JP2004050797A - 光学素子用原版の製造方法および光学素子用原版 - Google Patents
光学素子用原版の製造方法および光学素子用原版 Download PDFInfo
- Publication number
- JP2004050797A JP2004050797A JP2002215287A JP2002215287A JP2004050797A JP 2004050797 A JP2004050797 A JP 2004050797A JP 2002215287 A JP2002215287 A JP 2002215287A JP 2002215287 A JP2002215287 A JP 2002215287A JP 2004050797 A JP2004050797 A JP 2004050797A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- crystal layer
- optical element
- radiation
- distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Optical Filters (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
【課題】効率的にかつ高い品質でパターニングを行うことが可能な液晶層を備えた光学素子用原版の製造方法および光学素子用原版を提供する。
【解決手段】まず、放射線硬化型液晶を支持基材11上に塗布して未硬化状態の液晶層12′を形成する(図1(a))。次に、未硬化状態の液晶層12′に対して所定の雰囲気で所定の照射量の放射線を照射し、硬化状態の液晶層12を形成する(図1(b))。最後に、ホットプレート25により硬化状態の液晶層12を所定の温度で加熱して焼成し(図1(c))、これにより、最終的な光学素子用原版10を製造する(図1(d))。なお、放射線硬化工程および焼成工程においては、各種の製造条件(放射線の照射量、放射線の照度、酸素濃度、硬化温度および焼成温度)の液晶層12の表面での分布を所定の範囲で均一にすることにより、液晶層12の硬度の面内分布を所定の範囲で均一にする。
【選択図】 図1
【解決手段】まず、放射線硬化型液晶を支持基材11上に塗布して未硬化状態の液晶層12′を形成する(図1(a))。次に、未硬化状態の液晶層12′に対して所定の雰囲気で所定の照射量の放射線を照射し、硬化状態の液晶層12を形成する(図1(b))。最後に、ホットプレート25により硬化状態の液晶層12を所定の温度で加熱して焼成し(図1(c))、これにより、最終的な光学素子用原版10を製造する(図1(d))。なお、放射線硬化工程および焼成工程においては、各種の製造条件(放射線の照射量、放射線の照度、酸素濃度、硬化温度および焼成温度)の液晶層12の表面での分布を所定の範囲で均一にすることにより、液晶層12の硬度の面内分布を所定の範囲で均一にする。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、液晶表示装置等のディスプレイ装置で用いられる光学素子に係り、とりわけ、光学素子として用いられる液晶層を備えた光学素子用原版の製造方法および光学素子用原版に関する。なお、本明細書中において「液晶層」という用語は、光学的に液晶の性質を有する分子からなる層という意味で用い、層の状態としては流動性のある液晶相の状態の他、オリゴマーやポリマーからなる固化された固相の状態も含む。また、その相構造としては、液晶相の持つ分子配列を保っている場合に限らず、等方性の相構造を持つ場合も含む。
【0002】
【従来の技術】
従来から、液晶層を備えた光学素子として、コレステリック相構造を有する液晶層(コレステリック液晶層)を備えた偏光分離素子や偏光板、カラーフィルタ等が提案されている。また、ネマチック相構造やスメクチック相構造等を有する液晶層を備えた位相差層等も提案されている。
【0003】
ところで、このような液晶層を備えた光学素子を製造する場合には、大型のガラス基板等の上に液晶層を形成して光学素子用原版を作製してから、任意のサイズで1つまたは複数の光学素子を製造する方法が一般的である。そして、この方法では、最終的に製造される光学素子を光学素子用原版から切り出すため、ガラス基板等の上に形成された液晶層に対して、光学素子の外形に対応する部分を残してその外周部分を除去する処理(パターニング)が行われる。また、この方法に関連して、個々の光学素子に対応する液晶層の部分に微細なパターンを形成する(例えばスルーホールを空けたり、ストライプ状の加工を施したりする)ことも行われる。
【0004】
従来においては、このようなパターニングを行うための方法として、カッター等の切削工具を用いて液晶層を除去する方法が知られている。
【0005】
しかしながら、このような切削工具を用いた方法では、パターニングの処理に時間がかかり、また煩雑な作業が必要になるという問題がある。また、液晶層が除去された端面でバリが出やすく、また残された液晶層がガラス基板等から剥がれやすい状態になるという問題がある。
【0006】
このような観点から本出願人は先に、上述したようなパターニングを行うための方法として、レーザ光を用いて液晶層を部分的に除去する方法を提案している(特願2002−025092号)。
【0007】
【発明が解決しようとする課題】
しかしながら、このようなレーザ光を用いた方法では、上述したような切削工具を用いた方法におけるような問題は解決することができるものの、液晶層のうち除去対象となる部分の硬度によって加工条件が大きく変わってしまい、同一の光学素子用原版内であっても、硬度分布のムラに起因してパターニングを良好に行えない場合があるという問題がある。すなわち、液晶層の硬度によって液晶層を適切に除去するために必要とされるレーザ光の出力が異なっているので、液晶層の硬度がレーザ光の出力に対して予想よりも小さいときには下地であるガラス基板等を傷つけやすく、また、液晶層の硬度がレーザ光の出力に対して予想よりも大きいときには液晶層を完全に除去しきれないことがあるという問題がある。
【0008】
本発明はこのような点を考慮してなされたものであり、効率的にかつ高い品質でパターニングを行うことが可能な液晶層を備えた光学素子用原版の製造方法および光学素子用原版を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、第1の解決手段として、放射線硬化型液晶を支持基材上に塗布して未硬化状態の液晶層を形成する工程と、前記未硬化状態の液晶層に対して所定の雰囲気で所定の照射量の放射線を照射し、硬化状態の液晶層を形成する放射線硬化工程とを含み、前記放射線硬化工程における前記放射線の照射量分布が前記液晶層の表面で(最小値)/(最大値)≧0.8の関係を満たし、前記雰囲気の酸素濃度分布が前記液晶層の表面で(最小値)/(最大値)≧0.65の関係を満たし、前記雰囲気の硬化温度分布が前記液晶層の表面で(最小値)/(最大値)≧0.9の関係を満たすことを特徴とする、光学素子用原版の製造方法を提供する。
【0010】
なお、本発明の第1の解決手段においては、前記放射線硬化工程において、前記放射線の照射量は照度と照射時間との積により表され、その照度分布が前記液晶層の表面で(最小値)/(最大値)≧0.8の関係を満たすことが好ましい。また、本発明の第1の解決手段においては、前記硬化状態の液晶層を所定の温度で加熱して焼成する焼成工程をさらに含み、前記焼成工程における焼成温度分布が前記液晶層の表面で(最小値)/(最大値)≧0.9の関係を満たすことが好ましい。
【0011】
本発明は、第2の解決手段として、熱硬化型液晶を支持基材上に塗布して未硬化状態の液晶層を形成する工程と、前記未硬化状態の液晶層を所定の温度で加熱して焼成し、硬化状態の液晶層を形成する焼成工程とを含み、前記焼成工程における焼成温度分布が前記液晶層の表面で(最小値)/(最大値)≧0.9の関係を満たすことを特徴とする、光学素子用原版の製造方法を提供する。
【0012】
本発明は、第3の解決手段として、上述した第1または第2の解決手段により製造された光学素子用原版であって、支持基材と、前記支持基材上に形成され、レーザ光の照射によりパターニングを行うことが可能な硬化状態の液晶層とを備え、前記液晶層の硬度の面内分布が(最小値)/(最大値)≧0.8の関係を満たすことを特徴とする光学素子用原版を提供する。
【0013】
なお、本発明の第3の解決手段においては、前記硬化状態の液晶層がコレステリック相であることが好ましい。
【0014】
本発明によれば、支持基材上に塗布された放射線硬化型液晶または熱硬化型液晶を硬化させる放射線硬化工程および焼成工程において、各種の製造条件(放射線の照射量、放射線の照度、酸素濃度、硬化温度および焼成温度)の液晶層の表面での分布を所定の範囲で均一にしているので、液晶層の硬度の面内分布を所定の範囲で均一にすることができる。このため、硬度分布のムラに起因してパターニングを良好に行えないということがなくなり、下地である支持基材を傷つけたり、液晶層が完全に除去しきれないという事態を防止して、液晶層を効率的にかつ高い品質でパターニングを行うことができる。
