JP2004015769A - 送信増幅器 - Google Patents

送信増幅器 Download PDF

Info

Publication number
JP2004015769A
JP2004015769A JP2002170767A JP2002170767A JP2004015769A JP 2004015769 A JP2004015769 A JP 2004015769A JP 2002170767 A JP2002170767 A JP 2002170767A JP 2002170767 A JP2002170767 A JP 2002170767A JP 2004015769 A JP2004015769 A JP 2004015769A
Authority
JP
Japan
Prior art keywords
delay time
transmission
unit
signal
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002170767A
Other languages
English (en)
Other versions
JP3872726B2 (ja
Inventor
Hiroyuki Ezuka
江塚 弘幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002170767A priority Critical patent/JP3872726B2/ja
Priority to US10/345,024 priority patent/US6744315B2/en
Publication of JP2004015769A publication Critical patent/JP2004015769A/ja
Application granted granted Critical
Publication of JP3872726B2 publication Critical patent/JP3872726B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3294Acting on the real and imaginary components of the input signal

Abstract

【課題】並列運転起動時であっても単独運転時と同様の高速起動を可能にする。
【解決手段】増幅器の歪を補償する歪補償部、歪補償を施された送信信号を増幅する増幅器、該増幅器の出力信号を歪補償部にフィードバックするフィードバック部、フィードバック信号が歪補償部に到るまでの遅延時間分、送信信号を遅延して該歪補償部に入力する遅延回路を備えた送信増幅器において、送信増幅器の単独運転時におけるフィードバック信号の遅延時間TDS及び送信増幅器の単独運転時と並列運転時におけるフィードバック信号の遅延時間差ΔTを予め保存しておき、単独運転時に遅延時間TDSを遅延回路に設定し、並列運転時に(TDS+ΔT)を遅延回路に設定する。
【選択図】  図3

