式会社 帯電部材およびその製造方法、電子写真装置
JP2012037875A (ja) * 2010-07-13 2012-02-23 Canon Inc 帯電部材およびその製造方法、電子写真装置
US8538298B2 (en) 2010-07-13 2013-09-17 Canon Kabushiki Kaisha Charging member, process for its production, and electrophotographic apparatus
WO2013094089A1 (ja) * 2011-12-22 2013-06-27 キヤノン株式会社 帯電部材およびその製造方法、電子写真装置
JP2013148876A (ja) * 2011-12-22 2013-08-01 Canon Inc 帯電部材およびその製造方法、電子写真装置
US8991053B2 (en) 2011-12-22 2015-03-31 Canon Kabushiki Kaisha Charging member, process for its production, and electrophotographic apparatus
JP2019197163A (ja) * 2018-05-10 2019-11-14 キヤノン株式会社 帯電ローラ、カートリッジ及び画像形成装置

Similar Documents

Publication Publication Date Title
CN105388725B (zh) 充电构件、处理盒和电子照相设备
JP5140920B2 (ja) 画像形成装置
JP5451514B2 (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
JP2010086003A (ja) 帯電部材、プロセスカートリッジおよび電子写真装置
JPH11311890A (ja) 導電性部材及びこれを用いた電子写真装置及びプロセスカートリッジ
JP2005157178A (ja) 画像形成方法及び画像形成装置
JP5110985B2 (ja) 接触式帯電部材、プロセスカートリッジ及び電子写真画像形成装置
JP2004061640A (ja) 電子写真用導電性部材及びこれを用いた装置
JP2021157031A (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
KR100894752B1 (ko) 대전 장치, 화상 형성 장치 및 대전 방법
CN114270274A (zh) 带电辊
JP5471085B2 (ja) 帯電部材、帯電装置、プロセスカートリッジおよび画像形成装置
JP5618785B2 (ja) 電子写真装置
JP2009300849A (ja) 帯電部材清掃部材、帯電装置、プロセスカートリッジおよび画像形成装置
JP5013464B2 (ja) 像担持体保護剤、保護層形成装置、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2004306519A (ja) 導電性部材
JP5661413B2 (ja) 画像形成方法及び画像形成装置
JP3890305B2 (ja) 導電性部材の製造方法
JP2005037931A (ja) 帯電部材、プロセスカートリッジおよび電子写真装置
CN114270275A (zh) 带电辊
JP2015022015A (ja) クリーニング装置、画像形成装置およびプロセスカートリッジ
JP5828752B2 (ja) 帯電部材及び帯電部材の製造方法
JP7222677B2 (ja) 帯電部材、プロセスカートリッジ及び電子写真画像形成装置
JP2006113377A (ja) 帯電部材、これを用いたプロセスカートリッジ及び電子写真装置
JP3897726B2 (ja) 画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080521