JP2004006952A - 薄膜半導体装置の作製方法 - Google Patents

薄膜半導体装置の作製方法 Download PDF

Info

Publication number
JP2004006952A
JP2004006952A JP2003271862A JP2003271862A JP2004006952A JP 2004006952 A JP2004006952 A JP 2004006952A JP 2003271862 A JP2003271862 A JP 2003271862A JP 2003271862 A JP2003271862 A JP 2003271862A JP 2004006952 A JP2004006952 A JP 2004006952A
Authority
JP
Japan
Prior art keywords
film
silicon
region
island
silicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003271862A
Other languages
English (en)
Other versions
JP4222900B2 (ja
Inventor
Hideomi Suzawa
須沢 英臣
Shunpei Yamazaki
山崎 舜平
Toshiji Hamaya
浜谷 敏次
Yasuhiko Takemura
竹村 保彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2003271862A priority Critical patent/JP4222900B2/ja
Publication of JP2004006952A publication Critical patent/JP2004006952A/ja
Application granted granted Critical
Publication of JP4222900B2 publication Critical patent/JP4222900B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Recrystallisation Techniques (AREA)
  • Drying Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】 ソース/ドレイン間のリーク電流を減少させ、また、劣化等を防止する薄膜半導体装置の作製方法を提供することを課題とする。
【解決手段】 シリコン膜上に、3〜6nm以下の厚さの酸化珪素膜を介して、フォトレジストのマスクを形成し、フォトレジストのマスクを用いて前記シリコン膜をパターニングして、端部がテーパー状の島状シリコン領域を形成し、前記島状シリコン領域を用いて薄膜トランジスタの活性層を形成することを特徴とする薄膜半導体装置の作製方法。
【選択図】 図1

Description

 本発明は、薄膜集積回路に用いる回路素子、例えば、薄膜トランジスタ(TFT)の作製方法に関するものである。本発明によって作製される薄膜トランジスタは、ガラス等の絶縁基板上、単結晶シリコン等の半導体基板上に形成された絶縁体上、いずれにも形成され、例えば、液晶ディスプレーのアクティブマトリクス回路やイメージセンサーの駆動回路等に用いられる。
 最近、750℃以下の温度で薄膜トランジスタを形成することが要求されるようになった。薄膜トランジスタは、酸化珪素や窒化珪素等の絶縁被膜上に形成されたシリコン半導体薄膜を島状にエッチングして、島状シリコン領域(活性層)を形成した後、ゲイト絶縁膜とゲイト電極を形成するのであるが、このような低温では従来の半導体集積回路技術のように熱酸化法によってゲイト絶縁膜を得ることは不可能であり、もっぱら、化学的気相成長法(CVD法)や物理的気相成長法(PVD法)によって絶縁被膜を形成していた。CVD法やPVD法においては、通常はプラズマを用いるプラズマCVD法やスパッタリング法が一般的であった。
 しかし、CVD法やPVD法で形成される絶縁被膜はステップカバレージ(段差被覆性)が悪く、信頼性や歩留り、特性に悪影響を及ぼすことがあった。すなわち、エッヂ部の断面がほぼ垂直であった場合には、ゲイト絶縁膜の被覆性が著しく悪く、典型的には平坦部の厚さの半分しか厚みが存在しない状態となることもあった。
 島状シリコン領域は、シリコン膜をドライエッチングすることによって得られていたが、通常のドライエッチング法では、シリコンと下地の酸化珪素あるいは窒化珪素の選択比を向上させる必要から反応性イオンエッチング法が採用された。通常の場合は、断面はほぼ垂直となるが、条件を適当に定めることによって、斜めの断面を有する形状(テーパー状)とすることも可能である。こうして、絶縁被膜のステップカバレージが多少悪くとも、問題がなくすることができる。
 図4にはテーパー状のエッヂを有する典型的なTFTを上から見た図、およびその図面のA−A’、B−B’に沿った断面図を示す。基板上に形成されたTFTの薄膜シリコン半導体領域は不純物領域(ソース、ドレイン領域、P型もしくはN型の導電型を示す)44、45とゲイト電極43の下に位置し、実質的に真性のチャネル形成領域41に分けられる。また、このシリコン半導体領域を覆って、ゲイト絶縁膜42が設けられる。図には示されていないが、さらにこれらを覆って層間絶縁物49が設けられ、その上に配線が形成される。この配線は層間絶縁物に形成されたコンタクトホールを介して、不純物領域44、45に接続される。
 図4から明らかなように、シリコン半導体領域のエッヂ部をテーパー状とすることにより、ゲイト絶縁膜42はエッヂ部においても平坦部とほぼ同じ厚さを保つことができ、エッヂ部における耐圧を向上させることができた。また、この結果、TFTの特性および製造歩留りを著しく向上させることができる。
 なお、確かにテーパー状とすることにより、断線は減少したが、解決できない問題も多かった。その最大のものはソース/ドレイン間のリーク電流である。TFTのソース/ドレイン間に所定のドレイン電圧を印加しても、ゲイト電極の電位がソースと同じであれば、チャネルが形成されないのでソース/ドレイン間には実質的に電流が流れないはずである。すなわち、オフ電流は、計算上は0.1pA以下のはずであった。
 しかし、現実には10pA以上のリーク電流(以下、オフ電流という)が観察された。しかも、奇妙なことにこの電流はTFTのチャネル幅によらずほぼ同じであることも明らかになった。このようなオフ電流は、特にアクティブマトリクス回路のスイッチングトランジスタに用いる場合には致命的なものであり、オフ電流を10pA以下、好ましくは2pA以下とすることが必要であった。
 そこで、シリコン膜上に3〜20nmの酸化珪素や窒化珪素、酸化窒化珪素を主成分とする層を形成し、その上の全面にフォトレジストを塗布して、公知のフォトリソグラフィー法によってレジストのマスクを形成し、これを用いてその下層の酸化珪素や窒化珪素、酸化窒化珪素を主成分とする層をエッチングしてマスク膜を形成する。これを用いて、島状シリコン領域をパターニングする。この工程はフォトレジストが直接、シリコン膜に触れないという特徴があり、好ましい工程である。
 本発明は、
シリコン膜上に、6nm以下の厚さの酸化珪素膜を介して、フォトレジストのマスクを形成し、
フォトレジストのマスクを用いて前記シリコン膜をパターニングして、端部がテーパー状の島状シリコン領域を形成し、
前記島状シリコン領域を用いて薄膜トランジスタの活性層を形成することを特徴とする薄膜半導体装置の作製方法である。
 本発明は、
シリコン膜上に、3〜6nmの厚さの酸化珪素膜を介して、フォトレジストのマスクを形成し、
フォトレジストのマスクを用いて前記シリコン膜をパターニングして、端部がテーパー状の島状シリコン領域を形成し、
前記島状シリコン領域を用いて薄膜トランジスタの活性層を形成することを特徴とする薄膜半導体装置の作製方法である。
 本発明は、
絶縁表面上に、アモルファスシリコン膜を形成し、
前記アモルファスシリコン膜に結晶化を助長する触媒元素を添加し、
前記アモルファスシリコン膜を熱アニールし、更にレーザーを照射して結晶化し、
フォトレジストのマスクを用いて前記結晶化されたシリコン膜をパターニングして、端部がテーパー状の島状シリコン領域を形成することを特徴とする半導体装置の作製方法である。
 本発明は、
絶縁表面上に、アモルファスシリコン膜を形成し、
前記アモルファスシリコン膜表面に、6nm以下の厚さの酸化珪素膜を形成し、
前記アモルファスシリコン膜に選択的に燐を添加し、N型の不純物領域と、実質的に真性な領域とを形成し、
前記アモルファスシリコン膜に結晶化を助長する触媒元素を添加し、
前記アモルファスシリコン膜を500〜580℃のアニールをして結晶化し、
フォトレジストのマスクを用いて前記結晶化されたシリコン膜をパターニングして、一対のN型の不純物領域とチャネル形成領域とを有する、端部がテーパー状の島状シリコン領域を形成することを特徴とする半導体装置の作製方法である。
 本発明は、
絶縁表面上に、アモルファスシリコン膜を形成し、
前記アモルファスシリコン膜表面に、6nm以下の厚さの酸化珪素膜を形成し、
前記アモルファスシリコン膜に選択的に燐を添加し、N型の不純物領域と、実質的に真性な領域とを形成し、
前記アモルファスシリコン膜に結晶化を助長する触媒元素を添加し、
前記アモルファスシリコン膜を500〜580℃のアニールをして結晶化し、
フォトレジストのマスクを用いて前記結晶化されたシリコン膜をパターニングして、一対のN型の不純物領域とチャネル形成領域とを有する、端部がテーパー状の島状シリコン領域を形成し、
前記フォトレジストのマスクを除去し、
前記島状シリコン領域上に、酸化珪素膜でなるゲイト絶縁膜を形成し、
前記ゲイト絶縁膜上にゲイト電極を形成し、
前記ゲイト電極上に、前記絶縁表面全体を覆うように窒化珪素膜を形成することを特徴とする薄膜半導体装置の作製方法である。
 前記モルファスシリコン膜に形成する6nm以下の厚さの酸化珪素膜は、3〜6nmの厚さであってもよいし、前記アモルファスシリコン膜の500〜580℃のアニールは、2〜12時間行ってもよいし、前記結晶化を助長する触媒元素は、ニッケル、コバルト、鉄、白金、パラジウムであってもよい。
 本発明は、
絶縁表面上に、アモルファスシリコン膜を形成し、
レーザーを用いて、前記アモルファスシリコン膜を結晶化し、
フォトレジストのマスクを用いて前記結晶化されたシリコン膜をパターニングして、端部がテーパー状の島状シリコン領域を形成し、
前記島状シリコン領域を用いて薄膜トランジスタの活性層を形成することを特徴とする薄膜半導体装置の作製方法である。
 本発明は、
絶縁表面上に、アモルファスシリコン膜を形成し、
レーザーを用いて、前記アモルファスシリコン膜を結晶化し、
フォトレジストのマスクを用いて前記結晶化されたシリコン膜をパターニングして、端部がテーパー状の島状シリコン領域を形成し、
前記フォトレジストのマスクを除去し、
前記島状シリコン領域に、燐を添加し、N型の不純物領域と、チャネル形成領域とを形成し、
前記島状シリコン領域を450〜550℃でアニールすることを特徴とする薄膜半導体装置の作製方法である。
 本発明は、
絶縁表面上に、アモルファスシリコン膜を形成し、
レーザーを用いて、前記アモルファスシリコン膜を結晶化し、
フォトレジストのマスクを用いて前記結晶化されたシリコン膜をパターニングして、端部がテーパー状の島状シリコン領域を形成し、
前記フォトレジストのマスクを除去し、
前記島状シリコン領域に、燐を添加し、N型の不純物領域と、チャネル形成領域とを形成し、
前記島状シリコン領域を450〜550℃でアニールし、
前記島状シリコン領域上に、酸化珪素膜でなるゲイト絶縁膜を形成し、
前記ゲイト絶縁膜上にゲイト電極を形成し、
前記ゲイト電極上に、前記絶縁表面全体を覆うように窒化珪素膜を形成することを特徴とする薄膜半導体装置の作製方法である。
 本発明によって、薄膜半導体装置の歩留りを向上させ、また、その信頼性を高め、最大限を特性を引き出すことが可能となった。本発明の薄膜半導体装置は、特に、ソース−ドレイン間のリーク電流(オフ電流)が低いため液晶ディスプレーのアクティブマトリクス回路における画素制御用のトランジスタとして好ましい。
 本発明ではNチャネル型のTFTを例にとって説明したが、Pチャネル型TFTや同一基板上にNチャネル型とPチャネル型の混在した相捕型の回路の場合も同様に実施できることは言うまでもない。また、実施例に示したような簡単な構造のものばかりではなく、例えば、特開平6−124962に示されるようなソース/ドレインにシリサイドを有するような構造のTFTに用いてもよい。本発明はTFTを中心として説明した。しかし、他の回路素子、例えば、1つの島状半導体領域に複数のゲイト電極を有する薄膜集積回路、スタックトゲイト型TFT、ダイオード、抵抗、キャパシタにも適用できることは言うまでもない。このように本発明は工業上、有益な発明である。
 実施例では、シリコン膜をエッチングする作用を有する液体(例えば、NH2基を有するヒドラジン(NH2NH2)やエチレンジアミン(NH2(C24)NH2)等)を有するエッチャントによるウェットエッチング法、もしくは非電離状態でシリコンをエッチングする作用を有する気体(例えば、各種フッ化塩素)によるガスエッチング法によってシリコン膜をエッチングすることにより、プラズマを用いないで島状シリコン領域を形成し、その後、非プラズマのCVD法(例えば、熱CVD法)によってゲイト絶縁膜を成膜する薄膜半導体装置の作製方法について示す。
 すなわち
(1) 絶縁表面上に形成された厚さ10〜100nmのシリコン膜上に、マスク膜を選択的に形成する工程
(2) シリコンをエッチングする作用を有する液体もしくは気体によって、前記マスクを用いてシリコン膜をエッチングすることにより島状の薄膜シリコン半導体領域を形成する工程
(3) 非プラズマの化学的気相成長法により前記シリコン半導体領域を覆ってゲイト絶縁膜を形成する工程
のうちの、少なくとも工程(1)と(2)あるいは工程(2)と(3)を有する。
 上記において、ウェットエッチングをおこなうための液体としてNH2基を有する物質を用いる場合には、溶液中に水(H2O)を適当な比率で混合し、また、プロパノール、ブタノール、イソプロパノール(CH3CHOHCH3)やパイロカテコール(C64(OH)2)を併せて使用すると効果がよい。
 上記において、ガスエッチングをおこなう場合には、フッ化作用の極めて強い各種フッ化塩素、例えば、一フッ化塩素(ClF)、三フッ化塩素(ClF3)、五フッ化塩素(ClF5)等が好ましい。すなわち、シリコンはこれらの気体に接するとフッ化されて、気体のフッ化珪素化合物等になり、エッチングされる。中でも三フッ化塩素は化学的に安定で貯蔵しやすく、利用しやすい。さらに、酸化珪素とほとんどエッチングしないためマスクとして酸化珪素を用いることができる。
 上記工程(1)において、マスク膜はフォトジストや酸化珪素膜もしくは窒化珪素膜、あるいは酸化窒化珪素膜を有するとよい。一般にヒドラジンを用いる場合には、フォトレジスト等の有機物は剥離してしまい、マスク膜として用いるのには好ましくないが、三フッ化塩素ではフォトレジストもマスクとして使用できる。厳密には三フッ化塩素でもフォトレジストはエッチングされるのであるが、そのエッチングレートがシリコンとほぼ同じであるため、十分にマスクとして機能する。そして、この性質をうまく利用すれば、フォトレジストのエッチング後退とシリコン膜のエッヂの後退がほぼ同じ速度で進行することによりテーパー状のエッヂを形成することもできる。
 上記工程(1)において、ヒドラジン等をエッチングをおこなうための液体として用いる場合には、シリコン上に厚さ1〜200nm、好ましくは、3〜20nmの酸化珪素や窒化珪素、酸化窒化珪素を主成分とする層を形成し、その上の全面にフォトレジストを塗布して、公知のフォトリソグラフィー法によってレジストのマスクを形成し、これを用いてその下層の酸化珪素や窒化珪素、酸化窒化珪素を主成分とする層をエッチングして、これをマスク膜として用いればよい。
 この工程はフォトレジストが直接、シリコン膜に触れないという特徴があり、その点で、ヒドラジン以外の、例えば、各種フッ化塩素を用いたエッチングにおいても好ましい工程である。上記の酸化珪素や窒化珪素、酸化窒化珪素を主成分とする層を形成するには、非プラズマプロセス、例えば、熱CVD法や熱酸化法を用いればよい。もし、プラズマCVD法やスパッタリング法を用いる場合でも、その後に、450℃以上、好ましくは、550℃以上の加熱工程があれば、プラズマのダメージは回復する。
 このようにして酸化珪素や窒化珪素、酸化窒化珪素を主成分とする層をエッチングした後は、レジストのマスクは不要であるのだが、フォトレジストを剥離する際にはシリコン表面がごく薄く酸化され、本発明のように、シリコンと酸化珪素のエッチングレートが非常に異なる場合にはエッチング作用が低下する。ヒドラジンではフォトレジスト等の有機物は相当なダメージを受けるが、十分なエッチング作用を得るためには、フォトレジストのマスクをつけたまま、エッチングさせる必要がある。
 上記工程(3)においては、特に、ゲイト絶縁膜をシランと酸素もしくは各種酸化窒素(例えば、二酸化窒素、一酸化窒素、一酸化二窒素)を原料とする熱CVD法によって形成すると好ましい特性が得られた。また、ゲイト絶縁膜を成膜した後、一酸化二窒素雰囲気で450〜600℃のアニール処理を施すことによってさらに良好な特性が得られた。
 上記工程(1)においてシリコン膜の厚さを10〜100nmと限定するのはエッヂの断面が十分になだらかになるようにするためであり、シリコン膜の厚さが100nm以上ではエッヂ断面の形状が垂直に近いものとなり、本発明の目的とする島状シリコン領域を得られないからである。しかしながら、適切な条件のもとでは以下の実施例にも示すように理想的なテーパー状のエッヂが形成される。そのような場合には、上記の厚さの限定は不要となる。
 上記のようなウェットエッチング法あるいは非電離状態の気体を用いるガスエッチング法、および非プラズマのCVD法ではプラズマダメージが生じない。また、良く知られているようにウェットエッチング法は等方性をエッチングであり、また、ガスエッチング法も、本発明人の検討の結果、ウェットエッチングと同等な等方性を示すので、上記の厚さのシリコン膜であれば、エッチング断面は極めてなだらかな形状となる。この結果、ゲイト電極の断線は生じず、かつ、オフ電流も十分に低減できた。より段差被覆性を向上させて歩留りを上げるには、島状シリコン領域の上に形成するゲイト絶縁膜の厚さをシリコン膜の2〜10倍とすると良い。
 図1(A)〜(D)に本実施例の作製工程を示す。まず、ガラス基板コーニング社7059番上に厚さ100〜500nm、例えば、200nmの酸化珪素膜をスパッタ法によって成膜して形成した絶縁性表面11上にプラズマCVD法によって、厚さ30〜150nm、例えば、100nmのアモルファス状態のシリコン膜12を成膜した。原料ガスとしては、モノシラン(SiH4)を用いた。さらに、その上に厚さ10〜50nm、例えば、20nmの酸化珪素膜13をスパッタ法によって成膜した。
 そして、窒素雰囲気において、550〜600℃で4〜48時間の熱アニールをおこない、シリコン膜12を結晶化した。この工程においては、シリコン膜にニッケル、パラジウム、コバルト、鉄、白金等のアモルファスシリコンの結晶化を助長する金属元素を微量添加して、結晶化を促進せしめてもよい。また、熱アニールによる結晶化の後、レーザーもしくはそれと同等な強光を照射して、結晶性を改善せしめてもよい。その後、公知のフォトリソグラフィー工程によってフォトレジストを用いてフォトレジストのマスク14を形成した。(図1(A))
 そして、フォトレジストのマスク14を用いてウェットエッチング法によって、酸化珪素膜13をエッチングした。ここでは、エッチャントとして、フッ酸とフッ化アンモニウムの混合溶液(緩衝フッ酸)を用いた。比率はフッ酸1に対してフッ化アンモニウム10のもの(以下、1/10BHFと記す)を用いたが、その他の比率でも同様にエッチングできる。このようにして、酸化珪素のマスク膜15を形成した。このエッチング工程では、酸化珪素膜が残らないようにエッチングすることが肝要である。少しでも酸化珪素膜が残存していると、その後のヒドラジンでのエッチングでシリコン膜のエッチングに不均一性が発生する。(図1(B))
 その後、フォトレジストのマスクをつけたままヒドラジン水和物(ヒドラジンと水の等モル混合液)に基板を浸し、シリコン膜12をエッチングした。エッチャントには、0〜80mol%のイソプロピルアルコールを混合してもよい。このようにして、島状のシリコン領域16を形成した。フォトレジストのマスク14はヒドラジンによって溶解した。(図1(C))
 その後、酸化珪素膜15を1/10BHFによってエッチングした。この際には、下地の酸化珪素膜もオーバーエッチングされた。本実施例では、酸化珪素膜13(=15)も下地の酸化珪素膜もスパッタ法によって成膜されたので、オーバーエッチングの深さは、酸化珪素膜15の厚さの1.2〜2倍であった。
 その後、熱CVD法によってゲイト絶縁膜(酸化珪素)17を形成した。熱CVD法の原料ガスとしては、モノシラン(SiH4)と酸素を用いた。基板温度は400〜600℃、例えば、430℃とした。(図1(D))
 その後、一酸化二窒素雰囲気(大気圧)で450〜600℃、例えば、550℃の熱アニールをおこなった。このようにして、概略テーパー状のエッヂ断面を有する活性層(島状シリコン領域)とゲイト絶縁膜を形成した。
 図2に本実施例を示す。まず、ガラス基板(図示せず)上にスパッタリング法によって厚さ200nmの酸化珪素の下地膜21を形成した。さらに、減圧CVD法によって、厚さ10〜100nm、例えば50nmのアモルファス状態のシリコン膜22を堆積した。CVD法の原料ガスとしては、ジシラン(Si26)を用いた。シリコン膜は350〜550℃で0.5〜8時間アニールすることにより膜に含まれる過剰な水素を放出させた。
 そして、KrFエキシマーレーザー光(波長248nm、パルス幅20nsec)を照射して、シリコン膜22を結晶化させた。レーザーのエネルギー密度としては250〜400mJ/cm2が適切であった。
 結晶化工程の後、全面にフォトレジストを塗布し、公知のフォトリソグラフィー法によってフォトレジストをパターニングして、レジストのマスク24を形成した。(図2(A))
 そして、基板を1〜100torr、例えば、6torrに減圧した常温の石英管中に置き、石英管に三フッ化塩素(ClF3)と窒素の混合気体を流した。本実施例では両気体の流量は、ともに500sccmとした。本実施例では、1〜2分の三フッ化塩素を供給した後、三フッ化塩素の供給を停止し、窒素パージをおこなった。エッチングレートは約100nm/分であるので、シリコン膜は十分にエッチングされた。このようにして、島状シリコン領域24を得ることができた。なお、このときのエッチングの終点の判定としては、シリコン膜のエッチングの進行による基板の透明度の変化を光学センサーによって判定してもよい。
 また、本実施例のエッチングの特徴としては、極めて理想的な、30〜60°の傾きを有するテーパー状のエッヂが得られることである。これは、図に示すようにシリコン膜とともに、フォトレジストもエッチングされ、フォトレジストのエッヂの後退がシリコンのエッヂの後退とほぼ同じ速度によって進行するからである(図2(B)、点線および矢印参照)。実施例2(図1)でもテーパー状のエッヂが得られたが、シリコン膜の上部では断面の傾きが急角度となる。これに対し、本実施例ではエッヂのほぼ全域にわたって30〜60°の角度を維持できた。(図2(B))
 その後、レジストのマスク23を剥離し、さらに熱CVD法によって、厚さ100〜150nm、例えば、120nmの酸化珪素膜25を成膜した。原料ガス、成膜温度は実施例2と同じとした。(図2(C))
 本実施例では、マスク膜としてフォトレジストがそのまま使用できたので、実施例2で問題となったような段差はほとんど生じなかった。これは三フッ化塩素によるシリコンと酸化珪素(下地)の選択比が非常に大きいためである。
 図3に本実施例を示す。まず、ガラス基板(図示せず)上に厚さ200nmの酸化珪素の下地膜31、厚さ50nmのアモルファス状態のシリコン膜32を堆積した。酸化珪素膜31はスパッタ法、シリコン膜32はジシランを原料とする減圧CVD法によって成膜した。そして、酸素雰囲気中、550℃で1時間の熱アニールをおこなうことによりシリコン膜表面に極めて薄い酸化珪素の保護膜33を形成した。そして、1〜100ppmの濃度の酢酸ニッケルの水溶液をスピンコーティング法によって塗布した。
 ニッケルはアモルファスシリコンの結晶化を促進させる元素(触媒元素)であり、1×1017原子/cm3以上の濃度の触媒元素をシリコン膜に添加することにより、結晶化温度を低下させ、また、結晶化時間を短縮させることが可能であった。触媒元素としては、この他に、コバルト(Co)、鉄(Fe)、白金(Pt)、パラジウム(Pd)等がある。本実施例では、550℃で0.5〜8時間アニールすることによりシリコン膜32を結晶化させた。結晶化工程の後、公知のフォトリソグラフィー法によってレジストのマスク34を形成した。(図3(A))
 次に、このフォトレジストのマスク34を用いて、1/10BHFによって、酸化珪素の保護膜33をエッチングし、酸化珪素のマスク膜35を形成した。このマスク膜35は極めて薄い。(図3(B))
 その後、レジストのマスク34をつけたまま、基板を3.5torrに減圧した常温の石英管中に置き、石英管に三フッ化塩素(ClF3)と窒素の混合気体を流した。本実施例では、三フッ化塩素の流量は300sccm、窒素の流量は900sccmとした。この状態で、2〜5分放置し、その後、三フッ化塩素の供給を停止した。
 この結果、シリコン膜が酸化珪素膜をマスクとしてエッチングされた。この際には、フォトレジストとシリコン膜の間に酸化珪素膜が存在していたが、極めて薄いため、実施例2(図1)のように明確なマスクとしては機能せず、シリコンおよびフォトレジストのエッチングとともにエッチングされ、実施例3(図2)と同様なテーパー状のエッヂを形成することができた。(図3(C))
 その後、レジストのマスク34を剥離した。さらに、1/10BHFで酸化珪素のマスク膜35をエッチングした。本実施例ではマスク膜35は3〜6nmと極めて薄いと推定され、下地のオーバーエッチングの深さは実施例2に比較すると極めて小さかった。
 その後、実施例3と同様に熱CVD法によって、厚さ120nmの酸化珪素膜37を成膜した。このようにして成膜した酸化珪素膜37をゲイト絶縁膜として形成した。(図3(D))
 図5に本発明によって島状シリコン領域を形成し、これを用いてアクティブマトリクス回路のスイッチングトランジスタとして用いられるTFTを作製する工程の断面図を示す。まず、ガラス基板(コーニング7059)501上にスパッタリング法によって厚さ200nmの酸化珪素の下地膜502を形成した。さらに、プラズマCVD法によって、厚さ30〜150nm、例えば100nmのアモルファス状態のシリコン膜503を堆積した。連続して、スパッタリング法によって、厚さ20nmの酸化珪素膜504を保護膜として堆積した。
 そして、還元雰囲気下、600℃で48時間アニールすることによってシリコン膜503を結晶化させた。結晶化工程はレーザー等の強光を用いる方式でもよい。そして、全面にフォトレジストを塗布し、公知のフォトリソグラフィー法によってフォトレジストをパターニングして、レジストのマスク505を形成した。(図5(A))
 次に、このフォトレジストのマスク505を用いて、まず、1/10BHFによって、酸化珪素の保護膜504をエッチングし、酸化珪素の保護膜507を形成した。(図5(B))
 次にレジストのマスク505をつけたまま、シリコン膜503をエチレンジアミンのパイロカテコール溶液を用いてエッチングし、テーパー状のエッヂを有する島状シリコン領域506を形成した。エッチング工程において、レジストのマスク505の一部はエッチングした。エッチング終了後には、レジストのマスク505を完全に剥離した。(図5(C))
 その後、1/10BHFで酸化珪素の保護膜507をエッチングした。本実施例では下地の酸化珪素膜502と保護膜507が同じスパッタリング法によって成膜され、1/10BHF(23℃)によるエッチング速度は90〜100nm/分であったので、このエッチングの際の下地酸化膜のエッチングされる深さは、オーバーエッチングを考慮しても、保護膜の厚さと同程度の25〜35nmであった。
 その後、熱CVD法によって、厚さ100〜150nm、例えば、120nmの酸化珪素膜508を成膜した。原料ガスとしては、モノシラン(SiH4)と酸素を用い、成膜温度は400〜600℃、例えば、480℃とした。このようにして成膜した酸化珪素膜508をゲイト絶縁膜として用いた。
 さらに、減圧CVD法によって燐をドーピングして導電性を高めた多結晶シリコン膜を成膜し、これをエッチングして、ゲイト電極509を形成した。そして、ゲイト電極509をマスクとして自己整合的にN型不純物(燐)をイオンドーピング法によって島状シリコン領域に導入し、N型不純物領域510を形成した。その後、450〜550℃でアニールすることによりN型不純物の活性化をおこなった。(図5(D))
 その後、プラズマCVD法によって層間絶縁物(窒化珪素50nm/酸化珪素400nmの多層膜)512を厚さ400nm堆積し、その上に厚さ50nmの透明導電膜を選択的に形成して、画素電極513を形成した。
 そして、層間絶縁物512にコンタクトホールを形成し、厚さ50nmのチタン膜と厚さ400nmのアルミニウム膜をスパッタ法によって堆積し、これをエッチングすることにより、TFTのソース/ドレインに電極514、515を形成した。このようにして、アクティブマトリクス回路を形成することができた。(図5(E))
 図6に本発明を用いて島状シリコン領域を形成する実施例の作製工程の断面図を示す。ガラス基板601上には、実施例5と同様に厚さ200nmの下地酸化珪素膜602と厚さ30〜100nm、例えば50nmのアモルファス状態のシリコン膜603を堆積した。そして、これを500〜600℃、例えば、550℃の酸素雰囲気で1時間熱処理することにより、その表面にごく薄い酸化珪素の保護膜(図示せず)を形成せしめた。
 そして、シリコン膜に選択的に燐をドーピングして、N型不純物領域604を形成した。N型不純物領域の間に挟まれた実質的に真性な領域605は後にTFTのチャネル形成領域となる。
 その後、1〜100ppmの濃度の酢酸ニッケル水溶液をスピンコーティング法で塗布することにより、基板表面に極めて薄い酢酸ニッケル膜を形成した。そして、これを500〜580℃、2〜12時間、例えば、550℃、4時間熱アニールすることにより、ニッケルをアモルファスシリコン膜に拡散させ、シリコン膜の結晶化をおこなった。また、この結晶化の工程において同時に、先にドーピングされたN型不純物(燐)の活性化をおこなうこともできた。
 以上の工程の後、公知のフォトリソグラフィー法によってフォトレジストをパターニングして、レジストのマスク606を形成した。(図6(A))
 次に、このフォトレジストのマスク606を用いて、1/10BHFによって先の熱酸化で形成された酸化珪素をエッチングし、シリコン表面を露出させた。
 そして、基板を石英管に置き、常温、6torrで石英管に三フッ化塩素(ClF3 )と窒素の混合気体を流した。本実施例では両気体の流量は、ともに500sccmとした。このエッチングによって、実施例4と同様にテーパー状のエッヂを有する島状シリコン領域608が形成された。また、工程において、フォトレジストのマスク606は一部、エッチングされた。(図6(B))
 その後、残存したフォトジレストのマスク607を剥離し、さらに、1/10BHFでシリコン領域表面を洗浄した。(図6(C))
 そして、熱CVD法によって、厚さ100〜150nm、例えば、120nmの酸化珪素膜609を成膜した。原料ガスとしては、モノシラン(SiH4)と酸素を用いた。このようにして成膜した酸化珪素膜をゲイト絶縁膜として用いた。
 続いて、スパッタリング法によって厚さ300〜600nm、例えば、500nmのアルミニウム膜を堆積し、これをエッチングしてゲイト電極610を形成した。アルミニウム膜には、微量のシリコンやスカンジウム(Sc)、ジルコニウム(Zr)を含有せしめると耐熱性が向上した。また、ゲイト電極は図に示すようにソースとはオーバーラップするように、ドレインとは距離zだけ離れるように形成した。これは、オフ電流を低減するためである。また、上部配線との短絡を防止するために、ゲイト電極の上面や側面を陽極酸化物で被覆することも有効であった。(図6(D))
 その後、第1の層間絶縁物611として厚さ50nmの窒化珪素膜と厚さ400nmの酸化珪素膜からなる2層膜をプラズマCVD法によって形成した。そして、これにコンタクトホールを形成した。次に、スパッタ法によって厚さ450nmのアルミニウム膜を堆積し、これをエッチングしてソース、ドレインの電極612、613を形成した。
 さらに、第2の層間絶縁物614として厚さ200nmの酸化珪素膜をプラズマCVD法によって形成した。そして、先に形成されたコンタクトホール512の内部にコンタクトホールを形成した。次に、スパッタ法によって厚さ50nmのインディウム酸化物の透明導電膜を堆積し、これをエッチングして画素電極615を形成した。以上によって、アクティブマトリクス回路のスイッチングトランジスタおよびそれに付随する画素電極を形成できた。(図6(E))
実施例2の作製工程断面を示す。 実施例3の作製工程断面を示す。 実施例4の作製工程断面を示す。 TFTの上面図及び断面図を示す。 実施例5のTFTの作製工程断面を示す。 実施例6のTFTの作製工程断面を示す。
符号の説明
 11 ・・・絶縁表面
 12 ・・・シリコン膜
 13 ・・・酸化珪素膜
 14 ・・・レジストのマスク
 15 ・・・酸化珪素膜のマスク
 16 ・・・島状シリコン領域(活性層)
 17 ・・・ゲイト絶縁膜

Claims (11)

  1. シリコン膜上に、6nm以下の厚さの酸化珪素膜を介して、フォトレジストのマスクを形成し、
    フォトレジストのマスクを用いて前記シリコン膜をパターニングして、端部がテーパー状の島状シリコン領域を形成し、
    前記島状シリコン領域を用いて薄膜トランジスタの活性層を形成することを特徴とする薄膜半導体装置の作製方法。
  2. シリコン膜上に、3〜6nmの厚さの酸化珪素膜を介して、フォトレジストのマスクを形成し、
    フォトレジストのマスクを用いて前記シリコン膜をパターニングして、端部がテーパー状の島状シリコン領域を形成し、
    前記島状シリコン領域を用いて薄膜トランジスタの活性層を形成することを特徴とする薄膜半導体装置の作製方法。
  3. 絶縁表面上に、アモルファスシリコン膜を形成し、
    前記アモルファスシリコン膜に結晶化を助長する触媒元素を添加し、
    前記アモルファスシリコン膜を熱アニールし、更にレーザーを照射して結晶化し、
    フォトレジストのマスクを用いて前記結晶化されたシリコン膜をパターニングして、端部がテーパー状の島状シリコン領域を形成することを特徴とする半導体装置の作製方法。
  4. 絶縁表面上に、アモルファスシリコン膜を形成し、
    前記アモルファスシリコン膜表面に、6nm以下の厚さの酸化珪素膜を形成し、
    前記アモルファスシリコン膜に選択的に燐を添加し、N型の不純物領域と、実質的に真性な領域とを形成し、
    前記アモルファスシリコン膜に結晶化を助長する触媒元素を添加し、
    前記アモルファスシリコン膜を500〜580℃のアニールをして結晶化し、
    フォトレジストのマスクを用いて前記結晶化されたシリコン膜をパターニングして、一対のN型の不純物領域とチャネル形成領域とを有する、端部がテーパー状の島状シリコン領域を形成することを特徴とする半導体装置の作製方法。
  5. 絶縁表面上に、アモルファスシリコン膜を形成し、
    前記アモルファスシリコン膜表面に、6nm以下の厚さの酸化珪素膜を形成し、
    前記アモルファスシリコン膜に選択的に燐を添加し、N型の不純物領域と、実質的に真性な領域とを形成し、
    前記アモルファスシリコン膜に結晶化を助長する触媒元素を添加し、
    前記アモルファスシリコン膜を500〜580℃のアニールをして結晶化し、
    フォトレジストのマスクを用いて前記結晶化されたシリコン膜をパターニングして、一対のN型の不純物領域とチャネル形成領域とを有する、端部がテーパー状の島状シリコン領域を形成し、
    前記フォトレジストのマスクを除去し、
    前記島状シリコン領域上に、酸化珪素膜でなるゲイト絶縁膜を形成し、
    前記ゲイト絶縁膜上にゲイト電極を形成し、
    前記ゲイト電極上に、前記絶縁表面全体を覆うように窒化珪素膜を形成することを特徴とする薄膜半導体装置の作製方法。
  6. 前記モルファスシリコン膜に形成する6nm以下の厚さの酸化珪素膜は、3〜6nmの厚さであることを特徴とする請求項4または請求項5に記載の薄膜半導体装置の作製方法。
  7. 前記アモルファスシリコン膜の500〜580℃のアニールは、2〜12時間行うことを特徴とする請求項4乃至請求項6のいずれか一項に記載の薄膜半導体装置の作製方法。
  8. 前記結晶化を助長する触媒元素は、ニッケル、コバルト、鉄、白金、パラジウムであることを特徴とする請求項3乃至請求項7のいずれか一項に記載の半導体装置の作製方法。
  9. 絶縁表面上に、アモルファスシリコン膜を形成し、
    レーザーを用いて、前記アモルファスシリコン膜を結晶化し、
    フォトレジストのマスクを用いて前記結晶化されたシリコン膜をパターニングして、端部がテーパー状の島状シリコン領域を形成し、
    前記島状シリコン領域を用いて薄膜トランジスタの活性層を形成することを特徴とする薄膜半導体装置の作製方法。
  10. 絶縁表面上に、アモルファスシリコン膜を形成し、
    レーザーを用いて、前記アモルファスシリコン膜を結晶化し、
    フォトレジストのマスクを用いて前記結晶化されたシリコン膜をパターニングして、端部がテーパー状の島状シリコン領域を形成し、
    前記フォトレジストのマスクを除去し、
    前記島状シリコン領域に、燐を添加し、N型の不純物領域と、チャネル形成領域とを形成し、
    前記島状シリコン領域を450〜550℃でアニールすることを特徴とする薄膜半導体装置の作製方法。
  11. 絶縁表面上に、アモルファスシリコン膜を形成し、
    レーザーを用いて、前記アモルファスシリコン膜を結晶化し、
    フォトレジストのマスクを用いて前記結晶化されたシリコン膜をパターニングして、端部がテーパー状の島状シリコン領域を形成し、
    前記フォトレジストのマスクを除去し、
    前記島状シリコン領域に、燐を添加し、N型の不純物領域と、チャネル形成領域とを形成し、
    前記島状シリコン領域を450〜550℃でアニールし、
    前記島状シリコン領域上に、酸化珪素膜でなるゲイト絶縁膜を形成し、
    前記ゲイト絶縁膜上にゲイト電極を形成し、
    前記ゲイト電極上に、前記絶縁表面全体を覆うように窒化珪素膜を形成することを特徴とする薄膜半導体装置の作製方法。

JP2003271862A 2003-07-08 2003-07-08 薄膜半導体装置の作製方法 Expired - Lifetime JP4222900B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003271862A JP4222900B2 (ja) 2003-07-08 2003-07-08 薄膜半導体装置の作製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003271862A JP4222900B2 (ja) 2003-07-08 2003-07-08 薄膜半導体装置の作製方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28738394A Division JP3474286B2 (ja) 1994-10-26 1994-10-26 薄膜トランジスタの作製方法

Publications (2)

Publication Number Publication Date
JP2004006952A true JP2004006952A (ja) 2004-01-08
JP4222900B2 JP4222900B2 (ja) 2009-02-12

Family

ID=30438597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003271862A Expired - Lifetime JP4222900B2 (ja) 2003-07-08 2003-07-08 薄膜半導体装置の作製方法

Country Status (1)

Country Link
JP (1) JP4222900B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019068097A (ja) * 2012-11-15 2019-04-25 株式会社半導体エネルギー研究所 半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019068097A (ja) * 2012-11-15 2019-04-25 株式会社半導体エネルギー研究所 半導体装置

Also Published As

Publication number Publication date
JP4222900B2 (ja) 2009-02-12

Similar Documents

Publication Publication Date Title
JP3474286B2 (ja) 薄膜トランジスタの作製方法
JP2860869B2 (ja) 半導体装置およびその作製方法
KR100415617B1 (ko) 에천트와 이를 이용한 금속배선 제조방법 및박막트랜지스터의 제조방법
US6693044B1 (en) Semiconductor device and method of manufacturing the same
JP2000174289A (ja) 半導体装置およびその作製方法
US6011275A (en) Semiconductor device and method of manufacturing the same
KR20010060231A (ko) 반도체장치의 제조방법
US6093587A (en) Crystallization of amorphous silicon film using a metal catalyst
JPH08153699A (ja) 薄膜半導体装置の作製方法
JP3917205B2 (ja) 半導体装置の作製方法
JP2873669B2 (ja) 半導体装置およびその作製方法
JP3514891B2 (ja) 半導体装置およびその作製方法
US8471255B2 (en) Bottom-gate thin-film transistor having a multilayered channel and method for manufacturing same
JP2003100633A (ja) 半導体装置の製造方法および半導体装置
JP3753845B2 (ja) 半導体装置の作製方法
JP4222900B2 (ja) 薄膜半導体装置の作製方法
KR100333155B1 (ko) 박막반도체장치및그제조방법
JP4222899B2 (ja) 半導体装置の作製方法
US6764928B1 (en) Method of manufacturing an El display device
JP4115590B2 (ja) 半導体装置の作製方法
JP3241667B2 (ja) 半導体装置および電気光学装置の作製方法
KR100669714B1 (ko) 다결정 실리콘막을 채용한 박막 트랜지스터의 제조 방법,이에 따라 제조된 박막 트랜지스터 및 이를 구비한 평판표시장치
JP2863851B2 (ja) 半導体装置の作製方法
JP4485303B2 (ja) 透過型表示装置の作製方法
JP4249512B2 (ja) 絶縁ゲイト型半導体装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070816

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081118

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

EXPY Cancellation because of completion of term