Description

【0001】
【発明の属する技術分野】
本発明は送信増幅器に係わり、特に、単独運転も並列運転も可能なように構成された歪補償機能付きの送信増幅器に関する。
【0002】
【従来の技術】
近年、無線通信において、ディジタル化による高能率伝送が多く用いられるようになってきている。無線通信に多値位相変調方式を適用する場合、送信側特に電力増幅器の増幅特性を直線化して非線型歪を抑え、隣接チャネル漏洩電力を低減する技術が重要であり、また線型性に劣る増幅器を使用し電力効率の向上を図る場合はそれによる歪発生を補償する技術が必須である。
【0003】
図20は従来の無線機における送信装置の一例を示すブロック図であり、送信信号発生装置1はシリアルのディジタルデータ列を送出し、シリアル/パラレル変換器(S/P変換器)2はディジタルデータ列を1ビットづつ交互に振り分けて同相成分信号(I信号:In−phase component)と直交成分信号(Q信号:Quadrature component)の2系列に変換する。DA変換器3はI信号、Q信号のそれぞれをアナログのベースバンド信号に変換してに入力する。直交変調器4は入力されたI信号、Q信号(送信ベースバンド信号)にそれぞれ基準搬送波とこれを900移相した信号を乗算し、乗算結果を加算することにより直交変調を行って出力する。周波数変換器5は直交変調信号と局部発振信号をミキシングして周波数変換し、送信電力増幅器6は周波数変換器5から出力された搬送波を電力増幅して空中線(アンテナ)7より空中に放射する。
【0004】
W−CDMA等の移動通信において、送信装置の送信電力は10W〜数10Wと大きく、送信電力増幅器6の入出力特性(歪関数f(p))は図21(a)の点線で示すように非直線性になる。この非直線特性により非線形歪が発生し、送信周波数f0周辺の周波数スペクトラムは図28(b)の実線に示すようにサイドローブが持ち上がり、隣接チャネルに漏洩し、隣接妨害を生じる。すなわち、非線形歪により(b)に示すように送信波が隣接周波数チャネルに漏洩する電力が大きくなってしまう。漏洩電力の大きさを示すACPR(Adjacent Channel Power Ratio)は、図21(b)の1点鎖線A、A′間のスペクトラムの面積である着目チャネルの電力と1点鎖線A,A′と2点鎖線B,B′間の隣接チャネルに漏れるスペクトラムの面積である隣接漏洩電力の比である。このような漏洩電力は、他チャネルに対して雑音となり、そのチャネルの通信品質を劣化させてしまう。よって、厳しく規定されている。
【0005】
漏洩電力は、例えば電力増幅器の線型領域(図21(a)参照)で小さく、非線形領域で大きくなる。そこで、高出力の送信電力増幅器とするためには、線形領域を広くする必要がある。しかし、このためには実際に必要な能力以上の増幅器が必要となり、コスト及び装置サイズにおいて不利となる問題がある。そこで、電力増幅器の非直線性に起因する歪を補償する歪補償機能つきの送信装置が採用されている。
【0006】
図22はDSP(Digital Signal Processor)を用いたディジタル非線形歪補償機能を備えた送信装置のブロック図である。送信信号発生装置1から送出されるディジタルデータ群(送信信号)は、S/P変換器2においてI信号、Q信号の2系列に変換されてDSPで構成される歪補償部8に入力される。歪補償部8は、送信信号x(t)のパワーレベルpi (i=0〜1023)に応じた歪補償係数h(pi)を記憶する歪補償係数記憶部8a、送信信号のパワーレベルに応じた歪補償係数h(pi)を用いて該送信信号に歪補償処理(プリディストーション)を施すプリディストーション部8b、送信信号x(t)と後述する直交検波器で復調された復調信号(フィードバック信号)y(t)を比較し、その差が零となるように歪補償係数h(pi)を演算、更新する歪補償係数演算部8cを備えている。
【0007】
歪補償部8でプリディストーション処理を施された送信信号はDA変換器3に入力する。DA変換器3は入力されたI信号とQ信号をアナログのベースバンド信号に変換して直交変調器4に入力する。直交変調器4は入力されたI信号、Q信号にそれぞれ基準搬送波とこれを900移相した信号を乗算し、乗算結果を加算することにより直交変調を行って出力する。周波数変換器5は直交変調信号と局部発振信号をミキシングして周波数変換し、電力増幅器6は周波数変換器5から出力された搬送波信号を電力増幅して空中線(アンテナ)7より空中に放射する。
【0008】
送信信号の一部は方向性結合器9を介して周波数変換器10に入力され、ここで周波数変換されて直交検波器11に入力される。直交検波器11は入力信号にそれぞれ基準搬送波とこれを900移相した信号を乗算して直交検波を行い、送信側におけるベースバンドのI、Q信号を再現してAD変換器12に入力する。AD変換器12は入力されたI,Q信号をディジタルに変換して歪補償部8に入力する。歪補償部8はLMS(Least Mean Square)アルゴリズムを用いた適応信号処理により歪補償前の送信信号と直交検波器11で復調されたフィードバック信号を比較し、その差が零となるように歪補償係数h(pi)を演算して更新する。以後、上記動作を繰り返すことにより、送信電力増幅器6の非線形歪を抑えて隣接チャネル漏洩電力を低減する。
【0009】
図23は適応LMSによる歪補償処理の説明図である。15aは送信信号x(t)に歪補償係数h(p)を乗算する乗算器(図22のプリディストーション部8bに対応)、15bは歪補償された信号をアナログに変換するDA変換器、15cは歪関数f(p)を有する電力増幅器、15dは電力増幅器からの出力信号y(t)を帰還する帰還系、15eはフィードバック信号をディジタルに変換するディジタル変換器、15fは送信信号x(t)のパワーp(=x(t)2)を演算し、該パワーを歪補償係数記憶部の読み込みアドレスとして出力するパワー演算部、15gは送信信号x(t)の各パワーに応じた歪補償係数を記憶する歪補償係数記憶部(図22の歪補償係数記憶部8aに対応)であり、送信信号x(t)のパワーpに応じた歪補償係数h(p)を出力すると共に、LMSアルゴリズムにより求まる歪補償係数hn+1(p)で古い歪補償係数h(p)を更新する。
【0010】
15hはLMSアルゴリズムにより歪補償係数hn+1(p)を演算する歪補償係数演算部、15iは書き込みアドレス発生用の遅延回路、15jは歪補償係数h(p)を出力するタイミングを調整する遅延回路、15kは送信信号x(t)とフィードバック信号y(t)のタイミングを調整する遅延回路である。遅延回路15kは送信信号x(t)が到来してからフィードバック信号y(t)が減算器15gに入力するまでの遅延時間Tを該送信信号x(t)に付加する。15mは相関演算により送信信号x(t)とフィードバック信号間の遅延時間 を決定する遅延時間決定部である。なお、図23の送信信号処理部には変復調部、周波数変換部などが存在するが図示を省略している。
【0011】
歪補償係数演算部15hにおいて、21は歪補償前の送信信号x(t)とフィードバック信号y(t)の差e(t)を出力する減算器、22は誤差e(t)とステップサイズパラメータμを乗算する乗算器、23は共役複素信号y*(t)を出力する共役複素信号出力部、24はhn(p)とy*(t)の乗算を行う乗算器、25はμe(t)とu*(t)の乗算を行う乗算器、26は歪補償係数hn(p)とμe(t)u*(t)を加算する加算器である。上記構成により、以下に示す演算が行われる。
hn+1(p)=h(p)+μe(t)u*(t)
e(t)=x(t)−y(t)
y(t)=h(p)x(t)f(p)
u(t)=x(t)f(p)=h(p)*y(t)
p=|x(t)|2
ただし、x,y,f,h,u,eは複素数、*は共役複素数である。上記演算処理を行うことにより、送信信号x(t)とフィードバック信号y(t)の差信号e(t)が最小となるように歪補償係数h(p)が更新され、最終的に最適の歪補償係数値に収束し、送信電力増幅器の歪が補償される。
【0012】
遅延時間決定部15mは歪補償前の送信信号x(t)とフィードバック信号の相関y(t)を演算し、最大相関に基づいて電力増幅器15cと帰還系15d等で生じるトータルの遅延時間D(=D0+D1)を決定し、各遅延回路15i,15j,15kに設定する。相関演算に際して、遅延時間決定部15mは、送信信号x(t)とフィードバック信号y(t)間の遅延時間を所定の時間幅で順次ずらし、それぞれの遅延時間において送信信号とフィードバック信号の相関を演算し、相関が最大となる遅延時間D(=D0+D1)を決定する。実際には、遅延時間の決定は、複数のステップをかけて行う。たとえば、図24に示すように、第1ステップにおいてサーチ範囲を最大遅延時間TAとし、また、遅延時間サーチの時間幅ΔTAを大きくして、大雑把な遅延時間範囲TBを求める。ついで、第2ステップにおいてサーチ範囲を遅延時間範囲TBとし、また、遅延時間サーチの時間幅ΔTBを小さくして(ΔTB<ΔTA)、遅延時間範囲TCを求める。以後、同様にサーチの時間幅を狭めてゆき遅延時間のサーチ範囲を絞り込み、最終ステップにおいて、サーチ範囲TDを数百ns程度にし、また、遅延時間サーチの時間幅ΔTDを数十ps(1サンプリングクロック)にして高精度の遅延時間を決定する。この遅延時間を正しく設定できないと歪補償機能が有効に動作せず、又、遅延時間の設定誤差が大きくなるほど、歪補償の度合が低下してサイドローブが持ち上がって隣接チャネルへの漏洩電力が大きくなる。
【0013】
【発明が解決しようとする課題】
歪補償部から電力増幅器までの構成部分を送信増幅器と呼ぶことにする。かかる送信増幅器の送信電力は現在40W〜50Wが限度であり、電力が40W〜50W以下であれば送信電力増幅器の単独運転となり、40W〜50W以上、例えば80Wであれば送信電力増幅器の並列運転になる。このため、送信増幅器は、増幅部の出力信号をそのままアンテナより放射する単独運転と、2台の増幅部の出力信号を合成してアンテナより放射する並列運転が可能となるように構成されている。なお、単独運転は送信ダイバーシチー運転に、並列運転はノンダイバーシチー運転に使用されることが多い。
