JP2004020212A - 表面性状測定器 - Google Patents

表面性状測定器 Download PDF

Info

Publication number
JP2004020212A
JP2004020212A JP2002171392A JP2002171392A JP2004020212A JP 2004020212 A JP2004020212 A JP 2004020212A JP 2002171392 A JP2002171392 A JP 2002171392A JP 2002171392 A JP2002171392 A JP 2002171392A JP 2004020212 A JP2004020212 A JP 2004020212A
Authority
JP
Japan
Prior art keywords
reference body
light
surface texture
measuring device
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002171392A
Other languages
English (en)
Inventor
Tatsuya Narumi
鳴海 達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2002171392A priority Critical patent/JP2004020212A/ja
Publication of JP2004020212A publication Critical patent/JP2004020212A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】参照体の軸ずれを精度よく調整することで、測定精度を向上し測定作業を能率化する。
【解決手段】ダイアモンド圧子16の先端部からの反射光と、参照体66からの反射光とを干渉させ、生じた干渉縞をCCDカメラ44で観測することにより先端部の表面性状を測定すると共に、参照球70からの反射光に基づいて参照球70の曲率半径を測定する構成において、参照体66を干渉光学系から参照体66への照射光路に対し交差方向に移動させる参照体位置調整機構88を、参照体位置制御部が参照体66からの反射光に基づいて制御する。参照体66の軸ずれを精密に調整でき、測定精度の向上と作業の能率化を実現できる。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は表面性状測定器に関し、特に曲率を有する表面を備えた被検体の表面性状を測定する表面性状測定器に関する。
【0002】
【従来の技術】
従来、被検体表面の粗さ、うねり、形状等の表面性状を測定するために、様々な光学機器が利用されている。代表的なものは、着目している被検体の表面部分に対して参照面を用意し、前記表面部分と参照面からの反射光により生成される干渉縞を利用して、着目している被検体の表面性状を測定するものである。
【0003】
被検体の一例として、機械部品等の硬度測定に使用されるダイアモンド圧子があげられる。ロックウエル硬さ試験機はダイアモンド圧子を試験体に押し込み、そのくぼみの寸法により試験体の硬度を測定するものである。圧入されるダイアモンド圧子は、先端部の頂部を曲率半径0.2mmの球面に加工した頂角120°の円錐形状のものが使用される。この円錐形状の頂角及び曲率半径の誤差は硬度測定の結果に大きく影響するため、硬度測定を行う前にそれらの誤差を正確に見積もる必要がある。
【0004】
円錐形状の頂角の測定装置として知られているリンニク(Linnik)顕微干渉光学系(計量研究所報告 Vol.18,No.4,87p)では、参照平面と円錐の母線との干渉縞に基づいて頂角を求めている。
【0005】
先端球面の曲率半径の測定に関しては、干渉計を用いた方法以外に、例えば計量研究所報告( Vol.18,No.4,79p )に示されている顕微コリメータ法が知られている。顕微コリメータ法は、球面の先端と曲率中心とに光源の像を結像した場合に観察される光量がピークになることを利用したものである。
【0006】
すなわち、図8(b)に示すように、被検体側対物レンズ内のレンズ14aにより集光された光の反射光を検出しながら、被検体を照射光路に沿って接近させていくと、観測される光強度は徐々に変化し、ダイアモンド圧子の頂点70bに合焦する配置の場合(図8(a)中、Z3の位置に頂点70bがある場合)に第一のピークP1として現れ、一旦減少して極小点を経た後再び上昇し始め、照射光が曲率中心で結像する配置(図8(a)中、Z4の位置に頂点70bがある場合)において第二のピークP2を持つ(図8(a)参照)。後者は、レンズ14aから入射してきた光線が入射方向と逆向きに反射(正反射)されるためである。こうして得られたピークP1,P2間の距離をリニアエンコーダを使用して精密測定することにより、先端部の頂部の曲率半径の値を測定することができる。
【0007】
ところで、上述のダイアモンド圧子の測定において曲率半径と円錐形状の頂角の測定を行うには、それぞれ別個の装置を使用しなければならなかった。それゆえ、測定毎に新たにダイアモンド圧子を各々の装置にセッティングしなければならず、また、測定毎にそのセッティング誤差を評価しなければならない等、段取りや測定にかなりの時間を要していた。
【0008】
このため出願人は、単一の装置により、被検体と参照体からの各々の反射光による干渉縞に基づく被検体の表面性状測定と、顕微コリメータ法による被検体の曲率半径測定とを行うようにした測定器を提案している(特開2002−54910号公報)。この構成によれば、被検体の表面性状を能率よく測定でき、またセッティング誤差も僅少で済むという利点がある。
【0009】
【発明が解決しようとする課題】
しかし、顕微コリメータ法による被検体の曲率半径測定を行う場合に、集光レンズによる照射光路が参照体の軸から大きく外れると、上記第2のピークが検出できず曲率半径を測定できなくなるおそれがあり、また干渉縞による表面性状の測定精度も低下してしまう。
【0010】
そこで本発明の目的は、参照体の軸ずれを精度よく調整することで、測定精度を向上し測定作業を能率化することにある。
【0011】
【課題を解決するための手段】
第1の本発明は、請求項1に記載のとおり、光源からの光により照射された被検体と参照体からの各々の反射光により干渉縞を形成する干渉光学系と、前記干渉縞に基づいて前記被検体の表面性状測定を行う表面性状測定部と、前記参照体からの反射光を集光する集光光学系と、前記参照体を並進移動させて前記集光光学系により集光された光の変化に基づいて前記参照体の曲率半径測定を行う曲率半径測定部と、を備えた表面性状測定器において、前記参照体を前記干渉光学系から参照体への照射光路に対し交差方向に移動させる参照体位置調整機構と、前記参照体位置調整機構を前記参照体からの反射光に基づいて制御する参照体制御部と、を更に備えた表面性状測定器である。
【0012】
第1の本発明では、参照体を干渉光学系から参照体への照射光路に対し交差方向に移動させる参照体位置調整機構を、参照体制御部が参照体からの反射光に基づいて制御するので、参照体の軸ずれを精密に調整でき、測定精度の向上と作業の能率化を実現できる。
【0013】
第2の本発明は、請求項2に記載のとおり、請求項1に記載の表面性状測定器において、前記参照体における合焦点が前記参照体における合焦基準点から所定範囲内となるように、前記参照体制御部が前記参照体位置調整機構を制御することを特徴とする表面性状測定器である。
【0014】
第2の本発明では、参照体における合焦点が参照体における合焦基準点から所定範囲内となるように、参照体制御部が参照体位置調整機構を制御するので、参照体の軸ずれ補正を簡易な構成により実現できる。
【0015】
第3の本発明は、請求項3に記載のとおり、請求項2に記載の表面性状測定器において、前記合焦基準点が、前記参照体における光源への最近点であることを特徴とする表面性状測定器である。
【0016】
第3の本発明では、光源への最近点を合焦基準点としたので、光源に向けて凸な形状の参照体において軸ずれ調整を好適に実行できる。
【0017】
第4の本発明は、請求項4に記載のとおり、請求項1ないし3のいずれか1に記載の表面性状測定器において、前記参照体を前記照射光路と同方向に並進移動させる並進機構を更に備えた表面性状測定器である。前記並進機構は、ステッピングモータを含む粗動機構と、インチワームモータを含む微動機構から構成することができる。
【0018】
第4の本発明では、参照体に非平行光を照射する場合に、並進機構によって参照体を照射光路と同方向に並進移動させることにより、参照体の表面における照度が変化するため、これを参照体の軸ずれ補正に利用することができる。
【0019】
第5の本発明は、請求項5に記載のとおり、請求項1ないし4のいずれか1に記載の表面性状測定器において、前記被検体からの反射光を集光する集光光学系と、前記被検体を並進移動させて前記集光光学系により集光された光の変化に基づいて前記被検体の曲率半径測定を行う曲率半径測定部と、を更に備えた表面性状測定器である。
【0020】
第5の本発明では、被検体を並進移動させた際の反射光の変化に基づいて、曲率半径測定部が被検体の曲率半径を測定するので、被検体の曲率半径測定をも実現できる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態(以下実施形態という)につき、図面に従って説明する。図1において、本実施形態に係る表面性状測定器10は、被検体として用いられるダイアモンド圧子16の先端部の表面性状、円錐形状の頂角、および円錐形状の先端部の曲率半径を測定するものであり、光学系1、光源としてのレーザヘッド2、圧子位置調整機構86、および参照体位置調整機構88を含んで構成されている。
【0022】
圧子位置調整機構86は、ダイアモンド圧子16の位置および姿勢を調整するものであり、XYステージ86a、並進機構86b、回転機構86cおよび傾斜機構86dを含んで構成されている。
【0023】