【0015】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
【0016】
(光学素子用原版)
まず、図3により、本発明の一実施の形態に係る光学素子用原版について説明する。
【0017】
図3に示すように、本実施の形態に係る光学素子用原版10は、液晶層を備えた光学素子を製造するために用いられるものであり、支持基材11と、支持基材11上に形成された液晶層12とを備えている。
【0018】
ここで、液晶層12は、レーザ光の照射によりパターニングを行うことが可能なものであり、後述するように、光学素子の外形に対応する部分を残して液晶層12の外周部分を除去する処理(パターニング)を行ったり、液晶層12の部分に微細なパターンを形成する(例えばスルーホールを空けたり、ストライプ状の加工を施したりする)ことにより、最終的な光学素子を得ることができる。
【0019】
なお、このようにして得られる光学素子は、液晶層12の種類に応じて種々のものが挙げられる。具体的には、液晶層12としてコレステリック相構造を有するコレステリック液晶層を用いる場合には、偏光分離素子や偏光板、カラーフィルタ等を製造することが可能である。また、液晶層12としてネマチック相構造やスメクチック相構造等を有する液晶層を用いる場合には、位相差層等を製造することが可能である。
【0020】
ここで、最終的に得られる光学素子としては、支持基材上に液晶層が形成されたものの他、支持基材から剥離された液晶層単体のものを用いることができる。また、必要に応じて、液晶層を複数積層したり、他の光学部材(カラーフィルタや位相差板、直線偏光板等)と組み合わせて用いることも可能である。さらに、必要に応じて、液晶層上にハードコート層を積層してもよい。なお、ハードコート層は、液晶表示装置等に組み込まれて用いられる光学素子に高い耐久性や密着性を付与するためのものである。
【0021】
以下、光学素子用原版10における支持基材11および液晶層12の詳細について説明する。
【0022】
(支持基材)
支持基材11は、液晶層12の支持体として機能するものであり、パターニングを行う際の支持体として用いられる他、支持基材11が液晶層12とともに光学素子の一部として用いられる場合には、光学素子における支持体としても用いられる。このような光学素子が液晶表示装置等に組み込まれて用いられる場合には、支持基材11は透明な素材からなることが好ましい。ただし、光学素子の用途によっては、支持基材11が鏡面反射や拡散反射の機能を有していてもよい。なお、透明な素材としては、光学的に等方性であるものは特に制限なく用いることができるが、ガラス基板が最も適切である。これに対し、延伸フィルム等の異方性のあるフィルム基材は、光が透過するときに偏光状態を変化させてしまうので一般的には好ましくないが、フィルム基材自体が持つ位相差量を考慮した光学的な設計がなされていれば問題なく用いることができる。
【0023】
(液晶層)
液晶層12としては、液晶の性質を有する分子からなる層であれば特に制限なく用いることができる。ただし、液晶層12の安定性(耐衝撃性や耐熱性、耐溶剤性、良好な光学的性質)を高める必要があることから、液晶層12は流動性のないものであることが好ましい。具体的には、モノマーやオリゴマー、ポリマー等の重合性分子からなる層であることが好ましい。
【0024】
液晶層12の相状態は、光学素子に求められる偏光機能等により異なるが、コレステリック相やネマチック相、スメクチック相、等方相等の任意の状態をとることができる。また、液晶層12の軸方向も、プラーナー配向や垂直配向等の任意の方向をとることができる。さらに、液晶層12の面内で複数の相状態や軸方向をとることも可能である。
【0025】
ここで、光学素子として円偏光分離素子を製造する場合には、液晶層12として、コレステリック相構造を有する液晶層(コレステリック液晶層)、すなわちグランジャン配向により入射光を左右の円偏光成分に分離する機能を有する液晶層を用いることができる。このようなコレステリック液晶層としては、液晶配向性を付与する共役性の直鎖状分子を有するものを用いることができ、モノマー、オリゴマーおよびポリマーのいずれでもよい。ただし、支持基材等を用いることなく安定してフィルム状に形成するためには、オリゴマーやポリマーを用いることが好ましい。ここで、コレステリック液晶としては例えば、メソゲン基を結合した構造を有するポリエステル系やポリアミド系、ポリアクリレート系等の分子を用いることができ、必要に応じて、カイラル剤と呼ばれるキラル成分を有する化合物が混合される。なお、このようなコレステリック液晶層としては、中心選択反射波長が異なる(すなわち、螺旋ピッチが異なる)層を複数積層したものでもよく、また一層の中で螺旋ピッチを変化させたものでもよい。
【0026】
なお、レーザ光の照射によりパターニングが行われる液晶層12は、面内分布が(最小値)/(最大値)≧0.8の関係を満たすような硬度を持つことが好ましい。
【0027】
ここで、液晶層12の硬度は弾性率と関連付けられる特性であり、硬いということは弾性率が大きいということを意味する。なお、液晶層12のような高分子固体は金属や低分子化合物と異なり、一般的に次のような特徴を持つことが知られている。(1)ポリマーの構成単位であるモノマーが共有結合で結ばれているので、分子軸方向と直角の方向に対して力学的、電気的および光学的な物理的性質に関して異方性を示す。(2)それぞれのポリマー鎖で重合度が異なるため、分子量分布が存在する。(3)数100Kの狭い温度範囲内にてガラス状態からゴム状態までの大きな物性変化をする。ここで、上述した(1)〜(3)の特徴を持つ高分子固体の物性を評価する手法の一つとしてレオロジー的解析法が知られている。高分子固体は一般に、フックの法則に従う弾性的性質と、ニュートンの法則に従う粘性的性質とを併せ持ち、粘弾性体とも呼ばれるものである。このような高分子固体の弾性率を測定する粘弾性測定法には静的粘弾性測定法および動的粘弾性測定法があるが、短時間での刺激応答としての弾性率を測定することができるという点で動的粘弾性測定法が好ましい。
【0028】
図3に示すような光学素子用原版10において、支持基材11上に形成された液晶層12の弾性率を動的粘弾性測定法により測定する手法は次のとおりである。
【0029】
すなわち、支持基材11上に液晶層12が形成された光学素子用原版10から10mm×10mmのサイズの試料を切り出すとともに、切り出された試料を動的粘弾性装置の圧縮治具に装着し、試料全体の弾性率を測定する。具体的には、強制振動非共振法により試料の圧縮方向に振動歪みを与え、20〜200℃の温度範囲にて特定周波数での温度依存性測定を行い、これにより得られた動的粘弾性データを解析して貯蔵弾性率E′を求める。ここで、貯蔵弾性率E′が液晶層12の弾性率として定義される。なお、動的粘弾性装置としては、セイコーインスツルメンツ(株)社製の「粘弾性スペクトロメータEXSTAR6000DMS」、(株)島津製作所製の「動的粘弾性測定装置TRITEC2000」、(株)ユービーエム(UBM)製の「動的粘弾性測定装置Rheogel−E4000」等が挙げられる。
【0030】
なお、以上のようにして弾性率を測定する際には、測定対象となる試料の特性に応じて振動歪みを設定する必要がある。高分子固体からなる試料の場合には、その膜厚によって変動はあるものの、一般的には振動歪みを0.1〜30μm程度に設定することが好ましい。膜厚が薄い場合や、膜質が硬い場合には、測定装置の負荷からみて、0.1〜5μm程度に設定することが好ましい。なお、本実施の形態および後述する実施例においては、膜厚15μmに対して2μmの振動歪みを与えるものとする。
【0031】
なお、本実施の形態および後述する実施例においては、液晶層12の硬度を測定する評価手法として、動的粘弾性測定法を用いているが、硬さを示す指標を測定する評価手法であれば特に制限なく用いることができ、例えば鉛筆硬度計やフィッシャー硬度計等による測定法を用いてもよい。
【0032】
(光学素子用原版の製造方法)
次に、上述したような液晶層12を備えた光学素子用原版10の製造方法について説明する。なお、このような光学素子用原版10の製造方法としては、支持基材11上に塗布された放射線硬化型液晶(紫外線硬化型液晶等)を放射線(紫外線や電子線等)の照射により硬化(重合)させて液晶層12を形成する方法や、支持基材11上に塗布された熱硬化型液晶を加熱により硬化(重合)させて液晶層12を形成する方法等を用いることができる。
【0033】
まず、放射線硬化型液晶を用いる方法について説明する。
【0034】
この場合には、図1に示すように、まず、放射線硬化型液晶を支持基材11上に塗布して未硬化状態の液晶層12′を形成する(図1(a))。
【0035】
次に、未硬化状態の液晶層12′に対して所定の雰囲気で所定の照射量の放射線を照射し、硬化状態の液晶層12を形成する(図1(b))。
【0036】
なお、この放射線硬化工程においては、放射線の照射量や照度、雰囲気(酸素濃度や硬化温度等)によって液晶層12中の分子の結合状態が変化するため、これらのファクターは最終的に得られる硬化状態の液晶層12の硬度に影響を及ぼす。ここで、放射線の照射量および照度の間には、(照射量)=(照度)×(照射時間)の関係があるが、分子の重合反応において単位時間あたりのエネルギー量も重要であるため、照射量と照度とは液晶層12の硬度を決定する上でのファクターとしては等価ではないとみなす。そして、上述した放射線の照射量、放射線の照度、酸素濃度および硬化温度の4つのファクターの液晶層12の表面での分布を所定の範囲で均一にすることにより、液晶層12の硬度の面内分布を所定の範囲で均一にすることができる。具体的には、液晶層12の硬度の面内分布が(最小値)/(最大値)≧0.8の関係を満たすようにするためには、放射線の照射量分布は、液晶層12の表面で(最小値)/(最大値)≧0.8の関係を満たすとよく、好ましくは(最小値)/(最大値)≧0.9、さらに好ましくは(最小値)/(最大値)≧0.95の関係を満たす。また、放射線の照度分布は、液晶層12の表面で(最小値)/(最大値)≧0.8の関係を満たすとよく、好ましくは(最小値)/(最大値)≧0.9、さらに好ましくは(最小値)/(最大値)≧0.95の関係を満たす。さらに、雰囲気の酸素濃度分布は、液晶層12の表面で(最小値)/(最大値)≧0.65の関係を満たすとよく、好ましくは(最小値)/(最大値)≧0.8の関係を満たす。さらにまた、雰囲気の硬化温度分布は、液晶層12の表面で(最小値)/(最大値)≧0.9の関係を満たすとよい。
【0037】
最後に、ホットプレート25により硬化状態の液晶層12を所定の温度で加熱して焼成し(図1(c))、これにより、最終的な光学素子用原版10を製造する(図1(d))。
【0038】
なお、この焼成工程においては、焼成温度によって液晶層12中の分子の結合状態が変化するため、このファクターは最終的に得られる硬化状態の液晶層12の硬度に影響を及ぼす。具体的には、液晶層12の硬度の面内分布が(最小値)/(最大値)≧0.8の関係を満たすようにするためには、焼成温度分布が液晶層12の表面で(最小値)/(最大値)≧0.9の関係を満たすとよく、好ましくは(最小値)/(最大値)≧0.95の関係を満たす。なお、加熱方法としては、図1(c)に示すようにホットプレート25上に支持基材11の底面を密着して保持する他、ホットプレートと支持基材11の底面との間に僅かな気層を設けた状態で両者を平行に保持するようにしてもよい。また、オーブンの内部空間のように均一に加熱された空間中に静置してもよく、焼成温度の均一性が得られるのであれば加熱方法には特に制限はない。なお、焼成時間は、1枚の光学素子用原版10について見たときの液晶層12の硬度の面内分布にはそれほど影響を与えないが、硬度の絶対値には影響を与える。このため、複数の光学素子用原版10のそれぞれに対するレーザ光の加工条件を均一にするためには、加熱装置等への出し入れの時間差等を調整して焼成時間を同一にすることが好ましい。
【0039】
次に、熱硬化型液晶を加熱により硬化(重合)させる方法について説明する。
【0040】
この場合には、図2に示すように、まず、熱硬化型液晶を支持基材11上に塗布して未硬化状態の液晶層12′を形成する(図2(a))。
【0041】
その後、未硬化状態の液晶層12′を所定の温度で加熱して焼成し、硬化状態の液晶層12を形成し(図2(b))、これにより、最終的な光学素子用原版10を製造する(図2(c))。
【0042】
なお、この焼成工程において、焼成温度によって液晶層12中の分子の結合状態が変化するため、このファクターにより最終的に得られる硬化状態の液晶層12の硬度に影響が及ぼされる。具体的には、液晶層12の硬度の面内分布が(最小値)/(最大値)≧0.8の関係を満たすようにするためには、焼成温度分布が液晶層12の表面で(最小値)/(最大値)≧0.9の関係を満たすとよく、好ましくは(最小値)/(最大値)≧0.95の関係を満たす。なお、加熱方法としては、図2(b)に示すようにホットプレート25上に支持基材11の底面を密着して保持する他、ホットプレート25と支持基材11の底面との間に僅かな気層を設けた状態で両者を平行に保持するようにしてもよい。また、オーブンの内部空間のように均一に加熱された空間中に静置してもよく、焼成温度の均一性が得られるのであれば加熱方法には特に制限はない。なお、焼成時間は、1枚の光学素子用原版10について見たときの液晶層12の硬度の面内分布にはそれほど影響を与えないが、硬度の絶対値には影響を与える。このため、複数の光学素子用原版10のそれぞれに対するレーザ光の加工条件を均一にするためには、加熱装置等への出し入れの時間差等を調整して焼成時間を同一にすることが好ましい。
【0043】
ここで、液晶層12は、後述するように、レーザ光の照射によりパターニングが行われるが、この際には、液晶層12中の分子の結合を切断し、気化または破壊することにより、レーザ光が照射された部位の液晶層を除去する。一般的に液晶層12の硬度は分子構造の違いに関連付けられるものであるが、重合性分子である場合には、その重合状態が液晶層12の硬度を決定する一つの要素となる。ここでいう重合状態とは、重合率(架橋密度)やポリマーネットワーク構造を指す。具体的には、重合率は、アクリル基等の重合性官能基がどれだけ反応しているかを示し、ポリマーネットワーク構造は、例えば、モノマーやオリゴマーの低分子がポリマー化する場合、その結合状態が1次元的、2次元的または3次元的な状態のいずれなのかというような立体的な構造の状態を示す。硬度との関係では、重合率が大きいほど硬い液晶層となり、また、ポリマーネットワーク構造が高次元であるほど硬い液晶層となる。上述した放射線硬化工程および焼成工程で注目した各種の製造条件(放射線の照射量、放射線の照度、酸素濃度、硬化温度および焼成温度)は、分子の重合反応において重要なファクターとなっている。具体的には、放射線照射量が多いほど、重合反応が進み、液晶層の硬度が上がる。また、放射線照度が強いほど重合反応が進み、同様にして、液晶層の硬度が上がる。なお、放射線照射時の硬化温度が高いほど、重合反応が進み、また、熱的に誘起される分子運動により、より高次元のポリマーネットワーク構造をとることが可能となり、液晶層の硬度が上がる。さらに、酸素濃度が低いほど、重合反応におけるラジカル阻害による反応性低下が抑えられ、硬い液晶層となる。さらにまた、焼成温度が高いほど、放射線による重合反応で反応しきれなかった部分がさらに反応し、液晶層の硬度が上がる。
【0044】
なお、上述した放射線硬化工程および焼成工程で注目した各種の製造条件(放射線の照射量、放射線の照度、酸素濃度、硬化温度および焼成温度)と液晶層12の硬度との関係は上述したとおりであるが、レーザ光の照射によるパターニングで重要なのは、液晶層12の硬度の絶対値ではなく、その面内分布(最小値と最大値との比)である。なお、上述した各種の製造条件の面内分布が不均一である場合には、その不均一性に応じた硬度の差が液晶層12の面内分布として発生し、パターニングを良好に行えなくなる。
【0045】
(光学素子用原版のパターニング方法)
次に、図4により、図3に示す光学素子用原版10を用いて液晶層12のパターニングを行う方法について説明する。なおここでは、液晶層12のパターニングの一例として、液晶層12のうち光学素子の外形に対応する部分を残してその外周部分を除去する処理を例に挙げて説明する。
【0046】
まず、図4(a)に示すように、支持基材11上に液晶層12を塗膜等として形成することにより、光学素子用原版10を準備する。
【0047】
次に、図4(b)に示すように、光学素子用原版10の液晶層12に対してレーザ光21を照射し、液晶層12を支持基材11から部分的に除去することにより、液晶層12に所定のパターンを付与する。具体的には、光学素子用原版10の液晶層12のうち、光学素子の外縁に対応する輪郭部分(除去すべき外周部分の輪郭部分)にレーザ加工装置(図示せず)からレーザ光21を所定の線幅で照射して除去し、輪郭線15を形成する。このとき、レーザ光21としては、液晶層12を除去するだけの出力があれば、可視光や赤外光、紫外光等の任意の波長のものを用いることができる。また、レーザ光21の線幅や繰り返し周波数等の加工条件は、除去される液晶層12の性質により適宜設定される。なおこのとき、液晶層12のうち除去すべき外周部分の膜残りがなく、さらに支持基材11にダメージを与えないような加工条件に調整する。なお、レーザ加工装置としては、レーザ光の出力が安定しているものであれば特に制限なく用いることができ、LD励起式およびランプ励起式のいずれの方式の装置も用いることができる。なお、出力の安定性の程度としては、Pulse to Pulseで±8%程度であるとよく、より好ましくは±5%程度である。なお、レーザ光の描画方法は、ガルバノスキャナを用いた描画方法を用いることができる他、レーザ光の位置を固定として、光学素子用原版10をXYステージにより移動させてもよい。
【0048】
次に、図4(c)に示すように、光学素子用原版10の液晶層12のうち、光学素子の外形に対応する部分12aを残してその外周部分12bを支持基材11から剥離して除去し、光学素子20を製造する。なお、この場合の剥離方法としては、粘着フィルム等により、剥離されるべき液晶層12の外周部分12bをラミネートし、粘着フィルムを基材から遠ざける方向に引き剥がすことにより剥離する方法を用いることができる。また、圧縮ガスの吹き付けにより、剥離されるべき液晶層12の外周部分12bを吹き飛ばして剥離する方法や、ピンセット等により、剥離されるべき液晶層12の外周部分12bをつまみ上げながら剥離する方法等を用いることができる。