【0014】
図25は送信増幅器の単独運転構成図、図26は送信増幅器の並列運転構成図である。送信増幅器30は、送信信号処理部31と増幅部32で構成され、筐体33内に収められている。送信信号処理部31は、図示しないが、歪補償部、DA/AD変換器、直交変復調部、周波数変換器(アップコンバータ/ダウンコンバータ)等を備えている。筐体には、送信信号x(t)が入力される第1端子T1、送信信号処理部31から出力する信号を送出する第2端子T2、増幅部32に入力する信号が印加される第3端子T3、増幅部32の出力信号が送出される第4端子T4、フィードバック信号が入力される第5端子が設けられている。
【0015】
単独運転に際しては、図25に示すように第2、第3端子を直結し、第4、第5端子を直結する。一方、並列運転に際しては、図26に示すように、ハイブリッドHYB(分配/合成器)33の2つの入力端子に送信増幅器30A,30Bの第2端子T2,T2を接続し、ハイブリッドHYB 33の出力端子をハイブリッドHYB 34の入力端子に接続し、該ハイブリッドHYB 34の2つの出力端子を送信増幅器30A,30Bの第3端子T3,T3に接続する。又、ハイブリッドHYB 35の2つの入力端子を送信増幅器30A,30Bの増幅部出力端子T4,T4に接続し、ハイブリッドHYB 35の出力端子を送信増幅器30A,30Bの第5端子T5,T5に接続する。並列運転に際して、送信増幅器30A,30Bのうち一方の送信信号処理部31のみ動作させ、他方の送信信号処理部の動作を停止する。例えば、送信増幅器30Aの送信信号処理部31を動作させるものとすれば、該送信信号処理部31から出力する信号はハイブリッド33を介してハイブリッド34に入力し、ここで2分岐されて送信増幅器30A,30Bの増幅部32,32に入力する。送信増幅器30A,30Bの増幅部32でそれぞれ増幅された各送信信号はハイブリッドHYB 35に入力し、ここで合成されてアンテナより放射すると共に、一部は送信増幅器30Aの第5端子T5にフィードバックされる。
【0016】
単独運転か並列運転かは本送信増幅器が収められる架(シェルフ)にHYB(分配/合成器)が設置されるか否かによるため、本送信増幅器の製造時にはどちらの運用形態が取られるかは不明である。このような運用システムのため、本送信増幅器の起動時に以下のような問題が発生する。
各送信増幅器はその製造時に、単独運転時におけるフィードバック信号の遅延時間を測定して内部に記録しており、フィールドで単独運転ならば該記録した遅延時間を読み出して遅延回路15i,15j,15k(図23参照)に設定して高速起動することができる。しかし、並列運転では遅延時間が単独運転と異なるため、遅延調整(遅延時間の測定と設定)を図24の第1ステップからやり直さなくてはならない。なお、並列運転時におけるフィードバック信号の遅延時間を製造時に測定して記録することは、製造性向上,工場設備の肥大化を防ぐ観点から行うことが困難である。
フィードバック信号の遅延調整を第1ステップから行うと数分〜十数分の時間を要し、電波の放射が可能となるまでに相当の時間を要する問題がある。
又、遅延調整の間に送信電力が変化した場合、遅延調整の精度が低下する問題がある。特に、遅延調整時間が数分〜十数分と長いため、送信電力変化の頻度が高い。
又、遅延調整の間は歪補償を行わないため、一定以上の出力電力では不要波(歪)を送出する問題がある。
【0017】
以上より、本発明の目的は、並列運転起動時であっても単独運転時と同等の高速起動を可能にすることである。
本発明の別の目的は、送信増幅器の外部に取り付けられるハイブリッドHYB等受動回路の遅延量のばらつきを吸収するために遅延調整が必要な場合でも、短時間で遅延時間を決定して(数秒以下)、高速起動を可能にすることである。
本発明の別の目的は、遅延時間決定前後の送信電力の変動が一定以上の場合であっても遅延時間決定精度の低下を防ぐことである。
本発明の別の目的は、遅延時間決定時における不要波の送出を防止して通信の安定性維持、及び電波の品質維持に貢献することである。
本発明の別の目的は、不要波の送出を抑えつつ遅延時間決定後、正規の通信状態に速やかに戻すことである。
【0018】
【課題を解決するための手段】
本発明は、送信信号とフィードバック信号の差が零となるように歪補償係数を更新し、該歪補償係数を用いて送信信号に歪補償処理を施して増幅器の歪を補償する歪補償部、歪補償を施された送信信号を増幅する増幅器、該増幅器の出力信号を歪補償部における前記差を演算する演算部にフィードバックするフィードバック部、フィードバック信号が前記演算部に到るまでの遅延時間分、送信信号を遅延して前記演算部に入力する遅延回路を備えた送信増幅器である。単独運転時及び並列運転時に前記遅延回路に正確な遅延時間を設定するために、本発明の送信増幅器は、単独運転時におけるフィードバック信号の遅延時間TDS及び単独運転時と並列運転時におけるフィードバック信号の遅延時間差ΔTあるいは(TDS+ΔT)を予め保存する保存部、単独運転時に前記遅延時間TDSを前記遅延回路に設定し、並列運転時に(TDS+ΔT)を前記遅延回路に設定する遅延時間設定部を備えている。以上のように、保存部と遅延時間設定部を送信増幅器に設けることにより、並列運転起動時であっても単独運転時と同様の高速起動が可能となる。
【0019】
また、前記設定された遅延時間近傍の狭い範囲をサーチ対象にして正確な遅延時間を決定する遅延時間決定部を設けることにより、遅延時間の調整が必要な場合であっても短時間で正確な遅延時間を決定して(数秒以下)、高速起動が可能になる。
また、送信信号電力を測定する電力測定部と、遅延時間決定前後の送信電力の変動が一定値以上のとき遅延時間決定をやり直すよう制御する制御部とを設けることにより、遅延時間決定精度の低下を防ぐことができる。
また、送信信号の利得を制御する利得可変部と、遅延時間決定に際して、前記利得可変部を制御して送信信号の利得を低下させ、遅延時間決定後、送信信号の利得を元に復旧させる制御部とを設けることにより、遅延時間決定時における不要波の送出を防止して通信の安定性維持、及び電波の品質維持に貢献することができる。この場合、遅延時間決定後、低下した利得を徐々に元の利得まで復旧することにより、歪補償を安定に行うことができ不要波の送出を抑えつつ正規の通信状態に速やかに戻すことができる。
【0020】
【発明の実施の形態】
(A)単独運転構成及び並列運転構成
図1は送信増幅器の単独運転構成図、図2は送信増幅器の並列運転構成図である。
送信増幅器50は、送信信号処理部51と増幅部52で構成され、筐体53内に収められている。送信信号処理部51は、歪補償部、DA/AD変換器、直交変復調部、周波数変換器(アップコンバータ/ダウンコンバータ)等を備えている。筐体には、送信信号x(t)が入力される第1端子T11、送信信号処理部51の出力信号を送出する第2端子T12、増幅部32に入力する信号を取り込む第3端子T13、増幅部32の出力信号を送出する第4端子T14、フィードバック信号y(t)が入力される第5端子T15が設けられている。
【0021】
単独運転には単独運転用送信増幅器外部ユニット60を使用する。単独運転用送信増幅器外部ユニット60は、送信増幅器50の第2、第3端子T12,T13間を短絡回路61により直結するための端子T21T22、送信増幅器50の出力信号が入力される端子T23、送信増幅器の出力信号をアンテナに入力する端子T24、方向結合器62により検出した送信増幅器50の一部出力信号をフィードバック信号y(t)として送信増幅器の第5端子T15に入力する端子T25を備えている。
単独運転に際して、送信増幅器50と単独運転用送信増幅器外部ユニット60の各端子間を図1に示すように接続して単独運転構成にする。
【0022】
並列運転に際しては、図2示すように並列運転用送信増幅器外部ユニット70を用いる。並列運転用送信増幅器外部ユニット70は、送信増幅器50A,50Bの第2、第3端子T12,T13間をアイソレータ、ハイブリッドHYBを介して接続するための端子T31〜T34、送信増幅器50A,50Bの出力信号を入力される端子T35,T36、送信増幅器50A,50Bの出力信号を合成して出力する端子T37、送信増幅器の一部出力信号をフィードバック信号y(t)として送信増幅器50A,50Bの第5端子T15にそれぞれ入力する端子T38,T39を備えている。
【0023】
並列運転用送信増幅器外部ユニット70において、送信増幅器50A,50Bの送信信号処理部51、51から入力する信号は、アイソレータ71a,71bを介してハイブリッドHYB 72で合成され、ハイブリッドHYB 73で分離されてアイソレータ74a,74bを介して送信増幅器50A,50Bの増幅部52に入力する。送信増幅器50A,50Bの増幅部52の出力信号はアイソレータ75a,75bを介してハイブリッドHYB 76で合成され、端子T37よりアンテナに入力される。方向結合器77,78により検出された増幅器の合成信号の一部出力信号はフィードバック信号y(t)として送信増幅器50A,50Bの第5端子T15に入力する。アイソレータは、インピーダンスの不整合を防止するために挿入される。片系が故障するとインピーダンスが乱れ、正常な系の増幅器出力が脈動する。アイソレータを挿入すればインピーダンスの不整合が防止され増幅器出力が脈動するのを防止できる。
【0024】
並列運転に際して、送信増幅器50A,50Bのうち一方の送信信号処理部51のみ動作させ、他方の送信信号処理部の動作を停止する。例えば、送信増幅器50Aの送信信号処理部51を動作させるものとすれば、該送信信号処理部51から出力する信号は、アイソレータ71a、ハイブリッド72を介してハイブリッド73に入力し、ここで2分岐されて送信増幅器50A,50Bの増幅部52,52に入力する。送信増幅器50A,50Bの増幅部52、52でそれぞれ増幅された各送信信号はアイソレータ75a,75bを介してハイブリッド76に入力し、ここで合成されてアンテナより放射されると共に、一部送信信号は方向結合器77,78により検出されて送信増幅器50A,50Bの第5端子T5にフィードバックされる。