XYステージ86aは、照射光軸に対して直交方向の面内(以下、直交面内)にダイアモンド圧子16を移動させる機構であり、水平方向および鉛直方向を動作方向とし、各方向についてそれぞれ粗動機構と微動機構とを備えている。粗動機構にはステッピングモータとマイクロメータ機構の組み合わせが使用されており、その可動範囲は5mmである。微動機構には圧電素子が使用されており、その可動範囲は20μmである。XYステージ86aは、後述する位置制御部82の制御により、0.01μmの分解能で直交面内の移動を制御できる。
【0024】
並進機構86bは、ダイアモンド圧子16を照射光軸と同方向に並進移動させる機構であり、ステッピングモータとマイクロメータ機構の組み合わせからなる粗動機構と、インチワームモータ52からなる微動機構とを備えている。並進機構86bは、後述する位置制御部82の制御により、ダイアモンド圧子16の並進移動位置を0.01μmの分解能で制御できる。
【0025】
回転機構86cは、ダイアモンド圧子16をその軸線を中心として回転させる機構であり、ステッピングモータが使用されている。この回転機構86cにより、ダイアモンド圧子16の表面の任意の母線に光を照射することができる。
【0026】
傾斜機構86dは、照射光軸に直交する軸を中心としてダイアモンド圧子16を傾斜させる機構であり、圧電素子が使用されている。この傾斜機構86dにより、ダイアモンド圧子16は照射光軸に対してピッチ方向に±30°まで傾斜することができ、これによってダイアモンド圧子16の姿勢を微調整できる。
【0027】
参照体位置調整機構88は、参照体66の位置を調整するものであり、圧子位置調整機構86におけるものとそれぞれ略同様のXYステージ88a、並進機構88b、回転機構88cおよび傾斜機構88dを含んで構成されている。
【0028】
すなわち、XYステージ88aは、照射光軸に対して直交方向の面内(以下、直交面内)に参照体66を移動させる機構であり、水平方向および鉛直方向を動作方向とし、各方向についてそれぞれ粗動機構と微動機構とを備えている。粗動機構にはステッピングモータとマイクロメータ機構の組み合わせが使用されており、その可動範囲は5mmである。微動機構には圧電素子が使用されており、その可動範囲は20μmである。XYステージ88aは、後述する位置制御部82の制御により、0.01μmの分解能で直交面内の移動を制御できる。
【0029】
並進機構88bは、参照体66を照射光軸と同方向に並進移動させる機構であり、ステッピングモータとマイクロメータ機構の組み合わせからなる粗動機構と、インチワームモータ152からなる微動機構とを備えている。並進機構88bは、後述する位置制御部82の制御により、参照体66の並進移動位置を0.01μmの分解能で制御できる。
【0030】
回転機構88cは、参照体66をその軸線を中心として回転させる機構であり、ステッピングモータが使用されている。この回転機構88cにより、参照体66を任意の姿勢に保持することができる。
【0031】
傾斜機構88dは、照射光軸に直交する軸を中心として参照体66を傾斜させる機構であり、圧電素子が使用されている。この傾斜機構88dにより、参照体66は照射光軸に対してピッチ方向に±30°まで傾斜することができ、これによって参照体66の姿勢を微調整できる。
【0032】
リニアエンコーダ54,154は、ダイアモンド圧子16または参照体66の照射光軸方向の移動距離を読み取るために使用される。ロータリエンコーダ80,180は、ダイアモンド圧子16または参照体66を照射光軸に直交する軸を中心として回転させたときの回転角度を読み取るために使用される。
【0033】
図2は光学系1の内部構造を示し、特に、顕微コリメータ光学系により、集光光学系を利用して、ダイアモンド圧子16の先端部の曲率半径を測定する場合の使用状態を示す。
【0034】
レーザヘッド2(図1参照)から光ファイバ18を通じて入射するレーザ光は、ピンホール12から出射し、被検体側対物レンズ14によって集光され、ダイアモンド圧子16の先端部17に照射される。
【0035】
ここで、光ファイバ18からの光は光アイソレータ19を挟むレンズ20,22により集光され、その後、回転拡散板24により拡散される。光アイソレータ19は偏光板19aとλ/4板19bとから構成されており、光アイソレータ19を回転させることにより光量の調節が行える。また回転拡散板24は干渉ノイズ低減のために設けられる。拡散された光はレンズ26,28によってピンホール12に集光され、その後、レンズ30により平行光束となりビームスプリッタ32に入射する。ビームスプリッタ32により反射された光束は被検体側対物レンズ14によってダイアモンド圧子16の先端部17に集光される。
【0036】
次に、ダイアモンド圧子16の先端部17により反射された光は、被検体側対物レンズ14に戻り、レンズ36によりフォトセンサ42に集光され、更にレンズ38,40によりCCDカメラ44に集光される。
【0037】
その際、被検体側対物レンズ14からの光束はビームスプリッタ46により分割され、一方はレンズ36によってピンホール48に集光された後、フォトセンサ42にて検出される。検出光は電気信号に変化され解析部50(図5参照)に送られる。分割されたもう一方の光束はレンズ38及びレンズ40により集光されCCDカメラ44にて測定される。
【0038】
虹彩絞り56は可変であり、ダイアモンド圧子16の頂部の曲率を有する領域の大きさに応じて開口数を調整することが可能であり、本実施形態においては最大0.65に設定可能である。
【0039】
他方、ビームスプリッタ32により分割された光のうち参照体側対物レンズ58に向かう光束は、シャッタ60により選択的に遮光可能とされている。シャッタ60は、入射する光束が反射されて被検体側対物レンズ14からの光束と干渉しない様に、吸収効率の高い材質で構成される。後述するように、干渉光学系により圧子の表面性状を測定する場合は、このシャッタ60は開いて使用される。すなわち、シャッタ60は曲率半径測定用の集光光学系と表面性状測定用の干渉光学系の測定を切換える役割の一部を果たしている。なお、簡略化のため図示していないが、被検体または参照体の位置調整及び測定を行う場合、調整/測定を行う側の他方はシャッタを閉じておくため、虹彩絞り56の前、すなわちビームスプリッタ32と虹彩絞り56との間の光路上にもシャッタを設けることが好適である。
【0040】
図3(a)はダイアモンド圧子16の側面図であり、図3(b)はダイアモンド圧子16の先端部17の一部(図3(a)における点線囲み部)を拡大した図である。ダイアモンド圧子16は周知のロックウエルダイアモンド圧子であり、その先端部17は略円錐形状をなし、且つその頂部17aが所定の曲率半径をもつ球面の一部となるように加工されている。円錐形状の頂角は略120°であり、頂部17aの曲率半径は略0.2mmである。
【0041】
図4(a)は参照体66の側面図であり、図4(b)は参照体66の正面図である。参照体66は、円盤状の基盤68における平坦面の略中央部に、参照球70を接着してなる。基盤68において参照球70を囲む領域に、参照平面72が形成されている。後述するように、参照球70はダイアモンド圧子16の頂部17aの曲率半径を測定する場合に使用され、また参照平面72は、ダイアモンド圧子16の先端部17の円錐形状の頂角を測定する場合に使用される。
【0042】
図5は本実施形態に係る制御系の概念図である。位置制御部82は、圧子位置調整機構86及び参照体位置調整機構88に接続されている。圧子位置調整機構86及び参照体位置調整機構88に配設されているロータリエンコーダ80,180およびリニアエンコーダ54,154の出力は、それぞれ位置制御部82に入力され、ダイアモンド圧子16と参照体66との現在位置および姿勢が常時検出可能となっている。また位置制御部82には、例えばキーボードおよびマウスからなる入力装置85が接続されている。
【0043】
解析部50は、フォトセンサ42およびCCDカメラ44に接続されており、これによりフォトセンサ42からの光強度信号、CCDカメラ44により検出された干渉縞の画像情報等が解析部50に入力される。また解析部50の出力側は位置制御部82及び表示装置84に接続されており、例えば光信号の強度変化や、干渉縞の画像等を出力可能となっている。
【0044】
なお、解析部50、位置制御部82、表示装置84および入力装置85は、これらの機能を実行するコンピュータハードウェアおよびプログラムとして周知のパーソナルコンピュータに実装されている。
【0045】
本実施形態では、ダイアモンド圧子16の頂部17aの表面性状測定と、円錐形状の頂角の測定とに対する測定切換に対応して、参照球70及び参照平面72の切換操作が行われるが、この切換操作は参照体位置調整機構88を介して位置制御部82で行われる。
【0046】
なお解析部50は、ダイアモンド圧子16の位置と光信号の強度の相関を示すグラフ(図8(a)参照)、CCDカメラ44からの干渉縞の位相情報データに基づいて解析した頂部17aの曲率半径、表面性状及び円錐形状の頂角等を、表示装置84に出力して表示させる。
【0047】
以上のとおり構成された実施形態の動作について説明する。本実施形態の表面性状測定器10によって、ダイアモンド圧子16の頂部17aの曲率半径を求める場合には、その測定に先立って、参照体66の位置調整を行う。すなわち、図6に示すように、いま、参照体66を照射光路と同方向に並進移動させると、フォトセンサ42で検出される光量が変化する。図6(a)において、縦軸は参照球70の頂点70b(すなわち、参照球70における光源への最近点)の位置を、また横軸はフォトセンサ42が検出する光の強度を表す。図6(b)は参照体側対物レンズ58により集光された光が、参照球70の頂点70bに結像する様子を示している。
【0048】
すなわち、照射光が参照体側対物レンズ58内部のレンズ58aにより、参照球70の頂点70bに結像する配置の場合(図6(a)中、Z1の位置に頂点70bがある場合)、頂点70bで反射された光は、参照球70が理想的な球面形状であると仮定すると全てレンズ58aに戻るため、フォトセンサ42により観測される光強度はその位置で極大となり、第一のピークP1として現れる(図6(a)参照)。
【0049】
次に、参照球70をレンズ58a側に向けて更に移動すると(図6(b)矢印参照)、光の強度は一旦減少するが極小点を経た後、再び上昇し始め、照射光が参照球70の曲率中心70cで結像する配置(図6(a)中、Z2の位置に頂点70bがある場合)において第二のピークP2を持つ(図6(a)参照)。これは、レンズ58aから入射してきた光線が入射方向と逆向きに反射(正反射)されるためである。ピークP1とP2間の距離を、リニアエンコーダ154(図1参照)を使用して精密測定することにより、参照球70の曲率半径の値を測定することができる。
【0050】
以上は、参照球70の頂点70bが照射光路の光軸A上に正確に配置されている場合である。しかしながら実際には、参照体66をセットした時点で参照球70の頂点70bが光軸A上に正確に配置されることはまれであり、通常は図7に示すとおり、X方向およびY方向のわずかの誤差を含むことになる。そこで本実施形態では、参照体66からの反射光に基づいて位置制御部82が参照体位置調整機構88を制御し、参照体66を照射光路に対して交差方向(図中XY方向)に移動させ、参照球70における合焦点を、参照球70における合焦基準点としての頂点70bと一致(ないし、所定の許容範囲内で一致)させる。
【0051】
このうち、参照体66のXY方向の軸ずれ調整に係る制御は、具体的には例えば、CCDカメラ44から得られる画像データにパターンマッチングなどの所定の画像処理を施して、参照球70の現在のXY方向の軸ずれ量を求め、これらが0になるようにXYステージ86aを駆動することで実現できる。また参照体66のZ方向の制御は、例えば参照球70上の照射面積ないし照射面の直径を画像処理により求め、この値が所定値以内になるように、並進機構86bを駆動することで実現できる。このようにして参照球70の頂点70bを、図6(b)のように照射光路の光軸に一致させたのち、上述の方法によって参照球70の曲率半径の値を測定することになる。
【0052】
以上のとおり参照体66の位置調整を完了させ、次にダイアモンド圧子16の測定を行う。図8に示すように、いま、ダイアモンド圧子16を照射光路と同方向に並進移動させると、フォトセンサ42で検出される光量が変化する。図8(a)において、縦軸はダイアモンド圧子16の頂点70bの位置を、また横軸はフォトセンサ42が検出する光の強度を表す。図8(b)は被検体側対物レンズ14により集光された光が、ダイアモンド圧子16の頂部70bに結像する様子を示している。
【0053】
すなわち、照射光が被検体側対物レンズ14内部のレンズ14aにより、ダイアモンド圧子16の頂点70bに結像する配置の場合(図8(a)中、Z3の位置に頂点70bがある場合)、頂点70bで反射された光は、頂部70bが理想的な球面形状であると仮定すると全てレンズ14aに戻るため、フォトセンサ42により観測される光強度はその位置で極大となり、第一のピークP1として現れる(図8(a)参照)。
【0054】
次に、ダイアモンド圧子16をレンズ14a側に向けて移動すると(図8(b)矢印参照)、光の強度は一旦減少するが極小点を経た後、再び上昇し始め、照射光が曲率中心で結像する配置(図8(a)中、Z4の位置に頂点70bがある場合)において第二のピークP2を持つ(図8(a)参照)。これは、レンズ14aから入射してきた光線が入射方向と逆向きに反射(正反射)されるためである。ピークP1とP2間の距離を、リニアエンコーダ54(図1参照)を使用して精密測定することにより、頂部70bの曲率半径の値を測定することができる。
【0055】
以上は、ダイアモンド圧子16の頂点70bが照射光路の光軸B上に正確に配置されている場合である。ダイアモンド圧子16をセットした時点で頂点70bが光軸B上に正確に配置されていない場合には、先に参照球70について行ったのと同様の方法により、測定前に予め、XY方向およびZ方向の軸ずれ調整を行う必要がある。
【0056】
次に、リンニク顕微干渉光学系により、参照球70を利用して、ダイアモンド圧子16の頂部70bの表面性状を測定する場合の動作につき、図9に従って説明する。
【0057】
図9において鎖線で囲まれた各部材は、曲率半径測定に使用された光学機器のうち、表面性状測定には使用されないものであるため、ここでは邪魔にならない適宜の位置に退避させる。なお、このように測定方法に応じて光学機器の配置を変更する操作や、前述のシャッタ60の開閉などの操作は、手作業で行ってもよいし、これらを自動的に行うための操作機構を新たに設けてもよい。なお、干渉光学系による測定の際には、シャッタ60は常に開いた状態で使用される。
【0058】
この状態において、光ファイバ18による光がピンホール12に集束されるまでの過程は、図2についての説明箇所と同様である。ピンホール12に集光された光はレンズ30により平行光束となり、その後、ビームスプリッタ32により二つの光束に分割される。一方は被検体側対物レンズ14に入射し、ダイアモンド圧子16の先端部17に集光される。他方は参照体側対物レンズ58に入射し参照球70の表面上に集光される。
【0059】
