JP2004039331A - 燃料電池モジュール - Google Patents

燃料電池モジュール Download PDF

Info

Publication number
JP2004039331A
JP2004039331A JP2002191942A JP2002191942A JP2004039331A JP 2004039331 A JP2004039331 A JP 2004039331A JP 2002191942 A JP2002191942 A JP 2002191942A JP 2002191942 A JP2002191942 A JP 2002191942A JP 2004039331 A JP2004039331 A JP 2004039331A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
tube
chamber
heat insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002191942A
Other languages
English (en)
Other versions
JP3649708B2 (ja
Inventor
Kenichiro Kosaka
小阪 健一郎
Yoshiaki Inoue
井上 好章
Norihisa Matake
眞竹 徳久
Osao Kudome
久留 長生
Katsumi Nagata
永田 勝巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002191942A priority Critical patent/JP3649708B2/ja
Publication of JP2004039331A publication Critical patent/JP2004039331A/ja
Application granted granted Critical
Publication of JP3649708B2 publication Critical patent/JP3649708B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池モジュールにおいて燃料電池セル用のガスを供給する室から、その室に接続された燃料電池セルを有する複数の燃料電池セル管へガスを等しく分配する。
【解決手段】複数の燃料電池セル管3と第1燃料室8と第2燃料室9と空気室7とを備える燃料電池モジュールを用いる。燃料電池セル管3は燃料電池セルを含む。第1燃料室8は、燃料電池セル管3へ燃料ガス1を供給し、燃料電池セル管3の一端部が第1管板14に嵌合されている。第2燃料室9は、燃料電池セルで未使用の燃料ガス1を排出し、燃料電池セル管3の他端部が第2管板15に嵌合されている。空気室7は、第1燃料室8と第2燃料室9との間に設置され、燃料電池セルに酸化剤ガス2を供給し、燃料電池セル管3を通す第1孔10−3を有する第1断熱体10−2を含む。第1断熱体10−2は、酸化剤ガス2に圧損を生じさせる。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池に関し、特に、筒型構造を有する燃料電池のモジュールに関する。
【0002】
【従来の技術】
円筒型固体電解質燃料電池モジュールでは、燃料電池セル用の燃料ガスを供給する一つの燃料供給室が設置される。その燃料供給室には、複数の燃料電池セル管(燃料電池セルを表面に形成された管)が接続される。複数の燃料電池セル管の各々の中へは、燃料供給室から燃料ガスが供給される。
この時、燃料供給室が大きい場合、燃料供給室に燃料ガスを供給する配管の入口からの距離に応じて、燃料ガスの濃度に分布が出ることがある。その場合、複数の燃料電池セル管の各々の中へ供給される燃料ガスの量は、その配管の入口から燃料電池セル管までの距離に応じて異なる状況が発生する可能性が考えられる。
【0003】
同様なことは、酸化剤ガスを供給する場合にも起こり得る。例えば、燃料電池セル管の外面に沿って、酸化剤ガスを供給する場合、酸化剤ガスを燃料電池セル管へ供給する室は、燃料電池セル管が通る孔が開いている。そして、その孔と燃料電池セル管との隙間から、燃料電池セル管の外周面に沿って酸化剤ガスを供給する。
この時、酸化剤ガスを供給する室が大きい場合、酸化剤ガスを供給する室へ酸化剤ガスを供給する配管の入口からの距離に応じて、酸化剤ガスの濃度に分布が出ることがある。その場合、複数の燃料電池セル管の各々の中へ供給される酸化剤ガスの量は、その配管の入口から燃料電池セル管までの距離に応じて異なる状況が発生する可能性が考えられる。
【0004】
燃料電池モジュールにおけるガスを供給する室から、燃料電池セル管へガスを等しく分配する技術が求められている。燃料電池セル管に損傷等の影響を与えずに、ガスを等しく分配する技術が望まれている。低コストでガスの分配性能を向上することが可能な技術が望まれている。
【0005】
【発明が解決しようとする課題】
従って、本発明の目的は、燃料電池セル用のガスを供給する室から、その室に接続された燃料電池セルを有する複数の燃料電池セル管の各々の外面へ、ガスを等しく分配することが可能な燃料電池モジュールを提供することである。
【0006】
また、本発明の他の目的は、燃料電池セル管に破損等の影響を与えずに、燃料電池セル用のガスの供給室から、その室に接続された複数の燃料電池セル管の各々の外面へガスを等しく分配することが可能な燃料電池モジュールを提供することである。
【0007】
本発明の更に他の目的は、ガスの供給室から複数の燃料電池セル管の各々へのガス分配の性能を落とすことなく、燃料電池セル用のガスの供給室の形状をコンパクト化することが可能な燃料電池モジュールを提供することである。
【0008】
本発明の別の目的は、ガスの供給室及び複数の燃料電池セル管の各々へ供給するガスの温度を等しくすることが可能な燃料電池モジュールを提供することである。
【0009】
本発明の更に別の目的は、燃料電池セル用のガスの供給室から複数の燃料電池セル管の各々へのガス分配の性能を、低コストで向上することが可能な燃料電池モジュールを提供することである。
【0010】
【課題を解決するための手段】
以下に、[発明の実施の形態]で使用される番号・符号を用いて、課題を解決するための手段を説明する。これらの番号・符号は、[特許請求の範囲]の記載と[発明の実施の形態]との対応関係を明らかにするために括弧付で付加されたものである。ただし、それらの番号・符号を、[特許請求の範囲]に記載されている発明の技術的範囲の解釈に用いてはならない。
【0011】
従って、上記課題を解決するために、本発明の燃料電池モジュールは、複数の燃料電池セル管(3)と、第1燃料室(8)と、第2燃料室(9)と、空気室(7)とを具備する。
複数の燃料電池セル管(3)は、表面に燃料電池セル(21)を形成されている。第1燃料室(8)は、複数の燃料電池セル管(3)内に燃料ガス(1)を供給する。第2燃料室(9)は、複数の燃料電池セル管(3)で使用済みの燃料ガス(1)を排出する。空気室(7)は、第1燃料室(8)と第2燃料室(9)との間に設置され、複数の燃料電池セル管(3)を含み、燃料電池セル(21)に酸化剤ガス(2)を供給する。
また、第1燃料室(8)は、複数の燃料電池セル管(3)の一端部が第1燃料室(8)の一側面としての第1管板(14)に開放され、嵌合された複数の第1嵌合部(8−2)を含む。第2燃料室(9)は、複数の燃料電池セル管(3)の他端部が第2燃料室(9)の一側面としての第2管板(15)に開放され、嵌合された複数の第2嵌合部(9−2)を含む。空気室(7)は、第2管板(15)の近傍に、供給される酸化剤ガス(2)の流路を制限するように設けられ、複数の燃料電池セル管(3)の各々を通す複数の第1孔(10−3)を有する第1断熱体(10−2)を含む。第1断熱体(10−2)は、複数の第1孔(10−3)の各々において、第1内面が複数の燃料電池セル管(3)の各々の第1外面に接する第1断熱部(10−2b)を有する。
そして、供給された酸化剤ガス(2)は、第1断熱体(10−2)と第2管板(15)とで形成される空間(7−3)中を通り、複数の第1孔(10−3)の各々から、第1断熱部(10−2b)で圧損を生じながら複数の燃料電池セル管(3)の各々のその第1外面に沿って第1管板(14)方向へ移動する。
【0012】
また、本発明の燃料電池モジュールは、空気室(7)が、第1管板(14)の近傍に、排出される酸化剤ガス(2)の流路を制限するように設けられ、複数の燃料電池セル管(3)の各々を通す複数の第2孔(10−3’)を有する第2断熱体(10−1)を更に含む。
第2断熱体(10−1)は、複数の第2孔(10−3’)の各々において、第2内面が複数の燃料電池セル管(3)の各々の第2外面に接する第2断熱部(10−1b)とを有する。
そして、酸化剤ガス(2)は、複数の燃料電池セル管(3)の各々のその第2外面に沿って、複数の第2孔(10−3’)の各々から、第2断熱部(10−1b)で圧損を生じながら第1管板(14)方向へ向かい、第2断熱体(10−1)と第1管板(14)とで形成される空間(7−4)中を移動する。
【0013】
また、本発明の燃料電池モジュールにおいて、第1断熱部(10−2b)は、複数の燃料電池セル管(3)の各々が摺動可能に接している。
【0014】
また、本発明の燃料電池モジュールは、第1断熱部(10−2b)が、フエルト状の断熱材である。
【0015】
また、本発明の燃料電池モジュールは、その断熱材が、シリカ、アルミナ及びマグネシアの少なくとも1つを含む。
【0016】
更に、本発明の燃料電池モジュールは、複数の燃料電池セル管(3)と、第1燃料室(8)と、第2燃料室(9)と、空気室(7)とを具備する。
複数の燃料電池セル管(3)は、表面に燃料電池セル(21)を形成されている。第1燃料室(8)は、複数の燃料電池セル管(3)内に燃料ガス(1)を供給する。第2燃料室(9)は、複数の燃料電池セル管(3)で使用済みの燃料ガス(1)を排出する。空気室(7)は、第1燃料室(8)と第2燃料室(9)との間に設置され、複数の燃料電池セル管(3)を含み、燃料電池セル(21)に酸化剤ガス(2)を供給する。