【0025】
上記、単独運転の遅延時間と並列運転の遅延時間の差分は、線路長の違い、経路上におけるアイソレータ、ハイブリッドの有無に起因する。そこで、この遅延時間の差分ΔTを予め送信増幅器50内部に記録しておき、又、送信増幅器50の製造時に単独運転時の遅延時間TDSを測定して記録しておき、並列運転時にこれらを加算して遅延回路に設定して起動する。これにより、並列運転時であっても遅延調整は不要となり、単独運転時と同等の高速起動が可能となる。
【0026】
遅延時間の差分ΔTの取得法は、
(1)設計時、あるいは試作時において、単独運転と並列運転における遅延時間を測定し、その差を遅延時間差ΔTとする方法、
(2)アイソレータ1個の遅延時間、ハイブリッド1個の遅延時間及びそれらの個数を用いて遅延時間差ΔTを計算する方法、
等がある。
【0027】
(B)高速遅延時間遅延調整
前記並列運転時の遅延時間(ΔT+TDS)はフィードバック信号の正確な遅延時間ではない。このため、厳密に遅延時間を決定して設定するための遅延調整が必要になる。
通常、遅延時間を決定するには、例えば、第1ステップにおいて送信信号とフィードバック信号の時間ずれをNサンプリング時間単位で順次変更して求め、しかる後、第2ステップにおいて、第1ステップで得られた相関が最大の遅延ずれ近傍の送信信号とフィードバック信号の相関をサンプリング時間単位で遅延ずれを順次変更して求め、相関が最大となる時間ずれに基づいて遅延時間を決定する。しかし、かかる方法では遅延時間を決定するまでに数分から十数分必要になる。
【0028】
そこで、本発明において、遅延時間決定部は、並列運転時の遅延時間(ΔT+ TDS)を第1ステップで得られる相関が最大の遅延ずれとみなし、第1ステップのNサンプリング時間単位での遅延時間決定を行わず、第2ステップのサンプリング時間単位での遅延時間決定のみを行う。これにより、高速の遅延時間決定が可能となる。なお、かかる高速遅延調整は装置部品の遅延時間ばらつきを吸収するために「単独運転」、「並列運転」に関わらず行うことができる。
【0029】
(C)第1実施例の送信信号処理部
図3は第1実施例の送信増幅器における送信信号処理部51の構成図である。
送信制御部80は、上位装置より単独運転、並列運転の別を示す運転種別SPOと送信開始TSTが指示されると、遅延時間決定部81に運転種別に応じた遅延時間の設定を指示する。遅延時間決定部81は、単独運転時におけるフィードバック信号の遅延時間TDS、単独運転と並列運転におけるフィードバック信号の遅延時間差ΔTをメモリMEMに予め保存しているから、制御部80より上記指示があると、単独運転時には遅延時間TDSを歪補償部82の遅延回路82dに設定し、並列運転時には(TDS+ΔT)を計算して遅延回路82dに設定する。
【0030】
歪補償部82のパワー算出部82aは端子T11より入力する送信信号x(t)のパワーを算出し、該パワーpi (i=0〜1023)に応じた歪補償係数h(pi)を歪補償係数テーブル82bより読み出してプリディストーション部82cに入力する。プリディストーション部82cは、送信信号のパワーレベルに応じた歪補償係数h(pi)を用いて該送信信号x(t)に歪補償処理(プリディストーション)を施して出力する。
歪補償部82で歪補償処理を施された信号(実際には複素信号)はディジタル変調部(QMOD)83に入力する。ディジタル変調部83は歪補償処理を施された信号の同相成分及び直交成分(I,Q信号)に直交変調を施し、DA変換器84はディジタルの直交変調信号をアナログに変換して周波数変換器85に入力する。周波数変換器85は直交変調信号と局部発振信号をミキシングして変調信号周波数を無線周波数にアップコンバートして端子T12より出力する。
【0031】
増幅部52(図1又は図2)の出力信号はフィードバックされて端子T15より周波数変換器86に入力する。周波数変換器86は無線周波数を所定周波数信号にダウンコンバートしてAD変換器87に入力する。AD変換器87は該べースバンド信号をディジタルに変換してディジタル直交復調器(QDEM)88に入力する。ディジタル直交復調部88は入力信号に直交復調処理を施して送信側におけるべースバンド信号を再現し、フィードバック信号y(t)として歪補償係数更新部82e内の誤差演算部(図示せず)に入力する。歪補償係数演算部82eは、遅延回路82dで遅延した送信信号x(t)とディジタル直交検波器(QDEM)88で復調された復調信号(フィードバック信号)y(t)を比較し、その差が零となるように適応制御アルゴリズムに基づいて歪補償係数h(pi)を演算し、該歪補償係数で歪補償係数テーブル82bの古い係数を更新する。以後、上記動作を繰り返すことにより、送信増幅器の増幅部52の非線形歪を抑えて隣接チャネル漏洩電力を低減する。
【0032】
以上の実施例によれば、単独運転時におけるフィードバック信号の遅延時間TDS、単独運転と並列運転時におけるフィードバック信号の遅延時間の差ΔTを予め保存しているため、単独運転時に遅延時間TDSを遅延回路82dに設定でき、又、並列運転時に(TDS+ΔT)を遅延回路82dに設定できるため、単独運転起動時及び並列運転起動時ともに高速起動が可能となる。尚、実施例では単独運転と並列運転時におけるフィードバック信号の遅延時間の差ΔTを保存したが、(TDS+ΔT)を保存することもできる。
以上では遅延回路82dに設定した遅延時間を調整することなく歪補償した場合である。しかし、ΔTは前述のように、(1)設計時あるいは試作時において、単独運転と並列運転における遅延時間を測定し、その差より遅延時間差ΔTを計算する、あるいは(2) 送信増幅器の外部に取り付けられるアイソレータ、ハイブリッドの1個当たりの遅延時間及びアイソレータ、ハイブリッドの使用個数を用いて遅延時間差ΔTを計算する、ものである。又、アイソレータ、ハイブリッドHYB等の受動回路には遅延量のばらつきがある。以上より、ΔTはおおよその値であり、正確な遅延時間差ではない。そこで、並列運転時における正確な遅延時間を決定して遅延回路82dに設定することが望ましい(高速遅延調整)。
【0033】
図4はスライディング相関器を用いた遅延時間決定部81とその周辺構成図であり、図3と同一部分には同一符号を付している。遅延回路82dはサンプリング周期で到来するデジタルの送信信号x(t)を順次シフトしながら記憶するシフトレジスタSFR、該シフトレジスタの所定シフト位置から送信信号を取り出して歪補償係数更新部82eの減算器SBRに入力するセレクタSL1を有している。シフトレジスタSFRのシフト長は最大遅延時間以上となるように定められており、先頭よりm番目のシフト位置において送信信号はm・Ts(Tsはサンプリング周期)遅延する。なお、歪補償係数更新部82eのMPLは減算器SBRの出力信号にステップサイズパラメータμを乗算する乗算部である。
【0034】
遅延時間決定部81は、スライディング相関器SCR、制御部CTU、セレクタSL2、メモリMEMを有している。メモリMEMには、単独運転時におけるフィードバック信号の遅延時間TDS、単独運転時と並列運転時におけるフィードバック信号の遅延時間差ΔTが記憶されている。スライディング相関器SCRは、所定時間遅延した送信信号x(t)とフィードバック信号y(t)の相関を、1サンプルづつ乗算すると共に乗算結果を積算して演算するもので、乗算器MP、遅延器DEL、それまでの積算値と今回の乗算結果を加算して出力する加算器ADDで構成されている。セレクタSL2は送信信号x(t)を取り出すシフトレジスタSFRのシフト位置を切り替えることにより、送信信号x(t)のフィードバック信号y(t)に対する時間ずれ(遅延時間)を制御する。制御部CTUは相関が最大となる遅延時間を求め、遅延回路82dのセレクタSL1に設定する。
【0035】
図5は並列運転時における高速遅延調整制御の処理フローである。
送信制御部80は、上位装置より並列運転を示す運転種別SPOと送信開始TSTが指示されると、遅延時間決定部81に並列運転に応じた遅延時間の設定を指示する。
遅延時間決定部81の制御部CTUは、送信制御部80より並列運転に応じた遅延時間の設定が指示されると、メモリMEMより単独運転時におけるフィードバック信号の遅延時間TDSと、単独運転時と並列運転時におけるフィードバック信号の遅延時間差ΔTを読み出し、並列運転時のフィードバック信号の遅延時間TDP′(=TDS+ΔT)を計算し(ステップ1001)、遅延回路82dのセレクタSL1に設定する(ステップ1002)。セレクタSL1は、設定された遅延時間TDP′に応じたシフトレジスタSFRのシフト位置から送信信号を取り出して歪補償係数更新部82eの減算器SBRに入力する。
【0036】
しかる後、遅延時間決定部81の制御部CTUは、遅延時間決定制御を開始する。通常、遅延時間を決定するには、第1ステップにおいて送信信号とフィードバック信号の時間ずれをNサンプリング時間単位で順次変更して求め、しかる後、第2ステップにおいて、第1ステップで得られた相関が最大の遅延ずれ近傍の送信信号とフィードバック信号の相関をサンプリング時間単位で遅延ずれを順次変更して求め、相関が最大となる時間ずれに基づいて遅延時間を決定する。しかし、高速遅延調整制御においては、制御部CTUは、遅延時間TDP′(=TDS+ΔT)を第1ステップで得られる相関が最大の遅延ずれとみなして、第1ステップのNサンプリング時間単位での遅延時間決定処理を省略し、直ちに、第2ステップのサンプリング時間単位での遅延時間決定処理を行う。すなわち、ステップ1002で設定された遅延時間TDP′を中心にした狭い範囲をサーチ対象に、かつ、1サンプリングクロック刻みで遅延ずれを順次変更して相関を演算し、相関最大となる遅延時間TDPを決定する(ステップ1003、1004)。
【0037】
