JP2004028667A - 光電式エンコーダおよびスケールの製造方法 - Google Patents

光電式エンコーダおよびスケールの製造方法 Download PDF

Info

Publication number
JP2004028667A
JP2004028667A JP2002182602A JP2002182602A JP2004028667A JP 2004028667 A JP2004028667 A JP 2004028667A JP 2002182602 A JP2002182602 A JP 2002182602A JP 2002182602 A JP2002182602 A JP 2002182602A JP 2004028667 A JP2004028667 A JP 2004028667A
Authority
JP
Japan
Prior art keywords
light
scale
array
lens
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002182602A
Other languages
English (en)
Inventor
Kenji Kojima
小島 健司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2002182602A priority Critical patent/JP2004028667A/ja
Publication of JP2004028667A publication Critical patent/JP2004028667A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Transform (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

【課題】測定性能を向上させることができる光電式エンコーダを提供する。
【解決手段】光源部(発光ダイオード3およびインデックススケール5)からの光Lは、スケール7の光学格子75に照射される。光学格子75は複数の遮光部73がアレイ状に配置された構造をしている。隣り合う遮光部73間の各々には、レンズアレイ79を構成する複数のレンズ77が配置されている。スケール7の光学格子75と対向するように複数のフォトダイオード91がアレイ状に配置された受光アレイ9が位置している。レンズ77の各々により、光学格子75に照射された光Lのうち複数のフォトダイオード91の各々に向かう光を集束させる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、精密測定に使用される光電式エンコーダおよびこれの構成要素となるスケールの製造方法に関する。
【0002】
【従来の技術】
従来から直線変位や角度変位などの精密な測定に光電式エンコーダが利用されている。光電式エンコーダには様々なタイプがあり、例えば、複数のフォトダイオードがアレイ状に配置された受光部と、受光部に対して相対移動可能に対向配置されると共に光学格子が形成されたスケールと、この光学格子に光を照射する光源と、を含んで構成されたタイプがある。このタイプでは、スケールの光学格子を通過した光源からの光を受光部のフォトダイオードで受光し、光電変換されて発生した電気信号を利用して直線など変位量を演算する。
【0003】
【発明が解決しようとする課題】
上記光電式エンコーダによれば、より高精度に変位を測定するためにスケールの光学格子のピッチを狭くすると、これに従いアレイを構成するフォトダイオードのピッチも狭くしなければならないので、フォトダイオードの間隔が狭くなる。これにより、あるフォトダイオードで受光されるべき光が迷光や回折光として隣に配置されているフォトダイオード(位相の異なるフォトダイオード)により受光されやすくなる。また、あるフォトダイオードで受光した光により発生した光電子が隣に配置されているフォトダイオードに流れ込みやすくなる。これらがいわゆるクロストーク現象である。クロストークはノイズの原因となり、高精度測定の妨げとなる。
【0004】
本発明は、かかる問題点に鑑みてなされたもので、測定性能を向上させることができる光電式エンコーダおよびこれに含まれるスケールの製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明に係る光電式エンコーダは、光源部と、アレイ状に配置された複数の受光素子を含む受光アレイと、光源部からの光が照射される光学格子と、光学格子に照射された光のうち複数の受光素子の各受光素子に向かう光を集束させるレンズが複数集まることにより構成されるレンズアレイと、を含むと共に受光アレイとギャップを設けて相対移動可能に配置されるスケールと、を備えることを特徴とする。
【0006】
本発明に係る光電式エンコーダによれば、レンズアレイの各レンズにより、光学格子に照射された光のうち各受光素子に向かう光を集束させることができる。
よって、各受光素子には集束された光が入射するので、例えば、受光素子間の距離を大きくすることによりクロストークを低減することができ、また、受光素子に入射する光を多くすることにより受光素子の感度向上と同様の効果を得ることができる。