【0049】
なお、図4(c)に示す光学素子20においては、最終的に、支持基材11を液晶層12aの外形に合わせて切断したり、支持基材11を液晶層12aから剥離するようにしてもよい。
【0050】
ここで、図4(b)(c)に示す工程では、光学素子用原版10の液晶層12のうち、光学素子の外縁に対応する輪郭部分にレーザ光21を照射して液晶層12に輪郭線15を形成した後、粘着フィルム等を用いた剥離方法により、光学素子の外形に対応する部分12aを残してその外周部分12bを支持基材11から除去するにしているが、これに限らず、液晶層12のうち除去すべき外周部分12bの全部をレーザ光21の照射により除去するようにしてもよい。
【0051】
また、図4(a)(b)(c)においては、液晶層12のパターニングの一例として、液晶層12のうち光学素子の外形に対応する部分を残してその外周部分を除去する処理を例に挙げて説明したが、液晶層12のパターニング形状はこれに限らず、液晶層12にスルーホールを空けたり、ストライプ状の加工を施したり、数μm程度の微細加工を施す場合にも同様にして適用することができる。
【0052】
このように本実施の形態によれば、支持基材11上に塗布された放射線硬化型液晶または熱硬化型液晶を硬化させる放射線硬化工程および焼成工程において、各種の製造条件(放射線の照射量、放射線の照度、酸素濃度、硬化温度および焼成温度)の液晶層12の表面での分布を所定の範囲で均一にしているので、液晶層12の硬度の面内分布を所定の範囲で均一にすることができる。このため、硬度分布のムラに起因してパターニングを良好に行えないということがなくなり、下地である支持基材11を傷つけたり、液晶層12が完全に除去しきれないという事態を防止して、液晶層12を効率的にかつ高い品質でパターニングを行うことができる。
【0053】
【実施例】
次に、上述した実施の形態の具体的実施例について述べる。
【0054】
(実施例1)
100mm□(100mm×100mm)のガラス基板上にポリイミド膜を0.07μm厚で成膜し、その表面にラビング処理を施して、表面に配向能を有する支持基材を準備した。
【0055】
一方、紫外線硬化型ネマチック液晶からなる主剤にカイラル剤を添加したモノマー混合液晶を光重合開始剤とともにトルエンに溶解し、コレステリック液晶溶液を調整した。そして、この溶液を支持基材上にスピンコーターにより塗布し、乾燥工程を経て溶剤を除去した後に、紫外線(50mW/cm2×1分)を照射して硬化させることにより、コレステリック液晶層を15μm厚で成膜し、光学素子用原版(実施例1)を得た。
【0056】
このとき、紫外線の照射により硬化を行うとともに、ホットプレート上にて80℃で加熱を行った。なお、ホットプレートのうち、ガラス基板が接する100mm□の領域内の加熱温度分布は80℃±1℃((最小値)/(最大値)=0.98)であった。また、紫外線の照度分布は、ガラス基板の表面で、(最小値)/最大値=0.85、照射量分布も、ガラス基板の表面で、(最小値)/最大値=0.85であった。なお、紫外線の照射は大気中で行ったため、事実上、液晶層上の酸素濃度分布は均一であった。
【0057】
(実施例2)
実施例1で得られた光学素子用原版をオーブン内にて200℃で1時間焼成することにより、光学素子用原版(実施例2)を得た。なお、焼成温度分布は200℃±2℃((最小値)/(最大値)=0.98)であった。
【0058】
(比較例1〜5)
実施例1におけるコレステリック液晶溶液の塗布の工程まで同様な方法で行い、紫外線の照射や焼成時の製造条件を表1のように偏光して光学素子用原版(比較例1〜5)を得た。
【0059】
【表1】
【0060】
(評価結果1)
まず、実施例1、2、比較例1〜5のそれぞれに係る光学素子用原版の液晶層の硬度を評価した。ここでの評価は弾性率を指標とした。弾性率が大きいほど硬いことを示す。測定装置としては、(株)ユービーエム(UBM)製の「動的粘弾性測定装置Rheogel−E4000」を用い、試料としては、100mm□の基板から、4隅と中央部分の各1cm□を切り出したものを用いた。液晶層はガラス基板上に成膜されているが、ガラス基板は剛体とみなせるので、測定に関して影響はない。測定チャックとして圧縮用治具を用い、周波数10Hz、振動歪み2μm、波形は正弦波の条件で、測定を行った。表2に、各光学素子用原版の弾性率分布の結果を示す。
【0061】
【表2】
【0062】
表2から分かるように、各種の製造条件の面内分布が均一に保たれた実施例1、2の光学素子用原版における液晶層の硬度に対する弾性率の面内分布は(最小値)/(最大値)≧0.8の範囲にあったが、少なくとも一つの製造条件の面内分布が不均一である比較例1〜5の光学素子用原版における液晶層の弾性率の面内分布は(最小値)/(最大値)≧0.8の範囲から外れた。
【0063】
(評価結果2)
次に、実施例1、2、比較例1〜5のそれぞれに係る光学素子用原版の液晶層にレーザ光を照射してパターニング加工を行い、液晶層の加工状況を評価した。具体的には、レーザ光を線幅0.1mmで照射し、10mm間隔で80mmの長さのライン加工を行った。なお、レーザ光としては、YAGレーザーの266nm(出力:約150mW)を用い、その出力の安定性はPulse to Pulseで±6%であった。表3に、各光学素子用原版の加工状況の結果を示す。
【0064】
【表3】
【0065】
表3に示すように、液晶層の弾性率分布が所望の範囲((最小値)/(最大値)≧0.8)にある実施例1、2の光学素子用原版に対するパターニングは良好に行えたが、液晶層の弾性率分布が所望の範囲にない比較例1〜5の光学素子用原版に対するパターニングは良好に行えなかった。
【0066】
【発明の効果】
以上説明したように本発明によれば、硬度分布のムラに起因してパターニングを良好に行えないということがなくなり、下地である支持基材を傷つけたり、液晶層が完全に除去しきれないという事態を防止して、液晶層を効率的にかつ高い品質でパターニングを行うことができる。
【図面の簡単な説明】
【図1】本発明による光学素子用原版の製造方法の一実施の形態を説明するための工程図。
【図2】本発明による光学素子用原版の製造方法の他の実施の形態を説明するための工程図。
【図3】本発明の一実施の形態に係る光学素子用原版を説明するための図。
【図4】本発明の一実施の形態に係る製造方法により得られた光学素子用原版のパターニング方法を説明するための工程図。
【符号の説明】
10 光学素子用原版
11 支持基材
12,12′ 液晶層
15 輪郭線
20 光学素子
21 レーザ光
【発明の属する技術分野】
本発明は、液晶表示装置等のディスプレイ装置で用いられる光学素子に係り、とりわけ、光学素子として用いられる液晶層を備えた光学素子用原版の製造方法および光学素子用原版に関する。なお、本明細書中において「液晶層」という用語は、光学的に液晶の性質を有する分子からなる層という意味で用い、層の状態としては流動性のある液晶相の状態の他、オリゴマーやポリマーからなる固化された固相の状態も含む。また、その相構造としては、液晶相の持つ分子配列を保っている場合に限らず、等方性の相構造を持つ場合も含む。
【0002】
【従来の技術】
従来から、液晶層を備えた光学素子として、コレステリック相構造を有する液晶層(コレステリック液晶層)を備えた偏光分離素子や偏光板、カラーフィルタ等が提案されている。また、ネマチック相構造やスメクチック相構造等を有する液晶層を備えた位相差層等も提案されている。
【0003】
ところで、このような液晶層を備えた光学素子を製造する場合には、大型のガラス基板等の上に液晶層を形成して光学素子用原版を作製してから、任意のサイズで1つまたは複数の光学素子を製造する方法が一般的である。そして、この方法では、最終的に製造される光学素子を光学素子用原版から切り出すため、ガラス基板等の上に形成された液晶層に対して、光学素子の外形に対応する部分を残してその外周部分を除去する処理(パターニング)が行われる。また、この方法に関連して、個々の光学素子に対応する液晶層の部分に微細なパターンを形成する(例えばスルーホールを空けたり、ストライプ状の加工を施したりする)ことも行われる。
【0004】
従来においては、このようなパターニングを行うための方法として、カッター等の切削工具を用いて液晶層を除去する方法が知られている。
【0005】
しかしながら、このような切削工具を用いた方法では、パターニングの処理に時間がかかり、また煩雑な作業が必要になるという問題がある。また、液晶層が除去された端面でバリが出やすく、また残された液晶層がガラス基板等から剥がれやすい状態になるという問題がある。
【0006】
このような観点から本出願人は先に、上述したようなパターニングを行うための方法として、レーザ光を用いて液晶層を部分的に除去する方法を提案している(特願2002−025092号)。
【0007】
【発明が解決しようとする課題】