ダイアモンド圧子16の先端部17への照射光は、被検体側対物レンズ14側へ反射され、参照球70への照射光は参照体側対物レンズ58側へ反射される。ビームスプリッタ32を通過した被検体側対物レンズ14からの光束と、ビームスプリッタ32により反射された参照体側対物レンズ58からの光束とは、いずれもレンズ62,64を通過してCCDカメラ44に入射する。そしてCCDカメラ44では、ダイアモンド圧子16の頂部17aの曲率半径と参照球70の曲率半径とがわずかに異なれば、曲率半径の違いに対応した干渉縞が観測される。
【0060】
なお、干渉縞を利用して表面性状を測定する方法としては、フリンジスキャン法(縞走査干渉法)が知られており、この方法は、PZT74により参照体66を照射光軸方向に微少振動させ、それにともなう干渉縞の変化を利用し、頂部17aの表面性状を計測するものである。
【0061】
CCDカメラ44で検出された表面性状のデータを解析部50(図5参照)で解析することにより、例えば頂部17aの表面のうねり等の表面情報、頂部17aの各点の曲率等を知ることができる。また、解析部50は各点の曲率に基づいて平均曲率を算出してもよい。
【0062】
次に、リンニク顕微干渉光学系により、参照平面72を利用して、先端部17の円錐形状の頂角を測定する場合の動作につき、図10に従って説明する。
【0063】
図10において鎖線で囲まれた各部材は、前述の参照球70を用いた表面性状測定で使用されるが円錐形状の頂角の測定では使用されないものであるため、ここでは適宜の邪魔にならない位置に退避させる。
【0064】
この状態において、光ファイバ18による光がピンホール12に集束されるまでの過程は、図2についての説明箇所と同様である。ピンホール12に集光された光はレンズ30により平行光束となり、レンズ31により光束を適宜集光した後、ビームスプリッタ32により二つの光束に分割される。一方は被検体側対物レンズ14に入射しダイアモンド圧子16の先端部17の円錐形状の母線部17d(図3(b)参照)に集光される。他方は参照体側対物レンズ58に入射し参照平面72に集光される。
【0065】
参照体位置調整機構88によって、照射対象として参照球70または参照平面72を選択することができ、参照体選択は参照体66を照射光軸と交差する方向に移動する手段、すなわちXYステージ88aにより行う。ここでは頂角の測定のために、参照平面72が選択される。
【0066】
ダイアモンド圧子16の母線部17dへの照射光は被検体側対物レンズ14側へ反射され、参照平面72への照射光は参照体側対物レンズ58側へ反射される。
【0067】
ビームスプリッタ32を通過した被検体側対物レンズ14からの光束と、ビームスプリッタ32により反射された参照体側対物レンズ58からの光束はレンズ38,40を通過した後、それらによる干渉縞がCCDカメラ44により観測される。
【0068】
CCDカメラ44において観測される干渉縞は図11(計量研究所報告Vol.18,No.4 第89頁)に示す様な細長い形状である。干渉縞の延びている方向に等間隔目盛が付されており、干渉縞の長さが測定できる。
【0069】
ダイアモンド圧子16を回転させ、前述の干渉縞が最も長くなる位置、すなわち照射光軸と母線部17dのなす角度が略垂直になったときの配置をまず基点とする。次に、先ほどの回転方向とは逆にダイアモンド圧子16を回転させ、基点で観測される干渉縞と同様に、干渉縞が最も長くなるような配置を終点として、基点から終点までの回転角をロータリエンコーダ80を使って読み取る。その回転角に基づいて円錐形状の頂角が求められる。終点での配置は照射光軸と母線部17e(図3(b)参照)のなす角度が略垂直になった場合に対応する。
【0070】
以上のとおり、本実施形態では、参照体66を干渉光学系から参照体66への照射光路に対し交差方向に移動させる参照体位置調整機構88を、参照体制御部としての位置制御部82が参照体66からの反射光に基づいて制御するので、参照体66の軸ずれを精密に調整でき、測定精度の向上と作業の能率化を実現できる。
【0071】
また本実施形態では、参照体66における合焦点が参照体66における合焦基準点から所定範囲内となるように、位置制御部82が参照体位置調整機構88を制御するので、参照体66の軸ずれ補正を簡易な構成により実現できる。
【0072】
また本実施形態では、参照体66における光源への最近点を合焦基準点としたので、光源に向けて凸な形状の参照体において軸ずれ調整を好適に実行できる。
【0073】
また本実施形態では、参照体66に非平行光を照射する場合に、並進機構88bによって参照体66を照射光路と同方向に並進移動させることにより、参照体66の表面における照度が変化するため、これを参照体66の軸ずれ補正に利用することができる。
【0074】
また本実施形態では、参照体66を並進移動させた際の反射光の変化に基づいて、解析部50が参照球70の曲率半径を測定するので、干渉縞を利用した参照体66の表面性状測定に加えて、参照体66(参照球70)の曲率半径測定をも実現できる。
【0075】
また本実施形態では、被検体としてのダイアモンド圧子16を並進移動させた際の反射光の変化に基づいて、解析部50がダイアモンド圧子16の先端の曲率半径を測定するので、被検体の曲率半径測定をも実現できる。
【0076】
また本実施形態では、ダイアモンド圧子16に照射される光の光軸が、曲率半径を測定する集光光学系のものと頂部17aの表面性状及び円錐形状の頂角を測定する干渉光学系のものと一致しているので、測定を連続して行う場合、一つの測定から次の測定に移行する際のセッティングに要する時間を大幅に短縮でき、また被検体のセッティングに係る誤差、光学系の部品点数等を軽減できる。
【0077】
なお、上記実施形態では、参照体66やダイアモンド圧子16を照射する照射光路の光軸と、反射光の光軸とを一致させることとしたが、このような構成に代えて、照射光路の光軸と反射光の光軸とが交差する構成としてもよく、かかる構成によっても本発明に所期の効果を実現できる。
【0078】
また、上記実施形態では、参照体66における合焦基準点を頂点70bとしたが、本発明における合焦基準点としては参照体66における任意の点を選択できる。また、上記実施形態では参照体66における参照面を球面および平面としたが、参照面の形状は、球面でなくても曲率を有する表面(すなわち、参照体の表面の一部であって近似的に球面の一部とみなせるもの)とするなど、任意の形状を選択できる。また上記実施形態では、表面性状としてダイアモンド圧子16の頂角を求めることとしたが、本発明にいう表面性状とは、光学的に検出しうる被検体の表面のあらゆる情報を含み、例えば被検体の表面の粗さやうねりを表面性状として検出してもよい。
【0079】
また、上記実施形態では、光源を単一のレーザヘッド2としたが、本発明では複数の光源を備えてこれらを測定の目的に応じて選択的に使用する構成としてもよい。例えば、被検体の表面性状のうち、粗さなどスケールが非常に小さい構造を測定する場合、目的に応じて波長及びコヒーレンスの程度が異なった光源を集光/干渉光学系それぞれ独立に用意することができる。
【図面の簡単な説明】
【図1】本発明の実施形態の概略構成を示す平面図である。
【図2】光学系の構成であって、ダイアモンド圧子の先端部の曲率半怪を測定する場合の使用状態を示す説明図である。
【図3】ダイアモンド圧子を示し、(a)はその側面図、(b)はその要部拡大図である。
【図4】参照体を示し、(a)はその平面図、(b)はその正面図である。
【図5】制御系の概略構成を示すブロック図である。
【図6】(a)は検出される光の強度を示すグラフ、(b)はこれに対応する参照球の位置を示す平面図である。
【図7】参照球の軸ずれが生じている場合の照射光路との関係を示す平面図である。
【図8】(a)は検出される光の強度を示すグラフ、(b)はこれに対応するダイアモンド圧子の位置を示す平面図である。
【図9】光学系の構成であって、ダイアモンド圧子の先端部の表面性状を測定する場合の使用状態を示す説明図である。
【図10】光学系の構成であって、ダイアモンド圧子の円錐形状の頂角を測定する場合の使用状態を示す説明図である。
【図11】参照平面を使用した場合の干渉縞を示す図である。
【符号の説明】
1 光学系、14 被検体側対物レンズ、16 ダイアモンド圧子、17 先端部、18 光ファイバ、36,38,40 レンズ、42 フォトセンサ、44 CCDカメラ、52 インチワームモータ、54 リニアエンコーダ、58参照体側対物レンズ、66 参照体、70 参照球、72 参照平面、74 PZT、80 ロータリエンコーダ、86 圧子位置調整機構、88 参照体位置調整機構、86a,88a XYステージ、86b,88b 並進機構、86c,88c 回転機構、86d,88d 傾斜機構。

Claims (5)

  1. 光源からの光により照射された被検体と参照体からの各々の反射光により干渉縞を形成する干渉光学系と、
    前記干渉縞に基づいて前記被検体の表面性状測定を行う表面性状測定部と、
    前記参照体からの反射光を集光する集光光学系と、
    前記参照体を並進移動させて前記集光光学系により集光された光の変化に基づいて前記参照体の曲率半径測定を行う曲率半径測定部と、
    を備えた表面性状測定器において、
    前記参照体を前記干渉光学系から参照体への照射光路に対し交差方向に移動させる参照体位置調整機構と、
    前記参照体位置調整機構を前記参照体からの反射光に基づいて制御する参照体制御部と、
    を更に備えた表面性状測定器。
  2. 請求項1に記載の表面性状測定器において、
    前記参照体における合焦点が前記参照体における合焦基準点から所定範囲内となるように、前記参照体制御部が前記参照体位置調整機構を制御することを特徴とする表面性状測定器。
  3. 請求項2に記載の表面性状測定器において、
    前記合焦基準点が、前記参照体における光源への最近点であることを特徴とする表面性状測定器。
  4. 請求項1ないし3のいずれか1に記載の表面性状測定器において、
    前記参照体を前記照射光路と同方向に並進移動させる並進機構を更に備え、
    前記並進機構は、ステッピングモータを含む粗動機構と、インチワームモータを含む微動機構からなることを特徴とする表面性状測定器。
  5. 請求項1ないし4のいずれか1に記載の表面性状測定器において、
    前記被検体からの反射光を集光する集光光学系と、
    前記被検体を並進移動させて前記集光光学系により集光された光の変化に基づいて前記被検体の曲率半径測定を行う曲率半径測定部と、
    を更に備えた表面性状測定器。
JP2002171392A 2002-06-12 2002-06-12 表面性状測定器 Pending JP2004020212A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002171392A JP2004020212A (ja) 2002-06-12 2002-06-12 表面性状測定器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002171392A JP2004020212A (ja) 2002-06-12 2002-06-12 表面性状測定器

Publications (1)

Publication Number Publication Date
JP2004020212A true JP2004020212A (ja) 2004-01-22

Family

ID=31171269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002171392A Pending JP2004020212A (ja) 2002-06-12 2002-06-12 表面性状測定器

Country Status (1)

Country Link
JP (1) JP2004020212A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198403A (ja) * 2008-02-22 2009-09-03 Fujinon Corp スポット特性測定における被検光学系位置調整方法および装置
CN103852451A (zh) * 2014-03-26 2014-06-11 武汉迪凯光电科技有限公司 一种镜面水晶钻石原料正反面测量仪及其应用
JP7405586B2 (ja) 2019-12-05 2023-12-26 ファナック株式会社 テーパ面の形状及び面性状検査装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198403A (ja) * 2008-02-22 2009-09-03 Fujinon Corp スポット特性測定における被検光学系位置調整方法および装置
CN103852451A (zh) * 2014-03-26 2014-06-11 武汉迪凯光电科技有限公司 一种镜面水晶钻石原料正反面测量仪及其应用
CN103852451B (zh) * 2014-03-26 2017-01-11 武汉迪凯光电科技有限公司 一种镜面水晶钻石原料正反面测量仪及其应用
JP7405586B2 (ja) 2019-12-05 2023-12-26 ファナック株式会社 テーパ面の形状及び面性状検査装置

Similar Documents

Publication Publication Date Title
JP6033798B2 (ja) 蛍光顕微鏡検査法における照明位相制御のためのシステムおよび方法
US4758089A (en) Holographic interferometer
WO2012083764A1 (zh) 差动共焦干涉元件多参数测量方法与装置
JP2003500660A (ja) レーザスキャナーの走査対象である平面の位置把握方法およびそのためのシステム
JP2001108417A (ja) 光学式形状測定装置
JP4751156B2 (ja) オートコリメータ及びそれを用いた角度測定装置
JPH10311779A (ja) レンズ特性測定装置
JPH0593888A (ja) オフ・セツト鏡の光軸を決めるための方法および装置
CN105136024B (zh) 光路切换装置及集成多个测头的微纳米测量系统
JP3598983B2 (ja) 超精密形状測定方法及びその装置
KR101826127B1 (ko) 광학적 웨이퍼 검사 장치
JPS63131116A (ja) 共焦点顕微鏡
KR20140078621A (ko) 기판의 형상 변화 측정 방법
CN110044415B (zh) 错位差动共焦干涉元件多参数测量方法与装置
JP2004020212A (ja) 表面性状測定器
JP3605010B2 (ja) 表面性状測定器
CN110307805A (zh) 一种用于表面三维形貌测量的白光干涉系统
TWI431240B (zh) 三維量測系統
JP4138506B2 (ja) 表面性状測定器及び表面性状測定器用治具並びに調整方法
JP2012002548A (ja) 光波干渉測定装置
JP2004102228A (ja) 合焦装置及び変位センサ並びに共焦点顕微鏡
CN113050379A (zh) 一种焦点探测信号调制装置及方法
JP2791121B2 (ja) 微細表面形状計測装置
JPH06249632A (ja) 3次元形状計測装置
JP2003148939A (ja) 顕微鏡を備えたオートコリメータ、これを用いた形状測定装置