【0007】
本発明に係る光電式エンコーダにおいて、光学格子はアレイ状に配置された複数の遮光部を含み、複数の遮光部のうち隣り合う遮光部間の各々を通る光路上に、複数のレンズの各々が配置されるようにすることができる。これによれば、光学格子に遮光部を備えるので、受光アレイに投影される明暗パターンの明部と暗部の信号比を確保することができる。よって、光電式エンコーダによる高精度測定が可能となる。
【0008】
本発明に係る光電式エンコーダにおいて、光学格子は遮光部を含まずにレンズアレイで構成されるようにすることができる。これによれば、スケールを製造する際にレンズアレイを構成する各レンズと遮光部との位置合わせが不要になる。
【0009】
本発明に係る光電式エンコーダの複数の受光素子が並ぶ方向において、レンズを介して各受光素子に投影された光源部からの光の束の寸法を受光素子の寸法と略同じにすることができる。これにより受光素子で光を効率的に受光できる。
【0010】
本発明に係るスケールの製造方法は、光電式エンコーダを構成するスケールの製造方法であって、一方の面上に光学格子を構成する複数の遮光部がアレイ状に配置された透明基板の一方の面上の全面にレンズアレイとなる透明膜を形成する工程と、透明膜上にフォトレジストを形成する工程と、複数の遮光部をマスクとして、透明基板の他方の面側から露光用の光をフォトレジストに照射する工程と、フォトレジストのうち複数の遮光部がマスクとなり感光しなかった部分を除去する工程と、フォトレジストをマスクとして、透明膜をエッチングにより選択的に除去することにより、隣り合う遮光部間に位置する一方の面上の領域に透明膜を残す工程と、選択的除去により残った透明膜を加工して、レンズアレイを構成する複数のレンズの各々を、それに対応する一方の面上の領域の各々に形成する工程と、を備えることを特徴とする。
【0011】
本発明に係るスケールの製造方法によれば、透明基板の一方の面上にアレイ状に配置された複数の遮光部を覆うように、一方の面上の全面に透明膜を形成し、透明膜を加工してレンズアレイを形成している。したがって、レンズアレイおよび複数の遮光部がスケールの同一面側に配置されているスケールを製造することができる。また、この製造方法によれば、遮光部をマスクとして、透明基板の他方の面側から露光用の光をフォトレジストに照射する。そして、感光した部分をマスクとして、透明膜を選択的に除去してレンズとなる透明膜を残している。よって、遮光部に対してレンズアレイを構成するレンズを自己整合的に形成することができる。
【0012】
本発明に係るスケールの他の製造方法は、光電式エンコーダを構成するスケールの製造方法であって、一方の面上に光学格子を構成する複数の遮光部がアレイ状に配置された透明基板の他方の面上の全面にレンズアレイとなる透明膜を形成する工程と、透明膜上にフォトレジストを形成する工程と、複数の遮光部をマスクとして、透明基板の一方の面側から露光用の光をフォトレジストに照射する工程と、フォトレジストのうち複数の遮光部がマスクとなり感光しなかった部分を除去する工程と、フォトレジストをマスクとして、透明膜をエッチングにより選択的に除去することにより、隣り合う遮光部間に位置する一方の面上の領域と対向する他方の面上の領域に透明膜を残す工程と、選択的除去により残った透明膜を加工して、レンズアレイを構成する複数のレンズの各々を、それに対応する他方の面上の領域の各々に形成する工程と、を備えることを特徴とする。
【0013】
本発明に係る他のスケールの製造方法によれば、一方の面上に複数の遮光部がアレイ状に配置された透明基板の他方の面上の全面に透明膜を形成し、透明膜を加工してレンズアレイを形成している。したがって、スケールの複数の遮光部の配置された面と反対側の面にレンズアレイが配置された構造のスケールを製造することができる。また、この製造方法によれば、遮光部をマスクとして、透明基板の一方の面側から露光用の光をフォトレジストに照射する。そして、感光した部分をマスクとして、透明膜を選択的に除去してレンズとなる透明膜を残している。よって、遮光膜に対してレンズアレイを構成するレンズを自己整合的に形成することができる。
【0014】
【発明の実施の形態】
以下、図面に基づいて本発明の一実施形態(以下、本実施形態という)について説明する。まず、本実施形態に係る光電式エンコーダの構成について説明する。図1はこの光電式エンコーダ1の概略構成を示す図である。光電式エンコーダ1は、発光ダイオード(LED)3と、これに近い順に沿って配置されたインデックススケール5、スケール7、受光アレイ9とにより構成される。
【0015】
発光ダイオード3およびインデックススケール5により光源部が構成される。
発光ダイオード3は光を放射する発光素子の一例であり、このダイオード3からの光Lが照射される位置には、インデックススケール5が配置されている。スケール5は長尺状の透明基板51を含み、この基板51の発光ダイオード3側に向く面と反対側の面上に光学格子53が形成されている。光学格子53は複数の遮光部55が所定のピッチを設けてリニヤ状(アレイ状の一例)に配置されたものである。
【0016】
インデックススケール5の光学格子53側には、インデックススケール5と所定のギャップを設けてスケール7が位置している。スケール7はインデックススケール5よりも長手方向の寸法が大きく、図1にはその一部が表れている。スケール7はガラスなどの透明材料から構成される長尺状の透明基板71を含む。透明基板71の一方の面がインデックススケール5の光学格子53と対向している。透明基板71の他方の面上には、金属などからなる複数の遮光部73が所定のピッチを設けてリニヤ状(アレイ状の一例)に形成されている。これにより光学格子75が構成される。透明基板71の他方の面上であって隣り合う遮光部73間の光透過部(隣り合う遮光部73間を通る光路上の一例)の各々には、凸部が透明基板71と反対側を向くように凸型のレンズ77が形成されている。レンズ77が複数集まることによりレンズアレイ79が構成される。
【0017】
受光アレイ9は、複数のフォトダイオード91(受光素子の一例)が所定のピッチを設けてリニヤ状(アレイ状の一例)に、ガラスなどの透明基板93に配置されたものである。フォトダイオード91の受光面が光学格子75側に向くように、スケール7と所定のギャップを設けて受光アレイ9が位置している。受光アレイ9およびインデックススケール5に対して、スケール7は、図中のAで示すスケール7の長手方向に相対的に移動可能にされている。
【0018】
光電式エンコーダ1はリニヤ(一次元)型である。よって、レンズ77は図1の奥行き方向に延びており、凸部となる円周状の曲面構造を含む。スケール7の光学格子75のパターンの平面図は図2に示すようになる。遮光部73およびレンズ77の長手方向は、スケール7の長手方向と直交する方向である。インデックススケール5の光学格子53のパターンや受光アレイ9の複数のフォトダイオード91で構成されるパターンも、図2に示すパターンと対応している。なお、本発明は二次元型にも適用できる。その場合、レンズ77は凸部となる半球状構造を含み、複数のレンズ77で構成されるレンズアレイ79がスケール7の光学格子75の形成面側にマトリックス状(アレイ状の一例)に配置される。
【0019】
次に、光電式エンコーダ1の測定動作を簡単に説明する。発光ダイオード3から光Lをインデックススケール5に照射した状態で、スケール7をAで示す方向に相対移動させて変位量を確定する。その位置において、インデックススケール5の光学格子53とスケール7の光学格子75との重なりにより生じる明暗パターンを、受光アレイ9の複数のフォトダイオード91により受光する。これにより光電変換されて発生した電気信号を利用して直線など変位量を演算し、その数値を図示しない表示部に出力する。
【0020】
さて、本実施形態は、スケール7の隣り合う遮光部73間を通る光路(光路とは光源部から照射された光Lの光路のことである)上にレンズ77を配置することにより、クロストークを低減等させて測定性能を向上させている。これについて説明する。図3はスケール7および受光アレイ9の部分断面図であり、図4はこれに光源部(図1に示す発光ダイオード3およびインデックススケール5)からの光が照射されている状態を示す図である。各図において、(a)は本実施形態を示し、これによればクロストークを低減することができる。(b)も本実施形態を示し、これによれば受光素子の感度向上と同様の効果を得ることができる。(c)は比較例を示している。
【0021】
まず、図3を参照して、図中のW1はフォトダイオード91の幅、つまり複数のフォトダイオード91が並ぶ方向における各フォトダイオード91の寸法を示している。Dは隣り合うフォトダイオード91間の距離を示している。P1はフォトダイオード91のピッチを示している。P2は遮光部73のピッチを示している。W2はスケール7の遮光部73間に位置する光透過部78の幅を示している。
【0022】
本実施形態(a)および(b)の光透過部78(隣り合う遮光部73間を通る光路上の一例)にはレンズ77が配置されているのに対して、比較例(c)ではレンズが配置されていない。ここで、レンズ77により生じる効果を説明する前提として、図3および図4の比較例(c)を参照して、クロストークについて説明する。測定の際に発光ダイオード3(図1)から放射された光Lは、インデックススケール5の遮光部55間を通過して図4(c)に示すようにスケール7に照射される。スケール7に照射された光Lのうち、スケール7の遮光部73で遮光される光以外は、光透過部78を通過し、光透過部78と向かい合うフォトダイオード91により受光される。光透過部78の通過した光の中には回折光や迷光のような光L1が不可避的に含まれる。
【0023】
より高精度に変位を測定するためには、スケール7の遮光部73(光学格子)のピッチP2(図3)を狭くしなければならない。これに従い受光アレイ9のフォトダイオード91のピッチP1(図3)も狭くなるので、フォトダイオード91間の距離D(図3)が小さくなる。しかし、距離Dが小さくなると、図4(c)に示すように、回折光や迷光のような光L1が隣のフォトダイオード91aに入射しやすくなる。また、あるフォトダイオード91で発生した光電子eが隣のフォトダイオード91aに流れ込みやすくなる。これらがクロストークであり、高精度測定の妨げとなる。
【0024】
図4(c)の比較例において、フォトダイオード91の受光面Fの面積を小さくすると、クロストークの影響を小さくできる。しかし、受光面Fで受光できる光量が小さくなるので、フォトダイオード91では十分な強度の電気信号が発生しない。
【0025】
これに対して図4(a)の本実施形態では、光透過部78にレンズ77を配置している。これにより、光透過部78を通過した光はレンズ77に入射し、集束してフォトダイオード91で受光される。つまり、図1に示すレンズアレイ79を構成する各レンズ77により、スケール7の光学格子75に照射された光のうちフォトダイオード91の各々に向かう光を集束させている。よって、図3に示すように、本実施形態(a)のフォトダイオード91の幅W1を小さくできる(例えば、比較例(c)のフォトダイオード91の幅W1は光透過部78の幅W2と等しいのに対して、本実施形態(a)の幅W1は幅W2より小さくできる)。
【0026】
このように、光量およびフォトダイオード91のピッチP1を確保しつつ、フォトダイオード91の幅W1を小さく(つまり受光面Fの面積を小さく)できるので、フォトダイオード91の出力信号を保ったままクロストークを減少させることができる。この結果、高精度測定が可能となる。なお、本実施形態(a)のフォトダイオード91のピッチP1、遮光部73のピッチP2、光透過部78の幅W2は、比較例(c)のそれらと同じ大きさである。
【0027】
さらに、受光面Fの面積が小さくなることにより、フォトダイオード91のp型非晶質シリコン層とn型非晶質シリコン層との接合面の面積も小さくなるので、ここにおける接合容量を低減させることができる。これにより、フォトダイオード91の応答速度を向上させることができる。
【0028】
なお、比較例(c)において、フォトダイオード91間の距離Dを本実施形態(a)のそれと同じように大きくした光電式エンコーダとして以下の▲1▼〜▲3▼も考えられるが、それぞれ問題がある。
【0029】
▲1▼受光アレイの受光素子の感度を上げる
フォトダイオードなどの一般的な受光素子の感度を大きく向上させることは、現状において困難である。感度の高い特殊な受光素子は高価であり、光電式エンコーダに適用するのは非現実的である。
【0030】
▲2▼光源からの光量を上げる
光量を上げることにより光電式エンコーダ内に発生する熱の問題から、光源に投入する電力に制限がある。また、光電式エンコーダの消費電流増加や光源として利用する発光素子の大型化などの新たな問題が生じる。
【0031】
▲3▼信号増幅率を上げる
現状の信号増幅率で発生するノイズのレベルでも問題があるので、これ以上に信号増幅率を上げるのは困難である。
【0032】
次に、本実施形態(b)について説明する。図3に示すように、本実施形態(b)の光透過部78の幅W2は、比較例(c)の幅W2より大きくされている。
なお、本実施形態(b)のフォトダイオード91間の距離D、フォトダイオード91の幅W1、フォトダイオード91のピッチP1、遮光部73のピッチP2は、比較例(c)のそれらと同じである。
【0033】
本実施形態(b)は、光透過部78の幅W2を比較例(c)の幅W2より大きくすることにより、その分だけレンズ77の幅を大きくしている。これにより、図4に示すように、本実施形態(b)は比較例(c)よりも受光面Fに入射される光量を多くしている。
【0034】
但し、レンズ77の幅の拡大量は、受光アレイ9に投影される明暗パターンの明部と暗部の信号比を確保できる量である。これを詳細に説明すると、図5は受光アレイに投影される明暗パターンの光量を示すグラフである。縦軸は明るさであり、横軸は受光アレイ上の位置を示している。明暗パターンの明部はグラフのピークを中心とした広がりであり、暗部はグラフのボトムを中心とした広がりである。明部と暗部の信号比とはピークとボトムの信号比のことであり、ピークとボトムとの差が小さくなるに従い信号比も小さくなる。スケール7の遮光部73の幅を小さくしすぎると、ボトムの位置における明るさがゼロとならない現象が生じることがあり、さらに小さくするに従いボトムの位置における明るさが上昇する。よって、ボトムとピークとの差が十分とれるように、遮光部73の幅の縮小量(つまり光透過部78の幅W2の拡大量)を決定する必要がある。
【0035】
ここで、本実施形態(b)において、受光アレイ9上での明暗パターンの明暗幅の比率を比較例(c)と同様になるようにレンズ77を構成している。このように、上記明暗幅の比率が本実施形態(b)と比較例(c)とで同じでも、本実施形態(b)の光透過部78の幅W2は比較例(c)のそれよりも大きいので、図4に示すように、本実施形態(b)の受光面Fに入射される光量が、比較例(c)のそれよりも多くなる。よって、本実施形態(b)はフォトダイオード91の感度の向上と同様の効果(測定性能向上の一例)を得ることができる。つまり、比較例(c)では受光量が小さく測定不能でも本実施形態(b)では受光量を確保でき測定可能となる。
【0036】
なお、図4を参照して、本実施形態(a)および(b)のレンズ77には、レンズ77を介してフォトダイオード91の受光面Fに投影された光束Bの幅がフォトダイオード91の幅W1と略同じになるように各種調整(例えばレンズ77の厚みの調整やスケール7と受光アレイ9との距離の調整)がされている。これによりフォトダイオード91で光を効率的に受光できる。つまり、受光面Fに投影された光束Bの幅がフォトダイオード91の幅W1より大きい場合は、光束Bの全部が受光面Fで受光されない状態が生じ、一方、小さい場合は受光面Fに受光に寄与しない部分が生じるのである。なお、上記略同じには誤差程度の寸法の違いが含まれる。
【0037】
なお、本実施形態(a)および(b)のフォトダイオード91の幅W1は、光透過部78の幅W2よりも小さくされている。しかしながら本発明はこれに限定されず、幅W1が幅W2と等しい構造でもよいし、幅W1が幅W2より大きい構造でもよい。
【0038】
ここで、本実施形態は、スケール7に遮光部73を形成せずに、遮光部73を形成していた位置までレンズ77の幅を広げた構造でもよい。この構造を図6および図7で説明する。図6はスケール7および受光アレイ9の部分断面図であり、図7はこれに光源部からの光が照射されている状態を示す図である。図3および図4に示す構成要素と同一の要素については同一符号を付している。
【0039】
フォトダイオード91の受光面Fに投影された光束Bの幅が受光面Fの幅と同じになるように各種調整がされている。受光アレイ9に投影される明暗パターンの明部と暗部の信号比を十分に確保できる場合であれば、スケール7に遮光部73が形成されていない図6に示す構造でもよい。つまり、図6に示す構造は、複数のレンズ77で構成されるレンズアレイをスケール7の光学格子として機能させている。なお、レンズ77を透明基板71の反対側の面に形成することもできる。
【0040】
次に、図3の(a)や(b)に示す本実施形態に係るスケール7の製造方法を説明する。図8はこれを説明する工程図である。図8の(A)に示すように、透明基板71の一方の面上に、遮光部となる金属膜(遮光膜の一例)をスパッタリングにより形成する。この金属膜にフォトリソグラフィとエッチングにより所定のパターニングをして、リニヤ状(アレイ状の一例)の複数の遮光部73を形成する。そして、遮光部73を覆うように透明基板71の一方の面上の全面にレンズアレイとなるBPSG膜76をCVD法により形成する。BPSG膜76の膜厚はレンズアレイを構成するレンズの厚みに必要な大きさである。レンズアレイの材料となるものであればBPSG膜76の替わりに他のシリコン酸化膜系の材料でもよい。次に、BPSG膜76上にネガ型フォトレジスト74を形成する。
【0041】
次に、図8の(B)に示すように、遮光部73をマスクとして透明基板71の他方の面側から露光用の光lを照射する。これにより、ネガ型フォトレジスト74のうち、隣り合う遮光部73間の上に位置するものは感光し、遮光部73上に位置するものは未感光となる。遮光部73をマスクとしているので、アライメント精度の誤差を生じることなく上記露光ができる。
【0042】
次に、図8の(C)に示すように、ネガ型フォトレジスト74のうち感光しなかった部分を除去する。これにより、隣り合う遮光部73間に位置する一方の面上の領域72(光透過部78)にネガ型フォトレジスト74が残り、遮光部73上からネガ型フォトレジスト74が除かれる。そして、ネガ型フォトレジスト74をマスクとして、BPSG膜76をドライエッチングまたはウエットエッチングにより選択的に除去することにより、領域72にBPSG膜76を残す。
【0043】
次に、図8の(D)に示すように、領域72上に残されたネガ型フォトレジスト74を除去する。そして、領域72のBPSG膜76を所定の温度でリフロー加工することにより、BPSG膜76から複数のレンズ77(レンズアレイ)を形成する。つまり、レンズアレイを構成する複数のレンズ77の各々を、それに対応する領域72の各々に形成する。リフローの替わりにウエットエッチングでレンズ77を形成することもできる。
【0044】
図8の(B)〜(D)で説明したように、この製造方法によれば、遮光部73に対してレンズ77を自己整合的に形成しているので、レンズ77の形成の際にはアライメント誤差が生じることはない。よって、アライメント誤差が原因となるスケール7の歩留まりの低下を防止できる。また、上記自己整合により、レンズ77を形成するための位置合わせ工程が不要となるので、簡単な製造設備でレンズ77を形成することができる。
【0045】
また、図8で説明した製造方法によれば、遮光部73およびレンズ77を透明基板71の同一面側に形成している。よって、スケール7の製造工程において透明基板71の反対側の面を製造装置の台に載置してスケール7の製造をすることができる。これにより、遮光部73やレンズ77が製造装置の台と接触することによる遮光部73やレンズ77の破損を防止することができる。
【0046】
なお、図6に示すレンズ77を有するスケール7の形成方法は、公知のマイクロレンズアレイ形成方法を利用することができる。すなわち、透明基板71の一方の面の全面にエッチングストッパとなるシリコン窒化膜を形成し、シリコン窒化膜上にレンズ77となるBPSG膜を形成する。シリコン窒化膜をエッチングストッパとしてBPSG膜をパターニングして、レンズアレイの各レンズ77の形成領域にBPSG膜を残す。この残ったBPSG膜にリフロー加工またはウエットエッチング加工することにより、図6に示すレンズ77を形成する。
【0047】
次に、本実施形態の変形例を説明する。図9は、この変形例に係る光電式エンコーダのスケールおよび受光アレイの部分断面図である。本実施形態である図3(a)に示す構造の構成要素と同一の要素については同一符号を付すことにより説明を省略する。図9に示す変形例では透明基板71の遮光部73形成面と反対側の面にレンズ77を形成している。上記反対側の面のうちレンズ77が形成されている領域70は、「隣り合う遮光部73間を通る光路上」の一例である。図9に示す構造でも図3(a)や(b)に示す構造と同様の効果を得ることができる。
【0048】
次に、図9に示す変形例に係るスケール7の製造方法を説明する。図10はこれを説明する工程図である。図10の(A)に示すように、一方の面上に複数の遮光部73がリニヤ状(アレイ状の一例)に配置された透明基板71の他方の面上の全面にレンズアレイとなるBPSG膜83(透明膜の一例)をCVD法により形成する。そして、BPSG膜83上にネガ型フォトレジスト81を形成する。
【0049】
次に、図10の(B)に示すように、複数の遮光部73をマスクとして透明基板71の遮光部73が形成された面(一方の面)側から露光用の光lを照射する。これにより、ネガ型フォトレジスト81のうち、遮光部73間の上に位置するものは感光し、遮光部73上に位置するものは未感光となる。遮光部73をマスクとしているので、図8の(B)と同様にアライメント精度の誤差を生じることなく上記露光ができる。
【0050】
次に、図10の(C)に示すように、ネガ型フォトレジスト81のうち未感光の部分、つまり、遮光部73上のネガ型フォトレジスト81を除去する。そして、ネガ型フォトレジスト81をマスクとして、異方性エッチングによりBPSG膜83を選択的に除去する。これにより、隣り合う遮光部73間に位置する透明基板71の一方の面上の領域85と対向する他方の面上の領域70にBPSG膜83が残る。
【0051】
次に、マスクとして用いたBPSG膜83上のネガ型フォトレジスト81を除去する。そして、BPSG膜83を所定の温度でリフロー加工する。これにより、図10の(D)に示すように、レンズアレイを構成する複数のレンズ77の各々を、それに対応する透明基板71の他方の面上の領域70の各々に形成する
図10の(B)〜(D)で説明したように、この製造方法によれば、遮光部73に対してレンズ77を自己整合的に形成している。よって、図8に示す製造方法と同様に、アライメント誤差が原因となるスケール7の歩留まりの低下を防止でき、また、簡単な製造設備でレンズ77を形成することができる。
【0052】
【発明の効果】
以上述べたように、本発明に係る光電式エンコーダによれば、スケールに設けられたレンズアレイの各レンズにより、受光アレイの各受光素子には集束された光が入射する。これにより、受光素子の感度向上と同様の効果を生じさせたり、クロストークを減少させたりできるので、光電式エンコーダの測定性能を向上させることができる。
【0053】
本発明に係るスケールの製造方法によれば、レンズアレイおよび光学格子を構成する複数の遮光部がスケールの同一面側に配置されているスケールを製造することができる。また、この製造方法によれば、遮光部に対してレンズアレイを構成するレンズを自己整合的に形成することができるので、アライメント精度の誤差なくレンズアレイと光学格子とを形成することができる。
【0054】
本発明に係るスケールの他の製造方法によれば、スケールの複数の遮光部の配置された面と反対側の面にレンズアレイが配置された構造のスケールを製造することができる。また、この製造方法によれば、遮光部に対してレンズアレイを構成するレンズを自己整合的に形成することができるので、アライメント精度の誤差なくレンズアレイと光学格子とを形成することができる。
【図面の簡単な説明】
【図1】本実施形態に係る光電式エンコーダの概略構成を示す図である。
【図2】図1に示す光電式エンコーダの構成要素であるスケールの平面図である。
【図3】本実施形態、比較例の各々のスケールおよび受光アレイの部分断面図である。
【図4】本実施形態、比較例の各々のスケールおよび受光アレイに光源部からの光が照射されている状態を示す図である。
【図5】受光アレイに投影される明暗パターンの光量を示すグラフである。
【図6】本実施形態のスケールおよび受光アレイの部分断面図である。
【図7】図6に示すスケールおよび受光アレイに光源部からの光が照射されている状態を示す図である。
【図8】本実施形態に係るスケールの製造方法を示す工程図である。
【図9】本実施形態の変形例に係る光電式エンコーダのスケールおよび受光アレイの部分断面図である。
【図10】本実施形態の変形例に係るスケールの製造方法を示す工程図である。
【符号の説明】
1・・・光電式エンコーダ、3・・・発光ダイオード、5・・・インデックススケール、7・・・スケール、9・・・受光アレイ、51・・・透明基板、53・・・光学格子、55・・・遮光部、70・・・領域、71・・・透明基板、72・・・領域、73・・・遮光部、74・・・ネガ型フォトレジスト、75・・・光学格子、76・・・BPSG膜、77・・・レンズ、78・・・光透過部、79・・・レンズアレイ、81・・・ネガ型フォトレジスト、83・・・BPSG膜、85・・・領域、91・・・フォトダイオード、93・・・透明基板

Claims (6)

  1. 光源部と、
    アレイ状に配置された複数の受光素子を含む受光アレイと、
    前記光源部からの光が照射される光学格子と、前記光学格子に照射された光のうち前記複数の受光素子の各受光素子に向かう光を集束させるレンズが複数集まることにより構成されるレンズアレイと、を含むと共に前記受光アレイとギャップを設けて相対移動可能に配置されるスケールと、
    を備えることを特徴とする光電式エンコーダ。
  2. 前記光学格子はアレイ状に配置された複数の遮光部を含み、前記複数の遮光部のうち隣り合う遮光部間の各々を通る光路上に、前記複数のレンズの各々が配置されている、ことを特徴とする請求項1記載の光電式エンコーダ。
  3. 前記光学格子は遮光部を含まずに前記レンズアレイで構成される、ことを特徴とする請求項1記載の光電式エンコーダ。
  4. 前記複数の受光素子が並ぶ方向において、前記レンズを介して前記各受光素子に投影された前記光源部からの光の束の寸法は前記受光素子の寸法と略同じである、請求項1から3のいずれか1項に記載の光電式エンコーダ。
  5. 光電式エンコーダを構成するスケールの製造方法であって、一方の面上に光学格子を構成する複数の遮光部がアレイ状に配置された透明基板の前記一方の面上の全面にレンズアレイとなる透明膜を形成する工程と、
    前記透明膜上にフォトレジストを形成する工程と、
    前記複数の遮光部をマスクとして、前記透明基板の他方の面側から露光用の光を前記フォトレジストに照射する工程と、
    前記フォトレジストのうち前記複数の遮光部がマスクとなり感光しなかった部分を除去する工程と、
    前記フォトレジストをマスクとして、前記透明膜をエッチングにより選択的に除去することにより、隣り合う遮光部間に位置する前記一方の面上の領域に前記透明膜を残す工程と、
    選択的除去により残った前記透明膜を加工して、前記レンズアレイを構成する複数のレンズの各々を、それに対応する前記一方の面上の領域の各々に形成する工程と、
    を備えることを特徴とするスケールの製造方法。
  6. 光電式エンコーダを構成するスケールの製造方法であって、一方の面上に光学格子を構成する複数の遮光部がアレイ状に配置された透明基板の他方の面上の全面にレンズアレイとなる透明膜を形成する工程と、
    前記透明膜上にフォトレジストを形成する工程と、
    前記複数の遮光部をマスクとして、前記透明基板の前記一方の面側から露光用の光を前記フォトレジストに照射する工程と、
    前記フォトレジストのうち前記複数の遮光部がマスクとなり感光しなかった部分を除去する工程と、
    前記フォトレジストをマスクとして、前記透明膜をエッチングにより選択的に除去することにより、隣り合う遮光部間に位置する前記一方の面上の領域と対向する前記他方の面上の領域に前記透明膜を残す工程と、
    選択的除去により残った前記透明膜を加工して、前記レンズアレイを構成する複数のレンズの各々を、それに対応する前記他方の面上の領域の各々に形成する工程と、
    を備えることを特徴とするスケールの製造方法。
JP2002182602A 2002-06-24 2002-06-24 光電式エンコーダおよびスケールの製造方法 Pending JP2004028667A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002182602A JP2004028667A (ja) 2002-06-24 2002-06-24 光電式エンコーダおよびスケールの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002182602A JP2004028667A (ja) 2002-06-24 2002-06-24 光電式エンコーダおよびスケールの製造方法

Publications (1)

Publication Number Publication Date
JP2004028667A true JP2004028667A (ja) 2004-01-29

Family

ID=31179060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002182602A Pending JP2004028667A (ja) 2002-06-24 2002-06-24 光電式エンコーダおよびスケールの製造方法

Country Status (1)

Country Link
JP (1) JP2004028667A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234456A (zh) * 2013-04-10 2013-08-07 河北科技大学 超高分辨率光栅尺
JP2013535695A (ja) * 2010-08-19 2013-09-12 エレスタ・リレイズ・ゲーエムベーハー 絶対位置を決定するための位置測定デバイス及び方法
WO2014203314A1 (ja) * 2013-06-17 2014-12-24 株式会社安川電機 エンコーダ、エンコーダ付きモータ、及びサーボシステム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535695A (ja) * 2010-08-19 2013-09-12 エレスタ・リレイズ・ゲーエムベーハー 絶対位置を決定するための位置測定デバイス及び方法
JP2013539019A (ja) * 2010-08-19 2013-10-17 エレスタ・リレイズ・ゲーエムベーハー 位置測定デバイス
CN103234456A (zh) * 2013-04-10 2013-08-07 河北科技大学 超高分辨率光栅尺
WO2014203314A1 (ja) * 2013-06-17 2014-12-24 株式会社安川電機 エンコーダ、エンコーダ付きモータ、及びサーボシステム

Similar Documents

Publication Publication Date Title
KR920010921B1 (ko) 이미지 센서(Image Sensor)
JP5488928B2 (ja) 光ナビゲーションデバイス、データ処理ユニット用入力デバイス、および画像出力デバイス上のカーソルを制御する方法
US6043481A (en) Optoelectronic array device having a light transmissive spacer layer with a ridged pattern and method of making same
JP2000507048A (ja) イメージセンサ
JPH07181023A (ja) 共焦点光学装置
US7098446B2 (en) Photoelectric encoder
JP2008103614A (ja) 光電変換デバイス
KR100649023B1 (ko) 씨모스 이미지 센서의 제조방법
JP3262415B2 (ja) 像読取り装置、表面状態検査装置及び該装置を備える露光装置
JP2004340612A (ja) 光電式エンコーダ
JP2004028667A (ja) 光電式エンコーダおよびスケールの製造方法
US7105826B2 (en) Imaging array and methods for fabricating same
JP2004327713A (ja) 画像読取装置及びその製造方法
JP2004028666A (ja) 光電式エンコーダおよび受光アレイの製造方法
KR100731094B1 (ko) 씨모스 이미지 센서 및 그 제조방법
JPH11312821A (ja) 透明な半導体受光素子およびその製造方法
JP4444715B2 (ja) 光学式変位測定装置
JP2002162730A (ja) レティクル、該レティクルを用いた露光方法、及び該露光方法を用いて作製した半導体装置
JPH07161794A (ja) 固体撮像素子の集光レンズ検査方法
KR100691139B1 (ko) 이미지 소자 및 이미지 소자의 마이크로 렌즈의 두께측정방법
JPH0575085A (ja) 固体撮像素子の製造方法及び固体撮像素子
US20070241268A1 (en) Encoder module adapted for a plurality of different resolutions
JPH0348703A (ja) 位置検出装置
JPH088416A (ja) 密着型イメージセンサ
CN116711293A (zh) 图像读取装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050401

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070130

A131 Notification of reasons for refusal

Effective date: 20070206

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070409

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002