JP2004018908A - ワークの表面処理方法と、その装置 - Google Patents

ワークの表面処理方法と、その装置 Download PDF

Info

Publication number
JP2004018908A
JP2004018908A JP2002173337A JP2002173337A JP2004018908A JP 2004018908 A JP2004018908 A JP 2004018908A JP 2002173337 A JP2002173337 A JP 2002173337A JP 2002173337 A JP2002173337 A JP 2002173337A JP 2004018908 A JP2004018908 A JP 2004018908A
Authority
JP
Japan
Prior art keywords
vacuum chamber
work
loop antenna
plasma
frequency power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002173337A
Other languages
English (en)
Other versions
JP4151000B2 (ja
Inventor
Yuji Hasegawa
長谷川 祐史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ONWARD GIKEN KK
Onward Giken Co Ltd
Original Assignee
ONWARD GIKEN KK
Onward Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ONWARD GIKEN KK, Onward Giken Co Ltd filed Critical ONWARD GIKEN KK
Priority to JP2002173337A priority Critical patent/JP4151000B2/ja
Publication of JP2004018908A publication Critical patent/JP2004018908A/ja
Application granted granted Critical
Publication of JP4151000B2 publication Critical patent/JP4151000B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

【課題】長尺のワークWの表面を均一に改質処理する。
【解決手段】縦長の真空槽11と、真空槽11に原料ガスを供給するガス供給手段20と、真空槽11内に上下複数段に配列するループアンテナ31、31…と、電力供給手段35と、ワークWを吊下するハンガ41、41…とを設ける。
電力供給手段35は、ループアンテナ31、31…に高周波電力を供給し、真空槽11内の原料ガスをプラズマ化して、長尺のワークWの全長に亘り、たとえば均一な薄膜を形成することができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、長尺のワークの表面を均一に改質処理することができるワークの表面処理方法と、その装置に関する。
【0002】
【従来の技術】
ワークの表面にダイヤモンドライクカーボン膜やチタン系化合物膜などの薄膜を形成し、材料の硬度、表面平滑性、耐摩耗性、耐腐食性などの機能性を向上させる改質処理技術が知られている。
【0003】
ダイヤモンドライクカーボン膜などの薄膜は、原料ガスをプラズマ化し、プラズマ中のイオンやラジカルなどをワークの表面に照射して成膜することができる。なお、原料ガスをプラズマ化するために、誘導結合プラズマ装置を使用することがある。誘導結合プラズマ装置は、真空槽を内圧1Pa程度にし、真空槽内に設置するアンテナを介して原料ガスに高周波電力を投入し、原料ガスをプラズマ化してプラズマ中のイオンやラジカルなどをワークに照射し、ワークの表面に薄膜を形成することができる。なお、真空槽内において、アンテナは、適当な台上のワークの上方に設置し、原料ガスは、ワークの近傍に導入してワークの周囲に拡散させ、アンテナからの高周波電力によりプラズマ化する。
【0004】
【発明が解決しようとする課題】
かかる従来技術によるときは、アンテナからの高周波電力は、ワークの近傍の原料ガスをプラズマ化するだけであるから、小形のワークの場合はよいとしても、長尺のワークに適用することができず、長尺のワークの全長に亘り、その表面を均一に改質処理することが極めて難しいという問題があった。
【0005】
そこで、この発明の目的は、かかる従来技術の問題に鑑み、縦長の真空槽内に上下複数段に配列するループアンテナに高周波電力を供給することによって、長尺のワークの表面を均一に改質処理することができるワークの表面処理方法と、その装置を提供することにある。
【0006】
【課題を解決するための手段】
かかる目的を達成するためのこの出願に係る第1発明の構成は、真空槽に収容する長尺のワークを表面処理するに際し、縦長の真空槽の上部から原料ガスを供給し、真空槽内に上下複数段に配列するループアンテナに高周波電力を供給して原料ガスをプラズマ化し、真空槽の上部から吊下してループアンテナの周囲に配置するワークを改質処理することをその要旨とする。
【0007】
なお、ループアンテナの周囲に複数のワークを配置してもよく、ワークを回転させてもよい。
【0008】