しかしながら、このようなレーザ光を用いた方法では、上述したような切削工具を用いた方法におけるような問題は解決することができるものの、液晶層のうち除去対象となる部分の硬度によって加工条件が大きく変わってしまい、同一の光学素子用原版内であっても、硬度分布のムラに起因してパターニングを良好に行えない場合があるという問題がある。すなわち、液晶層の硬度によって液晶層を適切に除去するために必要とされるレーザ光の出力が異なっているので、液晶層の硬度がレーザ光の出力に対して予想よりも小さいときには下地であるガラス基板等を傷つけやすく、また、液晶層の硬度がレーザ光の出力に対して予想よりも大きいときには液晶層を完全に除去しきれないことがあるという問題がある。
【0008】
本発明はこのような点を考慮してなされたものであり、効率的にかつ高い品質でパターニングを行うことが可能な液晶層を備えた光学素子用原版の製造方法および光学素子用原版を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、第1の解決手段として、放射線硬化型液晶を支持基材上に塗布して未硬化状態の液晶層を形成する工程と、前記未硬化状態の液晶層に対して所定の雰囲気で所定の照射量の放射線を照射し、硬化状態の液晶層を形成する放射線硬化工程とを含み、前記放射線硬化工程における前記放射線の照射量分布が前記液晶層の表面で(最小値)/(最大値)≧0.8の関係を満たし、前記雰囲気の酸素濃度分布が前記液晶層の表面で(最小値)/(最大値)≧0.65の関係を満たし、前記雰囲気の硬化温度分布が前記液晶層の表面で(最小値)/(最大値)≧0.9の関係を満たすことを特徴とする、光学素子用原版の製造方法を提供する。
【0010】
なお、本発明の第1の解決手段においては、前記放射線硬化工程において、前記放射線の照射量は照度と照射時間との積により表され、その照度分布が前記液晶層の表面で(最小値)/(最大値)≧0.8の関係を満たすことが好ましい。また、本発明の第1の解決手段においては、前記硬化状態の液晶層を所定の温度で加熱して焼成する焼成工程をさらに含み、前記焼成工程における焼成温度分布が前記液晶層の表面で(最小値)/(最大値)≧0.9の関係を満たすことが好ましい。
【0011】
本発明は、第2の解決手段として、熱硬化型液晶を支持基材上に塗布して未硬化状態の液晶層を形成する工程と、前記未硬化状態の液晶層を所定の温度で加熱して焼成し、硬化状態の液晶層を形成する焼成工程とを含み、前記焼成工程における焼成温度分布が前記液晶層の表面で(最小値)/(最大値)≧0.9の関係を満たすことを特徴とする、光学素子用原版の製造方法を提供する。
【0012】
本発明は、第3の解決手段として、上述した第1または第2の解決手段により製造された光学素子用原版であって、支持基材と、前記支持基材上に形成され、レーザ光の照射によりパターニングを行うことが可能な硬化状態の液晶層とを備え、前記液晶層の硬度の面内分布が(最小値)/(最大値)≧0.8の関係を満たすことを特徴とする光学素子用原版を提供する。
【0013】
なお、本発明の第3の解決手段においては、前記硬化状態の液晶層がコレステリック相であることが好ましい。
【0014】
本発明によれば、支持基材上に塗布された放射線硬化型液晶または熱硬化型液晶を硬化させる放射線硬化工程および焼成工程において、各種の製造条件(放射線の照射量、放射線の照度、酸素濃度、硬化温度および焼成温度)の液晶層の表面での分布を所定の範囲で均一にしているので、液晶層の硬度の面内分布を所定の範囲で均一にすることができる。このため、硬度分布のムラに起因してパターニングを良好に行えないということがなくなり、下地である支持基材を傷つけたり、液晶層が完全に除去しきれないという事態を防止して、液晶層を効率的にかつ高い品質でパターニングを行うことができる。
【0015】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
【0016】
(光学素子用原版)
まず、図3により、本発明の一実施の形態に係る光学素子用原版について説明する。
【0017】
図3に示すように、本実施の形態に係る光学素子用原版10は、液晶層を備えた光学素子を製造するために用いられるものであり、支持基材11と、支持基材11上に形成された液晶層12とを備えている。
【0018】
ここで、液晶層12は、レーザ光の照射によりパターニングを行うことが可能なものであり、後述するように、光学素子の外形に対応する部分を残して液晶層12の外周部分を除去する処理(パターニング)を行ったり、液晶層12の部分に微細なパターンを形成する(例えばスルーホールを空けたり、ストライプ状の加工を施したりする)ことにより、最終的な光学素子を得ることができる。
【0019】
なお、このようにして得られる光学素子は、液晶層12の種類に応じて種々のものが挙げられる。具体的には、液晶層12としてコレステリック相構造を有するコレステリック液晶層を用いる場合には、偏光分離素子や偏光板、カラーフィルタ等を製造することが可能である。また、液晶層12としてネマチック相構造やスメクチック相構造等を有する液晶層を用いる場合には、位相差層等を製造することが可能である。
【0020】
ここで、最終的に得られる光学素子としては、支持基材上に液晶層が形成されたものの他、支持基材から剥離された液晶層単体のものを用いることができる。また、必要に応じて、液晶層を複数積層したり、他の光学部材(カラーフィルタや位相差板、直線偏光板等)と組み合わせて用いることも可能である。さらに、必要に応じて、液晶層上にハードコート層を積層してもよい。なお、ハードコート層は、液晶表示装置等に組み込まれて用いられる光学素子に高い耐久性や密着性を付与するためのものである。
【0021】
以下、光学素子用原版10における支持基材11および液晶層12の詳細について説明する。
【0022】
(支持基材)
支持基材11は、液晶層12の支持体として機能するものであり、パターニングを行う際の支持体として用いられる他、支持基材11が液晶層12とともに光学素子の一部として用いられる場合には、光学素子における支持体としても用いられる。このような光学素子が液晶表示装置等に組み込まれて用いられる場合には、支持基材11は透明な素材からなることが好ましい。ただし、光学素子の用途によっては、支持基材11が鏡面反射や拡散反射の機能を有していてもよい。なお、透明な素材としては、光学的に等方性であるものは特に制限なく用いることができるが、ガラス基板が最も適切である。これに対し、延伸フィルム等の異方性のあるフィルム基材は、光が透過するときに偏光状態を変化させてしまうので一般的には好ましくないが、フィルム基材自体が持つ位相差量を考慮した光学的な設計がなされていれば問題なく用いることができる。
【0023】
(液晶層)
液晶層12としては、液晶の性質を有する分子からなる層であれば特に制限なく用いることができる。ただし、液晶層12の安定性(耐衝撃性や耐熱性、耐溶剤性、良好な光学的性質)を高める必要があることから、液晶層12は流動性のないものであることが好ましい。具体的には、モノマーやオリゴマー、ポリマー等の重合性分子からなる層であることが好ましい。
【0024】
液晶層12の相状態は、光学素子に求められる偏光機能等により異なるが、コレステリック相やネマチック相、スメクチック相、等方相等の任意の状態をとることができる。また、液晶層12の軸方向も、プラーナー配向や垂直配向等の任意の方向をとることができる。さらに、液晶層12の面内で複数の相状態や軸方向をとることも可能である。
【0025】
ここで、光学素子として円偏光分離素子を製造する場合には、液晶層12として、コレステリック相構造を有する液晶層(コレステリック液晶層)、すなわちグランジャン配向により入射光を左右の円偏光成分に分離する機能を有する液晶層を用いることができる。このようなコレステリック液晶層としては、液晶配向性を付与する共役性の直鎖状分子を有するものを用いることができ、モノマー、オリゴマーおよびポリマーのいずれでもよい。ただし、支持基材等を用いることなく安定してフィルム状に形成するためには、オリゴマーやポリマーを用いることが好ましい。ここで、コレステリック液晶としては例えば、メソゲン基を結合した構造を有するポリエステル系やポリアミド系、ポリアクリレート系等の分子を用いることができ、必要に応じて、カイラル剤と呼ばれるキラル成分を有する化合物が混合される。なお、このようなコレステリック液晶層としては、中心選択反射波長が異なる(すなわち、螺旋ピッチが異なる)層を複数積層したものでもよく、また一層の中で螺旋ピッチを変化させたものでもよい。
【0026】
なお、レーザ光の照射によりパターニングが行われる液晶層12は、面内分布が(最小値)/(最大値)≧0.8の関係を満たすような硬度を持つことが好ましい。
【0027】
ここで、液晶層12の硬度は弾性率と関連付けられる特性であり、硬いということは弾性率が大きいということを意味する。なお、液晶層12のような高分子固体は金属や低分子化合物と異なり、一般的に次のような特徴を持つことが知られている。(1)ポリマーの構成単位であるモノマーが共有結合で結ばれているので、分子軸方向と直角の方向に対して力学的、電気的および光学的な物理的性質に関して異方性を示す。(2)それぞれのポリマー鎖で重合度が異なるため、分子量分布が存在する。(3)数100Kの狭い温度範囲内にてガラス状態からゴム状態までの大きな物性変化をする。ここで、上述した(1)〜(3)の特徴を持つ高分子固体の物性を評価する手法の一つとしてレオロジー的解析法が知られている。高分子固体は一般に、フックの法則に従う弾性的性質と、ニュートンの法則に従う粘性的性質とを併せ持ち、粘弾性体とも呼ばれるものである。このような高分子固体の弾性率を測定する粘弾性測定法には静的粘弾性測定法および動的粘弾性測定法があるが、短時間での刺激応答としての弾性率を測定することができるという点で動的粘弾性測定法が好ましい。
【0028】
図3に示すような光学素子用原版10において、支持基材11上に形成された液晶層12の弾性率を動的粘弾性測定法により測定する手法は次のとおりである。
【0029】
すなわち、支持基材11上に液晶層12が形成された光学素子用原版10から10mm×10mmのサイズの試料を切り出すとともに、切り出された試料を動的粘弾性装置の圧縮治具に装着し、試料全体の弾性率を測定する。具体的には、強制振動非共振法により試料の圧縮方向に振動歪みを与え、20〜200℃の温度範囲にて特定周波数での温度依存性測定を行い、これにより得られた動的粘弾性データを解析して貯蔵弾性率E′を求める。ここで、貯蔵弾性率E′が液晶層12の弾性率として定義される。なお、動的粘弾性装置としては、セイコーインスツルメンツ(株)社製の「粘弾性スペクトロメータEXSTAR6000DMS」、(株)島津製作所製の「動的粘弾性測定装置TRITEC2000」、(株)ユービーエム(UBM)製の「動的粘弾性測定装置Rheogel−E4000」等が挙げられる。
【0030】
なお、以上のようにして弾性率を測定する際には、測定対象となる試料の特性に応じて振動歪みを設定する必要がある。高分子固体からなる試料の場合には、その膜厚によって変動はあるものの、一般的には振動歪みを0.1〜30μm程度に設定することが好ましい。膜厚が薄い場合や、膜質が硬い場合には、測定装置の負荷からみて、0.1〜5μm程度に設定することが好ましい。なお、本実施の形態および後述する実施例においては、膜厚15μmに対して2μmの振動歪みを与えるものとする。
【0031】
なお、本実施の形態および後述する実施例においては、液晶層12の硬度を測定する評価手法として、動的粘弾性測定法を用いているが、硬さを示す指標を測定する評価手法であれば特に制限なく用いることができ、例えば鉛筆硬度計やフィッシャー硬度計等による測定法を用いてもよい。
【0032】
(光学素子用原版の製造方法)
次に、上述したような液晶層12を備えた光学素子用原版10の製造方法について説明する。なお、このような光学素子用原版10の製造方法としては、支持基材11上に塗布された放射線硬化型液晶(紫外線硬化型液晶等)を放射線(紫外線や電子線等)の照射により硬化(重合)させて液晶層12を形成する方法や、支持基材11上に塗布された熱硬化型液晶を加熱により硬化(重合)させて液晶層12を形成する方法等を用いることができる。
【0033】
まず、放射線硬化型液晶を用いる方法について説明する。
【0034】
この場合には、図1に示すように、まず、放射線硬化型液晶を支持基材11上に塗布して未硬化状態の液晶層12′を形成する(図1(a))。
【0035】
次に、未硬化状態の液晶層12′に対して所定の雰囲気で所定の照射量の放射線を照射し、硬化状態の液晶層12を形成する(図1(b))。
【0036】
なお、この放射線硬化工程においては、放射線の照射量や照度、雰囲気(酸素濃度や硬化温度等)によって液晶層12中の分子の結合状態が変化するため、これらのファクターは最終的に得られる硬化状態の液晶層12の硬度に影響を及ぼす。ここで、放射線の照射量および照度の間には、(照射量)=(照度)×(照射時間)の関係があるが、分子の重合反応において単位時間あたりのエネルギー量も重要であるため、照射量と照度とは液晶層12の硬度を決定する上でのファクターとしては等価ではないとみなす。そして、上述した放射線の照射量、放射線の照度、酸素濃度および硬化温度の4つのファクターの液晶層12の表面での分布を所定の範囲で均一にすることにより、液晶層12の硬度の面内分布を所定の範囲で均一にすることができる。具体的には、液晶層12の硬度の面内分布が(最小値)/(最大値)≧0.8の関係を満たすようにするためには、放射線の照射量分布は、液晶層12の表面で(最小値)/(最大値)≧0.8の関係を満たすとよく、好ましくは(最小値)/(最大値)≧0.9、さらに好ましくは(最小値)/(最大値)≧0.95の関係を満たす。また、放射線の照度分布は、液晶層12の表面で(最小値)/(最大値)≧0.8の関係を満たすとよく、好ましくは(最小値)/(最大値)≧0.9、さらに好ましくは(最小値)/(最大値)≧0.95の関係を満たす。さらに、雰囲気の酸素濃度分布は、液晶層12の表面で(最小値)/(最大値)≧0.65の関係を満たすとよく、好ましくは(最小値)/(最大値)≧0.8の関係を満たす。さらにまた、雰囲気の硬化温度分布は、液晶層12の表面で(最小値)/(最大値)≧0.9の関係を満たすとよい。
【0037】
最後に、ホットプレート25により硬化状態の液晶層12を所定の温度で加熱して焼成し(図1(c))、これにより、最終的な光学素子用原版10を製造する(図1(d))。
【0038】
なお、この焼成工程においては、焼成温度によって液晶層12中の分子の結合状態が変化するため、このファクターは最終的に得られる硬化状態の液晶層12の硬度に影響を及ぼす。具体的には、液晶層12の硬度の面内分布が(最小値)/(最大値)≧0.8の関係を満たすようにするためには、焼成温度分布が液晶層12の表面で(最小値)/(最大値)≧0.9の関係を満たすとよく、好ましくは(最小値)/(最大値)≧0.95の関係を満たす。なお、加熱方法としては、図1(c)に示すようにホットプレート25上に支持基材11の底面を密着して保持する他、ホットプレートと支持基材11の底面との間に僅かな気層を設けた状態で両者を平行に保持するようにしてもよい。また、オーブンの内部空間のように均一に加熱された空間中に静置してもよく、焼成温度の均一性が得られるのであれば加熱方法には特に制限はない。なお、焼成時間は、1枚の光学素子用原版10について見たときの液晶層12の硬度の面内分布にはそれほど影響を与えないが、硬度の絶対値には影響を与える。このため、複数の光学素子用原版10のそれぞれに対するレーザ光の加工条件を均一にするためには、加熱装置等への出し入れの時間差等を調整して焼成時間を同一にすることが好ましい。
【0039】
次に、熱硬化型液晶を加熱により硬化(重合)させる方法について説明する。
【0040】
この場合には、図2に示すように、まず、熱硬化型液晶を支持基材11上に塗布して未硬化状態の液晶層12′を形成する(図2(a))。
【0041】
その後、未硬化状態の液晶層12′を所定の温度で加熱して焼成し、硬化状態の液晶層12を形成し(図2(b))、これにより、最終的な光学素子用原版10を製造する(図2(c))。
【0042】
なお、この焼成工程において、焼成温度によって液晶層12中の分子の結合状態が変化するため、このファクターにより最終的に得られる硬化状態の液晶層12の硬度に影響が及ぼされる。具体的には、液晶層12の硬度の面内分布が(最小値)/(最大値)≧0.8の関係を満たすようにするためには、焼成温度分布が液晶層12の表面で(最小値)/(最大値)≧0.9の関係を満たすとよく、好ましくは(最小値)/(最大値)≧0.95の関係を満たす。なお、加熱方法としては、図2(b)に示すようにホットプレート25上に支持基材11の底面を密着して保持する他、ホットプレート25と支持基材11の底面との間に僅かな気層を設けた状態で両者を平行に保持するようにしてもよい。また、オーブンの内部空間のように均一に加熱された空間中に静置してもよく、焼成温度の均一性が得られるのであれば加熱方法には特に制限はない。なお、焼成時間は、1枚の光学素子用原版10について見たときの液晶層12の硬度の面内分布にはそれほど影響を与えないが、硬度の絶対値には影響を与える。このため、複数の光学素子用原版10のそれぞれに対するレーザ光の加工条件を均一にするためには、加熱装置等への出し入れの時間差等を調整して焼成時間を同一にすることが好ましい。
【0043】
ここで、液晶層12は、後述するように、レーザ光の照射によりパターニングが行われるが、この際には、液晶層12中の分子の結合を切断し、気化または破壊することにより、レーザ光が照射された部位の液晶層を除去する。一般的に液晶層12の硬度は分子構造の違いに関連付けられるものであるが、重合性分子である場合には、その重合状態が液晶層12の硬度を決定する一つの要素となる。ここでいう重合状態とは、重合率(架橋密度)やポリマーネットワーク構造を指す。具体的には、重合率は、アクリル基等の重合性官能基がどれだけ反応しているかを示し、ポリマーネットワーク構造は、例えば、モノマーやオリゴマーの低分子がポリマー化する場合、その結合状態が1次元的、2次元的または3次元的な状態のいずれなのかというような立体的な構造の状態を示す。硬度との関係では、重合率が大きいほど硬い液晶層となり、また、ポリマーネットワーク構造が高次元であるほど硬い液晶層となる。上述した放射線硬化工程および焼成工程で注目した各種の製造条件(放射線の照射量、放射線の照度、酸素濃度、硬化温度および焼成温度)は、分子の重合反応において重要なファクターとなっている。具体的には、放射線照射量が多いほど、重合反応が進み、液晶層の硬度が上がる。また、放射線照度が強いほど重合反応が進み、同様にして、液晶層の硬度が上がる。なお、放射線照射時の硬化温度が高いほど、重合反応が進み、また、熱的に誘起される分子運動により、より高次元のポリマーネットワーク構造をとることが可能となり、液晶層の硬度が上がる。さらに、酸素濃度が低いほど、重合反応におけるラジカル阻害による反応性低下が抑えられ、硬い液晶層となる。さらにまた、焼成温度が高いほど、放射線による重合反応で反応しきれなかった部分がさらに反応し、液晶層の硬度が上がる。
【0044】
なお、上述した放射線硬化工程および焼成工程で注目した各種の製造条件(放射線の照射量、放射線の照度、酸素濃度、硬化温度および焼成温度)と液晶層12の硬度との関係は上述したとおりであるが、レーザ光の照射によるパターニングで重要なのは、液晶層12の硬度の絶対値ではなく、その面内分布(最小値と最大値との比)である。なお、上述した各種の製造条件の面内分布が不均一である場合には、その不均一性に応じた硬度の差が液晶層12の面内分布として発生し、パターニングを良好に行えなくなる。
【0045】
(光学素子用原版のパターニング方法)
次に、図4により、図3に示す光学素子用原版10を用いて液晶層12のパターニングを行う方法について説明する。なおここでは、液晶層12のパターニングの一例として、液晶層12のうち光学素子の外形に対応する部分を残してその外周部分を除去する処理を例に挙げて説明する。
【0046】
まず、図4(a)に示すように、支持基材11上に液晶層12を塗膜等として形成することにより、光学素子用原版10を準備する。
【0047】
次に、図4(b)に示すように、光学素子用原版10の液晶層12に対してレーザ光21を照射し、液晶層12を支持基材11から部分的に除去することにより、液晶層12に所定のパターンを付与する。具体的には、光学素子用原版10の液晶層12のうち、光学素子の外縁に対応する輪郭部分(除去すべき外周部分の輪郭部分)にレーザ加工装置(図示せず)からレーザ光21を所定の線幅で照射して除去し、輪郭線15を形成する。このとき、レーザ光21としては、液晶層12を除去するだけの出力があれば、可視光や赤外光、紫外光等の任意の波長のものを用いることができる。また、レーザ光21の線幅や繰り返し周波数等の加工条件は、除去される液晶層12の性質により適宜設定される。なおこのとき、液晶層12のうち除去すべき外周部分の膜残りがなく、さらに支持基材11にダメージを与えないような加工条件に調整する。なお、レーザ加工装置としては、レーザ光の出力が安定しているものであれば特に制限なく用いることができ、LD励起式およびランプ励起式のいずれの方式の装置も用いることができる。なお、出力の安定性の程度としては、Pulse to Pulseで±8%程度であるとよく、より好ましくは±5%程度である。なお、レーザ光の描画方法は、ガルバノスキャナを用いた描画方法を用いることができる他、レーザ光の位置を固定として、光学素子用原版10をXYステージにより移動させてもよい。
【0048】
次に、図4(c)に示すように、光学素子用原版10の液晶層12のうち、光学素子の外形に対応する部分12aを残してその外周部分12bを支持基材11から剥離して除去し、光学素子20を製造する。なお、この場合の剥離方法としては、粘着フィルム等により、剥離されるべき液晶層12の外周部分12bをラミネートし、粘着フィルムを基材から遠ざける方向に引き剥がすことにより剥離する方法を用いることができる。また、圧縮ガスの吹き付けにより、剥離されるべき液晶層12の外周部分12bを吹き飛ばして剥離する方法や、ピンセット等により、剥離されるべき液晶層12の外周部分12bをつまみ上げながら剥離する方法等を用いることができる。
【0049】
なお、図4(c)に示す光学素子20においては、最終的に、支持基材11を液晶層12aの外形に合わせて切断したり、支持基材11を液晶層12aから剥離するようにしてもよい。
【0050】
ここで、図4(b)(c)に示す工程では、光学素子用原版10の液晶層12のうち、光学素子の外縁に対応する輪郭部分にレーザ光21を照射して液晶層12に輪郭線15を形成した後、粘着フィルム等を用いた剥離方法により、光学素子の外形に対応する部分12aを残してその外周部分12bを支持基材11から除去するにしているが、これに限らず、液晶層12のうち除去すべき外周部分12bの全部をレーザ光21の照射により除去するようにしてもよい。
【0051】
また、図4(a)(b)(c)においては、液晶層12のパターニングの一例として、液晶層12のうち光学素子の外形に対応する部分を残してその外周部分を除去する処理を例に挙げて説明したが、液晶層12のパターニング形状はこれに限らず、液晶層12にスルーホールを空けたり、ストライプ状の加工を施したり、数μm程度の微細加工を施す場合にも同様にして適用することができる。
【0052】
このように本実施の形態によれば、支持基材11上に塗布された放射線硬化型液晶または熱硬化型液晶を硬化させる放射線硬化工程および焼成工程において、各種の製造条件(放射線の照射量、放射線の照度、酸素濃度、硬化温度および焼成温度)の液晶層12の表面での分布を所定の範囲で均一にしているので、液晶層12の硬度の面内分布を所定の範囲で均一にすることができる。このため、硬度分布のムラに起因してパターニングを良好に行えないということがなくなり、下地である支持基材11を傷つけたり、液晶層12が完全に除去しきれないという事態を防止して、液晶層12を効率的にかつ高い品質でパターニングを行うことができる。
【0053】
【実施例】
次に、上述した実施の形態の具体的実施例について述べる。
【0054】
(実施例1)
100mm□(100mm×100mm)のガラス基板上にポリイミド膜を0.07μm厚で成膜し、その表面にラビング処理を施して、表面に配向能を有する支持基材を準備した。
【0055】
一方、紫外線硬化型ネマチック液晶からなる主剤にカイラル剤を添加したモノマー混合液晶を光重合開始剤とともにトルエンに溶解し、コレステリック液晶溶液を調整した。そして、この溶液を支持基材上にスピンコーターにより塗布し、乾燥工程を経て溶剤を除去した後に、紫外線(50mW/cm2×1分)を照射して硬化させることにより、コレステリック液晶層を15μm厚で成膜し、光学素子用原版(実施例1)を得た。
【0056】
このとき、紫外線の照射により硬化を行うとともに、ホットプレート上にて80℃で加熱を行った。なお、ホットプレートのうち、ガラス基板が接する100mm□の領域内の加熱温度分布は80℃±1℃((最小値)/(最大値)=0.98)であった。また、紫外線の照度分布は、ガラス基板の表面で、(最小値)/最大値=0.85、照射量分布も、ガラス基板の表面で、(最小値)/最大値=0.85であった。なお、紫外線の照射は大気中で行ったため、事実上、液晶層上の酸素濃度分布は均一であった。
【0057】
(実施例2)
実施例1で得られた光学素子用原版をオーブン内にて200℃で1時間焼成することにより、光学素子用原版(実施例2)を得た。なお、焼成温度分布は200℃±2℃((最小値)/(最大値)=0.98)であった。
【0058】
(比較例1〜5)
実施例1におけるコレステリック液晶溶液の塗布の工程まで同様な方法で行い、紫外線の照射や焼成時の製造条件を表1のように偏光して光学素子用原版(比較例1〜5)を得た。
【0059】
【表1】
【0060】
(評価結果1)
まず、実施例1、2、比較例1〜5のそれぞれに係る光学素子用原版の液晶層の硬度を評価した。ここでの評価は弾性率を指標とした。弾性率が大きいほど硬いことを示す。測定装置としては、(株)ユービーエム(UBM)製の「動的粘弾性測定装置Rheogel−E4000」を用い、試料としては、100mm□の基板から、4隅と中央部分の各1cm□を切り出したものを用いた。液晶層はガラス基板上に成膜されているが、ガラス基板は剛体とみなせるので、測定に関して影響はない。測定チャックとして圧縮用治具を用い、周波数10Hz、振動歪み2μm、波形は正弦波の条件で、測定を行った。表2に、各光学素子用原版の弾性率分布の結果を示す。
【0061】
【表2】
【0062】
表2から分かるように、各種の製造条件の面内分布が均一に保たれた実施例1、2の光学素子用原版における液晶層の硬度に対する弾性率の面内分布は(最小値)/(最大値)≧0.8の範囲にあったが、少なくとも一つの製造条件の面内分布が不均一である比較例1〜5の光学素子用原版における液晶層の弾性率の面内分布は(最小値)/(最大値)≧0.8の範囲から外れた。
【0063】
(評価結果2)
次に、実施例1、2、比較例1〜5のそれぞれに係る光学素子用原版の液晶層にレーザ光を照射してパターニング加工を行い、液晶層の加工状況を評価した。具体的には、レーザ光を線幅0.1mmで照射し、10mm間隔で80mmの長さのライン加工を行った。なお、レーザ光としては、YAGレーザーの266nm(出力:約150mW)を用い、その出力の安定性はPulse to Pulseで±6%であった。表3に、各光学素子用原版の加工状況の結果を示す。
【0064】
【表3】
【0065】
表3に示すように、液晶層の弾性率分布が所望の範囲((最小値)/(最大値)≧0.8)にある実施例1、2の光学素子用原版に対するパターニングは良好に行えたが、液晶層の弾性率分布が所望の範囲にない比較例1〜5の光学素子用原版に対するパターニングは良好に行えなかった。
【0066】
【発明の効果】
以上説明したように本発明によれば、硬度分布のムラに起因してパターニングを良好に行えないということがなくなり、下地である支持基材を傷つけたり、液晶層が完全に除去しきれないという事態を防止して、液晶層を効率的にかつ高い品質でパターニングを行うことができる。
【図面の簡単な説明】
【図1】本発明による光学素子用原版の製造方法の一実施の形態を説明するための工程図。
【図2】本発明による光学素子用原版の製造方法の他の実施の形態を説明するための工程図。
【図3】本発明の一実施の形態に係る光学素子用原版を説明するための図。
【図4】本発明の一実施の形態に係る製造方法により得られた光学素子用原版のパターニング方法を説明するための工程図。
【符号の説明】
10 光学素子用原版
11 支持基材
12,12′ 液晶層
15 輪郭線
20 光学素子
21 レーザ光
Claims (6)
- 放射線硬化型液晶を支持基材上に塗布して未硬化状態の液晶層を形成する工程と、
前記未硬化状態の液晶層に対して所定の雰囲気で所定の照射量の放射線を照射し、硬化状態の液晶層を形成する放射線硬化工程とを含み、
前記放射線硬化工程における前記放射線の照射量分布が前記液晶層の表面で(最小値)/(最大値)≧0.8の関係を満たし、前記雰囲気の酸素濃度分布が前記液晶層の表面で(最小値)/(最大値)≧0.65の関係を満たし、前記雰囲気の硬化温度分布が前記液晶層の表面で(最小値)/(最大値)≧0.9の関係を満たすことを特徴とする、光学素子用原版の製造方法。 - 前記放射線硬化工程において、前記放射線の照射量は照度と照射時間との積により表され、その照度分布が前記液晶層の表面で(最小値)/(最大値)≧0.8の関係を満たすことを特徴とする、請求項1に記載の製造方法。
- 前記硬化状態の液晶層を所定の温度で加熱して焼成する焼成工程をさらに含み、
前記焼成工程における焼成温度分布が前記液晶層の表面で(最小値)/(最大値)≧0.9の関係を満たすことを特徴とする、請求項1または2に記載の製造方法。 - 熱硬化型液晶を支持基材上に塗布して未硬化状態の液晶層を形成する工程と、
前記未硬化状態の液晶層を所定の温度で加熱して焼成し、硬化状態の液晶層を形成する焼成工程とを含み、
前記焼成工程における焼成温度分布が前記液晶層の表面で(最小値)/(最大値)≧0.9の関係を満たすことを特徴とする、光学素子用原版の製造方法。 - 請求項1乃至4のいずれかに記載の製造方法により製造された光学素子用原版であって、
支持基材と、
前記支持基材上に形成され、レーザ光の照射によりパターニングを行うことが可能な硬化状態の液晶層とを備え、
前記液晶層の硬度の面内分布が(最小値)/(最大値)≧0.8の関係を満たすことを特徴とする光学素子用原版。 - 前記硬化状態の液晶層がコレステリック相であることを特徴とする、請求項5に記載の光学素子用原版。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002215287A JP2004050797A (ja) | 2002-07-24 | 2002-07-24 | 光学素子用原版の製造方法および光学素子用原版 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002215287A JP2004050797A (ja) | 2002-07-24 | 2002-07-24 | 光学素子用原版の製造方法および光学素子用原版 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004050797A true JP2004050797A (ja) | 2004-02-19 |
Family
ID=31937355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002215287A Withdrawn JP2004050797A (ja) | 2002-07-24 | 2002-07-24 | 光学素子用原版の製造方法および光学素子用原版 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004050797A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019185007A (ja) * | 2018-04-11 | 2019-10-24 | 住友化学株式会社 | 偏光板および表示装置 |
JP2023510064A (ja) * | 2020-12-14 | 2023-03-13 | シャンハイ ロンション フォトエレクトリック ニュー マテリアル カンパニー リミテッド | Pdlcフィルム電極の製造方法、負圧ステージおよびpdlcフィルム |
-
2002
- 2002-07-24 JP JP2002215287A patent/JP2004050797A/ja not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019185007A (ja) * | 2018-04-11 | 2019-10-24 | 住友化学株式会社 | 偏光板および表示装置 |
JP2023510064A (ja) * | 2020-12-14 | 2023-03-13 | シャンハイ ロンション フォトエレクトリック ニュー マテリアル カンパニー リミテッド | Pdlcフィルム電極の製造方法、負圧ステージおよびpdlcフィルム |
JP7301174B2 (ja) | 2020-12-14 | 2023-06-30 | シャンハイ ロンション フォトエレクトリック ニュー マテリアル カンパニー リミテッド | Pdlcフィルム電極の製造方法、負圧ステージおよびpdlcフィルム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI785226B (zh) | 偏光板及顯示裝置 | |
JP2004046194A (ja) | 光学補償子の製造方法 | |
US20120019900A1 (en) | Light diffusers and displays comprising same | |
TW201003737A (en) | Method for patterning a surface using selective adhesion | |
JP2007296855A (ja) | ミクロ構造含有製品 | |
JP2000190385A (ja) | 光学フィルムの製造法、光学フィルム及び液晶表示装置 | |
TW201939076A (zh) | 圓偏光板 | |
JP2006240275A (ja) | 紫外線硬化方法を用いた導光板製造方法 | |
JP2004046195A (ja) | 光学補償子の製造方法 | |
TW202005792A (zh) | 光學積層體 | |
WO2023181648A1 (ja) | 仮固定用組成物、仮固定用接着剤、及び薄型ウエハの製造方法 | |
EP3546992A1 (en) | Method for producing optical article and optical article | |
JP2021051287A (ja) | 円偏光板 | |
JP6612109B2 (ja) | 光学部材およびその製造方法、ディスプレイ、ならびに画像表示装置 | |
JP2004050797A (ja) | 光学素子用原版の製造方法および光学素子用原版 | |
WO2020004497A1 (ja) | 光学素子及び光学素子の製造方法 | |
WO2023276611A1 (ja) | 偏光板の製造方法、有機エレクトロルミネッセンス表示装置の製造方法、偏光板、有機エレクトロルミネッセンス表示装置、液晶表示装置 | |
TWI731235B (zh) | 防眩薄膜之製造方法 | |
JP2010506205A (ja) | 偏光板及びこれを含む偏光照射装置 | |
JP2010115804A (ja) | 版の製造方法、レンズアレイ、バックライトユニット及び表示装置 | |
JP2004170938A (ja) | 円偏光分離素子の製造方法 | |
JP2007299006A (ja) | 液晶性転写体 | |
JP2020144168A (ja) | 光学積層体及びその製造方法 | |
TWI855147B (zh) | 圓偏光板、包括該圓偏光板之可撓性圖像顯示裝置用積層體、以及具備該圓偏光板之圖像顯示裝置 | |
JP2003294950A (ja) | 液晶膜のパターニング方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20051004 |