相関最大となる遅延時間TDPが求まれば、制御部CTUは該遅延時間をメモリMEMに記憶すると共に遅延回路82dのセレクタSL1に設定する(ステップ1005)。セレクタSL1は、設定された遅延時間TDPに応じたシフトレジスタSFRのシフト位置から送信信号を取り出して歪補償係数更新部82eの減算器SBRに入力する。
以上高速遅延調整制御によれば、遅延回路に設定された遅延時間TDP′を中心にした狭いサーチ範囲を対象にして短時間で正確な遅延時間を決定することができ、しかも数秒以下の高速起動が可能になる。
【0038】
(D)第2実施例の送信信号処理部
図6は第2実施例の送信増幅器における送信信号処理部51の構成図であり、図3の第1実施例と同一部分には同一符号を付している。第1実施例と異なる点は送信信号の電力を測定する送信電力測定部90を設けている点、遅延時間決定前後の電力変動に基づいて遅延時間決定をやり直す点である。
図7は第2実施例の高速遅延調整処理フローである。
送信制御部80は、上位装置より並列運転を示す運転種別SPOと送信開始TSTが指示されると、遅延時間決定部81に並列運転に応じた遅延時間の設定を指示すると共に、送信電力測定部90により測定された遅延時間決定前の送信信号電力P1を取得して保存する(ステップ1100)。
【0039】
遅延時間決定部81の制御部CTU(図4参照)は、送信制御部80より並列運転に応じた遅延時間の設定が指示されると、図5のステップ1001〜1004と同様の処理を行い、相関最大の遅延時間TDPを決定する。
遅延時間TDPの決定処理が終了すれば、送信制御部80は、送信電力測定部90により測定された遅延時間決定後の送信信号電力P2を取得し(ステップ1101)、遅延時間決定前後の電力変動|P1−P2|が設定値PTH以上であるかチェックする(ステップ1102)。|P1−P2|>PTHであれば、決定した遅延時間は正確でないと見なし、ステップ1100に戻り、遅延時間決定部81に遅延時間決定のやり直しを指示する。やり直させる理由は、遅延時間決定処理中に送信電力が変化すると遅延時間の精度が低下するからである。
【0040】
一方、ステップ1102において、|P1−P2|≦PTHであれば、送信制御部80は遅延時間決定部81に、決定した遅延時間TDPを遅延回路82dに設定するよう指示する。これにより、遅延時間決定部81の制御部CTUは遅延時間TDPをメモリMEMに記憶すると共に遅延回路82dのセレクタSL1(図4)に設定する(ステップ1103)。セレクタSL1は、設定された遅延時間TDPに応じたシフトレジスタSFRのシフト位置から送信信号を取り出して歪補償係数更新部82eの減算器SBRに入力する。
以上では、電力差が設定値以上であるか否かにより遅延時間決定処理をやり直すか否かを制御したが電力比が設定値以上であるか否かにより遅延時間の決定処理をやり直すようにすることもできる。
第2実施例によれば、遅延時間決定処理中に設定値以上の送信電力変動が発生すれば、再度遅延時間決定処理をやり直すため、高精度に遅延時間を決定して遅延回路に設定でき、歪補償を安定に行うことができる。
【0041】
(E)第3実施例の送信信号処理部
図8は第3実施例の送信増幅器における送信信号処理部51の構成図であり、図3の第1実施例と同一部分には同一符号を付している。第1実施例と異なる点は、周波数変換器85の前段にアッテネータ91を設け、周波数変換器86の後段にアッテネータ92を設けている点である。遅延時間決定制御中は歪補償を行わないため、送信電力が一定値以上の場合には歪が発生して不要波を送出する。そこで、第3実施例では不要波の発生を防止するために、送信信号がひずまない程度に、且つ、遅延時間決定制御を正確に行える程度に送信信号のレベルを減衰する。
【0042】
図9は第3実施例の高速遅延調整処理フロー、図10は第3実施例の利得制御説明図である。
送信制御部80は、上位装置より並列運転を示す運転種別SPOと送信開始TSTが指示されると、遅延時間決定部81に並列運転に応じた遅延時間の設定を指示すると共に、アッテネータ91に利得α(α<1)を設定する。これにより、送信信号はひずまない程度に、且つ、遅延時間決定制御を正確に行える程度に減衰する。また、送信制御部80は、アッテネータ92に利得1/αを設定し、アッテネータ91で減衰した分フィードバック信号を増大するようにする。以上ステップ1501
遅延時間決定部81の制御部CTU(図4)は、送信制御部80より並列運転に応じた遅延時間の設定が指示されると、図5と同様の処理を行い、相関最大の遅延時間TDPを決定し、該遅延時間TDPをメモリMEMに記憶すると共に遅延回路82dのセレクタSL1(図4)に設定する(ステップ1001〜1005)。セレクタSL1は、設定された遅延時間TDPに応じたシフトレジスタSFRのシフト位置から送信信号を取り出して歪補償係数更新部82eに入力する。
【0043】
しかる後、通信制御部80はアッテネータ91、92の利得を元の値に戻し(ステップ1502)、歪補償を開始する。
以上により、第3実施例によれば、図10に示すように遅延時間決定処理開始時に利得低下制御を行うことにより送信出力を低下して不要波の発生を防止でき、又、遅延時間決定処理終了後に利得を戻して歪補償制御を開始することができる。
以上では、アッテネータを用いて利得を制御したが、可変利得増幅器を用いて利得を制御することもでき、この点は以下の実施例でも同様である。
【0044】
(F)第4実施例の送信信号処理部
図11は第4実施例の送信増幅器における送信信号処理部51の構成図であり、図3の第1実施例と同一部分には同一符号を付している。第1実施例と異なる点は、▲1▼送信信号の電力を測定する送信電力測定部90を設けている点、▲2▼周波数変換器85の前段にアッテネータ91を設け、周波数変換器86の後段にアッテネータ92を設けている点、である。
遅延時間決定制御中は歪補償を行わないため、送信電力が一定値以上の場合には歪が発生して不要波を送出する。そこで、前述の第3実施例では不要波の発生を防止するために、増幅後の送信信号がひずまないように送信信号のレベルを減衰する。しかし、送信信号を一律に減衰すると、小さい送信信号であると、ますます小さくなって遅延時間決定制御に支障を生じる。第4実施例では送信信号が設定レベル以上の場合のみ減衰制御する。
【0045】
図12は第4実施例の高速遅延調整処理フロー、図13は第4実施例の利得制御説明図である。
送信制御部80は、上位装置より並列運転を示す運転種別SPOと送信開始TSTが指示されると、送信電力測定部90により測定された送信信号電力P1を取得する(ステップ2001)。ついで、送信信号電力P1が設定電力以下であるかチェックし(ステップ2002)、設定値より大きければ、アッテネータ91に利得α(α<1)を設定する。これにより、送信信号はひずまない程度に、且つ、遅延時間決定制御を正確に行える程度に減衰する(ステップ2003)。また、送信制御部80は、アッテネータ92に利得1/αを設定し、アッテネータ91で減衰した分フィードバック信号を増大するようにする。なお、ステップ2002において、送信信号電力P1が設定電力以下であれば、利得制御はしない。
【0046】
しかる後、送信制御部80は、遅延時間決定部81に並列運転に応じた遅延時間の設定を指示する。これにより、遅延時間決定部81の制御部CTU(図4)は、図5と同様の処理を行い、相関最大の遅延時間TDPを決定し、該遅延時間TDPをメモリMEMに記憶すると共に遅延回路82dのセレクタSL1(図4)に設定する(ステップ1001〜1005)。セレクタSL1は、設定された遅延時間TDPに応じたシフトレジスタSFRのシフト位置から送信信号を取り出して歪補償係数更新部82eに入力する。
しかる後、通信制御部80はステップ2003において利得制御した場合にはアッテネータ91、92の利得を元の値に戻し(ステップ2004)、歪補償を開始する。
以上により、第4実施例によれば、図13の実線で示すように遅延時間決定処理開始時に電力を測定し、電力が設定電力Ps以上の場合には、利得低下制御を行うことにより送信出力を低下して不要波の発生を防止でき、遅延時間決定処理終了後に利得を戻して歪補償制御を開始することができる。又、点線で示すように送信信号の電力が設定電力以下の場合には、減衰制御しないから送信信号が小さくなり過ぎることはなく、不要波の発生を防止しつつ遅延時間決定制御ができる。
【0047】
・第1変形例
第4実施例では送信信号電力が設定電力値Ps以上の場合、アッテネータ91に利得α(α<1)を設定して増幅後の送信信号がひずまない程度に、増幅前に送信信号を減衰しているが、減衰利得αは一定である。このため、送信信号のレベルが大きいと適切なレベルまで減衰せず、送信信号レベルが小さいと、適切なレベル以下になってしまう。そこで、変形例では送信信号のレベルに関係なく適切なレベルとなるように利得を制御する。
【0048】
図14は第1変形例の遅延時間決定処理フロー、図15は第1変形例の利得制御説明図である。
送信制御部80は、上位装置より並列運転を示す運転種別SPOと送信開始TSTが指示されると、送信電力測定部90により測定された送信信号電力P1を取得する(ステップ3001)。ついで、送信信号電力P1が設定電力Ps以下であるかチェックし(ステップ3002)、設定値より大きければ(P1> Ps)、次式
α=Ps/P1
により利得αを計算し(ステップ3003)、アッテネータ91に利得α(α<1)を設定する。これにより、送信信号はひずまない程度に、且つ、遅延時間決定制御を正確に行える程度に減衰する(ステップ3004)。また、送信制御部80は、アッテネータ92に利得1/αを設定し、アッテネータ91で減衰した分フィードバック信号を増大するようにする。なお、ステップ3002において、送信信号電力P1が設定電力Ps以下であれば、ゲイン制御しない。
【0049】