第2発明の構成は、縦長の真空槽と、真空槽に原料ガスを供給するガス供給手段と、真空槽内に上下複数段に配列するループアンテナと、ループアンテナに高周波電力を供給する電力供給手段と、真空槽の上部から長尺のワークを吊下してループアンテナの周囲に配置するハンガとを備えてなり、ループアンテナからの高周波電力により原料ガスをプラズマ化してワークを改質処理することをその要旨とする。
【0009】
なお、真空槽内には、ループアンテナとワークとの間に介装するグリッドを設けることができる。
【0010】
また、電力供給手段は、高周波電力を間欠的に供給することができ、電力供給手段、ループアンテナの間には、ループアンテナの両端の対地電圧を均等に揃える整合回路を介装することができる。
【0011】
【作用】
かかる第1発明の構成によるときは、ワークは、縦長の真空槽の上部から吊下され、ループアンテナの周囲に配置されている。一方、真空槽の上部から供給される原料ガスは、上下複数段に配列するループアンテナからの高周波電力によりプラズマ化され、真空槽の高さ方向、すなわちワークの長手方向に均一なプラズマ密度のバルクプラズマ容積を形成し、プラズマ中のイオンやラジカルなどをワークの表面に照射してワークを均一に改質処理することができる。なお、真空槽内の各ループアンテナは、真空槽と同軸状に配置し、たとえば真空槽の内径800mmに対して直径200〜400mm程度の1ターンのループアンテナとすることにより、高周波抵抗を抑えて原料ガスに対する高周波電力の伝達効率を向上させることができる。なお、各段のループアンテナの間隔は、ループアンテナの直径の約1.2〜1.5倍以下に設定することにより、ワークの長手方向のプラズマ密度を実質的に均一にすることができる。高周波電力の周波数は、放電開始電圧が低下し始めるMHz オーダとし、13.56MHz または27.12MHz が好適である。ただし、30MHz を超えても、プラズマ密度の向上に貢献することがない。
【0012】
ループアンテナには、たとえば繰返し周波数0.1〜10kHz ごとに高周波電力を間欠的に供給するのがよい。高周波電力を間欠的に供給すると、プラズマ中の電子温度を低くしてプラズマポテンシャルを抑えながらプラズマ密度を高く維持することができ、ワークのエッジ部や尖鋭端部などに対するイオンの集中やサイドエッチングなどを防止して、膜の付き回り性を向上させるとともにワークの局部的な異常加熱を防止し、膜の密着力の低下や膜質の劣化などを防止することができる。プラズマ中の電子温度は、高周波電力が喪失すると急速に低下する一方、イオンやラジカルは、励起分子の寿命時間相当だけ永く存続し、時間平均的なプラズマ密度を高くしてプラズマポテンシャルを低く抑えることができるからである。なお、プラズマポテンシャルは、ループアンテナの高周波抵抗を小さくするとともに、ループアンテナの両端の対地電圧を均等にすることにより、一層小さくすることができる。
【0013】
原料ガスは、真空槽の上部から導入し、下部から排出することにより、重力によって真空槽内に一様に拡散し、真空槽内のプラズマ密度を均一にすることができる。また、ワークは、真空槽内に吊下することにより、重力による撓みや変形などを生じるおそれがない。
【0014】
ループアンテナの周囲に複数のワークを配置すれば、複数のワークを一挙に改質処理することができる。ただし、このときのワークは、ループアンテナと同軸の同心円状に配列するものとする。
【0015】
ワークを回転させれば、ワークの全表面を均等にループアンテナに対向させることができ、ワークの表面を均一に改質することができる。
【0016】
第2発明の構成によるときは、ガス供給手段は、原料ガスを真空槽に供給し、電力供給手段は、ループアンテナに高周波電力を供給して原料ガスを一様なプラズマ密度にプラズマ化することができ、ハンガを介して真空槽内に吊下するワークの全表面を均一に改質処理することができる。
【0017】
電力供給手段は、高周波電力を間欠的にループアンテナに供給することにより、プラズマ密度を高くしてプラズマポテンシャルを低くすることができる。
【0018】
真空槽内に設けるグリッドは、ループアンテナとワークとの間に介装され、ワークに到達するプラズマ中の電子温度の高い電子をトラップし、ワークの近傍における実質的なプラズマポテンシャルを低くするとともに、電磁シールドとしてアンテナからの電磁界がワークに及ぶことを防止し、付き回り性の向上を図ることができる。なお、グリッドは、真空槽とともに接地電位に保つものとし、導電性のメッシュ材やスリットを有する金属板などを使用する他、多数の金属棒を一定間隔ごとに柵状に立て並べるなどの任意の形態に形成することができる。ただし、グリッドは、ループアンテナと同軸の同心円状に形成して真空槽内に組み込むものとする。
【0019】
【発明の実施の形態】
以下、図面を以って発明の実施の形態を説明する。
【0020】
ワークの表面処理装置は、縦長の真空槽11と、真空槽11に原料ガスを供給するガス供給手段20と、真空槽11内に上下複数段に配列するループアンテナ31、31…と、整合回路36を介してループアンテナ31、31…に高周波電力を供給する電力供給手段35と、真空槽11の上部から長尺のワークW、W…を吊下するハンガ41、41…とを備えてなる(図1、図2)。
【0021】
真空槽11は、縦長の密閉円筒状に形成されている。真空槽11の下部には、たとえばコンダクタンスバルブ形の絞り弁12、開閉弁13を介して真空ポンプ14が連結されている。そこで、真空槽11は、絞り弁12、開閉弁13を開いて真空ポンプ14を作動させると、内部を十分な真空度に排気することができる。すなわち、絞り弁12、開閉弁13、真空ポンプ14は、真空槽11の排気系を形成している。
【0022】
ループアンテナ31、31…は、それぞれ1ターンのコイル状に形成されている。ループアンテナ31、31…は、たとえば真空槽11の内径d=800mmに対し、それぞれの直径D=250mm、上下の間隔L=300mmとして、真空槽11の軸方向に等間隔に配列されている。なお、真空槽11内には、ループアンテナ31、31…の外周を囲むようにして導電性のグリッド16が組み込まれており、グリッド16は、真空槽11とともに接地電位に保たれている。
【0023】
真空槽11の上部には、ハンガ41、41…が搭載されている。ただし、図1において、ハンガ41、41…は、2個のみが図示されている。各ハンガ41は、絶縁性のシール材42を介して真空槽11の上面を回転自在に、しかも気密に貫通し、真空槽11の外部においてモータMに連結されている。また、各ハンガ41には、たとえば図示しないスリップリングを介して電源装置50の出力が分岐接続されている。そこで、各ハンガ41は、真空槽11の上部から長尺のワークWを真空槽11内に吊下し、グリッド16の外側においてループアンテナ31、31…の周囲にワークWを配置するとともに、モータMを介してワークWを回転させることができる(図2の各矢印方向)。また、各ハンガ41に吊下するワークWには、電源装置50からの正または負のバイアス電圧Vを印加することができる。なお、各ハンガ41は、図2に拘らず、正逆に各1回転以上ずつ交互に回転させてもよいものとする。
【0024】
ガス供給手段20は、原料ガス用のボンベ21にマスフローコントローラ22が接続されており、マスフローコントローラ22の出口側は、開閉弁23、供給管路24を介して真空槽11の上部に接続されている。そこで、ガス供給手段20は、開閉弁23を開いてマスフローコントローラ22を作動させることにより、真空槽11の上部にボンベ21からの原料ガスを供給することができる。すなわち、真空槽11は、ガス供給手段20からの原料ガスを上部から導入し、絞り弁12、開閉弁13、真空ポンプ14を介して下部から排出することができる。
【0025】
電力供給手段35は、高周波発生器35aにパルス信号発生器35bを付設して構成されている。高周波発生器35aの出力は、整合回路36を介し、真空槽11内のループアンテナ31、31…に並列接続されている。なお、高周波発生器35aの出力は、たとえば同軸ケーブルを介して整合回路36に接続され、整合回路36は、真空槽11と一体に接地電位に接続するシールドボックス36aに収納されている。
【0026】
整合回路36は、コイルL1 、コンデンサC1 、C2 による逆L形のインピーダンスマッチング回路に対し、ループアンテナ31、31…の戻り側のコンデンサC3 を付設して構成されている。すなわち、整合回路36は、コイルL1 、コンデンサC1 、C2 を介して高周波発生器35a、ループアンテナ31、31…のインピーダンス整合を図るとともに、コンデンサC1 、C3 を介し、ループアンテナ31、31…の両端の対地電圧を均等に揃えることができる。一方、電力供給手段35は、パルス信号発生器35bにより高周波発生器35aを間欠的に作動させ、ループアンテナ31、31…に高周波電力を間欠的に供給して、真空槽11内の原料ガスをプラズマ化する。
【0027】
真空槽11内の原料ガスは、ループアンテナ31、31…により間隔Lごとに高周波電力が投入され、真空槽11の高さ方向Hに対して一様なプラズマ密度nを実現することができる(図3の曲線2)。ただし、図3において、曲線1、1は、間隔Lだけ離れた上下のループアンテナ31、31によるプラズマ密度nを示しており、曲線2は、曲線1、1の和相当のプラズマ密度nを示している。なお、ループアンテナ31、31…は、それぞれ1ターンのループアンテナにして高周波抵抗を小さくし、整合回路36のコンデンサC1 、C3 を介してそれぞれの両端の対地電圧を小さくして均等に揃えることにより、真空槽11内のプラズマのプラズマポテンシャルを低く抑えることができる。なお、真空槽11内のグリッド16は、プラズマ中の電子を捕獲し、ワークW、W…の近傍のプラズマポテンシャルを一層低くすることができる。
【0028】
電力供給手段35は、たとえば間欠周期T(繰返し周波数1/T≒0.1〜10kHz )ごとに、作動期間Ta =0.25T、停止期間Tb =0.75Tにより高周波電力を間欠的にループアンテナ31、31…に供給する(図4)。作動期間Ta は、プラズマポテンシャルが過大にならないように設定し、停止期間Tb は、プラズマ中のイオンの消滅時間より短く、プラズマ中の電子の消滅時間より長く設定する。
【0029】
かかるワークの表面処理装置は、たとえば次のようにして作動する。
【0030】
真空槽11内のハンガ41、41…にそれぞれ長さ1mの軟鋼材のワークWを吊下し、ガス供給手段20からのアルゴン(Ar )、テトラメチルシラン(Si (CH ) 、TMS)、アセチレン(C H )を切り替えて、原料ガスとして真空槽11に導入する(図5)。ただし、アルゴンを導入する期間、テトラメチルシランだけを導入する期間、テトラメチルシランをアセチレンに切り替える期間、アセチレンだけを導入する期間をそれぞれ第1工程S1 、第2工程S2 、第3工程S3 、第4工程S4 とする。なお、第1工程S1 〜第4工程S4 において、真空槽11の到達真空度1.0×10−3Pa、電力供給手段35からの高周波電力100W、間欠周期T=0.1ms(繰返し周波数1/T=10kHz )とし、電源装置50からのバイアス電圧V=−2.5kVとする。また、各ワークWは、対応するハンガ41を介し、連続的に回転させておく。
【0031】
第1工程S1 において、原料ガスとしてアルゴン40sccmを真空槽11内に導入し、真空槽11の内圧0.3Paに維持すると、真空槽11内においてアルゴンがプラズマ化され、アルゴンイオンボンバードにより、ワークWの表面の腐食層などを除去するとともに、ワークWの加熱脱ガスを行なうことができる。