また、第1燃料室(8)は、複数の燃料電池セル管(3)の一端部が第1燃料室(8)の一側面としての第1管板(14)に開放され、嵌合された複数の第1嵌合部(8−2)を含む。第2燃料室(9)は、複数の燃料電池セル管(3)の他端部が第2燃料室(9)の一側面としての第2管板(15)に開放され、嵌合された複数の第2嵌合部(9−2)を含む。空気室(7)は、第2管板(15)の近傍に、供給される酸化剤ガス(2)の流路を制限するように設けられ、複数の燃料電池セル管(3)の各々を通す複数の第1孔(10−3)を有する第1断熱体(10−2)を含む。複数の第1孔(10−3)の各々の第1内面は、複数の燃料電池セル管(3)の各々の第1外面から離れている。複数の燃料電池セル管(3)の各々は、内面が第1外面に接し、外面が第1孔(10−3)において第1断熱体(10−2)に接する環状の第3断熱体(35−2)を有する。
そして、供給された酸化剤ガス(2)は、第1断熱体(10−2)と第2管板(15)とで形成される空間(7−3)中を通り、複数の第1孔(10−3)の各々から、第3断熱体(35−2)で圧損を生じながら複数の燃料電池セル管(3)の各々のその第1外面に沿って第1管板(14)方向へ移動する。
【0017】
更に、本発明の燃料電池モジュールは、空気室(7)は、第1管板(14)の近傍に、排出される酸化剤ガス(2)の流路を制限するように設けられ、複数の燃料電池セル管(3)の各々を通す複数の第2孔(10−3’)を有する第2断熱体(10−1)を更に含む。ただし、複数の第2孔(10−3’)の各々の第2内面は、複数の燃料電池セル管(3)の各々の第2外面から離れている。
複数の燃料電池セル管(3)の各々は、内面がその第2外面に接し、外面が第2孔(10−3’)において第2断熱体(10−1)に接する環状の第4断熱体(35−1)を有する。
そして、酸化剤ガス(2)は、複数の燃料電池セル管(3)の各々のその第2外面に沿って、複数の第2孔(10−3’)の各々から、第4断熱体(35−1)で圧損を生じながら第1管板(14)方向へ向かい、第2断熱体(10−1)と第1管板(14)とで形成される空間(7−4)中を移動する。
【0018】
更に、本発明の燃料電池モジュールは、第3断熱体(35−2)が、複数の燃料電池セル管(3)の各々が摺動可能に第1断熱体(10−2)と接している。
【0019】
更に、本発明の燃料電池モジュールは、第3断熱体(35−2)が、フエルト状の断熱材である。
【0020】
更に、本発明の燃料電池モジュールは、その断熱材が、シリカ、アルミナ及びマグネシアの少なくとも1つを含む。
【0021】
【発明の実施の形態】
以下、本発明である燃料電池モジュールの実施の形態に関して、添付図面を参照して説明する。
本実施例において、筒型のうち円筒型の燃料電池モジュールについて例を示して説明するが、他の筒型構造を有する燃料電池にも適用が可能である。なお、各実施の形態において同一又は相当部分には同一の符号を付して説明する。
【0022】
(実施例1)
本発明である燃料電池モジュールの第1の実施の形態に関して、添付図面を参照して説明する。
図1は、本発明である燃料電池モジュールの第1の実施の形態の構成を示す図(断面図)である。燃料電池モジュール33は、複数の燃料電池セル管3、空気室としての酸化剤ガス供給室7、第1燃料室としての供給室8、第2燃料室としての排出室9、第2断熱体としての断熱体A10−1、第1孔10−3を有する第1断熱体としての断熱体B10−2を備える。
第1燃料室としての供給室8は、側板12、側板13、第1燃料室の一側面としての第1管板である管板A14、燃料ガス供給口8−1及び(複数の)第1嵌合部8−2を有する。
第2燃料室としての排出室9は、側板17、側板16、第2燃料室の一側面としての第2管板である管板B15、燃料ガス排出口9−1及び(複数の)第2嵌合部9−2を有する。
空気室としての酸化剤ガス供給室7は、側板31と、管板A14、管板B15、酸化剤ガス供給口7−1及び酸化剤ガス排出口7−2、酸化剤ガス分配部7−3、を有する。
なお、図1の構成は、集電に関する構成について、省略している。
【0023】
本発明では、複数の燃料電池セル管3の外面に形成された燃料電池セル21に酸化剤ガス2を供給する際、酸化剤ガス分配部7−3から複数の燃料電池セル管3の各々への酸化剤ガス2の流路を途中で制限する。制限は、断熱体B10−2を用いることにより行う。
それにより、酸化剤ガス分配部7−3に供給された酸化剤ガス2は、直ぐに第1孔10−3から送出されるのではなく、酸化剤ガス分配部7−3内に暫く滞留し、その全体に行き渡る。そして、各第1孔10−3から断熱体B10−2により圧損を生じつつ、複数の燃料電池セル管3の外面の燃料電池セル21へ供給される。
従って、酸化剤ガス分配部7−3の酸化剤ガス2が、酸化剤ガス供給口7−1の近くの第1孔10−3(燃料電池セル管3)に多く流れ、遠くの第1孔10−3(燃料電池セル管3)へ到達する量が少なくなるという事態を回避できる。
また、酸化剤ガス2を分配する際、燃料電池セル管3の位置によるアンバランスを回避することが出来る。それにより、管板B15での温度のアンバランスを抑制することが可能となる。更に、酸化剤ガス分配部7−3の幅(断熱体B10−2と管板B15との距離)を小さくすることが出来、燃料電池セル管3の長さを短くすることが可能となる。
【0024】
以下に各構成を詳細に説明する。
燃料電池セル管3は、その外面上に、発電を行う燃料電池セル21と、電力を取り出すリード膜23(後述)とを有する。多孔質セラミックスの円筒型の基体管である。燃料電池セル管3は、一端部を供給室8の管板A14に、開放されて嵌合されている。同様に、他端部は排出室9の管板B15に、開放されて嵌合されている。材質は、安定化ジルコニアに例示される。
【0025】
第1燃料室としての供給室8は、複数の各燃料電池セル管3の各々内へ、実質的に均等に燃料ガス1を供給する。側板12と側板13と管板A14とで囲まれた中空の直方体や円柱等の形状を有する。各板は、ステンレスや耐熱合金などの金属製である。燃料ガス1の供給を受けるための燃料ガス供給口8−1を有する。管板A14は、供給室8と酸化剤ガス供給室7とを隔てている。複数の料電池セル管3の各々の一端部とは、第1嵌合部8−2で嵌合(接合)している。内部にガスの流れを整え易くするために整流板のような機構を用いても良い。本実施例では、ステンレス製の直方体形状を有する。
【0026】
第2燃料室としての排出室9は、複数の燃料電池セル管3の各々から使用済みの燃料ガス1を収容し、外部へ排出する。側板17と側板16と管板B15とで囲まれた中空の直方体や円柱等の形状を有する。各板は、ステンレスや耐熱合金などの金属製である。使用済みの燃料ガス1の排出を行うための燃料ガス排出口9−1を有する。管板B15は、排出室9と酸化剤ガス供給室7とを隔てている。複数の燃料電池セル管3の各々の他端部とは、第2嵌合部9−2で嵌合(接合)している。内部にガスの流れを整え易くする整流板のような機構を用いても良い。本実施例では、ステンレス製の直方体形状を有する。
【0027】
空気室としての酸化剤ガス供給室7は、燃料電池セル管3に酸化剤ガス2を供給する。供給室8(の管板A14)と排出室9(の管板B15)との間にあり、それらと隔離され、燃料電池セル管3を含んでいる。ステンレスや耐熱合金などの金属製である。管板A14及び管板B15の近傍の内部に、それらと概ね平行に板状の断熱体10(断熱体A10−1及び断熱体B10−2)を固定している。
そして、酸化剤ガス2の供給を受けるための酸化剤ガス供給口7−1、供給された酸化剤ガス2が流通し各燃料電池セル管3へ酸化剤ガス2を分配する酸化剤ガス分配部7−3(管板B15と断熱体B10−2とに挟まれた領域)、及び、使用済みの酸化剤ガス2の排出を行なうための酸化剤ガス排出口7−2を有する。
【0028】
供給室8(第1燃料室)の一側面としての第1管板である管板A14は、燃料電池セル管3を接続するための孔が(燃料電池セル管3の数だけ)開口している。そして、燃料電池セル管3は、その一端部がガスの出入りが出来るように管板A14に開放されて接合されている。
【0029】
排出室9(第2燃料室)の一側面としての第2管板である管板B15は、燃料電池セル管3を接続するための孔が(燃料電池セル管3の数だけ)開口している。そして、燃料電池セル管3は、その他端部がガスの出入りが出来るように管板B15に開放されて接合されている。
【0030】
断熱体10は、管板A14及び管板B15の近傍であって、供給室8及び排出室9の外側の酸化剤ガス供給室7内に固定されている。管板A14側が、断熱体A10−1であり、管板B15側が、断熱体B10−2である。
断熱体B10−2は、管板B15と断熱体B10−2とに挟まれた領域(酸化剤ガス分配部7−3)において、供給された酸化剤ガス2の流路を形成し、その流通を制限している。
一方、断熱体A10−1は、管板A14と断熱体A10−1とは、概ね重なっている。
また、断熱体10は、燃料電池セル管3の発電部21(後述)側の熱を遮断し、管板A14及び管板B15、あるいは、第1嵌合部及び第2嵌合部を、熱的に保護する。材料としては、多孔質シリカ、多孔質アルミナ、シリカ、アルミナ、マグネシアなどを主成分とする断熱材に例示される。
【0031】
断熱体10について更に説明する。
図4は、断熱体B10−2の構成を示す斜視図である。断熱体B10−2は、断熱部10−2a及び断熱部10−2c、第1断熱部としての断熱部10−2bを備える。
断熱部10−2aは、管板B15と共に酸化剤ガス2の流路を形成する。そして、酸化剤ガス2の断熱部10−2b及び断熱部10−2cを保持し、断熱体B10−2の形状を維持するための支持板である。断熱部10−2aは、所定の強度が必要であるので、断熱材を含むボードや金属板が好ましい。また、高温酸化雰囲気での使用であるので、シリカ、アルミナ、マグネシアのような断熱材を含むボードやステンレス鋼のような耐熱/耐酸化性金属の板がより好ましい。
断熱部10−2aは、千鳥格子状に開口した燃料電池セル管3用の孔10−3aを有する。孔10−3aの直径は、燃料電池セル管3の直径よりもやや大きい。燃料電池セル管3と断熱体10の孔との隙間を酸化剤ガス2が通過するためである。
【0032】
断熱部10−2bは、燃料電池セル管3の外面を流通する酸化剤ガス2の移動を制限する。断熱部10−2bは、断熱部10−2aと同様に千鳥格子状に開口した燃料電池セル管3用の孔10−3bを有する。ただし、孔10−3bの直径は、燃料電池セル管3の直径と同等又はやや小さい。燃料電池セル管3と孔10−3a及び孔10−3cとの隙間を酸化剤ガス2が通過する際に、その隙間を塞ぐことにより、断熱部10−2b内にガスを通過させるためである。
断熱部10−2bは、その内部を酸化剤ガスが圧損を生じながら(流量を制限されながら)透過可能なように、多孔質の材料であることが好ましい。また、燃料電池セル管3の外面と接するため、燃料電池セル管3を損傷しないように、また、燃料電池セル管3の熱伸縮による動きを妨げず、摺動可能に接するように、柔軟性や弾性のある材料であることが好ましい。更に、断熱性を有し、高温酸化雰囲気で使用可能なように、耐熱/耐酸化性を有する断熱材であることが好ましい。そのような材料として、シリカ、アルミナ、マグネシアのような断熱材を含むフエルト状断熱材や、ガラスウール状断熱材が例示される。
【0033】
断熱部10−2cは、燃料電池セル管3の発電部21側の熱を遮断し、管板B15あるいは第2嵌合部を熱的に保護する。断熱部10−2cは、断熱部10−2aと同様に千鳥格子状に開口した燃料電池セル管3用の孔10−3cを有する。孔10−3cの直径は、燃料電池セル管3の直径よりもやや大きい。燃料電池セル管3と断熱体10の孔との隙間を酸化剤ガス2が通過するためである。その大きさは、孔10−3aの直径と同等でも良い。
断熱部10−2cは、断熱性を有し、高温酸化雰囲気で使用可能なように、耐熱/耐酸化性を有する断熱材であることが好ましい。そのような材料として、シリカ、アルミナ、マグネシアを含む断熱材、それらの断熱材含むフエルト状断熱材や、ガラスウール状断熱材が例示される。
【0034】
上記断熱部10−2a、断熱部10−2b及び断熱部10−2cが積層し、断熱体B10−2が形成される。ただし、孔10−3a〜孔10−3cを合わせて第1孔10−3ともいう。第1孔10−3の内面を第1内面、それに対応する燃料電池セル管3の外面を第1外面ともいう。
また、本発明における燃料電池の燃料電池セル管3の配置及びその本数が、図4に示すような配置に限定されるものではない。
【0035】
図1を参照して、断熱体A10−1は、酸化剤ガス2が管板A14へ達しないように、酸化剤ガス2の移動を制限する。断熱体A10−1は、断熱体B10−2と同様に千鳥格子状に開口した燃料電池セル管3用の孔10−3’を有する。ただし、孔10−3’の直径は、燃料電池セル管3の直径と同等又はやや小さい。燃料電池セル管3と孔10−3’との隙間を、酸化剤ガス2が通過しないように、その隙間を塞ぐためである。
断熱体A10−1は、燃料電池セル管3の外面と接するため、燃料電池セル管3を損傷しないように、また、燃料電池セル管3の熱伸縮による動きを妨げず可動的に接するように、柔軟性や弾性のある材料であることが好ましい。更に、断熱性を有し、高温酸化雰囲気で使用可能なように、耐熱/耐酸化性を有する断熱材であることが好ましい。そのような材料として、シリカ、アルミナ、マグネシアのような断熱材を含むフエルト状断熱材や、ガラスウール状断熱材が例示される。
【0036】
なお、燃料ガス1は、燃料電池セル21が直接内部改質型の場合には、メタン、プロパン等の炭化水素と水蒸気との混合ガスである。そうでない場合には、水素と水蒸気とを含む混合ガスである。
また、酸化剤ガス2は、酸素、空気、あるいはそれらを含む混合ガスである。
【0037】
次に、図2を参照して、燃料電池セル管3の第2嵌合部9−2及びその周辺について説明する。図2は、図1の燃料電池セル管3の1本分の第2嵌合部9−2及びその周辺について拡大した図である。本図面においては、集電に関する構成について、省略している。
第2嵌合部9−2は、燃料電池セル21と発電部22とリード膜23’とを含む燃料電池セル管3、管板B15、シール剤24’、第1嵌合リング26’及び充填材27’を備える。その周辺の酸化剤ガス2の流れを断熱体B10−2が制限している。
【0038】
燃料電池セル21は、燃料電池セル管3の外面上に、燃料極、電解質、空気極を順に少しずつずらして積層(図示せず)した燃料電池のセルである。それぞれの燃料電池セル21同士は、インターコネクタ膜(図示せず)で直列に接合されている。燃料電池セル管3の内側から拡散してくる燃料ガス1と、燃料電池セル管3の外側から供給される酸化剤ガス2とにより、発電を行う。
発電部22は、燃料電池セル管3上の燃料電池セル21が複数ある領域である。ここで、発電がなされ、それと同時に、セルの抵抗損などにより熱が発生し高温になっている。
【0039】
リード膜23’は、発電部22で発電された電力を導く一方の極としての導電性の膜である。供給室8側にも同様にあり、両膜から引き出した電極から電力を取り出す。
【0040】
シール剤24’は、第1嵌合リング26’の外面と管板B15の第2嵌合部9−2の内面と間の領域に充填されるガスシール剤である。その隙間を埋め、供給室8の燃料ガス1と、酸化剤ガス供給室7の酸化剤ガス2との間をガスシールする。その周辺の最高使用温度に合わせたシール剤を用いる。
なお、第2嵌合リング26’の表面と管板B15の第2嵌合部9−2の内面とのすり合わせが非常に高精度の場合には、シール剤を用いない場合もある。
【0041】
第2嵌合リング26’は、その内径が燃料電池セル管3よりもやや大きい円筒状のリングである。その外面と、管板B15の第2嵌合部9−2の内面とが密接している。燃料電池セル管3の寸法の多少のずれ、表面の凹凸を、この第2嵌合リング26’と充填材27’(後述)とが緩衝材として働き、吸収する。
【0042】
充填材27’は、第1嵌合リング26’の内面と燃料電池セル管3の両端の外面と間の領域に充填されるガスシール剤かつ接着材である。その隙間を埋め、供給室8及び排出室9の燃料ガス1と、酸化剤ガス供給室7の酸化剤ガス2との間をガスシールする。また、燃料電池セル管3の寸法の多少のずれを、その変形で吸収する。その周辺の最高使用温度に合わせてハンダを行なう方法、接着剤や樹脂などを埋め込む方法などが使用できる。
【0043】
断熱体B10−2の断熱部10−2aは、燃料電池セル管3の外径dに対して、孔10−3aの内径=d+2×ΔR(ただし、燃料電池セル管3と孔10−3aの成す隙間の幅をΔRとする)である。
また、断熱部10−2bは、燃料電池セル管3に密接している。ただし、断熱部10−2bは、柔軟性/弾性があり、燃料電池セル管3とは、可動的(摺動可能)に接している。そして、燃料電池セル管3の動きに対して拘束せず、損傷を与えない。
断熱部10−2cは、孔10−3cの内径=d+2×ΔRである。
【0044】
管板B15は、第2嵌合リング26’(及び燃料電池セル管3)を通す孔が、開口している。第2嵌合部9−2の孔の直径は、第2嵌合リング26’の直径より、やや小さい。このようにすることにより、図2で示すように、その孔に第2嵌合リング26’を通した時、管板B15の孔部の内面が、第2嵌合リング26’を通した方向に内側に変形し、第2嵌合リング26’の外周と管板B15の孔部の内面が密着する。
【0045】
ここで、管板B15について更に説明する。
図5に、管板B15の正面図(図1は、断面図(図5のCC’断面)である)を示す。図5にあるように、管板B15は千鳥格子状に第2嵌合リング26’(及び燃料電池セル管3)用の孔32が開口している。
ただし、本発明における燃料電池の燃料電池セル管3の配置及びその本数が、図5に限定されるものではない。その他の配置の例としては、蜂の巣状、正方格子状などがある。
【0046】
管板B15に第2嵌合リング26’を通して密着させる方法として、深絞り加工や、焼嵌め加工などの締り嵌め加工がある。孔32は、締り嵌め加工を実施できるように、その直径が第2嵌合リング26’の外径よりも小さい。ただし、第1嵌合リング26を用いず、直接燃料電池セル管3を通す場合には、燃料電池セル管3の外径よりも小さくする。
【0047】
管板B15の孔32の内周は、第2嵌合リング26’と密接する際、締り嵌めによる弾性力により、強く密着し、ガスシール性を発揮する。それと同時に、第2嵌合リング26’(及びそれに接続している燃料電池セル管3)を強力に保持する。管板A14及び管板B15は、その間にある燃料電池セル管3により、ハニカム構造をとるため、変形することなく複数の燃料電池セル管3を強力に維持できる。
また、孔32近傍の管板B15の弾性変形に伴い、その周辺部に強い反力が発生する。そのため、管板B15全体として、弾性変形能を有しながらも、管板B15は、燃料電池セル管3に拘束されているので、薄板管板(管板B15)の面外変形が抑えられる。すなわち、管板B15は、燃料電池セル管3の拘束力により、大きな荷重(複数の燃料電池セル管3)に対しても、変形することなくその形状を維持することが出来る。そして、複数の第2嵌合リング26’及びそれに接続している複数の燃料電池セル管3を強力に保持することが可能となる。
【0048】
管板B15は、第2嵌合部9−2において燃料電池セル管3を支持するので、ある程度の強度を有する材料であることが好ましい。また、第2嵌合部9−2が、燃料電池セル管3と管板B15(のシール剤24’と嵌合リング26’及び充填材27’)との隙間からガスをリークさせないように、且つ、応力などによる位置ずれや振動や衝撃を吸収することが可能なように、金属板のような弾性のある材料であることが好ましい。酸化雰囲気で使用することから、耐熱合金などの耐酸化性の部材であることがより好ましい。そのような材料として、鉄系又はインコネル系の金属材料が好ましい。より好ましくは、SUS304やSUS316のようなオーステナイト系ステンレス鋼である。
【0049】
また、その厚みの上限は、締り嵌め加工が可能な厚みであることから、また、下限は、燃料電池セル管3を支持することが可能な厚みであることから、それぞれ実験的に決定される。板の材料の種類により異なる。例えば、オーステナイト系ステンレスでは、0.1mm以上、2mm以下であることが好ましい。より好ましくは0.2mm以上、1mm以下である。
【0050】
第1嵌合リング26’の表面を滑らかにする、あるいは、シール剤24’を潤滑性(固体)のあるものにすれば、管板B15の孔の内周面と第2嵌合リング26’の外周面とを、ある大きさ以上の力で、互いに滑らせるようにすることも可能である。力の大きさ及び滑り具合は、第2嵌合リング26’の表面状態、シール剤24’の種類等に基づいて、実験的に決定する。
摺動可能になると、熱膨張係数の違いにより、熱による伸びの相違が発生した場合でも、滑りで吸収することが可能となる。
【0051】
次に、図3を参照して、燃料電池セル管3の第1嵌合部8−2及びその周辺について説明する。図3は、図1の燃料電池セル管3の1本分の第1嵌合部8−2及びその周辺について拡大した図である。本図面においては、集電に関する構成について、省略している。
第1嵌合部8−2は、燃料電池セル21と発電部22とリード膜23とを含む燃料電池セル管3、管板A14、シール剤24、第2嵌合リング26及び充填材27を備える。その周辺の酸化剤ガス2の流れを断熱体A10−1が制限している。
【0052】
断熱体A10−1は、燃料電池セル管3に密接している。ただし、断熱体A10−1は、柔軟性/弾性があり、燃料電池セル管3とは、可動的(摺動可能)に接している。そして、燃料電池セル管3の動きに対して拘束せず、損傷を与えない。
【0053】
燃料電池セル21と発電部22とを含む燃料電池セル管3は、図2の説明の通りなのでその説明を省略する。管板A14、リード膜23、シール剤24、第1嵌合リング26及び充填材27は、図2の管板B15、リード膜23’、シール剤24’、第2嵌合リング26’及び充填材27’と同様であるので、その説明を省略する。
【0054】
本実施例では、上記図2及び図3のように、第1嵌合リング26と充填材27及び第2嵌合リング26’と充填材27’を用いている。ただし、それらを用いず、直接、管板A14と燃料電池セル管3とを第1嵌合部8−2で嵌合、及び管板B15と燃料電池セル管3とを第2嵌合部9−2で嵌合することも可能である。その場合、部材の点数が減少するので部品コストや製造コストを低減できる。
【0055】
次に、本発明である燃料電池モジュールの第1の実施の形態の動作に関して、図1、図2、図3を参照して説明する。
【0056】
燃料ガス1について説明する。
図1において、供給室8内に水素と水蒸気とを含むの燃料ガス1が、ガス供給口8−1から供給される。燃料ガス1は、予熱されている(例えば、250℃程度)。その後、燃料ガス1は、燃料電池セル管3の一端部(第1嵌合部8−2)から、ばらつきの無い流量で流入する。
燃料ガス1は、断熱体A10−1付近を移動する途中で、燃料電池セル管3の有する熱や外面近傍の高温の酸化剤ガス2と熱交換を行う。そして、温度を上げて行き、断熱体A10−1付近に達する(例えば、600℃程度)。そして、そこから発電部22に達するまでに更に昇温される。
発電部22において、燃料ガス1は、燃料電池セル21に供給され、発電に寄与する。その際、燃料電池セル21は発熱するが、その熱は、燃料電池セル管3の外面を流れる酸化剤ガス2により持ち去られるので、燃料電池セル21の温度は900℃〜1000℃に保持される。そして、燃料ガス1も、温度が上昇しない。燃料ガス1のうち、発電に用いられなかった燃料ガス1及び発電により発生した水蒸気は、断熱体B10−2付近に達する。
燃料ガス1は、断熱体B10−2付近から第2嵌合部9−2付近で、燃料電池セル管3の基体管を介して、燃料電池セル管3の外面に沿って流れる低温の酸化剤ガス2と熱交換を行う。そして、温度を下げて行き、燃料電池セル管3の他端部に達する(例えば、600℃程度)。そして、他端部から排出室9へ送出される。
送出された使用済みの燃料ガス1は、排出室9で混合され、燃料ガス排出口9−1から排出される。
【0057】
次に、酸化剤ガス2について説明する。
図1において、予熱された(例えば550℃)酸素を含む酸化剤ガス2が、酸化剤ガス供給口7−1から酸化剤ガス供給室7に入る。そして、断熱体B10−2と管板B15とに挟まれ形成される酸化剤ガス分配部7−3を、管板B15に沿って移動する。
排出室9側の複数の燃料電池セル管3のいずれかに達した酸化剤ガス2は、第2嵌合部9−2近傍において、断熱体B10−2の(第1)内面と燃料電池セル管3の(第1)外面との間の第1孔10−3に入る。その際、断熱部10−2bにより流入量が制限され、断熱部10−2bの酸化剤ガス2の流入側と流出側とで圧力差(圧損)が生じる。そのため、酸化剤ガス供給口7−1の近傍の第1孔10−3に酸化剤ガス2が偏って多く流入することが無く、全ての第1孔10−3に実質的に均等に流入する。
酸化剤ガス2は、第2嵌合部9−2付近から断熱体B10−2付近で、燃料電池セル管3の基体管を介して、燃料電池セル管3の内面に沿って流れる高温の燃料ガス1と熱交換を行う。そして、温度を上げて行き、断熱体B10−2付近に達する(例えば、850℃)。そして、そこから発電部22に達するまでに更に昇温される。
発電部22において、酸化剤ガス2は、燃料電池セル21に供給され、発電に寄与する。その際、燃料電池セル21は発熱するが、その熱は、酸化剤ガス2により持ち去られるので、燃料電池セル21の温度は900℃〜1000℃に保持される。また、酸化剤ガス2は、燃料電池セル21から発電によって生じた熱量を奪いながら温度を上昇させていく。そして、発電に用いられなかった酸化剤ガス2は、断熱体A10−1付近に達する。
酸化剤ガス2は、断熱体A10−1の発電部22側に沿って進む。そして、酸化剤ガス供給室7の酸化剤ガス排出口7−2から外部へ排出される。
【0058】
本発明により、酸化剤ガス2は、酸化剤ガス分配部7−3において、断熱体B10−2の(第1)内面と、それに対応する位置の燃料電池セル管3の(第1)外面との間の第1孔10−3に入る際、断熱部10−2bにより流入量が制限される。従って、酸化剤ガス2が酸化剤ガス供給口7−1の近傍の第1孔10−3に偏って多く流入することが無くなる。そして、全ての第1孔10−3に実質的に均等に流入させることが可能となる。
【0059】
そして、図2において示す酸化剤ガス分配部7−3の幅(図2中“B”)の大きさを小さくすることが出来る。それにより、発電部22以外の燃料電池セル管3の部分を短くすることが出来、燃料電池セル管3コストの低減、燃料電池モジュール33のコンパクト化が可能となる。
【0060】
図2において示す断熱部B10−2の厚み(図2中“A”)の大きさにおける、圧損を生じさせて酸化剤ガス2を均等に分配するために要した厚み(=A−断熱に必要な厚み)を断熱部10−2bの厚みまで小さくすることが出来る。それにより、発電部22以外の燃料電池セル管3の部分を短くすることが出来、燃料電池セル管3コストの低減、燃料電池モジュール33のコンパクト化が可能となる。
【0061】
更に、本発明による断熱部10−2bが圧損を生じさせ酸化剤ガス2を均等に分配させるので、図2において示す断熱部B10−2と燃料電池セル管3との隙間(図2中“ΔR”)を小さくして圧損を生じさせて酸化剤ガス2を均等に分配する必要が無くなる。そのため、ΔRを大きくとることができ、断熱部10−2cや断熱部10−2aと燃料電池セル管3が接触することによる燃料電池セル管3の損傷を防止することが可能となる。
【0062】
燃料電池セル管3の中心軸と第1孔10−3の中心軸とは、酸化剤ガス2の均等な分配のためには、同軸をなすことが好ましい。しかし、本発明による断熱部10−2bが圧損を生じさせ酸化剤ガス2を均等に分配させるので、軸のずれの許容範囲を広く取ることができる。すなわち、製造上の歩留まりが向上し、製造コストが低減する。
【0063】
断熱体B10−2は、断熱部10−2aが薄く工作が容易であり、且つ、断熱部10−2b及び断熱部10−2cが柔軟性のある素材で加工が容易である。従って、加工精度を向上することが出来る他、製造工程にかかる労力やコストを低減することが出来る。
【0064】
酸化剤ガス2の複数の第1孔10−3への均等分配が可能となるので、酸化剤ガス分配部7−3におけるガスの温度分布を均等とすることが出来る。従って、管板B15の温度分布を概ね均一にすることができ、酸化剤ガス分配部7−3の全体において、それぞれの温度を概ね均一にすることが出来る。
【0065】
ただし、本明細書中の「均等」、「均一」、「等しい」は、±10%程度の誤差を含む。
【0066】
(実施例2)
本発明である燃料電池モジュールの第2の実施の形態に関して、添付図面を参照して説明する。
図1は、本発明である燃料電池モジュールの第1の実施の形態の構成を示す図(断面図)である。燃料電池モジュール33は、複数の燃料電池セル管3、空気室としての酸化剤ガス供給室7、第1燃料室としての供給室8、第2燃料室としての排出室9、第2断熱体としての断熱体A10−1、第1断熱体としての断熱体B10−2を備える。
第1燃料室としての供給室8は、側板12、側板13、第1燃料室の一側面としての第1管板である管板A14、燃料ガス供給口8−1及び(複数の)第1嵌合部8−2を有する。
第2燃料室としての排出室9は、側板17、側板16、第2燃料室の一側面としての第2管板である管板B15、燃料ガス排出口9−1及び(複数の)第2嵌合部9−2を有する。
空気室としての酸化剤ガス供給室7は、側板31と、管板A14、管板B15、酸化剤ガス供給口7−1及び酸化剤ガス排出口7−2、酸化剤ガス分配部7−3を有する。
なお、図1の構成は、集電に関する構成について、省略している。
【0067】
本実施例においては、上記実施例1の図2の断熱体B10−2に属する断熱部10−2bの機能を、燃料電池セル管3に接続した他の断熱体に持たせている点で実施例1と異なる。
【0068】
図6は、本発明の燃料電池モジュールの第2の実施の形態の構成に関し、図1の燃料電池セル管3の1本分の第2嵌合部9−2及びその周辺について拡大した図である。本図面においては、集電に関する構成について、省略している。
第2嵌合部9−2は、燃料電池セル21と発電部22とリード膜23’とを含む燃料電池セル管3、管板B15、シール剤24’、第1嵌合リング26’及び充填材27’、環状断熱体35−2を備える。その周辺の酸化剤ガス2の流れを断熱体B10−2が制限している。
【0069】
環状断熱体35−2は、燃料電池セル管3の外面を流通する酸化剤ガス2の移動を制限する断熱材である。
図7は、環状断熱体35−2の外観を示す図である。環状断熱体35−2は、図7に示すように環状であり、その内径は、燃料電池セル管3の直径と同等又はやや小さい。外径は断熱体B10−2の第1孔10−3と同等又はやや大きい。第1孔10−3の内面と燃料電池セル管3の外面との隙間を酸化剤ガス2が通過する際に、その隙間を塞ぐことにより、環状断熱体35−2内にガスを通過させるためである。
環状断熱体35−2は、その内部を酸化剤ガスが圧損を生じながら(流量を制限されながら)透過可能なように、多孔質の材料であることが好ましい。また、その内面が燃料電池セル管3の外面と接するため、燃料電池セル管3を損傷しないように柔軟性や弾性のある材料であることが好ましい。更に、断熱性を有し、高温酸化雰囲気で使用可能なように、耐熱/耐酸化性を有する断熱材であることが好ましい。そのような材料として、シリカ、アルミナ、マグネシアのような断熱材を含むフエルト状断熱材や、ガラスウール状断熱材が例示される。
【0070】
断熱部10−2b及び断熱部10−2aの孔10−3b及び孔10−3aは、その直径が概ね環状断熱体35−2の外径に等しい。第1孔10−3を環状断熱体35−2で塞ぐためである。
【0071】
なお、断熱部10−2a〜断熱部10−2cを合わせた断熱体B10−2を第1断熱体ともいう。また、環状断熱体35−2を第3断熱体ともいう。
その他の図6の各構成は、図2と同様であるのでその説明を省略する。
【0072】
その他の図1の各構成については、実施例1と同様であるので、その説明を省略する。
【0073】
本発明の燃料電池モジュールの第2の実施の形態の動作については、実施例1の動作と同様であるのでその説明を省略する。
実施例2の場合も、実施例1の場合と同様の効果を得ることが出来る。
【0074】
(実施例3)
本発明である燃料電池モジュールの第3の実施の形態に関して、添付図面を参照して説明する。
図8は、本発明である燃料電池モジュールの第3の実施の形態の構成を示す図(断面図)である。燃料電池モジュール33は、複数の燃料電池セル管3、空気室としての酸化剤ガス供給室7、第1燃料室としての供給室8、第2燃料室としての排出室9、第2孔10−3’を有する第2断熱体としての断熱体A10−1、第1孔10−3を有する第1断熱体としての断熱体B10−2を備える。
第1燃料室としての供給室8は、側板12、側板13、第1燃料室の一側面としての第1管板である管板A14、燃料ガス供給口8−1及び(複数の)第1嵌合部8−2を有する。
第2燃料室としての排出室9は、側板17、側板16、第2燃料室の一側面としての第2管板である管板B15、燃料ガス排出口9−1及び(複数の)第2嵌合部9−2を有する。
空気室としての酸化剤ガス供給室7は、側板31と、管板A14、管板B15、酸化剤ガス供給口7−1及び酸化剤ガス排出口7−2、酸化剤ガス分配部7−3、酸化剤ガス収集部7−4を有する。
なお、図8の構成は、集電に関する構成について、省略している。
【0075】
本発明では、実施例1のように断熱体B10−2を用いて酸化剤ガス2の分配を行うだけでなく、発電部分から酸化剤ガス2を収集して排出する際、酸化剤ガス収集部7−4への酸化剤ガス2の流路を途中で制限する。制限は、断熱体A10−1を用いることにより行う。
それにより、酸化剤ガス収集部7−4に供給された酸化剤ガス2は、酸化剤ガス供給室7の断熱体A10−1の発電部側において、断熱体A10−1の全体に行き渡る。そして、各第2孔10−3’から断熱体A10−2により圧損を生じつつ、複数の燃料電池セル管3の外面の燃料電池セル21へ供給される。
従って、酸化剤ガス収集部7−4の全体へバランス良くガスを侵入させることができる。更に、酸化剤ガス収集部7−4の幅(断熱体A10−1と管板A14との距離)を小さくすることが出来、燃料電池セル管3の長さを短くすることが可能となる。
【0076】
以下に各構成を詳細に説明する。
空気室としての酸化剤ガス供給室7は、燃料電池セル管3に酸化剤ガス2を供給する。供給室8(の管板A14)と排出室9(の管板B15)との間にあり、それらと隔離され、燃料電池セル管3を含んでいる。ステンレスや耐熱合金などの金属製である。管板A14及び管板B15の近傍の内部に、それらと概ね平行に板状の断熱体10(断熱体A10−1及び断熱体B10−2)を固定している。
そして、酸化剤ガス2の供給を受けるための酸化剤ガス供給口7−1、供給された酸化剤ガス2が流通し各燃料電池セル管3へ酸化剤ガス2を分配する酸化剤ガス分配部7−3(管板B15と断熱体B10−2とに挟まれた領域)、各燃料電池セル管3で使用された酸化剤ガス2が収集される酸化剤ガス収集部7−4(管板A14と断熱体A10−1とに挟まれた領域)、及び、使用済みの酸化剤ガス2の排出を行なうための酸化剤ガス排出口7−2を有する。
【0077】
断熱体10は、管板A14及び管板B15の近傍であって、供給室8及び排出室9の外側の酸化剤ガス供給室7内に固定されている。管板A14側が、断熱体A10−1であり、管板B15側が、断熱体B10−2である。
断熱体10は、管板B15と断熱体B10−2とに挟まれた領域(酸化剤ガス分配部7−3)において、供給された酸化剤ガス2の流路を形成し、その流通を制限している。同様に、管板A14と断熱体A10−1とに挟まれた領域(酸化剤ガス収集部7−4)において、収集された酸化剤ガス2の流路を形成し、その流通を制限している。
また、断熱体10は、燃料電池セル管3の発電部21(後述)側の熱を遮断し、管板A14及び管板B15、あるいは、第1嵌合部及び第2嵌合部を、熱的に保護する。材料としては、多孔質シリカ、多孔質アルミナ、シリカ、アルミナ、マグネシアなどを主成分とする断熱材に例示される。
【0078】
断熱体B10−2は、実施例1(図2)と同様である。また、断熱体A10−1は、断熱体B10−2と向きが逆である他は断熱材B10−2と同様である。従って、その説明を省略する。ただし、断熱体A10−1は、断熱体B10−2と同様に、断熱部10−1a及び断熱部10−1c、第2断熱部としての断熱部10−1bを備える。断熱体A10−1では、孔10−3’a〜孔10−3’cを合わせて第2孔10−3’ともいう。第2孔10−3’の内面を第2内面、それに対応する燃料電池セル管3の外面を第2外面という。
また、本発明における燃料電池の燃料電池セル管3の配置及びその本数が、図4に示すような配置に限定されるものではない。
【0079】
その他の構成は、実施例1と同様であるので、その説明を省略する。
【0080】
燃料電池セル管3の第2嵌合部9−2及びその周辺については、実施例1(図2)と同様であるので、その説明を省略する。
また、管板B15の詳細については、実施例1(図5)と同様であるので、その説明を省略する。
【0081】
次に、図9を参照して、燃料電池セル管3の第1嵌合部8−2及びその周辺について説明する。図9は、図8の燃料電池セル管3の1本分の第1嵌合部8−2及びその周辺について拡大した図である。本図面においては、集電に関する構成について、省略している。
第1嵌合部8−2は、燃料電池セル21と発電部22とリード膜23とを含む燃料電池セル管3、管板A14、シール剤24、第2嵌合リング26及び充填材27を備える。その周辺の酸化剤ガス2の流れを断熱体A10−1が制限している。
【0082】
燃料電池セル21と発電部22とを含む燃料電池セル管3は、図2の説明の通りなのでその説明を省略する。断熱体A10−1、管板A14、リード膜23、シール剤24、第1嵌合リング26及び充填材27は、図2の断熱体B10−2、管板B15、リード膜23’、シール剤24’、第2嵌合リング26’及び充填材27’と同様であるので、その説明を省略する。
【0083】
本実施例では、上記図2及び図9のように、第1嵌合リング26と充填材27及び第2嵌合リング26’と充填材27’を用いている。ただし、それらを用いず、直接、管板A14と燃料電池セル管3とを第1嵌合部8−2で嵌合、及び管板B15と燃料電池セル管3とを第2嵌合部9−2で嵌合することも可能である。その場合、部材の点数が減称するので部品コストや製造コストを低減できる。
【0084】
次に、本発明である燃料電池モジュールの第3の実施の形態の動作に関して、図8、図2、図9を参照して説明する。
【0085】
燃料ガス1について説明する。
図8において、供給室8内に水素と水蒸気とを含むの燃料ガス1が、ガス供給口8−1から供給される。燃料ガス1は、予熱されている(例えば、250℃程度)。その後、燃料ガス1は、燃料電池セル管3の一端部(第1嵌合部8−2)から、ばらつきの無い流量で流入する。
燃料ガス1は、第1嵌合部8−2付近から断熱体A10−1付近で、燃料電池セル管3の基体管を介して、燃料電池セル管3の外面に沿って流れる高温の酸化剤ガス2と熱交換を行う。そして、温度を上げて行き、断熱体A10−1付近に達する(例えば、600℃程度)。そして、そこから発電部22に達するまでに更に昇温される。
発電部22において、燃料ガス1は、燃料電池セル21に供給され、発電に寄与する。その際、燃料電池セル21は発熱するが、その熱は、燃料電池セル管3の外面を流れる酸化剤ガス2により持ち去られるので、燃料電池セル21の温度は900℃〜1000℃に保持される。そして、燃料ガス1も、温度が上昇しない。燃料ガス1のうち、発電に用いられなかった燃料ガス1及び発電により発生した水蒸気は、断熱体B10−2付近に達する。
燃料ガス1は、断熱体B10−2付近から第2嵌合部9−2付近で、燃料電池セル管3の基体管を介して、燃料電池セル管3の外面に沿って流れる低温の酸化剤ガス2と熱交換を行う。そして、温度を下げて行き、燃料電池セル管3の他端部に達する(例えば、600℃程度)。そして、他端部から排出室9へ送出される。
送出された使用済みの燃料ガス1は、排出室9で混合され、燃料ガス排出口9−1から排出される。
【0086】
次に、酸化剤ガス2について説明する。
図8において、予熱された(例えば550℃)酸素を含む酸化剤ガス2が、酸化剤ガス供給口7−1から酸化剤ガス供給室7に入る。そして、断熱体B10−2と管板B15とに挟まれ形成される酸化剤ガス分配部7−3を、管板B15に沿って移動する。
排出室9側の複数の燃料電池セル管3のいずれかに達した酸化剤ガス2は、第2嵌合部9−2近傍において、断熱体B10−2の(第1)内面と燃料電池セル管3の(第1)外面との間の第1孔10−3に入る。その際、断熱部10−2bにより流入量が制限され、断熱部10−2bの酸化剤ガス2の流入側と流出側とで圧力差(圧損)が生じる。そのため、酸化剤ガス供給口7−1の近傍の第1孔10−3に酸化剤ガス2が偏って多く流入することが無く、全ての第1孔10−3に実質的に均等に流入する。
酸化剤ガス2は、第2嵌合部9−2付近から断熱体B10−2付近で、燃料電池セル管3の基体管を介して、燃料電池セル管3の内面に沿って流れる高温の燃料ガス1と熱交換を行う。そして、温度を上げて行き、断熱体B10−2付近に達する(例えば、850℃)。そして、そこから発電部22に達するまでに更に昇温される。
発電部22において、酸化剤ガス2は、燃料電池セル21に供給され、発電に寄与する。その際、燃料電池セル21は発熱するが、その熱は、酸化剤ガス2により持ち去られるので、燃料電池セル21の温度は900℃〜1000℃に保持される。また、酸化剤ガス2は、燃料電池セル21から発電によって生じた熱量を奪いながら温度を上昇させていく。そして、発電に用いられなかった酸化剤ガス2は、断熱体A10−1付近に達する。
酸化剤ガス2は、断熱体A10−1の(第2)内面と燃料電池セル管3の(第2)外面との間の第2孔10−3’に入る。その際、断熱部10−1bにより流入量が制限され、断熱部10−1bの酸化剤ガス2の流入側と流出側とで圧力差(圧損)が生じる。そのため、酸化剤ガス2は、全ての第2孔10−3’に実質的に均等に流入する。
酸化剤ガス2は、断熱体A10−1付近から第1嵌合部8−2付近で、燃料電池セル管3の基体管を介して、燃料電池セル管3の内面に沿って流れる低温の燃料ガス1と熱交換を行う。そして、温度を下げて行き、第1嵌合部8−2付近の酸化剤ガス収集部7−4に達する(例えば、600℃程度)。
その後、酸化剤ガス2は、断熱体A10−1と管板A14とで形成された空間(酸化剤ガス収集部7−4)に沿って移動し、酸化剤ガス供給室7の酸化剤ガス排出口7−2から外部へ排出される。
【0087】
本発明により、実施例1と同様の効果を得ることが出来る。
また、酸化剤ガス2は、酸化剤ガス供給室7において、酸化剤ガス収集部7−4に入るために、断熱体A10−1の(第2)内面とそれに対応する位置の燃料電池セル管3の(第2)外面との間の第2孔10−3’に入る際、断熱部10−1bにより流入量が制限される。従って、酸化剤ガス2が酸化剤ガス排出口7−1の近傍の第2孔10−3’に偏って多く流入することが無くなる。そして、全ての第2孔10−3’に実質的に均等に流入させることが可能となる。
【0088】
そして、図9において示す酸化剤ガス収集部7−4の幅(図9中“B”)の大きさを小さくすることが出来る。それにより、発電部22以外の燃料電池セル管3の部分を短くすることが出来、燃料電池セル管3コストの低減、燃料電池モジュール33のコンパクト化が可能となる。
【0089】
図9において示す断熱部A10−1の厚み(図9中“A”)の大きさにおける、圧損を生じさせて酸化剤ガス2を均等に分配するために要した厚み(=A−断熱に必要な厚み)を断熱部10−1bの厚みまで小さくすることが出来る。それにより、発電部22以外の燃料電池セル管3の部分を短くすることが出来、燃料電池セル管3コストの低減、燃料電池モジュール33のコンパクト化が可能となる。
【0090】
更に、本発明による断熱部10−1bが圧損を生じさせ酸化剤ガス2を均等に分配させるので、図9において示す断熱体A10−1と燃料電池セル管3との隙間(図9中“ΔR”)を小さくして圧損を生じさせて酸化剤ガス2を均等に分配する必要が無くなる。そのため、ΔRを大きくとることができ、断熱部10−1cや断熱部10−1aと燃料電池セル管3が接触することによる燃料電池セル管3の損傷を防止することが可能となる。
【0091】
燃料電池セル管3の中心軸と第2孔10−3’の中心軸とは、酸化剤ガス2の均等な分配のためには、同軸をなすことが好ましい。しかし、本発明による断熱部10−1bが圧損を生じさせ酸化剤ガス2を均等に分配させるので、軸のずれの許容範囲を広く取ることができる。すなわち、製造上の歩留まりが向上し、製造コストが低減する。
【0092】
断熱体A10−1は、断熱部10−1aが薄く工作が容易であり、且つ、断熱部10−1b及び断熱部10−1cが柔軟性のある素材で加工が容易である。従って、加工精度を向上することが出来る他、製造工程にかかる労力やコストを低減することが出来る。
【0093】
また、酸化剤ガス2は、断熱体A10−1の(第2)内面と、それに対応する位置の燃料電池セル管3の(第2)外面との間の第2孔10−3’を経由して酸化剤ガス収集部7−4へ流入する際、断熱部10−1bにより流入量が制限される。従って、酸化剤ガス2が特定の第2孔10−3’に偏って流れて酸化剤ガス収集部7−4へ流入することが無くなる。そして、全ての第2孔10−3’に実質的に均等に流入させることが可能となる。
【0094】
酸化剤ガス2の複数の第1孔10−3及び複数の第2孔10−3’への均等分配が可能となるので、酸化剤ガス分配部7−3及び酸化剤ガス収集部7−4におけるガスの温度分布を均等とすることが出来る。従って、管板B15及び管板A14の温度分布を概ね均一にすることができ、酸化剤ガス分配部7−3の全体及び酸化剤ガス収集部7−4の全体において、それぞれの温度を概ね均一にすることが出来る。
【0095】
なお、実施例2における図6及び図7で説明した環状断熱体35についても、実施例3の図8のような構成で実施可能である。その場合、第1嵌合部8−2においては、図10に示すように成る。
図10は、図8の燃料電池セル管3の1本分の第1嵌合部8−2及びその周辺について拡大した図である。本図面においては、集電に関する構成について、省略している。
第1嵌合部8−2は、燃料電池セル21と発電部22とリード膜23とを含む燃料電池セル管3、管板A14、シール剤24、第2嵌合リング26及び充填材27を備える。その周辺の酸化剤ガス2の流れを断熱体A10−1が制限している。
【0096】
燃料電池セル21と発電部22とを含む燃料電池セル管3は、図6の説明の通りなのでその説明を省略する。断熱体A10−1、管板A14、リード膜23、シール剤24、第1嵌合リング26及び充填材27は、図6の断熱体B10−2、管板B15、リード膜23’、シール剤24’、第2嵌合リング26’及び充填材27’と同様であるので、その説明を省略する。
なお、断熱部10−1a〜断熱部10−1cを合わせた断熱体A10−1を第2断熱体ともいう。また、環状断熱体35−1を第4断熱体ともいう。
【0097】
この場合にも、実施例2と同様な効果を得ることが出来る。
【0098】
なお、図1及び図1において、供給室8−燃料電池セル管3−排気室9内に燃料ガス1、酸化剤ガス供給室7に酸化剤ガス2を流している。しかし、燃料電池21の積層方法を逆(図8、図1の場合、燃料電池セル管3の表面に近い側から順にアノード電極/電解質膜/カソード電極と積層)にした場合には、供給室8−燃料電池セル管3−排気室9内に酸化剤ガス2、酸化剤ガス供給室7に燃料ガス1を流すことにより、上記実施例と同様に発電を行える。そして、本発明の効果を同様に得ることが出来る。
【0099】
本発明においては、図8及び図1に示すような燃料電池セル管3を竪置きした場合だけでなく、横置きした場合(図8及び図1の燃料電池モジュール33を横に90度倒した形)でも実施可能である。
また、燃料電池セル管3を両端で支持している。そのため、燃料電池セル管3の構造が簡単となりメンテナンスがし易く、コストも低減する。
【0100】
【発明の効果】
本発明により、燃料電池モジュールにおいて燃料電池セル用のガスを供給する室から、その室に接続された燃料電池セルを有する複数の燃料電池セル管へ、ガスを等しく分配することが可能となる。
【図面の簡単な説明】
【図1】本発明である燃料電池モジュールの実施の形態の構成を示す図(断面図)である。
【図2】燃料電池セル管の1本分の第2嵌合部及びその周辺の拡大図である。
【図3】燃料電池セル管の1本分の第1嵌合部及びその周辺の拡大図である。
【図4】断熱体の構成を示す斜視図である。
【図5】本発明である燃料電池モジュールの実施の形態における管板の正面図である。
【図6】燃料電池セル管の1本分の他の第2嵌合部及びその周辺の拡大図である。
【図7】環状断熱体を示す斜視図である。
【図8】本発明である燃料電池モジュールの他の実施の形態の構成を示す図(断面図)である。
【図9】燃料電池セル管の1本分の第1嵌合部及びその周辺の拡大図である。
【図10】燃料電池セル管の1本分の他の第1嵌合部及びその周辺の拡大図である。
【符号の説明】
1  燃料ガス
2  酸化剤ガス
3  燃料電池セル管
7  酸化剤ガス供給室
7−1  酸化剤ガス供給口
7−2  酸化剤ガス排出口
7−3  酸化材ガス分配部
7−4  酸化材ガス収集部
8  供給室
8−1  燃料ガス供給口
8−2  第1嵌合部
9  排出室
9−1  燃料ガス排出口
9−2  第2嵌合部
10  断熱体
10−1  断熱体A
10−1a  断熱部
10−1b  断熱部
10−1c  断熱部
10−2  断熱体B
10−2a  断熱部
10−2b  断熱部
10−2c  断熱部
10−3  第1孔
10−3’  第2孔
10−3(’)a  孔
10−3(’)b  孔
10−3(’)c  孔
12  側板
13  側板
14  管板A
15  管板B
16  側板
17  側板
21  燃料電池セル
22  発電部
23(’)  リード膜
24(’)  シール剤
26  第1嵌合リング
26’  第2嵌合リング
27(’)  充填材
31  側板
32  孔
33  燃料電池モジュール
35−1〜2  環状断熱体

Claims (10)

  1. 表面に燃料電池セルを形成された複数の燃料電池セル管と、前記複数の燃料電池セル管内に燃料ガスを供給する第1燃料室と、
    前記複数の燃料電池セル管で使用済みの前記燃料ガスを排出する第2燃料室と、
    前記第1燃料室と前記第2燃料室との間に設置され、前記複数の燃料電池セル管を含み、前記燃料電池セルに酸化剤ガスを供給する空気室と、
    を具備し、
    前記第1燃料室は、前記複数の燃料電池セル管の一端部が前記第1燃料室の一側面としての第1管板に開放され、嵌合された複数の第1嵌合部を含み、
    前記第2燃料室は、前記複数の燃料電池セル管の他端部が前記第2燃料室の一側面としての第2管板に開放され、嵌合された複数の第2嵌合部を含み、
    前記空気室は、前記第2管板の近傍に、供給される前記酸化剤ガスの流路を制限するように設けられ、前記複数の燃料電池セル管の各々を通す複数の第1孔を有する第1断熱体を含み、
    前記第1断熱体は、前記複数の第1孔の各々において、第1内面が前記複数の燃料電池セル管の各々の第1外面に接する第1断熱部を有し、
    供給された前記酸化剤ガスは、前記第1断熱体と前記第2管板とで形成される空間中を通り、前記複数の第1孔の各々から、前記第1断熱部で圧損を生じながら前記複数の燃料電池セル管の各々の前記第1外面に沿って前記第1管板方向へ移動する、
    燃料電池モジュール。
  2. 前記空気室は、前記第1管板の近傍に、排出される前記酸化剤ガスの流路を制限するように設けられ、前記複数の燃料電池セル管の各々を通す複数の第2孔を有する第2断熱体を更に含み、
    前記第2断熱体は、前記複数の第2孔の各々において、第2内面が前記複数の燃料電池セル管の各々の第2外面に接する第2断熱部とを有し、
    前記酸化剤ガスは、前記複数の燃料電池セル管の各々の前記第2外面に沿って、前記複数の第2孔の各々から、前記第2断熱部で圧損を生じながら前記第1管板方向へ向かい、前記第2断熱体と前記第1管板とで形成される空間中を移動する、
    請求項1に記載の燃料電池モジュール。
  3. 前記第1断熱部は、前記複数の燃料電池セル管の各々が摺動可能に接している、
    請求項1又は2に記載の燃料電池モジュール。
  4. 前記第1断熱部は、フエルト状の断熱材である、
    請求項1乃至3のいずれか一項に記載の燃料電池モジュール。
  5. 前記断熱材は、シリカ、アルミナ及びマグネシアの少なくとも1つを含む、
    請求項4に記載の燃料電池モジュール。
  6. 表面に燃料電池セルを形成された複数の燃料電池セル管と、
    前記複数の燃料電池セル管内に燃料ガスを供給する第1燃料室と、
    前記複数の燃料電池セル管で使用済みの前記燃料ガスを排出する第2燃料室と、
    前記第1燃料室と前記第2燃料室との間に設置され、前記複数の燃料電池セル管を含み、前記燃料電池セルに酸化剤ガスを供給する空気室と、
    を具備し、
    前記第1燃料室は、前記複数の燃料電池セル管の一端部が前記第1燃料室の一側面としての第1管板に開放され、嵌合された複数の第1嵌合部を含み、
    前記第2燃料室は、前記複数の燃料電池セル管の他端部が前記第2燃料室の一側面としての第2管板に開放され、嵌合された複数の第2嵌合部を含み、
    前記空気室は、前記第2管板の近傍に、供給される前記酸化剤ガスの流路を制限するように設けられ、前記複数の燃料電池セル管の各々を通す複数の第1孔を有する第1断熱体を含み、前記複数の第1孔の各々の第1内面は、前記複数の燃料電池セル管の各々の第1外面から離れ、
    前記複数の燃料電池セル管の各々は、内面が前記第1外面に接し、外面が前記第1孔において前記第1断熱体に接する環状の第3断熱体を有し、
    供給された前記酸化剤ガスは、前記第1断熱体と前記第2管板とで形成される空間中を通り、前記複数の第1孔の各々から、前記第3断熱体で圧損を生じながら前記複数の燃料電池セル管の各々の前記第1外面に沿って前記第1管板方向へ移動する、
    燃料電池モジュール。
  7. 前記空気室は、前記第1管板の近傍に、排出される前記酸化剤ガスの流路を制限するように設けられ、前記複数の燃料電池セル管の各々を通す複数の第2孔を有する第2断熱体を更に含み、前記複数の第2孔の各々の第2内面は、前記複数の燃料電池セル管の各々の第2外面から離れ、
    前記複数の燃料電池セル管の各々は、内面が前記第2外面に接し、外面が前記第2孔において前記第2断熱体に接する環状の第4断熱体を有し、
    前記酸化剤ガスは、前記複数の燃料電池セル管の各々の前記第2外面に沿って、前記複数の第2孔の各々から、前記第4断熱体で圧損を生じながら前記第1管板方向へ向かい、前記第2断熱体と前記第1管板とで形成される空間中を移動する、
    請求項6に記載の燃料電池モジュール。
  8. 前記第3断熱体は、前記複数の燃料電池セル管の各々が摺動可能に前記第1断熱体と接している、
    請求項6又は7に記載の燃料電池モジュール。
  9. 前記第3断熱体は、フエルト状の断熱材である、
    請求項6乃至8のいずれか一項に記載の燃料電池モジュール。
  10. 前記断熱材は、シリカ、アルミナ及びマグネシアの少なくとも1つを含む、
    請求項9に記載の燃料電池モジュール。
JP2002191942A 2002-07-01 2002-07-01 燃料電池モジュール Expired - Lifetime JP3649708B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002191942A JP3649708B2 (ja) 2002-07-01 2002-07-01 燃料電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002191942A JP3649708B2 (ja) 2002-07-01 2002-07-01 燃料電池モジュール

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004199758A Division JP4043457B2 (ja) 2004-07-06 2004-07-06 セラミック管と金属との結合構造、及び燃料電池モジュール

Publications (2)

Publication Number Publication Date
JP2004039331A true JP2004039331A (ja) 2004-02-05
JP3649708B2 JP3649708B2 (ja) 2005-05-18

Family

ID=31701372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002191942A Expired - Lifetime JP3649708B2 (ja) 2002-07-01 2002-07-01 燃料電池モジュール

Country Status (1)

Country Link
JP (1) JP3649708B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196315A (ja) * 2005-01-13 2006-07-27 Mitsubishi Heavy Ind Ltd セラミックスと金属との結合体及び燃料電池モジュール
JP2007134095A (ja) * 2005-11-09 2007-05-31 Mitsubishi Heavy Ind Ltd 固体酸化物形燃料電池
JP2007134096A (ja) * 2005-11-09 2007-05-31 Mitsubishi Heavy Ind Ltd 固体酸化物形燃料電池
JP2009070730A (ja) * 2007-09-14 2009-04-02 Mitsubishi Heavy Ind Ltd 燃料電池モジュール
JP2010238452A (ja) * 2009-03-30 2010-10-21 Aisin Seiki Co Ltd 燃料電池装置
JP2013171675A (ja) * 2012-02-20 2013-09-02 Mitsubishi Heavy Ind Ltd 固体酸化物形燃料電池及び複合発電システム
JP2015165454A (ja) * 2014-02-28 2015-09-17 三菱日立パワーシステムズ株式会社 燃料電池モジュールおよび燃料電池モジュールの製造方法
WO2018155112A1 (ja) * 2017-02-27 2018-08-30 日本特殊陶業株式会社 電気化学反応単位および電気化学反応セルスタック

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196315A (ja) * 2005-01-13 2006-07-27 Mitsubishi Heavy Ind Ltd セラミックスと金属との結合体及び燃料電池モジュール
JP2007134095A (ja) * 2005-11-09 2007-05-31 Mitsubishi Heavy Ind Ltd 固体酸化物形燃料電池
JP2007134096A (ja) * 2005-11-09 2007-05-31 Mitsubishi Heavy Ind Ltd 固体酸化物形燃料電池
JP2009070730A (ja) * 2007-09-14 2009-04-02 Mitsubishi Heavy Ind Ltd 燃料電池モジュール
JP2010238452A (ja) * 2009-03-30 2010-10-21 Aisin Seiki Co Ltd 燃料電池装置
JP2013171675A (ja) * 2012-02-20 2013-09-02 Mitsubishi Heavy Ind Ltd 固体酸化物形燃料電池及び複合発電システム
JP2015165454A (ja) * 2014-02-28 2015-09-17 三菱日立パワーシステムズ株式会社 燃料電池モジュールおよび燃料電池モジュールの製造方法
WO2018155112A1 (ja) * 2017-02-27 2018-08-30 日本特殊陶業株式会社 電気化学反応単位および電気化学反応セルスタック
JPWO2018155112A1 (ja) * 2017-02-27 2019-02-28 日本特殊陶業株式会社 電気化学反応単位および電気化学反応セルスタック

Also Published As

Publication number Publication date
JP3649708B2 (ja) 2005-05-18

Similar Documents

Publication Publication Date Title
US7892684B2 (en) Heat exchanger for fuel cell stack
JP2008519391A (ja) 可撓性の相互接続部を有する燃料電池モジュール
EP2810326B1 (en) Fuel cell module
JP3868253B2 (ja) 燃料電池の熱交換構造
JP5980144B2 (ja) 発電システム、発電システムの運転方法、及び制御装置
EP2987196A1 (en) Fuel cell module
JP6415962B2 (ja) 燃料電池カートリッジおよび燃料電池モジュール
JP2017076609A (ja) 熱交換器を含む燃料電池モジュール及びそのようなモジュールを作動させる方法
JP2006066387A (ja) 燃料電池
JP5122319B2 (ja) 固体酸化物形燃料電池
JP3649708B2 (ja) 燃料電池モジュール
JP2014067669A (ja) 燃料電池モジュール
JP5815476B2 (ja) 燃料電池モジュール
JP2003323912A (ja) 燃料電池モジュール
JP3912997B2 (ja) 空気予熱構造
US20100190083A1 (en) Solid oxide fuel cell unit for use in distributed power generation
JP2014110174A (ja) 燃料電池モジュール
JP2015018622A (ja) 燃料電池ユニット、燃料電池システム及びハイブリッド発電システム
JP4043457B2 (ja) セラミック管と金属との結合構造、及び燃料電池モジュール
JP2012003934A (ja) 固体酸化物型燃料電池
JP3886763B2 (ja) 燃料電池の熱交換構造
JP6012507B2 (ja) 燃料電池モジュール
JP3727906B2 (ja) 燃料電池モジュール
JP6113646B2 (ja) 還元処理装置及び還元処理方法
CN112864410B (zh) 一种燃料电池及燃料电池发电系统

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3649708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term