しかる後、送信制御部80は、遅延時間決定部81に並列運転に応じた遅延時間の設定を指示する。これにより、遅延時間決定部81の制御部CTU(図4)は、図5と同様の処理を行い、相関最大の遅延時間TDPを決定し、該遅延時間TDPをメモリMEMに記憶すると共に遅延回路82dのセレクタSL1(図4)に設定する(ステップ1001〜1005)。セレクタSL1は、設定された遅延時間TDPに応じたシフトレジスタSFRのシフト位置から送信信号を取り出して歪補償係数更新部82eに入力する。
しかる後、通信制御部80はステップ3004で利得制御した場合にはアッテネータ91、92の利得を元の値に戻し(ステップ3005)、歪補償を開始する。
以上により、第1変形例によれば、図15に示すように遅延時間決定処理開始時に電力を測定し、電力P1が設定電力Ps以上の場合には、電力P1に基づいて利得を可変制御して設定電力Psとなるように制御するから、不要波の発生を防止して、通信の安定性維持、及び電波の品質維持に貢献することができ、しかも、正しく遅延時間決定制御を行うことができる。
【0050】
・第2変形例
第4実施例及び第1変形例では遅延時間決定後、歪補償開始と同時に利得を元の値に一気に戻したが、一度に電力を戻すと歪補償係数が送信電力に応じた正しい値になっていないため、歪補償制御が安定に行われず歪が発生する。
そこで第2変形例において、送信制御部80は、第4実施例のステップ2004及び第1変形例のステップ3005において、遅延時間決定後、歪補償開始してから、利得を図16に示すように元の値に徐徐に戻す。このように利得復旧制御を行えば、不要波の発生を防止しつつ利得を元の値に戻すことができる。
【0051】
(G)第5実施例の送信信号処理部
図17は第5実施例の送信増幅器における送信信号処理部51の構成図、図18は第5実施例の利得制御説明図であり、図11の第4実施例と同一部分には同一符号を付している。第4実施例と異なる点は、▲1▼歪検出部93をを設けている点、▲2▼利得を元の値に戻す際、歪が一定値以下に下がったことを検出しながら利得をステップ状に少しずつ元の値に戻す制御を行う点である。
【0052】
歪検出部93はACPR(Adjacent Channel Power Ratio)を検出する。送信制御部80は該ACPRが設定値以下であれば歪が小さくなって隣接漏洩電力が小さくなったと判定できる。そこで、第4実施例のステップ2004及び第1変形例のステップ3005において、通信制御部80は、遅延時間決定後に歪補償開始してから歪が小さくなる毎に利得を少し戻し、再度歪補償制御により歪が一定値以下に下がったことを検出したら利得を少し戻すことを繰り返し、最終的に元の利得まで戻す。
第5実施例によれば、図18に示すように歪が小さくなる毎にステップ状に利得を戻すため、不要波の発生を防止しつつ利得を元の値に戻すことができ、電波の品質維持に貢献できる。
【0053】
(H)全体の制御
図19は本発明の送信信号処理部51(図11参照)の全体の制御処理フローである。 通信制御部80は上位からの指示データに基づいて送信電力器が単独運転構成であるか、並列運転構成であるか判断し(ステップ4001)、単独運転構成であれば、遅延時間決定部81は単独運転時におけるフィードバック信号の遅延時間TDSを遅延回路82dに設定し(ステップ4002)、並列運転構成であれば並列運転時におけるフィードバック信号の遅延時間(TDS+ΔT)を遅延回路82dに設定する(ステップ4003)。
【0054】
ついで、送信信号電力P1を測定し(ステップ4004)、該送信信号電力P1が設定電力値Psより大きいかチェックし(ステップ4005)、大きければ送信信号の利得を低下する(ステップ4006)。しかる後、高速遅延調整処理を行い(ステップ4007)、遅延時間決定後、送信信号電力P2を測定し(ステップ4008)、 電力変化量|P1−P2|が設定値以上かチェックし(ステップ4009)、以上であればステップ4004以降の処理を行って遅延時間決定をやり直す。一方、電力変化量|P1−P2|が設定値以下であれば、歪補償制御を開始する(ステップ4010)、。ついで、ステップ4006の利得低下制御を行ったかチェックし(ステップ4011)、利得低下制御をしなければ、通常の運用動作を開始する(ステップ4012)。しかし、利得低下制御を実行していれば、利得を元の値に一気に、あるいは徐徐に、あるいはステップ状に戻し(ステップ4013)、通常の運用動作を開始する(ステップ4012)。
【0055】
・付記
(付記1)送信信号とフィードバック信号の差が零となるように歪補償係数を更新し、該歪補償係数を用いて送信信号に歪補償処理を施して増幅器の歪を補償する歪補償部、歪補償を施された送信信号を増幅する増幅器、該増幅器の出力信号を歪補償部における前記差を演算する演算部にフィードバックするフィードバック部、フィードバック信号が前記演算部に到るまでの遅延時間分、送信信号を遅延して前記演算部に入力する遅延回路を備えた送信増幅器において、
送信増幅器の単独運転時におけるフィードバック信号の遅延時間TDS及び送信増幅器の単独運転時と並列運転時におけるフィードバック信号の遅延時間差ΔTあるいは(TDS+ΔT)を予め保存する保存部、
単独運転時に前記遅延時間TDSを前記遅延回路に設定し、並列運転時に(TDS+ΔT)を前記遅延回路に設定する遅延時間設定部、
を有することを特徴とする送信増幅器。
(付記2)  前記設定された遅延時間近傍の狭い範囲をサーチ対象にして正確な遅延時間を決定する遅延時間決定部、
を備え、前記遅延時間設定部は該決定した遅延時間を前記遅延回路に再設定する、
ことを特徴とする付記1記載の送信増幅器。
(付記3)  送信信号電力を測定する電力測定部、
遅延時間決定前後の送信電力の変動が一定値以上のとき遅延時間決定をやり直すよう制御する制御部、
を有することを特徴とする付記2記載の送信増幅器。
(付記4) 送信信号の利得を制御する利得可変部、
遅延時間決定に際して、前記利得可変部を制御して送信信号の利得を低下させ、遅延時間決定後、送信信号の利得を元に復旧させる制御部、
を有することを特徴とする付記2記載の送信増幅器。
(付記5)  送信信号電力を測定する電力測定部、
を備え、前記制御部は遅延時間決定時における送信電力が設定値以下の時は利得低下制御を行わない、
ことを特徴とする付記4記載の送信増幅器。
(付記6)  送信信号電力を測定する電力測定部、
を備え、前記制御部は遅延時間決定時における送信電力に基づいて利得低下量を決定する、
ことを特徴とする付記4記載の送信増幅器。
(付記7)  前記制御部は、遅延時間決定後、低下した利得を徐々に元の利得まで復旧する、
ことを特徴とする付記4乃至6記載の送信増幅器。
(付記8) 歪補償制御が収束したことを検出する検出部を備え、
前記制御部は、遅延時間決定後に歪補償制御を開始し、歪み補償制御が収束したら利得を一定量戻し、再び歪み補償制御が収束したらまた利得を戻すことを繰り返すことにより、最終的に元の利得まで戻す、
ことを特徴とする付記4乃至6記載の送信増幅器。
【0056】
【発明の効果】
以上本発明によれば、単独運転時におけるフィードバック信号の遅延時間TDS及び送信増幅器の単独運転時と並列運転時におけるフィードバック信号の遅延時間差ΔTあるいは(TDS+ΔT)を予め保存しておき、単独運転時に前記遅延時間TDSを遅延回路に設定し、並列運転時に(TDS+ΔT)を遅延回路に設定するようにしたから、並列運転起動時であっても単独運転時と同様の高速起動が可能となる。又、本発明によれば、遅延回路に設定された遅延時間を中心にした狭いサーチ範囲を対象にして正確な遅延時間を決定するようにしたから、遅延時間の調整が必要な場合であっても短時間で正確な遅延時間を決定して(数秒以下)、高速起動が可能になる。
【0057】
又、本発明によれば、遅延時間決定前後の送信電力変動が一定値以上のとき遅延時間決定をやり直すようにしたから、遅延時間決定精度の低下を防ぐことができる。
又、本発明によれば、遅延時間決定に際して、利得可変部を制御して送信信号の利得を低下させ、遅延時間決定後、送信信号の利得を元に復旧させるようにしたから、遅延時間決定時における不要波の送出を防止して通信の安定性維持、及び電波の品質維持に貢献することができる。
又、本発明によれば、遅延時間決定後、低下した利得を徐々に元の利得まで復旧することにより、歪補償を安定に行うことができ不要波の送出を抑えつつ正規の通信状態に速やかに戻すことができる。
【図面の簡単な説明】
【図1】送信増幅器の単独運転構成図である。
【図2】送信増幅器の並列運転構成図である。
【図3】第1実施例の送信増幅器における送信信号処理部の構成図である。
【図4】スライディング相関器を用いた遅延時間決定部とその周辺構成図である。
【図5】並列運転時における高速遅延調整制御の処理フローである。
【図6】第2実施例の送信増幅器における送信信号処理部の構成図である。
【図7】第2実施例の高速遅延調整処理フローである。
【図8】第3実施例の送信増幅器における送信信号処理部の構成図である。
【図9】第3実施例の高速遅延調整処理フローである。
【図10】第3実施例の利得制御説明図である。
【図11】第4実施例の送信増幅器における送信信号処理部の構成図である。
【図12】第4実施例の高速遅延調整処理フローである。
【図13】第4実施例の利得制御説明図である。
【図14】第1変形例の遅延時間決定処理フローである。
【図15】第1変形例の利得制御説明図である。
【図16】第2変形例の利得制御説明図である。
【図17】第5実施例の送信増幅器における送信信号処理部の構成図である。
【図18】第5実施例の利得制御説明図である。
【図19】本発明の全体の制御処理フローである。
【図20】従来の無線機における送信装置の一例を示すブロック図である。
【図21】送信増幅器の入出力特性及び周波数スペクトラムである。
【図22】歪補償機能を備えた送信装置のブロック図である。
【図23】適応LMSによる歪補償処理の説明図である。
【図24】遅延時間決定処理説明図である。
【図25】送信増幅器の単独運転構成図である。
【図26】送信増幅器の並列運転構成図である。
【符号の説明】
51 送信信号処理部
80 送信制御部
81 遅延時間決定部
82 歪補償部
82d 遅延回路

Claims (5)

  1. 送信信号とフィードバック信号の差が零となるように歪補償係数を更新し、該歪補償係数を用いて送信信号に歪補償処理を施して増幅器の歪を補償する歪補償部、歪補償を施された送信信号を増幅する増幅器、該増幅器の出力信号を歪補償部における前記差を演算する演算部にフィードバックするフィードバック部、フィードバック信号が前記演算部に到るまでの遅延時間分、送信信号を遅延して前記演算部に入力する遅延回路を備えた送信増幅器において、
    送信増幅器の単独運転時におけるフィードバック信号の遅延時間TDS及び送信増幅器の単独運転時と並列運転時におけるフィードバック信号の遅延時間差ΔTあるいは(TDS+ΔT)を予め保存する保存部、
    単独運転時に前記遅延時間TDSを前記遅延回路に設定し、並列運転時に(TDS+ΔT)を前記遅延回路に設定する遅延時間設定部、
    を有することを特徴とする送信増幅器。
  2. 前記設定された遅延時間近傍の狭い範囲をサーチ対象にして正確な遅延時間を決定する遅延時間決定部、
    を備え、前記遅延時間設定部は該決定した遅延時間を前記遅延回路に再設定する、
    ことを特徴とする請求項1記載の送信増幅器。
  3. 送信信号電力を測定する電力測定部、
    遅延時間決定前後の送信電力の変動が一定値以上のとき遅延時間決定をやり直すよう制御する制御部、
    を有することを特徴とする請求項2記載の送信増幅器。
  4. 送信信号の利得を制御する利得可変部、
    遅延時間決定に際して、前記利得可変部を制御して送信信号の利得を低下させ、遅延時間決定後、送信信号の利得を元に復旧させる制御部、
    を有することを特徴とする請求項2記載の送信増幅器。
  5. 前記制御部は、遅延時間決定後、低下した利得を徐々に元の利得まで復旧する、
    ことを特徴とする請求項4記載の送信増幅器。
JP2002170767A 2002-06-12 2002-06-12 送信増幅器 Expired - Fee Related JP3872726B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002170767A JP3872726B2 (ja) 2002-06-12 2002-06-12 送信増幅器
US10/345,024 US6744315B2 (en) 2002-06-12 2003-01-15 Transmission amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002170767A JP3872726B2 (ja) 2002-06-12 2002-06-12 送信増幅器