【0032】
第2工程S2 において、真空槽11内に導入する原料ガスをテトラメチルシラン30sccmに変更し、真空槽11の内圧0.3Paにすると、ワークWの表面にSi Cの中間層F1 を形成することができる(図6)。
【0033】
第3工程S3 において、テトラメチルシランをアセチレンに段階的に切り替える。ただし、テトラメチルシランは、たとえば1分ごとに5sccmずつ減少させ、アセチレンは、1分ごとに15sccmずつ増加させ、最終的にテトラメチルシラン0sccm、アセチレン90sccmとする。なお、テトラメチルシラン、アセチレンは、それぞれ連続的に減少させ、増加させてもよい。このとき、ワークWの中間層F1 上には、シリコン組成比Si /Cが漸減する転位層F2 を形成することができる。
【0034】
第4工程S4 において、真空槽11にアセチレン150sccmを導入し、真空槽11の内圧0.4Paにすると、ワークWの転位層F2 上に非晶質のダイヤモンドライクカーボン膜F3 を形成することができる。
【0035】
このように、第1工程S1 〜第4工程S4 を経ると、ワークWの表面に中間層F1 、転位層F2 、ダイヤモンドライクカーボン膜F3 からなる薄膜Fを形成することができる。なお、薄膜Fの品位の一例を図7にまとめて示す。すなわち、ワークWの長手方向において、薄膜Fの膜厚の差異は15%以下であり(図7(A))、薄膜Fの硬度の偏差は殆どなく(同図(B))、ワークWの全長に亘って均一な薄膜Fを形成することができた。ただし、同図において、第i軸(i=1、2…)とは、図2の各ハンガ41を指している。
【0036】
なお、第1工程S1 において、バイアス電圧V>0とすれば、アルゴンイオンボンバードに代えて、電子照射によるワークWのクリーニング、脱ガス処理が可能である。ただし、このときのバイアス電圧Vは、直流に代えて、パルス状とすることにより、電子照射効果を向上させることができる。
【0037】
【他の実施の形態】
真空槽11は、間隔L≦1.2〜1.5Dごとに多数のループアンテナ31、31…を上下多段に収納することにより、全長を任意に大きくして一層長尺のワークWに対応させることができる(図8)。なお、このときの真空槽11には、上部の原料ガスの供給管路24、絞り弁12、開閉弁13、真空ポンプ14からなる下部の排気系に加えて、これらの組を中間の高さ位置にも付加することによって、真空槽11の高さ方向、すなわちワークWの長手方向のプラズマ密度の均一性を向上させることができる。また、ループアンテナ31、31…は、並列接続する一群の最大距離Lm =(a−1)L≦λ/10となるようにグループ分けし、個別の整合回路36に対応させることが好ましい。最大距離Lm >λ/10になると、共通の整合回路36に並列接続する各ループアンテナ31の励振位相を実質的に同一に揃えることが難しくなるからである。ただし、上式において、aは、並列接続する一群のループアンテナ31、31…の個数、λは、電力供給手段35からの高周波電力の波長であり、図8は、a=6として図示されている。
【0038】
なお、図8において、電力供給手段35は、整合回路36ごとに高周波発生器35aを設けている。高周波発生器35a、35aは、位相差検出回路35cを介して整合回路36、36の出力側の位相差δを検出することにより、位相差δ=0となるようにそれぞれが発生する高周波電力の位相合せ制御が行なわれている。
【0039】
以上の説明において、原料ガスは、ワークWに加える改質処理内容によって、任意に選定することができる。すなわち、この発明は、長尺のワークWに対する任意の膜厚、膜質のコーティング処理の他、窒化、浸炭等を含む任意の改質処理に適用することができ、ワークWの表面形状に拘らず、ワークWの全長に亘って均一な改質処理を実現することができる。
【0040】
なお、真空槽11内のグリッド16は、電力供給手段35からの高周波電力をループアンテナ31、31…に間欠的に供給することにより、必要十分に大きなプラズマ密度、小さいプラズマポテンシャルが得られるときは、これを省略することができる。図8の中間の高さ位置の原料ガスの供給管路24、排気系の組についても、全く同様であり、その一部または全部を省略することが可能である。
【0041】
また、この発明は、処理中のワークWの温度上昇を極少に抑えることができるため、軟鋼材やステンレス材の改質処理にも極めて好適である。
【0042】
【発明の効果】
以上説明したように、この出願に係る第1発明によれば、縦長の真空槽内に上下複数段に配列するループアンテナに高周波電力を供給し、真空槽の上部から供給する原料ガスをプラズマ化し、真空槽の上部から吊下するワークを改質処理することによって、真空槽内の高さ方向のプラズマ密度を均一にすることができるから、長尺のワークの全長に亘り、その表面を均一に改質処理することができるという優れた効果がある。
【0043】
第2発明によれば、縦長の真空槽と、ガス供給手段と、複数のループアンテナと、電力供給手段と、ワークを吊下するハンガとを設けることによって、第1発明を容易に実施することができる。
【図面の簡単な説明】
【図1】全体構成模式系統図
【図2】図1の要部横断面図
【図3】動作説明線図(1)
【図4】動作説明線図(2)
【図5】動作説明線図(3)
【図6】薄膜の構成断面図
【図7】薄膜の品位データ図表
【図8】他の実施の形態を示す図1相当図
【符号の説明】
W…ワーク
11…真空槽
16…グリッド
20…ガス供給手段
31…ループアンテナ
35…電力供給手段
36…整合回路
41…ハンガ

Claims (7)

  1. 真空槽に収容する長尺のワークを表面処理するに際し、縦長の真空槽の上部から原料ガスを供給し、真空槽内に上下複数段に配列するループアンテナに高周波電力を供給して原料ガスをプラズマ化し、真空槽の上部から吊下してループアンテナの周囲に配置するワークを改質処理することを特徴とするワークの表面処理方法。
  2. ループアンテナの周囲に複数のワークを配置することを特徴とする請求項1記載のワークの表面処理方法。
  3. ワークを回転させることを特徴とする請求項1または請求項2記載のワークの表面処理方法。
  4. 縦長の真空槽と、該真空槽に原料ガスを供給するガス供給手段と、前記真空槽内に上下複数段に配列するループアンテナと、該ループアンテナに高周波電力を供給する電力供給手段と、前記真空槽の上部から長尺のワークを吊下して前記ループアンテナの周囲に配置するハンガとを備えてなり、前記ループアンテナからの高周波電力により原料ガスをプラズマ化してワークを改質処理することを特徴とするワークの表面処理装置。
  5. 前記真空槽内には、前記ループアンテナとワークとの間に介装するグリッドを設けることを特徴とする請求項4記載のワークの表面処理装置。
  6. 前記電力供給手段は、高周波電力を間欠的に供給することを特徴とする請求項4または請求項5記載のワークの表面処理装置。
  7. 前記電力供給手段、ループアンテナの間には、該ループアンテナの両端の対地電圧を均等に揃える整合回路を介装することを特徴とする請求項4ないし請求項6のいずれか記載のワークの表面処理装置。
JP2002173337A 2002-06-13 2002-06-13 ワークの表面処理方法と、その装置 Expired - Fee Related JP4151000B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002173337A JP4151000B2 (ja) 2002-06-13 2002-06-13 ワークの表面処理方法と、その装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002173337A JP4151000B2 (ja) 2002-06-13 2002-06-13 ワークの表面処理方法と、その装置

Publications (2)

Publication Number Publication Date
JP2004018908A true JP2004018908A (ja) 2004-01-22
JP4151000B2 JP4151000B2 (ja) 2008-09-17

Family

ID=31172640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002173337A Expired - Fee Related JP4151000B2 (ja) 2002-06-13 2002-06-13 ワークの表面処理方法と、その装置

Country Status (1)

Country Link
JP (1) JP4151000B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017500448A (ja) * 2013-12-12 2017-01-05 ザ・ボーイング・カンパニーThe Boeing Company 傾斜薄膜
WO2021161728A1 (ja) 2020-02-13 2021-08-19 日産自動車株式会社 摺動機構

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136569A (ja) * 1985-12-09 1987-06-19 Showa Denko Kk ダイヤモンドのコ−テイング方法
JPS6488465A (en) * 1987-09-29 1989-04-03 Fuji Electric Co Ltd Apparatus for producing electrophotographic sensitive body
JPH02250975A (ja) * 1989-03-23 1990-10-08 Kyocera Corp グロー放電分解装置
JPH0426764A (ja) * 1990-05-19 1992-01-29 Canon Inc 堆積膜形成装置
JPH06287760A (ja) * 1993-03-31 1994-10-11 Canon Inc プラズマ処理装置及び処理方法
JPH07245195A (ja) * 1994-03-07 1995-09-19 Matsushita Electric Ind Co Ltd プラズマ処理方法及び装置
JPH0855699A (ja) * 1994-08-11 1996-02-27 Aneruba Kk プラズマ処理装置
JPH08236457A (ja) * 1995-03-01 1996-09-13 Canon Inc 堆積膜形成方法および電子写真用感光体
JPH0922795A (ja) * 1995-07-04 1997-01-21 Sony Corp プラズマcvd装置およびプラズマcvd方法
JP2001003174A (ja) * 1999-04-21 2001-01-09 Tokuyama Corp 薄膜の形成方法及び誘導結合型プラズマcvd装置
JP2003502824A (ja) * 1999-06-18 2003-01-21 アプライド マテリアルズ インコーポレイテッド 複数の小型内部誘導アンテナを有するプラズマリアクター

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136569A (ja) * 1985-12-09 1987-06-19 Showa Denko Kk ダイヤモンドのコ−テイング方法
JPS6488465A (en) * 1987-09-29 1989-04-03 Fuji Electric Co Ltd Apparatus for producing electrophotographic sensitive body
JPH02250975A (ja) * 1989-03-23 1990-10-08 Kyocera Corp グロー放電分解装置
JPH0426764A (ja) * 1990-05-19 1992-01-29 Canon Inc 堆積膜形成装置
JPH06287760A (ja) * 1993-03-31 1994-10-11 Canon Inc プラズマ処理装置及び処理方法
JPH07245195A (ja) * 1994-03-07 1995-09-19 Matsushita Electric Ind Co Ltd プラズマ処理方法及び装置
JPH0855699A (ja) * 1994-08-11 1996-02-27 Aneruba Kk プラズマ処理装置
JPH08236457A (ja) * 1995-03-01 1996-09-13 Canon Inc 堆積膜形成方法および電子写真用感光体
JPH0922795A (ja) * 1995-07-04 1997-01-21 Sony Corp プラズマcvd装置およびプラズマcvd方法
JP2001003174A (ja) * 1999-04-21 2001-01-09 Tokuyama Corp 薄膜の形成方法及び誘導結合型プラズマcvd装置
JP2003502824A (ja) * 1999-06-18 2003-01-21 アプライド マテリアルズ インコーポレイテッド 複数の小型内部誘導アンテナを有するプラズマリアクター

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017500448A (ja) * 2013-12-12 2017-01-05 ザ・ボーイング・カンパニーThe Boeing Company 傾斜薄膜
WO2021161728A1 (ja) 2020-02-13 2021-08-19 日産自動車株式会社 摺動機構
US11624338B2 (en) 2020-02-13 2023-04-11 Nissan Motor Co., Ltd. Sliding mechanism

Also Published As

Publication number Publication date
JP4151000B2 (ja) 2008-09-17

Similar Documents

Publication Publication Date Title
TW539762B (en) Thin film forming method and thin film forming apparatus
US6660342B1 (en) Pulsed electromagnetic energy method for forming a film
JP3437772B2 (ja) 管内面の表面処理方法及び装置
JPH0524231B2 (ja)
WO2008026712A1 (fr) procédé de génération de plasma, procédé de gravure de film en matériau organique, procédé de génération ionique négatif et procédé de traitement par oxydation ou nitruration
KR100509666B1 (ko) 벌크물질진공코팅장치
KR101971773B1 (ko) 기판 처리 장치
JPH07201495A (ja) プラズマ処理装置及びそのクリーニング方法
JP2003073814A (ja) 製膜装置
JP2024015122A (ja) イオンを生成する方法および装置
JP2004018908A (ja) ワークの表面処理方法と、その装置
Ohtake et al. Synthesis of diamond-like carbon films by nanopulse plasma chemical vapor deposition at subatmospheric pressure
SG174008A1 (en) Plasma cvd apparatus and manufacturing method of magnetic recording media
JP2008075122A (ja) プラズマcvd装置及びプラズマcvd方法
WO1999016925A1 (en) Improved methods and apparatus for physical vapor deposition
JPH01184921A (ja) エッチング、アッシング及び成膜等に有用なプラズマ処理装置
WO2010005070A1 (ja) プラズマ処理装置およびプラズマ処理方法
JPH02151021A (ja) プラズマ加工堆積装置
JPS62254419A (ja) プラズマ付着装置
TWI321810B (en) Plasma enhanced sputtering method and apparatus
JPH06290723A (ja) イオンビーム装置
JP2019212648A (ja) 成膜装置及び成膜方法
JP2004031461A5 (ja)
JP2000328269A (ja) ドライエッチング装置
JPH0221296B2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

R150 Certificate of patent or registration of utility model

Ref document number: 4151000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140711

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees