JP2010238452A - 燃料電池装置 - Google Patents

燃料電池装置 Download PDF

Info

Publication number
JP2010238452A
JP2010238452A JP2009083545A JP2009083545A JP2010238452A JP 2010238452 A JP2010238452 A JP 2010238452A JP 2009083545 A JP2009083545 A JP 2009083545A JP 2009083545 A JP2009083545 A JP 2009083545A JP 2010238452 A JP2010238452 A JP 2010238452A
Authority
JP
Japan
Prior art keywords
passage
forming member
passage forming
fuel cell
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009083545A
Other languages
English (en)
Other versions
JP5290021B2 (ja
Inventor
Kouichi Kuwaha
孝一 桑葉
Satoshi Endo
聡 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2009083545A priority Critical patent/JP5290021B2/ja
Publication of JP2010238452A publication Critical patent/JP2010238452A/ja
Application granted granted Critical
Publication of JP5290021B2 publication Critical patent/JP5290021B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】カソードガス等のガスの通路を形成する通路形成部材同士の接続部分における耐久性の向上を図るのに有利な燃料電池装置を提供する。
【解決手段】カソードガス通路8、アノードガス通路および排気ガス通路のうちのいずれか一方は、第1通路82と、第1通路82に対して曲成された第2通路83とを備えている。第2通路83を形成する第2通路形成部材832は、断面において、固定部24に固定されて拘束された拘束部834と、第1通路82を形成する第1通路形成部材801に接続され且つ発電運転時において熱膨張により伸張する伸張端部835とを有する。第1通路形成部材801は本体部802と第1緩和構造部805とを有する。第1緩和構造部805は、伸張端部835の伸張時における応力集中を緩和させる。
【選択図】図1

Description

本発明は、ガスが通過する通路形成部材を有する燃料電池装置に関する。
燃料電池装置として、燃料原料を改質させてアノードガスを生成させる改質器と、改質器で生成されたアノードガスとカソードガスとで発電する燃料電池と、改質部で生成された前記アノードガスを燃料電池の内部に供給するためのアノードガス通路と、カソードガスを燃料電池に供給するためのカソードガス通路と、燃料電池の発電運転に伴い発生する排気ガスを排出させる排気ガス通路とを有するものが開示されている(特許文献1,2)。燃料電池は発電に伴い発熱するため、カソードガス通路、排気ガス通路、アノードガス通路などは加熱される。従って、これらの通路を形成する通路形成部材は、発電運転に伴い熱膨張して伸張する。
特開2007−234384号公報 特開2006−331977号公報
上記した燃料電池装置によれば、燃料電池の発電運転時において、カソードガス等のガスの通路を形成する通路形成部材が熱膨張して伸張すると、通路形成部材同士の接続部分に変形が集中し、応力集中が発生するおそれがある。この場合、通路形成部材同士の接続部分における耐久性の向上には限界がある。
本発明は上記した実情に鑑みてなされたものであり、カソードガス等のガスの通路を形成する通路形成部材同士の接続部分における応力集中を緩和させ、当該接続部分における耐久性の向上を図るのに有利な燃料電池装置を提供することを課題とする。
本発明に係る燃料電池装置は、燃料原料を改質させてアノードガスを生成させる改質器と、改質器で生成されたアノードガスとカソードガスとで発電する燃料電池と、改質部で生成された前記アノードガスを前記燃料電池の内部に供給するためのアノードガス通路と、カソードガスを燃料電池に供給するためのカソードガス通路と、燃料電池の発電運転に伴い発生する排気ガスを排出させる排気ガス通路とを具備しており、
(i)カソードガス通路、アノードガス通路および排気ガス通路のうちのいずれか一方は、第1通路と、第1通路に連通しつつ第1通路に対して曲成された第2通路とを備えており、(ii)第2通路を形成する第2通路形成部材は、断面において、固定部に固定されて拘束された拘束部と、第1通路を形成する第1通路形成部材に接続され且つ発電運転時において熱膨張により伸張する伸張端部とを有しており、(iii)第1通路形成部材は、断面において第2通路形成部材に対して交差する方向に延びる部分をもつ本体部と、第2通路形成部材の伸張端部に接続され第1通路形成部材と第2通路形成部材との接続部分において伸張端部の伸張に起因して発生する応力集中を緩和させる第1緩和構造部とを有する。
本発明によれば、第2通路を形成する第2通路形成部材は、断面において、固定部に固定されて拘束された拘束部と、第1通路を形成する第1通路形成部材に接続された伸張端部とを有する。第1通路形成部材は、断面において第2通路形成部材に対して交差する方向に延びる部分をもつ本体部と、伸張端部に接続されている第1緩和構造部とをもつ。発電運転時において第2通路形成部材はその長さ方向に熱膨張するものの、拘束部が固定されて拘束されているため、伸張端部が伸張することになる。従って、伸張端部は、燃料電池の発電運転時において伸張する。
このように第2通路形成部材の伸張端部が伸張すると、それに追従する第1通路形成部材に引張力が発生し、第1通路形成部材と第2通路形成部材の伸張端部との接続部分において応力集中が発生するおそれがある。しかし本発明によれば、第1通路形成部材に引張力が作用したとしても、第1通路形成部材の第1緩和構造部は、第2通路形成部材の伸張端部の伸張時における応力集中を緩和させる。このため発電運転時において熱膨張に起因して第2通路形成部材の伸張端部が伸張したとしても、第1緩和構造部の働きにより、第1通路形成部材と伸張端部との接続部分における応力集中が低減される。
燃料電池装置の発電運転時において、第2通路形成部材の伸張端部が熱膨張により伸張したとしても、第1緩和構造部の働きにより、第1通路形成部材と伸張端部との接続部分における応力集中が低減される。この結果、第1通路形成部材と伸張端部との接続部分における耐久性が確保され、長寿命化が図られる。
実施形態1に係り、燃料電池装置の断面図である。 実施形態1に係り、燃料電池装置のスタック付近を模試的に示す断面図である。 実施形態1に係り、第2通路形成部材付近を模試的に示す斜視図である。 従来技術に係り、伸張端部が伸張するときにおける第1通路形成部材と伸張端部との関係を模式的に示す図である。 実施形態1に係り、伸張端部が伸張するときにおける第1通路形成部材と伸張端部との関係を模式的に示す図である。 実施形態2に係り、第1通路形成部材の第1緩和構造部および伸張端部付近を拡大して示す図である。 実施形態3に係り、第1通路形成部材の第1緩和構造部および伸張端部付近を拡大して示す図である。 実施形態4に係り、燃料電池装置の断面図である。 実施形態4に係り、第1通路形成部材の第1緩和構造部および伸張端部付近を拡大して示す図である。 実施形態5に係り、第1通路形成部材の第1緩和構造部および伸張端部付近を拡大して示す図である。 実施形態6に係り、第1通路形成部材の第1緩和構造部および伸張端部付近を拡大して示す図である。 実施形態7に係り、燃料電池装置の断面図である。 実施形態8に係り、燃料電池装置の断面図である。
好ましい形態によれば、第2通路形成部材は、ガスを吹き出す出口を拘束端部側に有する。この場合、ガスを吹き出す出口が第2通路形成部材において拘束端部側に形成されているため、発電運転時において熱膨張が発生したとしても、ガスを吹き出す出口の位置の変動が抑制される。出口がカソードガスを吹き出す場合には、カソードガスの吹き出し位置の変動が抑制され、燃料電池の発電性能の変動が抑制される。好ましい形態によれば、第1通路形成部材の第1緩和構造部は、第1通路形成部材の拘束部から遠ざかる方向に指向する傾斜状または円弧状の部分を有する。この場合、第1緩和構造部における応力集中が効率よく緩和される。
好ましい形態によれば、第1緩和構造部は、第2通路形成部材の伸張端部に溶接、接続具または圧入で接続されている。この結果、第1緩和構造部は第2通路形成部材の伸張端部に接続される。接続具としてはボルト、リベットが例示される。好ましい形態によれば、第1通路形成部材の第1緩和構造部および/または本体部は蛇腹部を備えている。蛇腹部は伸縮容易であるため、伸張端部の伸張に容易に追従できる。
好ましい形態によれば、断面において、第1通路形成部材の本体部は、第1通路形成部材の外側を包囲する包囲壁と、包囲壁と第1通路形成部材の伸張端部とを接続する接続壁と、包囲壁と接続壁との境界領域に形成された包囲壁および接続壁に対して傾斜状または円弧状の第2緩和構造部とを有する。この場合、包囲壁と接続壁との境界領域における応力集中が緩和される。
(実施形態1)
図1〜図5は実施形態1を示す。本実施形態は固体酸化物型の燃料電池装置に適用した例を示す。図1に示すように、燃料電池装置は、燃料電池(セル)20で形成されたスタック2と、スタック2の上側に配置された改質器4と、スタック2の上面と改質器4の下面との間に形成された燃焼用空間5と、スタック2の外側に配置された断熱材料で形成された断熱層6と、断熱層6の外側に配置された排気ガス通路7と、排気ガス通路7の外側に配置されたカソードガス通路8とを有する。
図2は燃料電池20および改質器4付近の概念図を示す。図2に示すように、スタック2は、カソードガスが通る通路22rを介して、複数の燃料電池20を並設方向(矢印L方向)に並設することにより形成されている。隣接する燃料電池20は図示しない導電部材によって電気的に接続されている。燃料電池20は、アノードガスが供給される通路21rをもつ多孔質導電部(多孔質支持体)26と、燃料極として機能するアノード21と、カソードガスが供給される酸化剤極(空気極)として機能するカソード22と、アノード21およびカソード22で挟まれた固体酸化物を母材とする膜状の電解質23と、ガス不透過性と導電性を有するインターコネクタ27とを有する。電解質23を形成する固体酸化物は、スタック2の作動温度において酸素イオン(O2−)を伝導させる性質をもつものであり、YSZ等のジルコニア系、ランタンガレート系が例示される。アノード21は、ニッケル−セリア系のサーメットが例示される。カソード22は、サマリウムコバルタイト、ランタンマンガナイトが例示される。但しアノード21、カソード3および電解質23の材質は上記に限定されるものではない。また、多孔質導電部26は、通路21rに供給されたアノードガスをアノード21に供給するとともにアノード21、電解質23、カソード22およびインターコネクタ27を支持するものであり、材質はガス透過性と導電性を有し、金属と希土類酸化物の複合体が例示される。インターコネクタ27は通路21rから多孔質導電部26に拡散されたアノードガスと、カソードガスの通路22rに供給されたカソードガスを遮断するものである。なお、排気ガス通路7およびカソードガス通路8は、スタック2の長手方向(図2の矢印L方向,燃料電池20の積層方向)に沿って延設されている。