Publications (2)

Publication Number Publication Date
JP2004015769A true JP2004015769A (ja) 2004-01-15
JP3872726B2 JP3872726B2 (ja) 2007-01-24

Family

ID=29727772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002170767A Expired - Fee Related JP3872726B2 (ja) 2002-06-12 2002-06-12 送信増幅器

Country Status (2)

Country Link
US (1) US6744315B2 (ja)
JP (1) JP3872726B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531414A (ja) * 2004-03-25 2007-11-01 オプティクロン・インコーポレーテッド 電力増幅器におけるモデルに基づく歪み低減
WO2008155819A1 (ja) * 2007-06-19 2008-12-24 Fujitsu Limited 電力増幅制御装置
JP2009261002A (ja) * 2009-08-03 2009-11-05 Fujitsu Ltd 基地局

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168931A (ja) * 2001-12-04 2003-06-13 Nec Corp 歪補償回路
JP3970177B2 (ja) * 2002-12-26 2007-09-05 パナソニック モバイルコミュニケーションズ株式会社 無線通信装置
JP3999232B2 (ja) * 2004-04-07 2007-10-31 株式会社日立国際電気 増幅装置
KR20090113915A (ko) * 2007-03-06 2009-11-02 미쓰비시덴키 가부시키가이샤 무선 통신 시스템
JP5233651B2 (ja) * 2008-12-18 2013-07-10 富士通株式会社 歪補償装置及び方法
JP2010154042A (ja) * 2008-12-24 2010-07-08 Sumitomo Electric Ind Ltd 歪補償回路
JP5338378B2 (ja) * 2009-03-02 2013-11-13 富士通株式会社 歪補償装置及び方法
JP5673238B2 (ja) * 2011-03-10 2015-02-18 富士通株式会社 電力増幅装置、送信機及び電力増幅装置制御方法
US8564368B1 (en) * 2012-04-11 2013-10-22 Telefonaktiebolaget L M Ericsson Digital Predistorter (DPD) structure based on dynamic deviation reduction (DDR)-based volterra series
JP2015026968A (ja) * 2013-07-26 2015-02-05 富士通株式会社 歪補償装置および歪補償方法
KR102188306B1 (ko) * 2014-09-02 2020-12-08 삼성전자주식회사 통신 시스템에서 패킷 전송 방법 및 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3590571B2 (ja) * 2000-08-30 2004-11-17 株式会社日立国際電気 歪補償装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531414A (ja) * 2004-03-25 2007-11-01 オプティクロン・インコーポレーテッド 電力増幅器におけるモデルに基づく歪み低減
JP4909261B2 (ja) * 2004-03-25 2012-04-04 ネットロジック・マイクロシステムズ・インコーポレーテッド 電力増幅器におけるモデルに基づく歪み低減
WO2008155819A1 (ja) * 2007-06-19 2008-12-24 Fujitsu Limited 電力増幅制御装置
JPWO2008155819A1 (ja) * 2007-06-19 2010-08-26 富士通株式会社 電力増幅制御装置
JP2009261002A (ja) * 2009-08-03 2009-11-05 Fujitsu Ltd 基地局

Also Published As

Publication number Publication date
JP3872726B2 (ja) 2007-01-24
US20030231058A1 (en) 2003-12-18
US6744315B2 (en) 2004-06-01

Similar Documents

Publication Publication Date Title
JP3857652B2 (ja) 歪補償装置
JP3875707B2 (ja) 歪補償装置
US8933752B2 (en) Power amplifier apparatus, distortion compensation coefficient updating method, and transmission apparatus
JP4786644B2 (ja) 歪補償装置
JP4417174B2 (ja) プリディストータ
US8022763B2 (en) Amplifier failure detection apparatus
US7333561B2 (en) Postdistortion amplifier with predistorted postdistortion
EP1560329A1 (en) Digital predistorter using power series model
JP4255361B2 (ja) 歪み補償増幅器
JP5811929B2 (ja) 無線装置、歪補償方法、及び歪補償プログラム
EP2202879B1 (en) A predistortion apparatus and predistortion method
JP5060532B2 (ja) べき級数型プリディストータ、べき級数型プリディストータの制御方法
WO2000074232A1 (fr) Amplificateur de compensation de distorsion du type predistorsion
JP3872726B2 (ja) 送信増幅器
US20110274210A1 (en) Time alignment algorithm for transmitters with eer/et amplifiers and others
JP5049562B2 (ja) 電力増幅器
US7391822B2 (en) Method and apparatus for estimating a sample delay between a transmission signal and a feedback signal in a mobile communication system, and a base station transmitter using the same
JP2004165900A (ja) 通信装置
JP2003078451A (ja) 増幅装置
JP2001284976A (ja) アダプティブプリディストーション歪補償方法及び装置
JP3867583B2 (ja) 非線形歪み補償装置及びその方法並びにプログラム
JP2003078359A (ja) 増幅装置
KR100939882B1 (ko) 왜곡 보상 장치
JP2006279775A (ja) 歪み補償装置及び歪み補償方法
JP5071168B2 (ja) 歪み補償係数更新装置および歪み補償増幅器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees