JP2004023683A - 固体撮像素子の欠陥補正装置及び方法 - Google Patents

固体撮像素子の欠陥補正装置及び方法 Download PDF

Info

Publication number
JP2004023683A
JP2004023683A JP2002179358A JP2002179358A JP2004023683A JP 2004023683 A JP2004023683 A JP 2004023683A JP 2002179358 A JP2002179358 A JP 2002179358A JP 2002179358 A JP2002179358 A JP 2002179358A JP 2004023683 A JP2004023683 A JP 2004023683A
Authority
JP
Japan
Prior art keywords
defective pixel
imaging device
image
pixels
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002179358A
Other languages
English (en)
Inventor
Takeshi Miyashita
宮下 丈司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002179358A priority Critical patent/JP2004023683A/ja
Publication of JP2004023683A publication Critical patent/JP2004023683A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

【課題】固体撮像素子の画素の欠陥情報を格納するROM等の大容量化を回避しつつ、通常の欠陥画素よりも目立ち難い垂直転送路の欠陥に起因する微妙なレベルの縦線キズを効率よく補正する。
【解決手段】本発明では、垂直転送路の欠陥に起因する直線状の欠陥画素列(縦線キズ62)について、キズの先頭座標のみをROMに記録しておく。そして、撮影時に取得された画像に基づき、指定されている先頭キズ座標(R又はB画素)からV方向に対して後ろ(水平転送路54の反対側)の有効エリア60内の各画素に対して周辺10画素を比較し、画像上目立つキズであるか否かを判定する。周辺画像領域が輝度変化や色変化の少ない画像特徴を有している場合には、縦線キズ62が目立ちやすいため、同色の周辺4画素の平均値で当該欠陥画素の値を置換する。キズのレベルを判定する閾値は撮像感度に応じて可変設定する。
【選択図】  図3

Description

【0001】
【発明の属する技術分野】
本発明は固体撮像素子の欠陥補正装置及び方法に係り、特にCCD等の固体撮像素子における垂直方向(縦方向)の画素欠陥(以下、縦線キズという。)を補正する信号処理技術に関する。
【0002】
【従来の技術】
従来のデジタルカメラでは、固体撮像素子に含まれる欠陥画素のアドレスをROM等の不揮発性メモリに予め記憶しておき、撮影時にその欠陥位置情報に基づいて信号を補正する方法が用いられている。特開平5−68209号公報に開示されたCCDデジタルカメラは、CCDチップの画素欠陥を欠陥画素検出部により検出してそのアドレスを登録し、実際の撮影時に画像処理部においてそのアドレスを参照して欠陥画素の補正を行っている。
【0003】
また、特開平6−6685公報では、静電破壊や経時変化に伴う欠陥変化に対応すべく、電源投入時に固体撮像素子の撮像出力に基づいて欠陥画素を検出し、欠陥画素に関する欠陥データをRAMに記憶保持することで、撮影機会ごとに最新の欠陥データを得るようになっている。
【0004】
その一方、特開平6−319082号公報には、撮影した画像からキズを検出して補正を行うキズ検出回路及びキズ補正回路が開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、特開平5−68209号公報や特開平6−6685公報に開示の技術では、予め欠陥画素(キズ)の座標をROM等に登録して補正を行っているが、欠陥点が多くなるとROMの容量が必要になる。また、微妙なレベルのキズを判別できないという問題がある。一方、特開平6−319082号公報では、撮影ごとにCCDの欠陥画素を検出しているが、補正に時間がかかるという欠点がある。
【0006】
ところで、固体撮像素子の欠陥には、光電変換素子(受光素子)の欠陥の他、信号電荷を転送する転送路の欠陥もある。例えば、CCDの製造中に何らかの原因で垂直転送路上にゴミなどが付着した場合、その画素以降について電荷が転送され難くなる。すなわち、転送効率が悪くなり、画素の信号が混ざるようになる。
【0007】
このような垂直転送路の欠陥は画面上で直線状に現れるため、欠陥画素として登録すべき情報が多量になり、ROMの容量を圧迫する。更には、これら全ての欠陥画素を補正してしまうと、過補正によってかえって補正部分が目立ち、画質が劣化する場合もある。特に、色分解フィルタの配列構造との関係で色の異なる画素の電荷転送を担う垂直転送路に欠陥がある場合には、画素の信号値の差が大きいときに、異色の画素信号が混合されてしまい、画質劣化の原因となる。
【0008】
本発明はこのような事情に鑑みてなされたもので、画素の欠陥情報を格納するROM等の容量を削減しつつ、通常のキズよりも目立ち難い微妙なレベルの縦線キズを効率よく補正して画質の劣化を防止できる固体撮像素子の欠陥補正装置及び方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
前記目的を達成するために本発明に係る固体撮像素子の欠陥補正装置は、垂直転送路の欠陥に起因する直線状の欠陥画素列が存在する固体撮像素子について前記欠陥画素列のうち先頭の欠陥画素のみの位置情報を記憶保存する先頭情報格納手段と、撮影時に前記固体撮像素子を介して取得される画像信号に基づき、前記欠陥画素列の周辺画像領域について前記欠陥画素列による画質劣化が目立つレベルのものであるか否かを判定する判定手段と、前記判定手段で画質劣化が目立つと判定した場合に、欠陥画素の信号値を周辺の画素の信号値を用いて補正する一方、前記判定において画質劣化が目立たないと判定した場合には、前記補正の処理を省略する演算処理手段と、を備えたことを特徴としている。
【0010】
本発明によれば、直線状の欠陥画素列について予めキズ座標を検出しておき、そのキズの先頭座標を先頭情報格納手段に記録しておく。そして、撮影時に取得された画像信号を分析し、再現映像上でキズとして目立つと判断される場合にのみ当該欠陥画素のキズを補正する。例えば、欠陥画素列の近傍の周辺画像領域が輝度変化や色変化の少ない(フラットな)画像である場合には、キズが目立ちやすいため、キズの補正を行う。これに対し、欠陥画素列の周辺画像領域が輝度変化や色変化の激しい画像特徴を有している場合には、欠陥画素列のキズは目立ちにくいので、当該キズの補正を省略する。
【0011】
直線状の欠陥画素列のうち先頭欠陥画素のみを登録するため(すなわち、先頭以外の欠陥画素について位置情報を登録しないため)、キズの位置情報を格納する手段(例えば、ROM等の不揮発性メモリ)の容量を削減できる。また、取得された画像を分析し、キズとして目立つ場合にのみ当該キズを補正するようにしたので、過補正を回避して、画質の劣化を防ぐことができる。
【0012】
本発明においてキズの目立ち易さは、周辺画像領域の空間周波数成分が低いか否かという観点から判断できる。また、特定のカラーフィルタ配列の場合には、同一の垂直転送路で転送する異色画素の信号差が大きい場合にキズが目立ちやすくなるという傾向がある。したがって、キズの目立ち具合を判定する判定条件は、撮像デバイスの構造や感度、カラーフィルタ配列などによって適宜決定される。定められている判定条件に従い、前記欠陥画素列の各画素に対して周辺の画素との信号値を比較して、その比較結果からキズの程度を判定してもよいし、ローパスフィルタなどのフィルタを利用して周辺画像領域の画像特徴を判定してもよい。
【0013】
キズ画素の信号値を周囲画素から補正する態様としては、例えば、固体撮像素子の画素配置上、欠陥画素の周辺に存在する複数の同種(同色)画素の信号値から平均値を求め、この周辺同種画素値の平均値を欠陥画素の信号値として置き換える態様がある。
【0014】
本発明の一態様として、前記判定手段における判定の基準となる閾値を前記固体撮像素子の撮像感度に応じて可変設定する態様が好ましい。
【0015】
【発明の実施の形態】
以下添付図面に従って本発明に係る固体撮像素子の欠陥補正装置及び方法の好ましい実施の形態について詳説する。
【0016】
図1は本発明の実施形態に係る固体撮像素子の欠陥補正装置及び方法が適用された電子カメラのブロック図である。このカメラ10は、単板式のデジタルカメラであり、撮影レンズ12及びシャッター兼用絞り機構14を通過した光は、撮像デバイス16の受光面の上に結像される。メカシャッターは、撮像デバイス16から信号を読み出すときに光が撮像デバイス16に入射してスミア等が発生するのを防止する。絞り機構は、撮像デバイス16に入射する光の量を調節する。
【0017】
本例では撮像デバイス16としてCCD固体撮像素子を用いている。撮像デバイス16の受光面には多数の受光素子(フォトダイオード)が2次元的に配列されており、各受光素子に対応して色分解用のカラーフィルタが設けられている。撮像デバイス16の受光面に結像された被写体像は、各受光素子によって入射光量に応じた量の信号電荷に変換される。こうして各受光素子に蓄積された信号電荷は、駆動回路18から加えられるリードゲートパルスによって転送路に読み出され、信号電荷に応じた電圧信号(画像信号)として順次出力される。なお、撮像デバイス16は、シャッターゲートパルスのタイミングによって電荷蓄積時間(シャッタースピード)を制御する電子シャッター機能を有している。
【0018】
駆動回路18は、タイミング信号を発生させるタイミングジェネレータを含み、中央処理装置(CPU)20の指令に従って撮像デバイス16に対して駆動信号を与えるとともに、撮像デバイス16及びアナログ信号処理部22等に同期信号を与える。また、駆動回路18は、撮像デバイス16のドライバ回路として機能すると同時に、撮影レンズ12、シャッター兼用絞り機構14及びストロボ(閃光装置)24を動作させる駆動回路として機能する。なお、ストロボ24は、低照度時など必要な時に自動的に、或いはユーザの操作によって強制的に発光させることができ、被写体に補助光を照射する。
【0019】
撮像デバイス16は、タイミングジェネレータで生成したタイミング信号に基づいて駆動され、画像信号を出力する。撮像デバイス16から出力された画像信号はアナログ信号処理部22に送られる。アナログ信号処理部22は、サンプリングホールド回路、色分離回路、ゲイン調整回路等を含む。このアナログ信号処理部22に入力された画像信号は相関二重サンプリング(CDS)処理並びにR,G,Bの各色信号に色分離処理され各色信号の信号レベルの調整(プリホワイトバランス処理)が行われる。
【0020】
アナログ信号処理部22で生成された信号は、A/D変換器26においてデジタル信号に変換された後、バス(カメラ内部のメインバス)28を介して一旦メモリ30に格納される。なお、このメモリ30の記憶領域の一部はCPU20の演算作業用エリアとしても利用される。
【0021】
メモリ30に格納された画像データは、バス28を介してデジタル信号処理部32に送られる。デジタル信号処理部32は、撮像デバイス16の欠陥画素(キズ)のデータを補間する補正(以下、欠陥画素補正という。)処理、ホワイトバランス処理、ガンマ変換処理、同時化処理(単板撮像デバイスのカラーフィルタ配列に起因する色信号の空間的なズレを補間して各点の色を計算する処理)、輝度・色差信号生成(YC変換)処理、輪郭強調(アパーチャ付加)処理、シャープネス補正処理、データの圧縮・伸張処理等を行う信号処理手段であり、CPU20からのコマンドに従ってメモリ30を活用しながら画像信号を処理する。
【0022】
デジタル信号処理部32に入力された画像データは、欠陥画素補正、YC変換等の所定の処理が施された後、JPEG形式その他の所定の圧縮フォーマットに従って圧縮され、メモリカードインターフェース部34を介してメモリカード36に記録される。なお、圧縮形式はJPEGに限定されず、MPEGその他の方式を採用してもよく、使用される圧縮形式に対応した圧縮エンジンが用いられる。
【0023】
画像データを保存する手段は、メモリカード36で代表される半導体メモリに限定されず、磁気ディスク、光ディスク、光磁気ディスクなど、種々の媒体を用いることができる。また、リムーバブルメディアに限らず、カメラ10に内蔵された記録媒体(内部メモリ)であってもよい。
【0024】
なお、カメラ10において、ガンマ変換や同時化、YC変換などの画像処理を施していない未加工の画像データ(A/D変換後に欠陥画素補正のみを実施したCCD−RAW データ)をメモリカード36に記録するモード(RAW データ記録モード) を付加してもよい。
【0025】
再生モード時には、メモリカード36から画像データが読み出され、デジタル信号処理部32において伸張処理された後、表示用の信号に変換され、画像表示部38に出力される。画像表示部38には、液晶モニタや有機ELなどの表示装置を用いることができる。この画像表示部38はユーザインターフェース用の表示画面としても利用される。
【0026】
また、カメラ10はパソコンその他の外部機器との間でデータの送受信を行うための通信接続、或いは外部オプション装置を接続するための通信/オプションインターフェース部40を備えている。この通信/オプションインターフェース部40には、例えば、USB、IEEE1394、Bluetooth など有線又は無線無線方式の各種インターフェースを適用できる。
【0027】
CPU20は、所定のプログラムに従って本カメラシステムを統括制御する制御部であり、シャッタースイッチ42及びその他の操作スイッチ等44からの入力信号に基づいてカメラ10内の各回路の動作を制御する。カメラ10に対してユーザが各種の指示を入力するための操作スイッチには、例えば、カメラ10の動作モードを選択するためモード選択スイッチ、メニューを表示させるメニュースイッチ、メニュー項目の選択操作(カーソル移動操作)や再生画像のコマ送り/コマ戻し等の指示を入力する十字キー、選択項目の確定(登録)や動作の実行を指示する実行キー、選択項目など所望の対象の消去や指示のキャンセルを行うためのキャンセルキー、電源スイッチ、ズームスイッチなどがある。
【0028】
CPU20はシャッタースイッチ42及び操作スイッチ等44から入力される指示信号に応じて種々の撮影条件(露出条件、ストロボ発光有無、撮影モードなど)に従い、撮像デバイス16を制御するとともに、自動露出(AE)制御、自動焦点調節(AF)制御、オートホワイトバランス(AWB)制御、レンズ駆動制御、画像処理制御、メモリカード36の読み書き制御、画像表示部38の表示制御、外部機器との通信制御などを行う。
【0029】
本例のカメラ10は撮像系の感度をISO100〜ISO1600相当の範囲内で変更可能に構成されており、ユーザは操作スイッチ等44を操作して所望の撮影感度を選択できる。指定された撮影感度に従ってCPU20はアナログ信号処理部22におけるゲインを設定する。
【0030】
ROM46にはCPU20が処理するプログラム及び制御に必要な各種データ(欠陥画素の位置情報やキズ判定用の閾値、調整値データなど)が格納されている。不揮発性記憶手段としてのROM46は、書き換え不能なものであってもよいし、EEPROMのように書き換え可能なものであってもよい。なお、書き換え可能なROMを用いることにより、キズ判定用の閾値その他の格納データを必要に応じて修正することが可能になる。
【0031】
次に、上記の如く構成されたカメラ10において撮像デバイス16の欠陥画素を補正する方法について説明する。
【0032】
本実施形態のカメラ10では、撮像デバイス16の画素の欠陥を2種類の補正処理を組み合わせて除去している。
【0033】
第1の補正処理は、従来からも行われている通常キズの補正を目的とする。すなわち、撮像デバイス16上で遮光状態のデータを取り込み、そのなかで所定の閾値以上の信号値となる画素をキズとして、そのキズ座標をカメラ10のROM46に記録しておく(暗時白キズの登録)。また、撮像デバイス16に一定光量の光を当ててデータを取り込み、所定の閾値以上の差のある画素もキズとして、そのキズ座標をカメラ10のROM46に記録しておく(明時変調キズの登録)。なお、暗時白キズを判定する閾値と、明時変調キズを判定する閾値はそれぞれ別々に設定される。
【0034】
このようにして、暗時白キズ及び明時変調キズの座標を予めROM46に登録しておき、撮影時には、撮像デバイス16の出力信号をA/D変換してメモリ30に取り込んだ後、ROM46内に記録してある座標のキズ画素を周囲の同色画素から補間して埋め戻す処理を行う。例えば、撮影時に該当アドレスの画素の信号値(画素値)を周辺同色画素の信号値から演算して求めた代表値(周辺同色4画素の平均値など)で置換する補正を行う。
【0035】
第2の補正処理は、垂直転送路52の欠陥に起因する縦線キズの補正を目的とする。この縦線キズは、前述の通常キズよりも目立ちにくい微妙なレベルのキズであるため、周辺の画像領域との関係でキズの目立ち具合を判定してから補正を行う。縦線キズ補正のアルゴリズムを説明する前に、撮像デバイス16の構造例について概説しておく。
【0036】
図2に撮像デバイス16の平面模式図を示す。この撮像デバイス16は、多数の受光素子(フォトダイオード)50が水平方向(行方向)及び垂直方向(列方向)に一定の配列周期で配置されたCCD型2次元撮像デバイス(イメージセンサ)である。図示した構成はハニカム配列と呼ばれる画素配列であり、受光素子50の幾何学的な形状の中心点を行方向及び列方向に1つ置きに画素ピッチの半分(1/2ピッチ)ずらして配列させたものとなっている。すなわち、互いに隣接する受光素子50の行どうし(又は列どうし)において、一方の行(又は列)の素子配列が他方の行(又は列)の素子配列に対して行方向(又は列方向)の配列間隔の略1/2だけ相対的にずれて配置された構造となっている。
【0037】
各受光素子50は、八角形の受光面を有し、各受光素子50に対応してRGBの原色カラーフィルタが配置されている。図1のように、水平方向についてRBRB…の行の次段にGGGG…の行が配置され、その次段にBRBR…の行、という具合に配列される。列方向についてみれば、RBRB…の列と、GGGG…の列と、BRBR…の列とが循環式に繰り返される配列パターンとなっている。なお、受光素子50の開口形状は八角形に限定されず、四角形や六角形の多角形、或いは円形であってもよい。また、各受光素子50上には図示せぬマイクロレンズが配置されており、入射する光を効率的に受光素子50に入射させるようになっている。
【0038】
各受光素子50の右側(又は左側)には垂直転送路(VCCD)52が形成されている。垂直転送路52は、受光素子50の各列に近接して受光素子50を避けながらジグザグ状に蛇行して垂直方向に伸びている。図示されていないが、垂直転送路52上には4相駆動(φ1,φ2,φ3,φ4)に必要な転送電極が配置される。転送電極は、受光素子50の各行に近接して受光素子50の開口を避けながら蛇行して図2の水平方向に伸びるように設けられている。
【0039】
各受光素子50で光電変換により生成された信号電荷は、当該受光素子50の右側(又は左側)に隣接した垂直転送路52に読み出され、転送パルスに従って図2の上方(V方向)に転送される。
【0040】
図2において垂直転送路52の上端(垂直転送路52の最下流側)には、垂直転送路52から移された信号電荷を水平方向に転送する水平転送路(HCCD)54が設けられている。
【0041】
水平転送路54は、2相駆動の転送CCDで構成されており、水平転送路54の最終段(図2上で最左段)は出力部56に接続されている。出力部56は出力アンプを含み、入力された信号電荷の電荷検出を行い、信号電圧として出力端子58に出力する。こうして、各受光素子50で生成された信号が、点順次の信号列として出力される。なお、出力端子58から出力される信号はRGBGRGBG…という信号列となる。
【0042】
次に、縦線キズ補正アルゴリズムについて説明する。本アルゴリズムは、CCD−RAW データがメモリ30上に格納され、通常の欠陥補正(第1の補正処理)がなされた後に(ガンマ補正前に)適用され、キズ画素に対して補正を行う。
【0043】
図3に示したように、撮像デバイス16の有効エリア60内においてR,B画素の信号電荷を転送する垂直転送路52の欠陥によって縦線キズ62が発生するとき、当該縦線キズ62の先頭キズ座標(R又はB画素の位置情報)をROM46に登録しておく。なお、図3では、有効エリア60の左上隅を座標原点に設定しているが、本発明の実施に際して座標系の設定方法については図3の例に限定されない。また、G画素の列については色混合が発生せず、キズの影響が非常に小さいので、縦線キズ補正を実施しない。
【0044】
こうしてR,B画素列の縦線キズ62のうち先頭画素のみを登録し、当該縦線キズ62の他の画素の位置情報は登録しない。そして、指定された先頭キズ座標からV方向に対して後ろ(水平転送路54の反対側)の有効エリア60内の各画素に対して周辺10画素を比較し、画像上目立つ(見える)キズであるか否かを判定して、見えるキズである場合には、同色の周辺4画素の平均値で当該補正画素の値を埋め戻す。
【0045】
すなわち、キズ補正領域は、図3に示すように先頭キズ座標(キズ指定点)から下側(水平転送路54からみて上流側)の有効画素領域とする。また、補正画素はR,B画素のみとし、比較する周辺10画素は、図4に示すような画素位置になる。
【0046】
例えば、図4においてR0 の画素を含むRB列が縦線キズ62の画素ラインであるとすると、当該縦線キズ62のR画素を補正する条件は、下記の条件▲1▼〜▲4▼とする。
【0047】
〔条件▲1▼〕注目するR画素に隣接するGが均一であること(4つの周辺G画素について互いの差の絶対値が所定の閾値 T_TH_G より小さいこと) 。
【0048】
〔条件▲2▼〕注目するR画素周辺のBが均一であること(2つの周辺B画素について差の絶対値が所定の閾値 T_TH_2 より小さいこと) 。
【0049】
〔条件▲3▼〕注目するR画素周辺のRが均一であること(4つの周辺R画素について互いの差の絶対値が所定の閾値 T_TH_4 より小さいこと) 。
【0050】
〔条件▲4▼〕周辺のR画素とB画素の差が大きいこと(差の絶対値が所定の閾値T_TH_RBより大きいこと)。
【0051】
以上の4つの条件▲1▼〜▲4▼を全て満たす場合に、当該R画素を補正が必要なキズ画素と判定して、CCD光学配置上の近接R4画素の平均値を当該R画素の値とする。
【0052】
具体的には、図4のR0 画素を補正する場合を考えると、まず、R0 画素に隣接する4つのG画素(G1 ,G2 ,G3 ,G4 )について、次式(1− 1)〜(1−
3)の成否(条件▲1▼)を判断する。
【0053】
【数1】|G1 −G2 |< T_TH_G …(1− 1)
【0054】
【数2】|G1 −G3 |< T_TH_G …(1− 2)
【0055】
【数3】|G1 −G4 |< T_TH_G …(1− 3)
また、R0 画素に隣接する左右のB画素(B1 ,B2 )について次式(2− 1)の成否(条件▲2▼)を判断する。
【0056】
【数4】|B1 −B2 |< T_TH_2 …(2− 1)
更に、R0 画素の周辺にある4つのR画素(R1 ,R2 ,R3 ,R4 )について次式(3− 1)〜(3− 3)の成否(条件▲3▼)を判断する。
【0057】
【数5】|R1 −R2 |< T_TH_4 …(3− 1)
【0058】
【数6】|R1 −R3 |< T_TH_4 …(3− 2)
【0059】
【数7】|R1 −R4 |< T_TH_4 …(3− 3)
更にまた、R1 画素とB1 画素について次式(4− 1)の成否(条件▲4▼)を判断する。
【0060】
【数8】|R1 −B1 |< T_TH_RB…(4− 1)
そして、上述した式(1− 1)〜(4− 1)の全てが成り立つときに、R0 の画素値を次式(5− 1)とする。
【0061】
【数9】R0 =(R1 +R2 +R3 +R4 )/4 …(5− 1)
なお、上述した式(1− 1)〜(4− 1)のうち、1つでも成立しないものがある場合には、画像上でキズが目立ち難い状況であると判断し、式(5− 1)による画素値の置換は行わない。
【0062】
B画素を補正する場合も上述R画素の場合と同様である(R画素の場合と相対的な位置関係は同等である)。すなわち、キズラインのB画素を補正する条件は、下記の条件▲1▼′〜▲4▼′である。
【0063】
〔条件▲1▼′〕注目するB画素に隣接するGが均一であること(4つの周辺G画素について互いの差の絶対値が所定の閾値 T_TH_G より小さいこと) 。
【0064】
〔条件▲2▼′〕注目するB画素周辺のRが均一であること(2つの周辺G画素について差の絶対値が所定の閾値 T_TH_2 より小さいこと) 。
【0065】
〔条件▲3▼′〕注目するB画素周辺のBが均一であること(4つの周辺B画素について互いの差の絶対値が所定の閾値 T_TH_4 より小さいこと) 。
【0066】
〔条件▲4▼′〕周辺のB画素とR画素の差が大きいこと(差の絶対値が所定の閾値 T_TH_RBより大きいこと)。
【0067】
以上の4つの条件▲1▼′〜▲4▼′を全て満たす場合に、当該B画素を補正が必要なキズ画素と判定して、CCD光学配置上の近接B4画素の平均値を当該B画素の値とする。
【0068】
図5に縦線キズ62の補正判定に必要な閾値(縦線キズ補正パラメータ)の例を示す。なお、図5に示すパラメータは図1で説明したROM46に格納される。縦線キズ62を補正するか否かの判断基準となる閾値は、図5のように、撮影時のISO感度に応じて、(1) ISO100及びISO200用、(2) ISO400及びISO800用、(3) ISO1600用の3通りが準備されており、設定されたISO感度に応じたパラメータを用いてキズの判定が行われる。撮像感度(ISO感度)が低いときは、撮像デバイス16のゲインが低いためノイズ成分も少ない。これに対し、撮像感度が高いときはゲインアップしており、ノイズ成分が多い画像となるため、判定基準を高めに設定することが好ましい。
【0069】
更に具体的に例示すると、12bit のCCD−RAW データをメモリ30に記憶するものとし、ISO200の感度で撮影を行い、メモリ30上に図6のようなデータが記録された場合について、太枠の画素(R0 )に注目してみると、周辺の10画素について各画素の信号値は、R1 = 300,R2 = 340,R3 =270 ,R4 = 322,G1 =400 ,G2 =450 ,G3 = 470,G4 = 400,B1 =1300,B2 =1355となる。ここで、図5のパラメータを参照して上述した判定条件式(1− 1)〜(4− 1)を検討すると、
【0070】
【数10】|G1 −G2 |=|400 −450 |=50< T_TH_G =75
【0071】
【数11】|G1 −G3 |=|400 −470 |=70< T_TH_G =75
【0072】
【数12】|G1 −G4 |=|400 −400 |=0 < T_TH_G =75
【0073】
【数13】|B1 −B2 |=|1300−1355|=55< T_TH_2 =75
【0074】
【数14】|R1 −R2 |=|300 −340 |=40< T_TH_4 =75
【0075】
【数15】|R1 −R3 |=|300 −270 |=30< T_TH_4 =75
【0076】
【数16】|R1 −R4 |=|300 −322 |=22< T_TH_4 =75
【0077】
【数17】|R1 −B1 |=|300 −1300|=1000> T_TH_RB=70
の式が全て成り立つため、R0 の値を式(5− 1)に従って、
【0078】
【数18】R0 =(300 +340 +270 +322 )/4=308
の値に置き換える。
【0079】
図4〜図6では周辺の10画素について比較したが、比較する周辺画素の範囲を更に広げてもよい。また、縦線キズが目立つか否かを判定する方法は、上記のように周辺画素の差分で判定する方法に限定されない。要するに、縦線キズの周辺画像領域が色や濃淡の変化が少ない画像であるか否か(周波数成分が高いか低いかという点)を判別できればよいので、水平方向や垂直方向のハイパスフィルタ又はローパスフィルタ若しくはこれらの組合せによるフィルタの信号を用いて周辺画像領域の画像特徴を検出してもよい。
【0080】
次に、本実施形態に係るカメラ10における撮像デバイス16の欠陥補正処理の手順について説明する。
【0081】
図7は、カメラ10の信号処理フローチャートである。同図に示したように、シャッタースイッチ42が押され(ステップS110)、撮影実行の指示が入力されると、CPU20は撮影動作を制御して撮像デバイス16の露光を行う。そして、露光後にメカシャッターを閉じ、シャッター閉状態で撮像デバイス16からデータを読み出し、画像データをメモリ30に格納する(ステップS112)。こうして、メモリ30に格納された画像データに対してまず、通常キズの補正を行う(ステップS114)。ここでの補正処理は上述した第1の補正処理を実施する。
【0082】
ステップS114で通常キズの補正処理を実施してキズを除去した後、ステップS116に進み、縦線キズ補正の処理を実施する。ここでの補正処理は図3乃至図6で説明した第2の補正処理を実施する。図7のステップS116で縦線キズの補正処理を実施した後は、ステップ118に進み、メモリ30に格納された画像データについて、ホワイトバランス(WB)補正、輝度・色差信号生成、ガンマ補正、輪郭強調、圧縮などの信号処理を施して、画像データをメモリカード36に記録する(ステップS118)。
【0083】
このようにして、画像データをメモリカード36に記録し終えたら、本処理シーケンスを終了する(ステップS120)。
【0084】
上述した本発明の実施形態によれば、垂直転送路52の欠陥に起因する直線状の縦線キズ62について先頭のキズ座標のみをROM46に登録するので、全ての欠陥画素の座標を記録する方法と比較して、ROM46の容量を削減できる。更に、撮像された画像において縦線キズ62の周辺画像領域の画像特徴を検出し、キズが目立ちにくい画像と判断したときには、画素値の補間を省略したので、過補正による画質劣化も防止できる。
【0085】
本発明の実施に際して撮像デバイス16の構造は図2乃至図4で説明した例に限定されず、受光素子が正方格子状に配列されたものであってもよく、また、色分解用のカラーフィルタアレイ(CFA)についても、ベイヤー配列、インタライン配列、G縦ストライプRB市松など、種々の配列構造についても本発明を適用可能である。
【0086】
上述の実施形態ではデジタルスチルカメラを例に説明したが本発明の適用範囲はこれに限定されず、ムービーカメラや画像入力装置など電子映像を記録する様々な装置について本発明を適用できる。
【0087】
【発明の効果】
以上説明したように本発明によれば、直線状の欠陥画素列のうち先頭の欠陥画素のみの位置情報を予め記憶しておき、撮影時に取得された画像から前記欠陥画素列の周辺画像領域についてキズが目立つレベルか否かを判定し、目立つと判定した場合にのみ、欠陥画素の信号値を周辺の画素の信号値を用いて補正するようにしたので、キズの位置情報を格納する手段について大容量の記憶領域を用意する必要がなく、直線状のキズを効率よく補正でき、良好な画質の画像を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る固体撮像素子の欠陥補正装置及び方法が適用された電子カメラのブロック図
【図2】撮像デバイスの構造例を示した平面模式図
【図3】縦線キズの補正領域を示した説明図
【図4】撮像デバイス上における画素の光学配置例を示した平面模式図
【図5】ROMに格納されるキズ判定用の閾値の例を示した図表
【図6】メモリ上に格納された画像データの一例を示した概念図
【図7】本実施形態に係るカメラの信号処理手順を示すフローチャート
【符号の説明】
10…カメラ、16…撮像デバイス、18…駆動回路、20…CPU、26…A/D変換器、28…バス、30…メモリ、32…デジタル信号処理部、46…ROM

Claims (3)

  1. 垂直転送路の欠陥に起因する直線状の欠陥画素列が存在する固体撮像素子について前記欠陥画素列のうち先頭の欠陥画素のみの位置情報を記憶保存する先頭情報格納手段と、
    撮影時に前記固体撮像素子を介して取得される画像信号に基づき、前記欠陥画素列の周辺画像領域について前記欠陥画素列による画質劣化が目立つレベルのものであるか否かを判定する判定手段と、
    前記判定手段で画質劣化が目立つと判定した場合に、欠陥画素の信号値を周辺の画素の信号値を用いて補正する一方、前記判定において画質劣化が目立たないと判定した場合には、前記補正の処理を省略する演算処理手段と、
    を備えたことを特徴とする固体撮像素子の欠陥補正装置。
  2. 前記判定手段における判定の基準となる閾値は、前記固体撮像素子の撮像感度に応じて可変設定されることを特徴とする請求項1記載の固体撮像素子の欠陥補正装置。
  3. 垂直転送路の欠陥に起因する直線状の欠陥画素列が存在する固体撮像素子について前記欠陥画素列のうち先頭の欠陥画素のみの位置情報を記憶しておき、
    撮影時に前記固体撮像素子を介して取得される画像信号に基づいて、前記欠陥画素列を含む周囲の画像領域について前記欠陥画素列による画質劣化が目立つレベルのものであるか否かを判定し、
    前記判定手段で画質劣化が目立つと判定した場合に、欠陥画素の信号値を周辺の画素の信号値を用いて補正する一方、前記判定において画質劣化が目立たないと判定した場合には、前記補正の処理を省略することを特徴とする固体撮像素子の欠陥補正方法。
JP2002179358A 2002-06-20 2002-06-20 固体撮像素子の欠陥補正装置及び方法 Pending JP2004023683A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002179358A JP2004023683A (ja) 2002-06-20 2002-06-20 固体撮像素子の欠陥補正装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002179358A JP2004023683A (ja) 2002-06-20 2002-06-20 固体撮像素子の欠陥補正装置及び方法

Publications (1)

Publication Number Publication Date
JP2004023683A true JP2004023683A (ja) 2004-01-22

Family

ID=31176768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002179358A Pending JP2004023683A (ja) 2002-06-20 2002-06-20 固体撮像素子の欠陥補正装置及び方法

Country Status (1)

Country Link
JP (1) JP2004023683A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318565A (ja) * 2004-04-27 2005-11-10 Magnachip Semiconductor Ltd イメージセンサの暗欠陥隠蔽方法
JP2005354278A (ja) * 2004-06-09 2005-12-22 Seiko Epson Corp 撮像手段の撮像した画像の画像データを処理する画像データ処理
JP2005354670A (ja) * 2004-05-13 2005-12-22 Matsushita Electric Ind Co Ltd 画像処理方法およびカメラシステム
JP2006026234A (ja) * 2004-07-20 2006-02-02 Olympus Corp 生体内撮像装置および生体内撮像システム
JP2006148441A (ja) * 2004-11-18 2006-06-08 Konica Minolta Photo Imaging Inc 撮像装置
JP2006148415A (ja) * 2004-11-18 2006-06-08 Konica Minolta Photo Imaging Inc 撮像装置
JP2006262308A (ja) * 2005-03-18 2006-09-28 Konica Minolta Photo Imaging Inc 撮像装置
JP2007028520A (ja) * 2005-07-21 2007-02-01 Fujifilm Holdings Corp デジタルカメラ
JP2007235891A (ja) * 2006-03-03 2007-09-13 Canon Inc 欠陥補正装置及び欠陥補正方法
JP2010050730A (ja) * 2008-08-21 2010-03-04 Nikon Corp 撮像装置及び欠陥補正装置
JP2011530881A (ja) * 2008-08-05 2011-12-22 クゥアルコム・インコーポレイテッド 不良ピクセルクラスタ検出

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318565A (ja) * 2004-04-27 2005-11-10 Magnachip Semiconductor Ltd イメージセンサの暗欠陥隠蔽方法
USRE43853E1 (en) 2004-04-27 2012-12-11 Intellectual Ventures Ii Llc Method for concealing dark defect in image sensor
JP4721744B2 (ja) * 2004-04-27 2011-07-13 クロステック・キャピタル,リミテッド・ライアビリティ・カンパニー イメージセンサの暗欠陥隠蔽方法
JP2005354670A (ja) * 2004-05-13 2005-12-22 Matsushita Electric Ind Co Ltd 画像処理方法およびカメラシステム
US7746392B2 (en) 2004-06-09 2010-06-29 Seiko Epson Corporation Image data processing technique for images taken by imaging unit
JP2005354278A (ja) * 2004-06-09 2005-12-22 Seiko Epson Corp 撮像手段の撮像した画像の画像データを処理する画像データ処理
JP2006026234A (ja) * 2004-07-20 2006-02-02 Olympus Corp 生体内撮像装置および生体内撮像システム
JP2006148441A (ja) * 2004-11-18 2006-06-08 Konica Minolta Photo Imaging Inc 撮像装置
JP2006148415A (ja) * 2004-11-18 2006-06-08 Konica Minolta Photo Imaging Inc 撮像装置
JP2006262308A (ja) * 2005-03-18 2006-09-28 Konica Minolta Photo Imaging Inc 撮像装置
JP2007028520A (ja) * 2005-07-21 2007-02-01 Fujifilm Holdings Corp デジタルカメラ
JP4542962B2 (ja) * 2005-07-21 2010-09-15 富士フイルム株式会社 デジタルカメラ
JP2007235891A (ja) * 2006-03-03 2007-09-13 Canon Inc 欠陥補正装置及び欠陥補正方法
JP2011530881A (ja) * 2008-08-05 2011-12-22 クゥアルコム・インコーポレイテッド 不良ピクセルクラスタ検出
US8971659B2 (en) 2008-08-05 2015-03-03 Qualcomm Incorporated Bad pixel cluster detection
JP2010050730A (ja) * 2008-08-21 2010-03-04 Nikon Corp 撮像装置及び欠陥補正装置

Similar Documents

Publication Publication Date Title
JP4195169B2 (ja) 固体撮像装置および信号処理方法
US9729805B2 (en) Imaging device and defective pixel correction method
US9503699B2 (en) Imaging device, imaging method, electronic device, and program
JP4738907B2 (ja) 固体撮像素子および固体撮像装置
US8982236B2 (en) Imaging apparatus
US7880789B2 (en) Solid-state image pick-up apparatus capable of remarkably reducing dark current and a drive method therefor
US20060050956A1 (en) Signal processing apparatus, signal processing method, and signal processing program
JP2007274599A (ja) 撮像装置
JP2004023683A (ja) 固体撮像素子の欠陥補正装置及び方法
JP5033711B2 (ja) 撮像装置及び撮像装置の駆動方法
JP2004048445A (ja) 画像合成方法及び装置
JP4817529B2 (ja) 撮像装置及び画像処理方法
JP2005109994A (ja) 撮像装置
JP4317117B2 (ja) 固体撮像装置および撮像方法
JP5607265B2 (ja) 撮像装置、撮像装置の制御方法、及び制御プログラム
JP2004015191A (ja) 固体撮像素子の欠陥補正装置及び方法
US20040141087A1 (en) Solid-state image pickup apparatus with influence of shading reduced and a method of controlling the same
JP5624228B2 (ja) 撮像装置、撮像装置の制御方法、及び制御プログラム
JPH11262025A (ja) 画像入力装置および画像補正方法
JP2005167497A (ja) 撮像装置、良質画像獲得方法、及びプログラム
JP2007228152A (ja) 固体撮像装置および撮像方法
JP4434556B2 (ja) 固体撮像装置および固体撮像素子
JP2004172858A (ja) 撮像装置および撮像方法
JP3999417B2 (ja) 固体撮像装置および信号読出し方法
JP2007053479A (ja) 撮像装置の信号処理方法及び撮像装置