図2に示すように、改質器4は、改質水を水蒸気化させる蒸発部40と、水蒸気を利用して燃料原料を改質される改質部42とを備えている。蒸発部40は、改質水系から蒸発部40に供給される液相状の改質水を水蒸気化させる。改質部42は、改質反応を促進させる改質触媒を担持するセラミックス材を有する。改質部42は蒸発部40の下流に設けられており、蒸発部40で生成された水蒸気でガス状または液状の炭化水素系の燃料原料を高温領域において水蒸気改質させてアノードガスを生成させる。アノードガスは水素ガスまたは水素含有ガスである。なお、定常運転における燃料電池20の作動温度は、例えば450〜1100℃の範囲内、殊に550〜800℃の範囲内であることが好ましい。
図1に示すように、カソードガス通路8は、入口80と、入口80から延びる入口通路81と、入口通路81の上端から横方向にのびる第1通路82と、第1通路82の先端から下向きに延びる第2通路83と、第2通路83の下端側に形成された出口84とをもつ。図1に示すように、カソードガス通路8は、殻状をなす第1通路形成部材801と、箱状をなす外側部材850とで形成されている。第1通路形成部材801は、入口通路81および第2通路81を形成する殻状をなす本体部802と、本体部802に連設された第1緩和構造部805とを有する。第1通路形成部材801の下端部801xは、カソードガスマニホルド79に溶接等で固定されており、第1通路形成部材801の熱膨張は拘束される。本体部802は、カソードガス通路8の入口通路81に対向する包囲壁802aと、カソードガス通路8の第1通路81に対向すると共に第2通路83側に接続される接続壁802cとを有する。
排気ガス通路7は、金属で形成された第1通路形成部材801および排気通路形成部材700で形成されている。排気通路形成部材700は、スタック2を収容して発電する発電室720を形成する。カソードガス通路8の第2通路83は、矢印L方向(燃料電池の並設方向)に延びる中空薄箱状をなす第2通路形成部材832(図3参照)で形成されている。
図1に示すように、排気ガス通路7は、改質器4に接触する接触通路70と、接触通路70の下流に連通するように延設された排出通路73とを有する。排出通路73は、入口72および出口74(排気ガス出口)と連通口74xとを有する。排出通路73において、相対的に高温側の排気ガスは矢印A1,A2,A3方向に流れる。なお、スタック2は、カソードガス通路8の第2通路83を挟むように2組設けられている。但しこれに限定されるものではない。
図2に示すように、スタック2の下部には、改質部42で生成されたアノードガスをアノードガス通路25を介して燃料電池20のアノード21に案内するアノードガスマニホルド24が配置されている。ここで、スタック2、カソードガス通路8、排気ガス通路7、改質器4およびアノードガスマニホルド24、さらには、燃焼用空間5は、スタック2の長手方向(矢印L方向,燃料電池20の並設方向)に沿って延設されている。
次に、燃料電池20が発電運転するときについて説明を加える。この場合、図2に示す燃料原料ポンプ90(燃料原料搬送源)が駆動するため、炭化水素系のガス状または液状の燃料原料が燃料原料供給通路92を介して改質器4の蒸発部40に供給される。また改質水ポンプ93(水搬送源)が駆動し、図略の貯水タンクの改質水が改質水供給通路94を介して蒸発部40に供給される。ここで、燃焼火炎50で蒸発部40および改質部42は加熱されているため、蒸発部40は液相状の改質水を水蒸気化させる。生成された水蒸気は改質部42に供給される。改質部42は燃料原料を水蒸気改質させ、水素を含むアノードガスを生成させる。燃料原料がメタン系である場合には、水蒸気改質ではアノードガスの生成は、次の(1)式に基づくと考えられている。固体酸化物形の燃料電池20では、Hの他にCOも燃料となりうる。
(1)…CH+2HO→4H+CO
CH+HO→3H+CO
CnHmが炭化水素の一般的な化学式であるとすると、水蒸気改質の一般式は次の(1−1)式のようになる。n=1、m=4であると、メタンの水蒸気改質の式が得られる。
(1−1)…CnHm+2nHO→nCO+[(m/2)+2n)]H
生成された水素を含有するアノードガスは、アノードガス通路25およびアノードガスマニホルド24を介して、燃料電池20のアノード21の通路21rに供給されて発電に使用される。
また図1において、カソードガスポンプ95(カソードガス搬送源)が駆動するため、空気であるカソードガスが、矢印C1方向,矢印C2方向,矢印C3方向,矢印C4方向,矢印C5方向,矢印C6方向に沿って、カソードガス通路8の入口通路81、第1通路82および第2通路83を流れ、カソードガス通路8の先端の出口84から発電室720に供給され、スタック2のカソード22に対面する通路22rを上向きに通過しつつ、カソード22の発電反応に使用される。改質部22で生成されたアノードガスは、アノードガスマニホルド24からスタック2のアノード21の通路21rを上向きに通過しつつ、アノードの発電反応に使用される。これによりスタック2と電力負荷とが電気的に接続されている状態で、スタック2は発電する。
発電反応においては、水素含有ガスで供給されるアノード21では、基本的には(2)の反応が発生すると考えられている。酸素を含む空気が供給されるカソード22では、基本的には(3)の反応が発生すると考えられている。カソードにおいて発生した酸素イオン(O2−)がカソード22からアノード21に向けて電解質25(酸素イオン伝導体,イオン伝導体)を伝導する。
(2)…H+O2−→HO+2e
COが含まれている場合には、CO+O2−→CO+2e
(3)…1/2O+2e→O2−
上記した発電反応後のアノードオフガスは未反応の燃焼成分(水素)を含有しており、スタック2のアノード21の通路21rの上部から燃焼用空間5に排出される。この結果、燃焼用空間5においてアノードオフガスはカソードオフガスおよび/または発電室720のカソードガスにより燃焼し、燃焼火炎50を形成する。燃焼火炎50により、改質部42および蒸発部40が加熱される。これにより改質部42における改質反応が維持され、蒸発部40において水蒸気生成反応が維持される。なお、(2)の反応式によれば、アノードオフガスは水分(HO)を含むことがある。
本実施形態によれば、スタック2のアノード21に供給されるアノードガス、すなわち、改質部42に供給される燃料原料の流量としては、燃料電池20のアノード21における発電反応で使用される流量と、燃焼用空間5においてアノードオフガスが燃焼火炎50を形成する流量とを加算した流量が設定されている。カソードガスの流量としては、燃料電池20のカソードにおける発電反応で使用される流量と、燃焼用空間5においてカソードオフガスが燃焼用空気として燃焼火炎50を形成する流量と、余裕流量とを加算した流量が設定されている。
上記したように燃焼用空間5において燃焼した後の排気ガスは、排気ガス通路7の入口72から排出通路73に進入して下向き(矢印A1,A2,A3方向)に流れ、出口74から吐出される。ここで、排気ガス通路7の排出通路73を下向きに流れる相対的に高温の排気ガスと、カソードガス通路8の入口通路81を上向き(排出通路73における排気ガスの流れ方向と反対方向,矢印C1〜C6方向)に流れる相対的に低温のカソードガスとが、対向流として、互いに熱交換する。よって排気ガスが冷却されると共に、スタック2に供給される直前のカソードガスが予熱される。このように予熱されたカソードガスは、カソードガス通路8の第1通路82,第2通路83,出口84を経て、発電室720に供給されるため、発電効率が高まる。このように入口通路81および排出通路73は熱交換器7Xを構成する。
さて本実施形態によれば、前述したように、図1に示されるように、カソードガス通路8の第1通路82は、第1通路形成部材801と外側部材850とで形成されている。第1通路形成部材801は、本体部802と第1緩和構造部805とを有する。本体部802は、第2通路形成部材832にほぼ平行に配置され且つ入口通路81を対向する包囲壁802aと、第2通路形成部材832にほぼ直交するように配置され且つ包囲壁802aに連設された接続壁802cとを有する。接続壁802cは第1通路82に対向する。外側部材850は、包囲壁802aに対向する壁部851と、接続壁802cに対向する壁部852とを有する。カソードガス通路8の第2通路83は、中空薄箱状をなす第2通路形成部材832(図3参照)で形成されており、スタック2を収容する発電室720(特に通路21r)にカソードガスを吐出させる出口84を有する。なお、図3において、複数の出口84は矢印L方向において間隔を隔てて並設されているが、スリット状としても良い。
図1に示すように、第2通路形成部材832は、固定部として機能するアノードガスマニホルド24に溶接または取付具(ボルト、リベット等)で固定されて拘束された拘束部834と、第1通路形成部材801に接続された伸張端部835とを有する。伸張端部835は第2通路形成部材832の一端部を形成し、拘束部834は他端部を形成する。スタック2の発電運転時にはスタック2は高温となるため、第2通路形成部材832はその長さ方向(高さ方向,矢印H方向)に熱膨張する。ここで、拘束部834は、固定部であるアノードガスマニホルド24に固定されて拘束されている。このため、アノードガスマニホルド24と反対側に位置する伸張端部835は、発電運転時において熱膨張により矢印H1方向に伸張する。6wは断熱材を示す。
ここで、従来技術によれば、図4の(a)に示すように、第1通路形成部材801は第2通路形成部材832に対して垂直方向に配置されており、第1通路形成部材801の端部は伸張端部835に溶接部89で固定状態に接続されている。このような従来技術によれば、図4の(b)に示すように、熱膨張に伴い第2通路形成部材832の伸張端部835が矢印H1方向にΔH伸張すると、第1通路形成部材801と第2通路形成部材832との接続部分(溶接部89)に応力集中が発生するおそれがある。その理由としては次のように推察される。伸張前において第1通路形成部材801の接続壁802cの長さはaとして示されるが、伸張端部835の熱膨張に追従して角度θ1で変形すると推定される第1通路形成部材801の接続壁802cの長さは、cとして示される。ここで長さcは長さaよりも長い。このため、伸張端部835が矢印H1方向に伸張すると、第1通路形成部材801と第2通路形成部材832との接続部分(溶接部89)に引張応力σが作用し易くなると考えられる。発電開始および発電停止に伴い、過剰な引張応力が繰り返して作用することは、第1通路形成部材801と第2通路形成部材832との接続部分(溶接部89)の耐久性および長寿命化にとっては、好ましくない。
この点本実施形態によれば、図1に示すように、断面において、第1通路形成部材801は、第2通路形成部材832に対して交差する方向に延びる接続壁802cを有する本体部802と、本体部802と一体をなすように伸張端部835側に設けられた第1緩和構造部805とを有する。第1緩和構造部805は、第2通路形成部材832の伸張端部835に溶接部89で溶接されて固定されている。図1に示すように、この第1緩和構造部805は、屈曲部805xを介して、第1通路形成部材801の拘束部834から遠ざかる方向に向けて角度θ2で傾斜する傾斜壁状をなしている。このため第1緩和構造部805は、伸張端部835の伸張に対して追従し易い。第1緩和構造部805は伸張端部835に溶接部89で接続されている。なお、第1通路形成部材801は板材であるため、伸張端部835の矢印H1方向への伸張に伴い、第1緩和構造部805の角度θ2および屈曲部805xの角度θ4は変更容易である。
このような本実施形態によれば、伸張前の状態を表す図5の(a)に示すように、第1通路形成部材801の第1緩和構造部805は、第2通路形成部材832の伸張端部835に溶接部89で結合されて接続されている。ここで、伸張端部835が矢印H1方向にΔH伸張したとしても、第1通路形成部材801と第2通路形成部材832との接続部分(溶接部89)の応力集中は緩和される。その理由としては次のように推察される。すなわち、図5の(a)に示すように、伸張端部835が伸張する前における第1通路形成部材801の長さは、接続壁802cの長さeと、接続壁802cに対して伸張方向(矢印H1方向)に角度θ2で傾斜している第1緩和構造部805の長さfとの合計として示される。
ここで、第2通路形成部材832から第1通路形成部材801の外端までの距離a10が前記したaと同一である場合、伸張端部835が矢印H1方向に伸張する前において、第1緩和構造部805が本体部802に対して角度θ2で傾斜しているぶん、第1通路形成部材801の全体の長さ(e+f)は、従来技術に係る長さaよりも長い。従って、伸張端部835が矢印H1方向に伸張し、これに伴い第1通路形成部材801が追従変形したとしても、前記した伸張前の長さ(e+f)は長いため、第1通路形成部材801と第2通路形成部材832との接続部分(溶接部89)に過剰な引張応力σが作用することが抑制されると考えられる。
このため本実施形態によれば、第1通路形成部材801および第2通路形成部材83が熱膨張したとしても、第1通路形成部材801と第2通路形成部材832との接続部分(溶接部89)に過剰な引張応力が作用することが抑制される。故に、燃料電池装置1の発電運転および発電停止が繰り返されたとしても、第1通路形成部材801と第2通路形成部材832との接続部分(溶接部89)の耐久性が確保され、当該接続部分の長寿命化を図ることができる。なお、発電運転の停止に伴い、第2通路形成部材832が矢印H2方向に熱収縮したとしても、第1通路形成部材801は元の位置に復帰できる。なお、図5(b)および図4(b)は伸張端部835の伸張量の大きさを模式的に示す。
更に本実施形態によれば、断面において、図1に示すように、第1通路形成部材801の本体部802は、第2通路形成部材832の外側を包囲する包囲壁802aと、包囲壁802aと第1通路形成部材801の伸張端部835とを接続する側の接続壁802cと、包囲壁802aと接続壁802cとの境界領域に形成された包囲壁802aおよび接続壁802cに対して傾斜状をなす第2緩和構造部803とを有する。図1に示すように、第2緩和構造部803は、包囲壁802aに対して曲成された第1屈曲部803fをもつと共に、接続壁802cに対して曲成された第2屈曲部803sとをもつ。このため、第2通路形成部材832の伸張端部835が矢印H1方向に伸張するとき、伸張に伴って第1通路形成部材801が変形するにあたり、第1屈曲部803fおよび第2屈曲部803sの双方が第1通路形成部材801の変形に対して起点として変形することができる。更に、発電運転の停止に伴い第2通路形成部材832の伸張端部835が矢印H2方向に熱収縮するとき、熱収縮に伴って第1通路形成部材801が変形するにあたり、第1屈曲部803fおよび第2屈曲部803sの双方が第1通路形成部材801の変形に対して起点として変形することができる。故に、伸張端部835の伸縮に伴って第1通路形成部材801が変形するにあたり、第2緩和構造部803における応力集中を軽減することができる。よって第2緩和構造部803における耐久性の向上を図り得る。なお、第2緩和構造部803は断面で円弧状としても良い。
本実施形態によれば、前述したように拘束部834は固定部としてのアノードガスマニホルド24に固定されて拘束されている。このため、高さ方向(矢印H方向)における拘束部834側の位置変動が抑制される。従って、第2通路形成部材832とスタック2とが接近しているときであっても、第2通路形成部材832がスタック2に接触して電気的な短絡を発生させることが抑えられている。この場合、スタック2の保護性を高め得る。
更に本実施形態によれば、図1に示すように、カソードガスを吹き出す出口84が第2通路形成部材832の下部に形成されており、つまり、第2通路形成部材832において伸張端部835よりも拘束部834に近い側に形成されている。このようにカソードガスを吹き出す出口84が第2通路形成部材832において拘束部834側に形成されているため、発電運転時において高さ方向(矢印H方向)において第2通路形成部材832の熱膨張が発生したとしても、出口84の位置の変動が抑制される。この結果、カソードガスを発電室720に供給させる位置の変動が抑制され、発電電力の変動のおそれが回避される。
なお、拘束部834はアノードガスマニホルド24に固定されて拘束されているが、これに限らず、アノードガスマニホルド24以外の部品、断熱層、断熱層を保持する保持部等でも良い。
(実施形態2)
図6は実施形態2を示す。本実施形態は実施形態1と基本的には同様の構成、同様の作用効果を有する。図6に示すように、断面において、第1通路形成部材801は、第2通路形成部材832に対して交差(ほぼ直交)する方向に延びる接続壁802cをもつ本体部802と、本体部802と一体をなすように伸張端部835の側に形成された第1緩和構造部805とを有する。図6に示すように、第1緩和構造部805は、第2通路形成部材832の伸張端部835に溶接部89で固定されている。
すなわち、第1緩和構造部805は、第1通路形成部材801の拘束部834から遠ざかる方向(伸張端部835が伸張する方向と同じ方向)に角度θ2で傾斜する傾斜状部分809と、第1通路形成部材801の拘束部834から遠ざかる方向(伸張端部835が伸張する方向と同じ方向)に指向すると共に伸張端部835に沿って延設されたフランジ806とを有する。フランジ806は伸張端部835が延びる方向と同じ方向に突出されており、且つ、溶接部89により第2通路形成部材832の伸張端部835に固定されている。
この場合においても、伸張端部835が矢印H1方向に伸張するときであっても、傾斜状部分809を有する第1緩和構造部805は伸張に対して追従することができる。更に、フランジ806は変形性を期待できる突出量W(図6参照)を有するため、溶接部89に対する応力集中の緩和に貢献できる。このような本実施形態によれば、第1緩和構造部805および溶接部89に過剰な引張力が作用することが抑制され、溶接部89の耐久性の向上を図り得る。
(実施形態3)
図7は実施形態3を示す。本実施形態は上記した実施形態と基本的には同様の構成、同様の作用効果を有する。図7に示すように、断面において、第1通路形成部材801は、接続壁802cを有する本体部802と、本体部802と一体をなすように伸張端部835の側に形成された第1緩和構造部805とを有する。第1緩和構造部805は、第2通路形成部材832の伸張端部835に溶接部89で固定されている。
すなわち、第1緩和構造部805は、第1通路形成部材801の拘束部834から遠ざかる方向(伸張端部835が伸張する方向)に傾斜する傾斜状部分809と、傾斜状部分809に形成された複数の山および谷を有する伸縮可能な蛇腹部807と、第1通路形成部材801の拘束部834から遠ざかる方向に指向すると共に伸張端部835に沿って突出するフランジ806とを有する。フランジ806は溶接部89により第2通路形成部材832の伸張端部835に固定されている。このため伸張端部835が矢印H1方向に伸張するときであっても、その伸張に対して第1緩和構造部805の傾斜状部分809は追従できる。殊に、蛇腹部807は高い伸縮容易性を有するため、容易に追従できる。このため第1通路形成部材801と第2通路形成部材832との接続部分(溶接部89)に過剰な引張応力が作用することが効果的に抑えられる。
(実施形態4)
図8および図9は実施形態4を示す。本実施形態は上記した実施形態と基本的には同様の構成、同様の作用効果を有する。図8に示すように、断面において、第1通路形成部材801は、本体部802と、本体部802と一体をなす第1緩和構造部805とを有する。第1緩和構造部805は、第2通路形成部材832の伸張端部835に溶接部89で溶接されて固定されている。図9に示すように、も第1緩和構造部805は、第1通路形成部材801の拘束部834から遠ざかる方向に指向するように所定の曲率で曲成された円弧状をなしており、伸張端部835が矢印H1方向に伸張に対して変形余裕性を有する。
このような本実施形態によれば、発電運転時において熱膨張が発生するとき、第2通路形成部材832の拘束部834は固定部に固定されて拘束されているため、伸張が制限されている。従って伸張端部835が矢印H1方向に伸張する。このように伸張端部835が矢印H1方向に伸張したとしても、第1緩和構造部805により、第1通路形成部材801と第2通路形成部材832との接続部分(溶接部89)における応力集中が緩和される。したがって、第1通路形成部材801と第2通路形成部材832との接続部分(溶接部89)における長寿命化を図ることができる。
更に本実施形態によれば、断面において、図8に示すように、第1通路形成部材801の本体部802は、第2通路形成部材832の外側を包囲する包囲壁802aと、包囲壁802aと第1通路形成部材801の伸張端部835を接続する側の接続壁802cと、包囲壁802aと接続壁802cとの境界領域に形成された包囲壁802aおよび接続壁802cに対して傾斜状をなす第2緩和構造部803とを有する。第2緩和構造部803は、断面において、包囲壁802aおよび接続壁802cに対して外方に突出するように所定の曲率で曲成された円弧状とされている。このため、熱膨張に伴い伸張端部835が矢印H1方向に伸張するとき、伸張端部835の伸張に伴って第1通路形成部材801が変形するにあたり、第2緩和構造部803が第1通路形成部材801の変形に対して容易に曲成変形することができる。第2緩和構造部803における応力集中が軽減される。
更に、発電運転の停止に伴い第2通路形成部材832の伸張端部835がこれの長さ方向に矢印H2方向に熱収縮するときにおいても、伸張端部835の熱収縮に伴って第1通路形成部材801が変形するにあたり、第1通路形成部材801の第2緩和構造部803が第1通路形成部材801の変形に対して追従変形することができる。故に、発電運転およびその停止に伴って伸張端部835が伸縮するときにおいて、第2通路形成部材832の第2緩和構造部803における応力集中を軽減することができる。よって第2緩和構造部803における耐久性の向上を図り得る。
本実施形態においても、第2通路形成部材832の拘束部834の側に、カソードガスを吹き出す出口84が形成されている。このようにカソードガスを吹き出す出口84が第2通路形成部材832において拘束部834側に形成されているため、発電運転時に、高さ方向(矢印H方向)おいて第2通路形成部材832の熱膨張が発生したとしても、出口84の位置の変動が抑制される。この結果、カソードガスを発電室720に供給させる位置の変動が抑制され、発電電力の変動のおそれが回避される。
(実施形態5)
図10は実施形態5を示す。本実施形態は上記した実施形態と基本的には同様の構成、同様の作用効果を有する。図9に示すように、断面において、第1通路形成部材801は、第2通路形成部材832に対して交差する方向に延びる接続壁802cをもつ本体部802と、本体部802と一体をなすように伸張端部835の側に形成された第1緩和構造部805とを有する。第1緩和構造部805と第2通路形成部材832の伸張端部835とは圧入で互いに固定されており、溶接部89は施されていない。図10に示すように、第1緩和構造部805は、第1通路形成部材801の拘束部834から遠ざかる方向に指向する円弧状をなす円弧部808と、伸張端部835に圧入で接続された伸張端部835に沿って突出するフランジ806とを有する。このようにフランジ806は伸張端部835に溶接で固定されておらず、圧入で固定されている。なお圧入によりガス漏れは抑えられている。このような本実施形態によれば、発電運転時における熱膨張により伸張端部835が矢印H1方向に伸張するとき、あるいは、発電停止に伴い伸張端部835が熱収縮するとき、伸張端部835と第1緩和構造部805との間における矢印HA方向の相対滑りが期待される。したがって、第1通路形成部材801と第2通路形成部材832との接続部分である第1緩和構造部805における応力集中が軽減され、当該接続部分(第1緩和構造部805)における長寿命化を図ることができる。
(実施形態6)
図11は実施形態6を示す。本実施形態は実施形態5と基本的には同様の構成、同様の作用効果を有する。図11に示すように、第1通路形成部材801は、第2通路形成部材832に対して交差する方向に延びる接続壁802cを有する本体部802と、本体部802と一体をなすように伸張端部835の側に形成された第1緩和構造部805とを有する。伸張端部835は、外方向に突出する圧入突起880を有する。圧入突起880は、山面880mおよび谷面880vを有しており、燃料電池の並設方向(図11の紙面に対して垂直方向)に延設されている。図11に示すように、第1緩和構造部805は、第1通路形成部材801の拘束部834から遠ざかる方向に曲成された円弧状をなす円弧部808と、伸張端部835に沿って突出し且つ伸張端部835に圧入で接続されたフランジ806とを有する。山面880mの頂部はシールポイントを形成する。第1緩和構造部805のフランジ806は、第2通路形成部材832の伸張端部835の圧入突起880に圧入で固定されており、溶接部89は施されていない。
このような本実施形態によれば、発電運転時における熱膨張により第1通路形成部材801の伸張端部835が矢印H1方向に伸張するとき、第1通路形成部材801の伸張端部835と第2通路形成部材832の第1緩和構造部805との間における矢印HA方向の相対滑りが期待される。したがって、第1通路形成部材801と第2通路形成部材832との接続部分である第1緩和構造部805における応力集中が軽減され、当該接続部分(第1緩和構造部805)における長寿命化を図ることができる。なお、圧入突起は、伸張端部835ではなく、フランジ806に形成されていても良い。
(実施形態7)
図12は実施形態7を示す。本実施形態は実施形態1と基本的には同様の構成、同様の作用効果を有する。図12に示すように、第1通路形成部材801は、第2通路形成部材832に対して交差する方向に延びる接続壁802cを有する本体部802と、本体部802と一体をなすように伸張端部835の側に形成された円弧状の第1緩和構造部805とを有する。本体部802の接続部802cにおいて、第1緩和構造部805に近い部位において、伸縮性を確保する1山(または複数山)をもつ蛇腹部807がプレス成形により形成されている。発電運転時における熱膨張により第1通路形成部材801の伸張端部835が矢印H1方向に伸張する場合において、伸張端部835と第1緩和構造部805とが溶接部89で固定されているときであっても、蛇腹部807に基づく追従変形が期待される。したがって、第1通路形成部材801と第2通路形成部材832との接続部分である第1緩和構造部805における応力集中が軽減され、当該接続部分(第1緩和構造部805)における長寿命化を図ることができる。
更に本実施形態によれば、図12に示すように、第1通路形成部材801の本体部802は、第2通路形成部材832の外側を包囲する包囲壁802aと、包囲壁802aと伸張端部835とを接続する接続壁802cと、包囲壁802aと接続壁802cとの境界領域に形成され且つ包囲壁802aおよび接続壁802cに対して傾斜状をなす第2緩和構造部803とを有する。第2緩和構造部803は、包囲壁802aおよび接続壁802cに対して所定の曲率で曲成された円弧状とされている。このため、熱膨張に伴い第2通路形成部材832の伸張端部835が矢印H1方向に伸張するとき、伸張端部835の伸張に伴って第1通路形成部材801が変形するにあたり、第2緩和構造部803が第1通路形成部材801の変形に対して容易に曲成変形することができる。第2緩和構造部803における応力集中が軽減される。
(実施形態8)
図13は実施形態8を示す。本実施形態は前記した実施形態と基本的には同様の構成、同様の作用効果を有する。図13に示すように、第1通路形成部材801は、第2通路形成部材832に対して交差する方向に延びる接続壁802cをもつ本体部802と、本体部802と一体をなすように伸張端部835の側に形成された第1緩和構造部805とを有する。本体部802の接続壁802cには、複数の山および谷が交互に連続する蛇腹部807がプレス成形により形成されている。本実施形態によれば、発電運転時における熱膨張により第2通路形成部材832の伸張端部835が矢印H1方向に伸張する場合、第2通路形成部材832の伸張端部835と第1通路形成部材801の第1緩和構造部805とが溶接部89で固定されているときであっても、蛇腹部807における変形が期待される。したがって、第1通路形成部材801と第2通路形成部材832との接続部分である第1緩和構造部805における応力集中が軽減され、当該接続部分(第1緩和構造部805,溶接部89)における長寿命化を図ることができる。
(その他)
本発明は上記し且つ図面に示した実施形態のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できる。ガスの流れについて、上向きは蛇行しつつ上向きを含み、下向きは蛇行しつつ下向きも含む。スタック2は、カソードガス通路8の第2通路83を挟むように2組設けられているが、これに限らず、スタック2はカソードガス通路8の第2通路83に隣設するように1組設けられている構造でも良い。スタック2は、複数の燃料電池を厚み方向に並設して形成されているが、これに限らず、複数のチューブ型の燃料電池を組み付けてスタックを形成しても良い。上記した実施形態1によれば、カソードガス通路に本発明構造を適用しているが、これに限らず、排気ガス通路に適用しても良いし、アノードガス通路に適用しても良い。拘束部834を拘束させる固定部はアノードガスマニホルド24に限定されず、他の部品でも良い。改質部42および蒸発部40は断面四角形状をなしているが、これに限らず、断面円形状でも良い。燃料原料を改質させる改質部42と蒸発部40とは一体化されているが、これに限らず、蒸発部40を改質部42から分離させても良い。この場合、蒸発部を別の加熱源で加熱させても良い。
上記した実施形態によれば、カソードガスの通路を形成する通路形成部材同士の接続に本発明を適用しているが、これに限らす゛、排気ガスの通路を形成する通路形成部材同士の接続に本発明を適用しても良いし、アノードガスの通路を形成する通路形成部材同士の接続に本発明を適用しても良い。燃料電池は固体酸化物形に限定されず、りん酸塩形、溶融炭酸塩形においても、熱膨張による伸張の不具合は発生するため、これらに適用しても良い。上記した記載から次の技術的思想が把握される。
[付記項1]燃料原料を改質させてアノードガスを生成させる改質器と、改質器で生成されたアノードガスとカソードガスとで発電する燃料電池と、改質部で生成されたアノードガスを燃料電池の内部に供給するためのアノードガス通路と、カソードガスを燃料電池に供給するためのカソードガス通路と、燃料電池の発電運転に伴い発生する排気ガスを排出させる排気ガス通路とを具備しており、カソードガス通路、アノードガス通路および排気ガス通路のうちのいずれか一方は、第1通路と、第1通路に対して曲成された第2通路とを備えており、第2通路を形成する第2通路形成部材は、断面において、固定部に固定されて拘束された拘束部と、第1通路を形成する第1通路形成部材に接続され且つ発電運転時において熱膨張により伸張する伸張端部とを有する燃料電池装置。ガスを吹き出す出口が第2通路形成部材の拘束部側に形成されているため、ガスを吹き出す出口の位置変動が抑制される。
本発明は例えば定置用、車両用、電気機器用、電子機器用などの燃料電池システムに利用することができる。
2はスタック、20は燃料電池、21はアノード、22はカソード、23は電解質、24はアノードガスマニホルド(固定部)、25はアノードガス通路、3は基体、4は改質器、40は蒸発部、42は改質部、5は燃焼用空間、50は燃焼火炎、6は断熱層、7は排気ガス通路、7Xは熱交換器、8はカソードガス通路、81は入口通路、82は第1通路、83は第2通路、84は出口、801は第1通路形成部材、802は本体部、802aは包囲壁、802cは接続壁、803は第2緩和構造部、805は第1緩和構造部、806はフランジ、807は蛇腹部、808は円弧部、809は傾斜状部分、832は第2通路形成部材、834は拘束部、835は伸張端部、850は外側部材、89は溶接部を示す。

Claims (6)

  1. 燃料原料を改質させてアノードガスを生成させる改質器と、前記アノードガスとカソードガスとで発電する燃料電池と、前記改質部で生成された前記アノードガスを前記燃料電池の内部に供給するためのアノードガス通路と、前記カソードガスを前記燃料電池に供給するためのカソードガス通路と、前記燃料電池の発電運転に伴い発生する排気ガスを排出させる排気ガス通路とを具備しており、
    前記カソードガス通路、前記アノードガス通路および前記排気ガス通路のうちのいずれか一方は、
    第1通路と、前記第1通路に連通しつつ前記第1通路に対して曲成された第2通路とを備えており、
    前記第2通路を形成する第2通路形成部材は、断面において、固定部に固定されて拘束された拘束部と、前記第1通路を形成する第1通路形成部材に接続され且つ発電運転時において熱膨張により伸張する伸張端部とを有しており、
    前記第1通路形成部材は、断面において前記第2通路形成部材に対して交差する方向に延びる部分をもつ本体部と、前記第2通路形成部材の前記伸張端部に接続され前記第1通路形成部材と前記第2通路形成部材との接続部分において前記伸張端部の伸張に起因して発生する応力集中を緩和させる第1緩和構造部とを有する燃料電池装置。
  2. 請求項1において、前記第2通路形成部材は、ガスを吹き出す出口を前記拘束端部側に有する燃料電池装置。
  3. 請求項1または2において、前記第1緩和構造部は、前記伸張端部に接続されており、且つ、前記第1通路形成部材の前記拘束部から遠ざかる方向に指向する傾斜状または円弧状の部分を有する燃料電池装置。
  4. 請求項1〜3のうちの一項において、前記第1緩和構造部は、前記第2通路形成部材の前記伸張端部に溶接、接続具または圧入で接続されている燃料電池装置。
  5. 請求項1〜4のうちの一項において、前記第1緩和構造部および/または前記本体部は蛇腹部を備えている燃料電池装置。
  6. 請求項1〜5のうちの一項において、断面において、前記第1通路形成部材の本体部は、前記第1通路形成部材の外側を包囲する包囲壁と、前記第1通路形成部材の前記伸張端部と接続する側の接続壁と、前記包囲壁と前記接続壁との境界領域に形成された前記包囲壁および前記接続壁に対して傾斜状または円弧状の第2緩和構造部とを有する燃料電池装置。
JP2009083545A 2009-03-30 2009-03-30 燃料電池装置 Active JP5290021B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009083545A JP5290021B2 (ja) 2009-03-30 2009-03-30 燃料電池装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009083545A JP5290021B2 (ja) 2009-03-30 2009-03-30 燃料電池装置

Publications (2)

Publication Number Publication Date
JP2010238452A true JP2010238452A (ja) 2010-10-21
JP5290021B2 JP5290021B2 (ja) 2013-09-18

Family

ID=43092617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009083545A Active JP5290021B2 (ja) 2009-03-30 2009-03-30 燃料電池装置

Country Status (1)

Country Link
JP (1) JP5290021B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257732A (ja) * 2009-04-24 2010-11-11 Kyocera Corp 燃料電池モジュールおよび燃料電池装置
JP2012226870A (ja) * 2011-04-15 2012-11-15 Jx Nippon Oil & Energy Corp 燃料電池モジュール

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203867A (ja) * 1993-01-08 1994-07-22 Fujikura Ltd 固体電解質型燃料電池式発電炉
JPH11224684A (ja) * 1998-02-06 1999-08-17 Osaka Gas Co Ltd 燃料電池
JP2001518688A (ja) * 1997-10-01 2001-10-16 アキュメントリクス・コーポレーション 一体型個体酸素燃料セルおよび改良機
JP2003323912A (ja) * 2002-04-30 2003-11-14 Mitsubishi Heavy Ind Ltd 燃料電池モジュール
JP2004039331A (ja) * 2002-07-01 2004-02-05 Mitsubishi Heavy Ind Ltd 燃料電池モジュール
JP2004152723A (ja) * 2002-11-01 2004-05-27 Toto Ltd 筒状固体酸化物形燃料電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203867A (ja) * 1993-01-08 1994-07-22 Fujikura Ltd 固体電解質型燃料電池式発電炉
JP2001518688A (ja) * 1997-10-01 2001-10-16 アキュメントリクス・コーポレーション 一体型個体酸素燃料セルおよび改良機
JPH11224684A (ja) * 1998-02-06 1999-08-17 Osaka Gas Co Ltd 燃料電池
JP2003323912A (ja) * 2002-04-30 2003-11-14 Mitsubishi Heavy Ind Ltd 燃料電池モジュール
JP2004039331A (ja) * 2002-07-01 2004-02-05 Mitsubishi Heavy Ind Ltd 燃料電池モジュール
JP2004152723A (ja) * 2002-11-01 2004-05-27 Toto Ltd 筒状固体酸化物形燃料電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257732A (ja) * 2009-04-24 2010-11-11 Kyocera Corp 燃料電池モジュールおよび燃料電池装置
JP2012226870A (ja) * 2011-04-15 2012-11-15 Jx Nippon Oil & Energy Corp 燃料電池モジュール

Also Published As

Publication number Publication date
JP5290021B2 (ja) 2013-09-18

Similar Documents

Publication Publication Date Title
US9105916B2 (en) Fuel cell module
JP5395488B2 (ja) 燃料電池装置
US20080171255A1 (en) Fuel cell for use in a portable fuel cell system
JP5119234B2 (ja) 燃料電池モジュール
US20040081872A1 (en) Fuel cell stack with heat exchanger
JP5109252B2 (ja) 燃料電池
US11223058B2 (en) Fuel cell system
US7524572B2 (en) Fuel cell system with thermally integrated combustor and corrugated foil reformer
JP2009099437A (ja) 燃料電池モジュール
US20050244684A1 (en) Solid oxide fuel cell portable power source
KR101155924B1 (ko) 연료 전지 시스템, 개질기 및 버너
JP2011222136A (ja) 燃料電池モジュール
US10128515B2 (en) Fuel cell module
US20060014056A1 (en) Reformer and fuel cell system having the same
JP5643711B2 (ja) 燃料電池モジュール
JP5290021B2 (ja) 燃料電池装置
JP2008147026A (ja) 固体酸化物形燃料電池
JP5940470B2 (ja) 燃料電池モジュール、及びこれを備えている燃料電池システム
KR20110118562A (ko) 연료 전지 시스템
CN114730894B (zh) 燃料电池模块
JP7508352B2 (ja) 燃料電池モジュール
KR101131166B1 (ko) 연료전지 시스템
EP1716921A1 (en) Reformer for fuel cell system
KR100570753B1 (ko) 연료 전지 시스템
JP6466136B2 (ja) 燃料電池モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130605

R150 Certificate of patent or registration of utility model

Ref document number: 5290021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150