JP2004006685A - Method of manufacturing aluminum material for electrode of electrolytic capacitor, method of manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor - Google Patents

Method of manufacturing aluminum material for electrode of electrolytic capacitor, method of manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor Download PDF

Info

Publication number
JP2004006685A
JP2004006685A JP2003057737A JP2003057737A JP2004006685A JP 2004006685 A JP2004006685 A JP 2004006685A JP 2003057737 A JP2003057737 A JP 2003057737A JP 2003057737 A JP2003057737 A JP 2003057737A JP 2004006685 A JP2004006685 A JP 2004006685A
Authority
JP
Japan
Prior art keywords
aluminum material
electrolytic capacitor
aluminum
producing
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003057737A
Other languages
Japanese (ja)
Other versions
JP4498682B2 (en
Inventor
Hideki Nishimori
西森 秀樹
Tomonori Yamaguchi
山口 知典
Kazuhiro Kodama
児玉 和宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003057737A priority Critical patent/JP4498682B2/en
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to EP03719219A priority patent/EP1498513B9/en
Priority to AT03719219T priority patent/ATE497630T1/en
Priority to PCT/JP2003/005384 priority patent/WO2003091482A1/en
Priority to AU2003235941A priority patent/AU2003235941A1/en
Priority to CN03809123.2A priority patent/CN1646731A/en
Priority to DE60335943T priority patent/DE60335943D1/en
Publication of JP2004006685A publication Critical patent/JP2004006685A/en
Application granted granted Critical
Publication of JP4498682B2 publication Critical patent/JP4498682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method of manufacturing an aluminum material for an electrolytic capacitor that can increase its effective area by etching and can obtain a large electrostatic capacitance, and to provide a method of manufacturing an electrode material for electrolytic capacitor. <P>SOLUTION: After a rolled aluminum material is washed with a liquid capable of dissolving aluminum, an oxidized coating film formed on the surface of the aluminum material is stabilized by heating the aluminum material by bringing a heater element into contact with the material. After the coating film is stabilized, the film is annealed. It is desirable to control the surface temperature of the heater element to 50-450°C and to contact the heater element with the aluminum material for 0.001-30 seconds. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、電解コンデンサ電極用アルミニウム材の製造方法及び電解コンデンサ用電極材の製造方法、並びにアルミニウム電解コンデンサに関する。
【0002】
なお、この明細書において「アルミニウム」の語はその合金を含む意味で用い、アルミニウム材には箔と板およびこれらを用いた成形体が含まれる。
【0003】
【従来の技術】
アルミニウム電解コンデンサ用電極材料として一般に用いられるアルミニウム材は、比表面積を拡大し静電容量を増大させるため、電気化学的あるいは化学的エッチング処理が施される。
【0004】
一般的に直流エッチングによりトンネル状ピットを生成させる中圧および高圧用の電解コンデンサ電極用アルミニウム材は、アルミニウム材料の溶解・成分調整・スラブ鋳造、均熱処理、熱間圧延、冷間圧延、中間焼鈍、仕上冷間圧延(低圧下圧延)を経た後、(100)面の結晶方位を発達させる目的で500℃前後の温度で不活性雰囲気もしくは真空中で最終焼鈍することにより得られる。ここで、中間焼鈍は圧延工程の途中において前工程の冷間圧延により生じたアルミニウム箔の結晶組織の歪みを解消する目的で行われる工程である。
【0005】
冷間圧延後のアルミニウム材の表面には、油分、圧延で形成された不均質な酸化皮膜が存在する。また、アルミニウム材の表面近傍には、圧延変質層や圧延時のロールコーティング等による汚染層が不均一に存在する。これら不均質な酸化皮膜、圧延変質層および汚染層は、仕上げ冷間圧延の後に行う最終焼鈍工程で生成する酸化皮膜の不均質性をもたらし、作製したアルミニウム材のエッチング特性を劣化させ、エッチングによる実効面積の拡大を阻害すると考えられる。
【0006】
アルミニウム材表層の不均質な酸化皮膜、圧延変質層および汚染層の除去には、冷間圧延後最終焼鈍前にアルカリや酸を含んだ水系洗浄液で洗浄する事が有効である。一般に水系洗浄液で洗浄した後のアルミニウム材表面には水酸基や吸着水が多く残留し、アルミニウム材の表層酸化皮膜は不安定であるため洗浄後に加熱することが好ましい。
【0007】
下記特許文献1には、アルミニウム箔の表面層を除去する工程と、除去後、温度:40〜350℃、露点:0〜80℃、時間:30〜1800秒の条件で加熱酸化する工程と、加熱酸化後、非酸化性雰囲気で焼鈍する工程を実施することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法が開示されている。
【0008】
下記特許文献2には、最終焼鈍前の洗浄処理の際、アルミニウム箔表面のバリヤー型酸化皮膜の厚さを2.5オングストローム以下に調整し、且つ前記洗浄処理の後、前記仕上焼鈍処理の前において、該アルミニウム箔を150〜400℃の酸化雰囲気中で加熱処理して、該アルミニウム箔表面のバリヤー型酸化皮膜の厚さを10オングストローム以下に成長させることを特徴とする電解コンデンサ陽極用アルミニウム箔の製造方法が示され、加熱処理の時間は、5分〜3時間程度が好ましいと記載されている。
【0009】
また、下記非特許文献1には、最終焼鈍時にアルミニウム材の表面に生成した結晶性酸化物はエッチピットの核となることが記載されている。
【0010】
【特許文献1】
特開平7−201673号公報
【0011】
【特許文献2】
特開平5−279815号公報
【0012】
【非特許文献1】
大澤伸夫,福岡潔;表面技術,50[7],643(1999)
【0013】
【発明が解決しようとする課題】
上述の特許文献1および特許文献2の方法では、洗浄後に加熱を行うため安定化したアルミニウム材の表層酸化皮膜が得られるが、加熱方法は雰囲気加熱であるため、加熱により生成する酸化皮膜は雰囲気の影響を受けやすく加熱処理に時間がかかるという問題がある。
【0014】
また、上記非特許文献1のように、最終焼鈍時にアルミニウム材の表面に生成した結晶性酸化物はエッチピットの核となることが知られており、結晶性酸化物の密度や結晶の粒子径を制御することは静電容量向上につながると考えられているが、特許文献1および特許文献2では、結晶性酸化物粒子の生成とエッチング特性の関係に関する記載がない。
【0015】
この発明はかかる事情に鑑みてなされたものであって、従来、最終焼鈍前に実施されていたアルミニウム材表面の酸化皮膜を安定化させるための加熱処理では、雰囲気の影響を受けやすく処理に時間がかかるという問題点を解決するとともに、エッチングによって実効面積を増大させることができ、ひいては高静電容量が得られる電解コンデンサ電極用アルミニウム材の製造方法、及び電解コンデンサ用電極材の製造方法、並びにアルミニウム電解コンデンサを提供することを課題とする。
【0016】
【課題を解決するための手段】
本発明は、以下の手段を提供する。即ち、
(1)圧延後のアルミニウム材をアルミニウムを溶解し得る液で洗浄した後、アルミニウム材を加熱体との接触により加熱し、さらに焼鈍する工程を含むことを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
(2)圧延後のアルミニウム材にアルカリ洗浄を施した後、アルミニウム材を加熱体との接触により加熱し、さらに焼鈍する工程を含むことを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
(3)圧延後のアルミニウム材に酸洗浄を施した後、アルミニウム材を加熱体との接触により加熱し、さらに焼鈍する工程を含むことを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
(4)圧延後のアルミニウム材にアルカリ洗浄、酸洗浄を順次施した後、アルミニウム材を加熱体との接触により加熱し、さらに焼鈍する工程を含むことを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
(5)圧延後アルミニウム材をアルカリ洗浄もしくは酸洗浄する前に有機溶剤洗浄する前項1ないし4のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(6)加熱体の表面温度が50〜450℃、加熱体との接触時間が0.001〜30秒である前項1ないし5のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(7)焼鈍が、アルミニウム材の実体温度450〜600℃にて不活性ガス雰囲気で行われる前項1ないし6のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(8)加熱体が熱ロールまたは加熱板である前項1ないし7のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(9)アルカリ洗浄に用いるアルカリ洗浄液が水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、オルト珪酸ナトリウム、メタケイ酸ナトリウム、リン酸三ナトリウムから選ばれた1種または2種以上のアルカリを含む水溶液である前項2および4〜8のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(10)酸洗浄に用いる酸洗浄液が、塩酸、硫酸、硝酸、リン酸から選ばれた1種または2種以上の酸を含む水溶液である前項3〜8のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(11)アルミニウム材が電解コンデンサ陽極用である前項1〜10のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(12)アルミニウム材のアルミニウム純度が99.9%以上である前項1〜11のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(13)前項1〜12のいずれかに記載の製造方法によって製造されたアルミニウム箔に、エッチングを実施することを特徴とする電解コンデンサ用電極材の製造方法。
(14)前項13に記載の製造方法によって製造された電極材が用いられているアルミニウム電解コンデンサ。
【0017】
アルミニウム材を加熱体との接触により加熱する接触加熱は、加熱体接触面により短時間でアルミニウム材表面を目的の温度に到達させることが出来る点で優れており、しかも短時間で加熱できるため雰囲気の影響が少なく、温度制御が容易であるという利点がある。
【0018】
上記製造方法によって得られたアルミニウム材をエッチングすると実効面積が大きくなるのは、焼鈍前の接触加熱によりアルミニウム材表層の酸化皮膜を安定なものとすることができ、これにより焼鈍時に表面にエッチピット核となる結晶性酸化物粒子が均一に生成するためである。
【0019】
上記結晶性酸化物粒子の種類としては、γ―AlをはじめとするAl、ベーマイトをはじめとするAlOOH、アルミニウム以外の含有金属(例えばMg,Pb,Cu等)の酸化物および水酸化物、アルミニウムとアルミニウム以外の含有金属(例えばMg,Pb,Cu等)との複合金属酸化物あるいは水酸化物があるが、特に限定されるものではなく、また単結晶、多結晶のどちらでも良い。また、単一もしくは複数の結晶が無定形物質に覆われて一つの粒子を形成するものでも良く、凝集した酸化物結晶の間に無定形酸化物が存在していても良い。
【0020】
以下に、本発明による電解コンデンサ電極用アルミニウム材の製造方法を説明する。
【0021】
本発明に用いられるアルミニウム材の純度は電解コンデンサ電極用に使用される範囲内であれば特に限定されないが、純度99.9質量%以上のものが好ましく、特に99.95質量%以上が好ましい。なお、本発明においてアルミニウム材の純度は100質量%からFe,Si,Cu,Mn,Cr,Zn,TiおよびGaの合計濃度(質量%)を差し引いた値とする。
【0022】
また、アルミニウムを溶解し得る液で洗浄されるアルミニウム材は、一般には、アルミニウム材料の溶解・成分調整・スラブ鋳造、均熱処理、熱間圧延、冷間圧延、中間焼鈍、仕上冷間圧延(低圧下圧延)の各工程を経て製造される。これらの工程は一般法に従えばよく、特に限定されることはないが、アルミニウム材のエッチング条件との関係で、アルミニウム材の製造工程条件を適宜変更しても良い。
【0023】
なお、圧延工程の途中において、前工程の圧延により生じたアルミニウム材の結晶組織の歪みを解消する目的で、焼鈍(以後中間焼鈍と称す)を実施しても良い。また、中間焼鈍以前の工程において、表面の不純物や油分を除去する目的で酸水溶液、アルカリ水溶液もしくは有機溶剤を用いて洗浄を実施しても良い。
【0024】
アルミニウム材の表層に均質で安定な酸化皮膜を生成させ、最終焼鈍時にエッチピット核となる結晶性酸化物粒子をアルミニウム材表面に分散性良く生成させるため、最終圧延後のアルミニウム材をアルミニウムを溶解し得る液で洗浄し、その後、接触加熱を行う。
【0025】
アルミニウムを溶解しうる液としては、酸、アルカリ、アンモニア、アミン類からなる群より選ばれた少なくとも1種を含んだ水溶液等が挙げられ、最終圧延後アルカリ洗浄または酸洗浄の少なくともどちらかの洗浄を行うことが好ましい。
【0026】
前記アルカリ洗浄に用いるアルカリ洗浄液のアルカリとしては特に限定されるものではないが、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、珪酸ナトリウム、リン酸三ナトリウム、リン酸水素二ナトリウム、次亜塩素酸ナトリウム等を例示でき、少なくとも1種類以上のアルカリを含む水溶液を洗浄液として用いることができる。
【0027】
アルカリ洗浄液中のアルカリ濃度は0.005〜50%(質量%、以下同じ)、液温は5〜80℃、洗浄時間は1秒〜10分であることが好ましい。アルカリ濃度が0.005%未満、液温が5℃未満では洗浄による表面均一化の効果が得られないおそれがある。アルカリ濃度が50%を越えると、アルカリ洗浄後のアルミニウム材表面に残留するアルカリの除去に手間がかかり、液温が80℃を越えるとアルミニウム材の溶解が早く洗浄の制御が困難になるおそれがある。アルカリ洗浄時間が1秒未満では洗浄が不十分なおそれがあり、10分より長く洗浄しても洗浄効果が飽和に達し、アルミニウム材を必要以上に溶解させるおそれがある。特に好ましくは、アルカリ洗浄液中のアルカリ濃度0.05〜10%、液温10〜70℃、洗浄時間2秒〜5分である。
【0028】
アルカリ洗浄後にアルミニウム材の表面に付着した洗浄液成分の残留物を除去する目的で水洗を行うことが好ましい。
【0029】
一方、酸洗浄に用いる酸洗浄液の酸としては、特に限定されるものではないが、ルイス酸が使用でき、例えば塩酸、硫酸、リン酸、硝酸、ホウ酸、フッ化水素酸等の無機酸及び酢酸、シュウ酸、クエン酸等の有機酸を例示でき、これら酸を少なくとも1種類以上含む水溶液を洗浄液として用いることができる。また、脱脂力を高めるために酸水溶液に界面活性剤を添加しても良い。酸の濃度としては0.05〜50%、液温は5〜80℃、洗浄時間は0.5秒〜10分であることが好ましい。酸洗浄時の酸濃度、液温および洗浄時間が上記範囲下限未満の場合は、洗浄が不十分となるおそれがあり、酸濃度、液温および洗浄時間が上記範囲上限を越えると洗浄効果が飽和に達しコスト高を招くおそれがある。特に好ましくは、酸の濃度0.05〜30%、液温10〜70℃、洗浄時間1秒〜5分である。
【0030】
酸洗浄後にアルミニウム材の表面に付着した酸液成分の過度の残留を防止する目的で、水洗を行うことが好ましい。
【0031】
アルカリ洗浄および酸洗浄の方式としては、浸漬法やスプレー法等が挙げられるが特に洗浄方式は限定されるものではない。
【0032】
アルカリ洗浄、酸洗浄は少なくともいずれかを実施すればよいが、両方を少なくとも1回実施しても良い。両方を実施する場合、その順序は特に限定されないが、アルカリ洗浄をまず実施した後、酸洗浄を実施するのがよい。アルカリ洗浄により表面の汚染層を効率よく除去した後、酸洗浄の実施によりアルミニウム材の表面を中和することで、さらに均質で安定な酸化皮膜を形成できる。
【0033】
なお、アルカリ洗浄後に酸洗浄を実施する場合の酸の濃度は前記の0.05〜50%より低くても良く、洗浄時間は前記の0.5秒〜10分より短くても良い。
【0034】
アルカリ洗浄もしくは酸洗浄前に、アルミニウム材に対し、脱脂を目的として有機溶剤洗浄を実施しても良い。有機溶剤の例としてはアルコール、トルエン・キシレン等の芳香族炭化水素、ペンタン・ヘキサン・脂肪族炭化水素、アセトン、ケトン、エステル等があげられるが特に限定されるものではなく複数の有機溶剤を混合して用いても良い。
【0035】
次に、アルミニウムを溶解し得る液での洗浄を施したアルミニウム材を、加熱体との接触により加熱する。
【0036】
加熱体は、熱ロール、加熱板、加熱ベルトなど接触加熱が可能なものであれば何でも良く、複数の接触加熱手段を組み合わせても良い。また、アルミニウム材の表裏を同時に加熱しても良く、片面ずつ加熱しても良く、表裏の一方のみを加熱しても良い。加熱体の加熱面の材質としては、ステンレス、メッキ、セラミックス、テフロン(登録商標)、シリコーン樹脂等を自由に選択できるが、アルミニウム材の表面酸化皮膜が加熱体の表面に凝着しない物質が好ましい。
【0037】
アルミニウム材に接触させる加熱体の表面温度は50〜450℃が好ましい。加熱体の表面温度が50℃未満では、焼鈍後の表層酸化皮膜の結晶化率や結晶性酸化物微粒子の制御が十分ではなく、450℃より高くなると酸化皮膜が厚くなりすぎ、加熱冷却時に皺等が発生し、操業上の問題が生じる恐れがあるからである。特に好ましい表面温度は80〜400℃であり、80〜300℃が最も良い。
【0038】
アルミニウム材表面と加熱体表面との接触時間は0.001〜30秒とするのが好ましい。接触時間が0.001秒未満では、アルミニウム材の表面を十分に加熱することが出来ず、30秒より長く加熱すると酸化皮膜が厚くなりすぎ、いずれの場合もエッチピットが発生しにくくなるおそれがある。特に好ましい接触時間は0.01〜20秒であり、0.05〜15秒が最も良い。
【0039】
加熱体の表面温度及びアルミニウム材との接触時間は、接触加熱前のアルミニウム材表面の酸化皮膜の特性を考慮して適宜選択すればよい。接触加熱雰囲気は特に限定されず、特別な雰囲気制御も必要なく大気中でも十分である。
【0040】
接触加熱後、アルミニウム材の結晶組織の方位を(100)方位に整えてエッチング特性を向上させることを主目的とし最終焼鈍がなされる。
【0041】
最終焼鈍においては、その前工程である接触加熱工程でアルミニウム材の表面に形成された酸化皮膜の厚さを最終焼鈍工程で増大させ過ぎて、結晶性酸化物がエッチング核となり得る可能性を消去させないように、酸化皮膜の合計厚さがハンターホール法(M.S.Hunter and P. Fowle, J. Electrochem. Soc., 101[9], 483 (1954)参照)による厚さで2.5〜5nmとなるように、最終焼鈍を実施するのが好ましい。また、最終焼鈍後のアルミニウム材の(100)面積率は90%以上が好ましい。
【0042】
この最終焼鈍における処理雰囲気は特に限定されるものではないが、酸化皮膜の厚さを増大させすぎないように、水分および酸素の少ない雰囲気中で加熱するのが好ましい。具体的には、アルゴン、窒素等の不活性ガス中あるいは0.1Pa以下の真空中で加熱することが好ましい。
【0043】
最終焼鈍の方法は特に限定されるものではなく、コイルに巻き取った状態でバッチ焼鈍しても良く、コイルを巻き戻し連続焼鈍した後コイルに巻き取っても良く、バッチ焼鈍と連続焼鈍の少なくともどちらかを複数回行っても良い。
【0044】
最終焼鈍時の保持温度、時間は特に限定されるものではないが、たとえばコイルの状態でバッチ焼鈍を行なう場合は、アルミニウム実体温度450〜600℃にて、10分〜50時間焼鈍するのが好ましい。アルミニウム実体温度が400℃未満、時間が10分未満では、酸化皮膜中のエッチピットの核と成り得る結晶性酸化物粒子の生成が十分ではなく、その分散状態が疎となりすぎて、結晶をエッチング核とするエッチング時の拡面効果が期待できない恐れがあり、(100)面の結晶方位の発達も不十分であるからである。逆に600℃を越えて焼鈍すると、コイルでバッチ焼鈍する場合はアルミニウム材が密着を起こし易くなり、また50時間を超えて焼鈍してもエッチング表面積拡大効果は飽和し、却って熱エネルギーコストの増大を招く。特に好ましい温度は、アルミニウム実体温度で460〜560℃、時間は30分〜40時間である。
【0045】
また、焼鈍工程における昇温速度・パターンは特に限定されず、一定速度で昇温させても良く、昇温、温度保持を繰り返しながらステップ昇温・冷却させてもよい。アルミニウム実体温度450〜600℃の温度域で合計10分〜50時間焼鈍されれば良い。
【0046】
最終焼鈍後に得られる電解コンデンサ電極用アルミニウム材の厚さは特に規定されない。
【0047】
最終焼鈍後のアルミニウム材には、表面積を拡大させるためにエッチング処理が施される。エッチング処理条件は特に限定されることはないが、直流エッチング法を採用するのが良い。直流エッチングによって、アルミニウム材の表面に存在する結晶性酸化物粒子がエッチピット核となり、多数のトンネル状ピットが生成される。
【0048】
エッチング処理後、化成処理を行って陽極材とすることができ、特に、中圧および高圧用電解コンデンサ電極材として用いるのが良い。もとより、陰極材あるいは低圧用として用いることを妨げるものではない。
【0049】
【実施例】
以下に本発明の実施例および比較例を示す。
【0050】
最終圧延後のアルミニウム材をアルカリ洗浄もしくは酸洗浄する前に行う有機溶剤洗浄に用いる有機溶剤洗浄液を表1に、アルカリ洗浄液を表2に、酸洗浄液を表3に示す。
【0051】
【表1】

Figure 2004006685
【0052】
【表2】
Figure 2004006685
【0053】
【表3】
Figure 2004006685
【0054】
(実施例1)
厚さ110μmに圧延された純度99.99質量%のアルミニウム箔(アルミニウム材)に対し、表1のA2液での洗浄、乾燥、表2のB6液での40秒間の洗浄、水洗、乾燥、表3のC1液での60秒間の洗浄、水洗、乾燥の各工程を順次実施した。
【0055】
次に、アルミニウム箔を表面温度が250℃のステンレス製加熱板2枚の間に挟み、2秒間接触加熱を行った。
【0056】
ついで、接触加熱後のアルミニウム箔を重ねた状態でアルゴン雰囲気下でアルミニウム箔の実体温度を室温から500℃まで50℃/hで昇温させた後、500℃にて24時間保持させ、次いで冷却した後炉出しし、電解コンデンサ電極用アルミニウム箔を得た。
(実施例2〜49)
実施例1と同じ厚さ110μmに圧延された純度99.99質量%のアルミニウム箔を、表4または表5の条件、工程順にて洗浄し乾燥させた後、表4または表5の条件にて接触加熱を行った。
【0057】
なお、有機溶剤洗浄後には乾燥を、酸洗浄後およびアルカリ洗浄後には水洗を実施した。また、実施例41、実施例43及び実施例44では、加熱体として表面にクロムメッキを施した熱ロールを用いた。
【0058】
接触加熱後のアルミニウム箔を重ねた状態で、アルゴン雰囲気下でアルミニウム箔の実体温度を室温から表4または表5に示す焼鈍実体温度まで50℃/hで昇温させた後、前記焼鈍実体温度にて24時間保持させ、次いで冷却した後炉出しし、電解コンデンサ電極用アルミニウム箔を得た。
(比較例1〜4)
実施例1と同じ厚さ110μmに圧延された純度99.99質量%のアルミニウム箔に対し、表5の条件にて表1のA1液での洗浄、乾燥、表2のB5液での40秒間の洗浄、乾燥を実施した。
【0059】
次に、接触加熱処理を実施することなく、アルミニウム箔を重ねた状態でアルゴン雰囲気下でアルミニウム箔の実体温度を室温から表5に示す焼鈍実体温度まで50℃/hで昇温させた後、前記焼鈍実体温度にて24時間保持させ、次いで冷却した後炉出しし、電解コンデンサ電極用アルミニウム箔を得た。
【0060】
上記実施例および比較例で得られた箔をHCl 1.0mol・dm−3とHSO 3.5mol・dm−3を含む液温75℃の水溶液に浸漬した後、電流密度0.2A/cmで電解処理を施した。電解処理後の箔をさらに前記組成の塩酸―硫酸混合水溶液に90℃にて360秒浸漬し、ピット径を太くしエッチド箔を得た。
【0061】
得られたエッチド箔を、化成電圧270VにてEIAJ規格に従い化成処理して陽極材とし、静電容量測定用サンプルを得た。各サンプルについて測定した静電容量を、比較例1を100とした場合の相対値にて表4及び表5に示す。
【0062】
【表4】
Figure 2004006685
【0063】
【表5】
Figure 2004006685
【0064】
上記表から理解されるように、本発明実施例では、アルカリ洗浄及び/または酸洗浄を行った後に接触加熱を実施することにより、接触加熱を行わない比較例に比べ静電容量が高いことがわかる。
【0065】
【発明の効果】
第1の発明によれば、アルミニウムを溶解し得る液での洗浄後のアルミニウム材を接触加熱することによりアルミニウム材の表層酸化皮膜を安定化させ、その後焼鈍することにより、エッチング特性に優れ高静電容量を得ることの出来る電解コンデンサ電極用アルミニウム材を製造できる。特に加熱方法として、接触加熱を用いることから、均一に短時間でアルミニウム材表面を目的の温度に到達させることができるため、温度制御が比較的容易であり、しかも急速かつ短時間で加熱できるため雰囲気の影響を少なくできる。
【0066】
第2の発明によれば、アルカリ洗浄後のアルミニウム材を接触加熱することによりアルミニウム材の表層酸化皮膜を安定化させ、その後焼鈍することにより、エッチング特性に優れ高静電容量を得ることの出来る電解コンデンサ電極用アルミニウム材を製造できる。特に加熱方法として、接触加熱を用いることから、均一に短時間でアルミニウム材表面を目的の温度に到達させることができるため、温度制御が比較的容易であり、しかも急速かつ短時間で加熱できるため雰囲気の影響を少なくできる。
【0067】
第3の発明によれば、酸洗浄後のアルミニウム材を接触加熱することによりアルミニウム材の表層酸化皮膜を安定化させ、その後焼鈍することにより、エッチング特性に優れ高静電容量を得ることの出来る電解コンデンサ電極用アルミニウム材を製造できる。特に加熱方法として、接触加熱を用いることから、均一に短時間でアルミニウム材表面を目的の温度に到達させることができるため、温度制御が比較的容易であり、しかも急速かつ短時間で加熱できるため雰囲気の影響を少なくできる。
【0068】
第4の発明によれば、アルカリ洗浄と酸洗浄との順次的実施により、均質で安定した酸化皮膜を形成でき、静電容量が高くなる。
【0069】
第5の発明によれば、最終圧延後アルミニウム材をアルカリ洗浄もしくは酸洗浄する前に有機溶剤洗浄するから、アルミニウム材表面を脱脂でき、良好な酸化皮膜の形成が可能となる。
【0070】
第6の発明によれば、加熱体の表面温度が50〜450℃、加熱体との接触時間が0.001〜30秒であるから、表層酸化皮膜の結晶化率や結晶性酸化物微粒子を十分に制御した適度な厚さの安定した酸化皮膜を形成できる。
【0071】
第7の発明によれば、焼鈍が、アルミニウム材の実体温度450〜600℃にて不活性ガス雰囲気で行われるから、酸化皮膜中にエッチピットの核となりうる結晶性酸化物粒子を均一に分散させることができる。
【0072】
第8の発明によれば、加熱体が熱ロールまたは加熱板であるから、良好な加熱接触を簡易に行うことができる。
【0073】
第9の発明によれば、アルカリ洗浄に用いるアルカリ洗浄液が水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、オルト珪酸ナトリウム、メタケイ酸ナトリウム、リン酸三ナトリウムから選ばれた1種または2種以上のアルカリを含む水溶液であるから、アルミニウム材の表層酸化皮膜を確実に安定化させることができ、エッチング特性に優れ高静電容量を得ることの出来る電解コンデンサ電極用アルミニウム材を製造できる。
【0074】
第10の発明によれば、酸洗浄に用いる酸洗浄液が、塩酸、硫酸、硝酸、リン酸から選ばれた1種または2種以上の酸を含む水溶液であることにより、アルミニウム材の表層酸化皮膜を確実に安定化させることができ、エッチング特性に優れ高静電容量を得ることの出来る電解コンデンサ電極用アルミニウム材を製造できる。
【0075】
第11の発明によれば、エッチング特性に優れ高静電容量を得ることの出来る電解コンデンサ陽極用アルミニウム材を製造できる。
【0076】
第12の発明によれば、アルミニウム材のアルミニウム純度が99.9%以上であるから、特に化成処理が必要な陽極材として好適なものとなる。
【0077】
第13の発明によれば、高静電容量の電解コンデンサ用電極材を得ることができる。
【0078】
第14の発明によれば、高静電容量のアルミニウム電解コンデンサとなし得る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an aluminum material for an electrolytic capacitor electrode, a method for producing an electrode material for an electrolytic capacitor, and an aluminum electrolytic capacitor.
[0002]
In this specification, the term “aluminum” is used to include alloys thereof, and aluminum materials include foils and plates and molded bodies using these.
[0003]
[Prior art]
An aluminum material generally used as an electrode material for an aluminum electrolytic capacitor is subjected to an electrochemical or chemical etching treatment in order to increase the specific surface area and increase the capacitance.
[0004]
Generally, aluminum materials for electrolytic capacitor electrodes for medium and high pressures that generate tunnel-like pits by direct current etching are used for melting, adjusting components, slab casting, soaking, hot rolling, cold rolling, and intermediate annealing of aluminum materials. After finishing cold rolling (low-pressure rolling), it is obtained by final annealing in an inert atmosphere or vacuum at a temperature of about 500 ° C. for the purpose of developing the crystal orientation of the (100) plane. Here, the intermediate annealing is a process performed for the purpose of eliminating the distortion of the crystal structure of the aluminum foil generated by the cold rolling of the previous process in the middle of the rolling process.
[0005]
On the surface of the aluminum material after cold rolling, there is an oil component and a heterogeneous oxide film formed by rolling. In addition, a contaminated layer due to a rolled altered layer, roll coating during rolling, or the like is unevenly present near the surface of the aluminum material. These inhomogeneous oxide film, rolled altered layer and contaminated layer cause inhomogeneity of the oxide film generated in the final annealing process after finish cold rolling, deteriorate the etching characteristics of the produced aluminum material, and cause etching. It is thought to hinder the effective area expansion.
[0006]
In order to remove the heterogeneous oxide film, rolled alteration layer and contaminated layer on the surface layer of the aluminum material, it is effective to wash with an aqueous cleaning solution containing alkali or acid after the cold rolling and before the final annealing. In general, the surface of an aluminum material after washing with an aqueous cleaning solution contains a large amount of hydroxyl groups and adsorbed water, and the surface oxide film of the aluminum material is unstable.
[0007]
In the following Patent Document 1, the step of removing the surface layer of the aluminum foil, the step of heat oxidation under the conditions of temperature: 40 to 350 ° C., dew point: 0 to 80 ° C., time: 30 to 1800 seconds after the removal, A method for producing an aluminum material for electrolytic capacitor electrodes is disclosed, which comprises performing a step of annealing in a non-oxidizing atmosphere after heat oxidation.
[0008]
In the following Patent Document 2, the thickness of the barrier type oxide film on the surface of the aluminum foil is adjusted to 2.5 angstroms or less during the cleaning process before the final annealing, and after the cleaning process and before the finish annealing process. The aluminum foil for electrolytic capacitor anodes, wherein the aluminum foil is heat-treated in an oxidizing atmosphere at 150 to 400 ° C. to grow the thickness of the barrier type oxide film on the surface of the aluminum foil to 10 angstroms or less. The production method is shown, and it is described that the heat treatment time is preferably about 5 minutes to 3 hours.
[0009]
Non-Patent Document 1 described below describes that the crystalline oxide generated on the surface of the aluminum material during the final annealing serves as the nucleus of the etch pit.
[0010]
[Patent Document 1]
JP-A-7-201673
[0011]
[Patent Document 2]
JP-A-5-279815
[0012]
[Non-Patent Document 1]
Nobuo Osawa, Kiyoshi Fukuoka; Surface Technology, 50 [7], 643 (1999)
[0013]
[Problems to be solved by the invention]
In the methods of Patent Document 1 and Patent Document 2 described above, a stabilized surface oxide film of an aluminum material is obtained because heating is performed after cleaning. However, since the heating method is atmospheric heating, the oxide film generated by heating is an atmosphere. There is a problem that it takes time for heat treatment.
[0014]
Further, as in Non-Patent Document 1, it is known that the crystalline oxide generated on the surface of the aluminum material at the time of the final annealing becomes the nucleus of the etch pit, and the density of the crystalline oxide and the crystal particle diameter However, Patent Document 1 and Patent Document 2 do not describe the relationship between the generation of crystalline oxide particles and the etching characteristics.
[0015]
The present invention has been made in view of such circumstances. Conventionally, heat treatment for stabilizing an oxide film on the surface of an aluminum material, which has been performed before final annealing, is easily affected by the atmosphere and takes a long time to process. In addition, the effective area can be increased by etching, and as a result, a method for producing an aluminum material for electrolytic capacitor electrodes, and a method for producing an electrolytic capacitor electrode material, which can obtain a high capacitance, and It is an object to provide an aluminum electrolytic capacitor.
[0016]
[Means for Solving the Problems]
The present invention provides the following means. That is,
(1) An aluminum material for electrolytic capacitor electrodes, comprising: a step of washing the aluminum material after rolling with a solution capable of dissolving aluminum, heating the aluminum material by contact with a heating body, and further annealing the aluminum material. Production method.
(2) A method for producing an aluminum material for electrolytic capacitor electrodes, comprising a step of subjecting an aluminum material after rolling to alkali cleaning, heating the aluminum material by contact with a heating body, and further annealing the aluminum material.
(3) A method for producing an aluminum material for electrolytic capacitor electrodes, comprising the steps of: acid-washing a rolled aluminum material, heating the aluminum material by contact with a heating body, and further annealing.
(4) An aluminum material for electrolytic capacitor electrodes, comprising: a step of sequentially performing alkali cleaning and acid cleaning on a rolled aluminum material, then heating the aluminum material by contact with a heating body, and further annealing the aluminum material. Production method.
(5) The method for producing an aluminum material for electrolytic capacitor electrodes as described in any one of 1 to 4 above, wherein the aluminum material is washed with an organic solvent before being subjected to alkali washing or acid washing after rolling.
(6) The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of items 1 to 5, wherein the surface temperature of the heating body is 50 to 450 ° C. and the contact time with the heating body is 0.001 to 30 seconds.
(7) The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of items 1 to 6, wherein the annealing is performed in an inert gas atmosphere at an actual temperature of the aluminum material of 450 to 600 ° C.
(8) The method for producing an aluminum material for electrolytic capacitor electrodes as described in any one of 1 to 7 above, wherein the heating body is a hot roll or a heating plate.
(9) The alkali cleaning solution used for alkali cleaning is an aqueous solution containing one or more alkalis selected from sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium orthosilicate, sodium metasilicate, and trisodium phosphate. The manufacturing method of the aluminum material for electrolytic capacitor electrodes in a certain previous clause 2 and 4-8.
(10) For an electrolytic capacitor electrode according to any one of items 3 to 8 above, wherein the acid cleaning solution used for the acid cleaning is an aqueous solution containing one or more acids selected from hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid. Manufacturing method of aluminum material.
(11) The method for producing an aluminum material for electrolytic capacitor electrodes as described in any one of 1 to 10 above, wherein the aluminum material is for an electrolytic capacitor anode.
(12) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 1 to 11, wherein the aluminum purity of the aluminum material is 99.9% or more.
(13) A method for producing an electrode material for electrolytic capacitors, wherein the aluminum foil produced by the production method according to any one of items 1 to 12 is etched.
(14) An aluminum electrolytic capacitor in which an electrode material manufactured by the manufacturing method according to item 13 is used.
[0017]
Contact heating, which heats an aluminum material by contact with a heating element, is excellent in that the surface of the aluminum material can reach the target temperature in a short time by the heating element contact surface, and because it can be heated in a short time, the atmosphere There is an advantage that temperature control is easy.
[0018]
When the aluminum material obtained by the above manufacturing method is etched, the effective area is increased because the oxide film on the surface of the aluminum material can be stabilized by the contact heating before annealing, and thereby the etch pits on the surface during annealing. This is because crystalline oxide particles serving as nuclei are uniformly formed.
[0019]
As the kind of the crystalline oxide particles, γ-Al 2 O 3 And other Al 2 O 3 AlOOH including boehmite, oxides and hydroxides of metals other than aluminum (eg, Mg, Pb, Cu, etc.), composite metals of aluminum and metals other than aluminum (eg, Mg, Pb, Cu, etc.) Although there is an oxide or a hydroxide, it is not particularly limited, and either single crystal or polycrystal may be used. Further, a single or a plurality of crystals may be covered with an amorphous material to form one particle, and an amorphous oxide may exist between aggregated oxide crystals.
[0020]
Below, the manufacturing method of the aluminum material for electrolytic capacitor electrodes by this invention is demonstrated.
[0021]
The purity of the aluminum material used in the present invention is not particularly limited as long as it is within the range used for an electrolytic capacitor electrode. However, the purity is preferably 99.9% by mass or more, particularly preferably 99.95% by mass or more. In the present invention, the purity of the aluminum material is a value obtained by subtracting the total concentration (mass%) of Fe, Si, Cu, Mn, Cr, Zn, Ti and Ga from 100 mass%.
[0022]
In addition, aluminum materials to be cleaned with a solution capable of dissolving aluminum are generally dissolved, adjusted components, slab casting, soaking, hot rolling, cold rolling, intermediate annealing, finish cold rolling (low pressure) It is manufactured through each step of (under rolling). These steps may be in accordance with general methods and are not particularly limited. However, the manufacturing process conditions of the aluminum material may be appropriately changed in relation to the etching conditions of the aluminum material.
[0023]
In the middle of the rolling process, annealing (hereinafter referred to as intermediate annealing) may be performed for the purpose of eliminating the distortion of the crystal structure of the aluminum material caused by rolling in the previous process. In the step before the intermediate annealing, cleaning may be performed using an acid aqueous solution, an alkali aqueous solution, or an organic solvent for the purpose of removing impurities and oil on the surface.
[0024]
In order to generate a homogeneous and stable oxide film on the surface of the aluminum material, and to produce crystalline oxide particles that become etch pit nuclei with good dispersibility on the surface of the aluminum material during final annealing, the aluminum material after final rolling is dissolved in aluminum. Washing with a liquid that can be contacted, followed by contact heating.
[0025]
Examples of the solution capable of dissolving aluminum include an aqueous solution containing at least one selected from the group consisting of acids, alkalis, ammonia, and amines, and washing at least one of alkali washing and acid washing after final rolling. It is preferable to carry out.
[0026]
The alkali of the alkali cleaning solution used for the alkali cleaning is not particularly limited, but sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium silicate, trisodium phosphate, disodium hydrogen phosphate, hypochlorous acid. Sodium etc. can be illustrated and the aqueous solution containing at least 1 or more types of alkali can be used as a washing | cleaning liquid.
[0027]
The alkali concentration in the alkali cleaning liquid is preferably 0.005 to 50% (mass%, the same applies hereinafter), the liquid temperature is preferably 5 to 80 ° C., and the cleaning time is preferably 1 second to 10 minutes. If the alkali concentration is less than 0.005% and the liquid temperature is less than 5 ° C., there is a possibility that the effect of surface homogenization by washing cannot be obtained. If the alkali concentration exceeds 50%, it may take time to remove the alkali remaining on the surface of the aluminum material after alkali cleaning, and if the liquid temperature exceeds 80 ° C, the aluminum material may be dissolved quickly and it may be difficult to control the cleaning. is there. If the alkali cleaning time is less than 1 second, cleaning may be insufficient, and even if cleaning is performed for longer than 10 minutes, the cleaning effect reaches saturation, and the aluminum material may be dissolved more than necessary. Particularly preferably, the alkali concentration in the alkali cleaning liquid is 0.05 to 10%, the liquid temperature is 10 to 70 ° C., and the cleaning time is 2 seconds to 5 minutes.
[0028]
It is preferable to perform water washing for the purpose of removing the residue of the cleaning liquid component adhering to the surface of the aluminum material after alkali cleaning.
[0029]
On the other hand, the acid of the acid cleaning solution used for the acid cleaning is not particularly limited, but Lewis acid can be used, for example, inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, boric acid, hydrofluoric acid, and the like. Organic acids such as acetic acid, oxalic acid and citric acid can be exemplified, and an aqueous solution containing at least one of these acids can be used as the cleaning liquid. Further, a surfactant may be added to the acid aqueous solution in order to increase the degreasing power. The acid concentration is preferably 0.05 to 50%, the liquid temperature is 5 to 80 ° C., and the washing time is 0.5 seconds to 10 minutes. If the acid concentration, liquid temperature, and cleaning time during acid cleaning are below the lower limit of the above range, cleaning may be insufficient, and if the acid concentration, liquid temperature, and cleaning time exceed the upper limit of the above range, the cleaning effect is saturated. May increase the cost. Particularly preferred are an acid concentration of 0.05 to 30%, a liquid temperature of 10 to 70 ° C., and a washing time of 1 second to 5 minutes.
[0030]
It is preferable to perform water washing for the purpose of preventing excessive residue of the acid solution component adhering to the surface of the aluminum material after the acid washing.
[0031]
Examples of the alkali cleaning and acid cleaning methods include an immersion method and a spray method, but the cleaning method is not particularly limited.
[0032]
At least one of the alkali cleaning and the acid cleaning may be performed, but both may be performed at least once. In the case of performing both, the order is not particularly limited, but it is preferable to perform acid cleaning after first performing alkali cleaning. A more uniform and stable oxide film can be formed by neutralizing the surface of the aluminum material by performing acid cleaning after efficiently removing the contaminated layer on the surface by alkali cleaning.
[0033]
In addition, the acid concentration when the acid cleaning is performed after the alkali cleaning may be lower than the above 0.05 to 50%, and the cleaning time may be shorter than the above 0.5 seconds to 10 minutes.
[0034]
Before the alkali cleaning or acid cleaning, the aluminum material may be cleaned with an organic solvent for the purpose of degreasing. Examples of organic solvents include alcohols, aromatic hydrocarbons such as toluene / xylene, pentane / hexane / aliphatic hydrocarbons, acetone, ketones, esters, etc. May be used.
[0035]
Next, the aluminum material washed with a solution capable of dissolving aluminum is heated by contact with a heating body.
[0036]
The heating body may be anything as long as contact heating is possible, such as a heat roll, a heating plate, or a heating belt, and a plurality of contact heating means may be combined. Moreover, the front and back of an aluminum material may be heated simultaneously, may be heated one by one, and only one of the front and back may be heated. As the material of the heating surface of the heating element, stainless steel, plating, ceramics, Teflon (registered trademark), silicone resin, etc. can be freely selected, but a substance in which the surface oxide film of the aluminum material does not adhere to the surface of the heating element is preferable. .
[0037]
As for the surface temperature of the heating body made to contact an aluminum material, 50-450 degreeC is preferable. When the surface temperature of the heating body is less than 50 ° C., the crystallization rate of the surface oxide film after annealing and the control of the crystalline oxide fine particles are not sufficient, and when the surface temperature is higher than 450 ° C., the oxide film becomes too thick. This may cause operational problems. A particularly preferable surface temperature is 80 to 400 ° C, and 80 to 300 ° C is the best.
[0038]
The contact time between the aluminum material surface and the heated body surface is preferably 0.001 to 30 seconds. If the contact time is less than 0.001 seconds, the surface of the aluminum material cannot be sufficiently heated, and if heated for longer than 30 seconds, the oxide film becomes too thick, and in any case, there is a possibility that etch pits are less likely to occur. is there. Particularly preferable contact time is 0.01 to 20 seconds, and 0.05 to 15 seconds is the best.
[0039]
What is necessary is just to select suitably the surface temperature of a heating body and the contact time with an aluminum material in consideration of the characteristic of the oxide film on the aluminum material surface before contact heating. The contact heating atmosphere is not particularly limited, and it is sufficient even in the air without requiring special atmosphere control.
[0040]
After the contact heating, final annealing is performed mainly for the purpose of improving the etching characteristics by adjusting the orientation of the crystal structure of the aluminum material to the (100) orientation.
[0041]
In the final annealing, the thickness of the oxide film formed on the surface of the aluminum material in the contact heating process, which is the previous process, is excessively increased in the final annealing process, eliminating the possibility that crystalline oxide can become etching nuclei. The total thickness of the oxide film is determined by the Hunter Hall method (MS Hunter and P. Foule, J. Electrochem. Soc., 101 [9], 483 (1954)), the final annealing is preferably performed so that the thickness is 2.5 to 5 nm. The (100) area ratio of the aluminum material after the final annealing is preferably 90% or more.
[0042]
The treatment atmosphere in the final annealing is not particularly limited, but it is preferable to heat in an atmosphere with little moisture and oxygen so as not to increase the thickness of the oxide film. Specifically, it is preferable to heat in an inert gas such as argon or nitrogen or in a vacuum of 0.1 Pa or less.
[0043]
The method of final annealing is not particularly limited, and batch annealing may be performed in a state where the coil is wound around the coil, winding may be performed after rewinding and continuous annealing of the coil, and at least batch annealing and continuous annealing may be performed. Either one may be performed multiple times.
[0044]
The holding temperature and time during the final annealing are not particularly limited. For example, when batch annealing is performed in a coil state, it is preferable to perform annealing at an aluminum body temperature of 450 to 600 ° C. for 10 minutes to 50 hours. . When the aluminum body temperature is less than 400 ° C. and the time is less than 10 minutes, the crystalline oxide particles that can be the nucleus of the etch pit in the oxide film are not sufficiently generated, and the dispersion state becomes too sparse and the crystal is etched. This is because there is a possibility that the surface expansion effect during etching as a nucleus cannot be expected, and the crystal orientation of the (100) plane is not sufficiently developed. On the other hand, when annealing is performed at a temperature exceeding 600 ° C., the aluminum material tends to adhere when batch annealing is performed with a coil, and the effect of expanding the etching surface area is saturated even when annealing is performed for more than 50 hours, and the heat energy cost is increased. Invite. A particularly preferable temperature is 460 to 560 ° C. at the aluminum body temperature, and the time is 30 minutes to 40 hours.
[0045]
Further, the temperature raising rate / pattern in the annealing step is not particularly limited, and the temperature may be raised at a constant rate, or the step temperature raising / cooling may be performed while repeating the temperature raising and temperature holding. What is necessary is just to anneal for a total of 10 minutes-50 hours in the temperature range of aluminum solid temperature 450-600 degreeC.
[0046]
The thickness of the aluminum material for electrolytic capacitor electrodes obtained after the final annealing is not particularly defined.
[0047]
The aluminum material after the final annealing is subjected to an etching process in order to increase the surface area. Etching conditions are not particularly limited, but a direct current etching method is preferably employed. By direct current etching, crystalline oxide particles present on the surface of the aluminum material become etch pit nuclei, and a large number of tunnel-like pits are generated.
[0048]
After the etching treatment, a chemical conversion treatment can be performed to obtain an anode material, and in particular, it is preferably used as an electrolytic capacitor electrode material for medium pressure and high pressure. Of course, it does not preclude use as a cathode material or a low-pressure material.
[0049]
【Example】
Examples of the present invention and comparative examples are shown below.
[0050]
Table 1 shows organic solvent cleaning liquids used for organic solvent cleaning performed before alkali cleaning or acid cleaning of the aluminum material after the final rolling, Table 2 shows alkali cleaning liquids, and Table 3 shows acid cleaning liquids.
[0051]
[Table 1]
Figure 2004006685
[0052]
[Table 2]
Figure 2004006685
[0053]
[Table 3]
Figure 2004006685
[0054]
(Example 1)
For aluminum foil (aluminum material) having a purity of 99.99% by mass rolled to a thickness of 110 μm, washing with A2 solution in Table 1 and drying, washing with B6 solution in Table 2 for 40 seconds, washing with water, drying, Each of the steps of cleaning with C1 solution in Table 3 for 60 seconds, washing with water, and drying was sequentially performed.
[0055]
Next, the aluminum foil was sandwiched between two stainless steel heating plates having a surface temperature of 250 ° C., and contact heating was performed for 2 seconds.
[0056]
Next, the aluminum foil after contact heating was overlaid in an argon atmosphere at an actual temperature of the aluminum foil from room temperature to 500 ° C. at 50 ° C./h, held at 500 ° C. for 24 hours, and then cooled. Then, the furnace was discharged and an aluminum foil for electrolytic capacitor electrodes was obtained.
(Examples 2-49)
An aluminum foil having a purity of 99.99% by mass rolled to the same thickness of 110 μm as in Example 1 was washed and dried in the order of the conditions and steps in Table 4 or Table 5, and then in the conditions of Table 4 or Table 5. Contact heating was performed.
[0057]
In addition, drying was performed after the organic solvent cleaning, and water cleaning was performed after the acid cleaning and the alkali cleaning. Moreover, in Example 41, Example 43, and Example 44, the heat roll which gave the surface chrome plating was used as a heating body.
[0058]
In a state where the aluminum foils after contact heating are stacked, the solid body temperature of the aluminum foil is raised from room temperature to the annealing solid temperature shown in Table 4 or 5 at 50 ° C./h in an argon atmosphere, and then the annealing solid temperature For 24 hours, and after cooling, the furnace was discharged to obtain an aluminum foil for electrolytic capacitor electrodes.
(Comparative Examples 1-4)
The aluminum foil having a purity of 99.99% by mass rolled to the same thickness of 110 μm as in Example 1 was washed with the A1 solution in Table 1 under the conditions in Table 5, dried, and 40 seconds in the B5 solution in Table 2. Was washed and dried.
[0059]
Next, without carrying out contact heat treatment, after raising the solid temperature of the aluminum foil from room temperature to the annealing solid temperature shown in Table 5 at 50 ° C./h in an argon atmosphere with the aluminum foil stacked, It was kept at the annealing body temperature for 24 hours, then cooled and then discharged from the furnace to obtain an aluminum foil for electrolytic capacitor electrodes.
[0060]
The foils obtained in the above Examples and Comparative Examples were made with HCl 1.0 mol · dm. -3 And H 2 SO 4 3.5 mol · dm -3 After being immersed in an aqueous solution having a liquid temperature of 75 ° C., a current density of 0.2 A / cm 2 The electrolytic treatment was applied. The foil after the electrolytic treatment was further immersed in a hydrochloric acid-sulfuric acid mixed aqueous solution having the above composition at 90 ° C. for 360 seconds to increase the pit diameter and obtain an etched foil.
[0061]
The obtained etched foil was subjected to chemical conversion treatment according to the EIAJ standard at a chemical conversion voltage of 270 V to obtain an anode material, and a capacitance measurement sample was obtained. The capacitance measured for each sample is shown in Tables 4 and 5 as relative values when Comparative Example 1 is 100.
[0062]
[Table 4]
Figure 2004006685
[0063]
[Table 5]
Figure 2004006685
[0064]
As can be seen from the above table, in the examples of the present invention, by performing contact heating after performing alkali cleaning and / or acid cleaning, the capacitance may be higher than in the comparative example in which contact heating is not performed. Understand.
[0065]
【The invention's effect】
According to the first aspect of the present invention, the surface oxide film of the aluminum material is stabilized by contact heating of the aluminum material after washing with a solution capable of dissolving aluminum, and thereafter annealed to provide excellent etching characteristics and high static performance. An aluminum material for an electrolytic capacitor electrode capable of obtaining a capacitance can be produced. In particular, since contact heating is used as a heating method, the surface of the aluminum material can reach the target temperature uniformly and in a short time, and therefore temperature control is relatively easy and can be heated rapidly and in a short time. The influence of the atmosphere can be reduced.
[0066]
According to the second aspect of the present invention, the surface oxide film of the aluminum material is stabilized by contact heating of the aluminum material after alkali cleaning, and then annealed to obtain excellent etching characteristics and high capacitance. An aluminum material for electrolytic capacitor electrodes can be manufactured. In particular, since contact heating is used as a heating method, the surface of the aluminum material can reach the target temperature uniformly and in a short time, and therefore temperature control is relatively easy and can be heated rapidly and in a short time. The influence of the atmosphere can be reduced.
[0067]
According to the third aspect of the present invention, the surface oxide film of the aluminum material is stabilized by contact heating of the acid-washed aluminum material, and then annealed to obtain excellent etching characteristics and high capacitance. An aluminum material for electrolytic capacitor electrodes can be manufactured. In particular, since contact heating is used as a heating method, the surface of the aluminum material can reach the target temperature uniformly and in a short time, and therefore temperature control is relatively easy and can be heated rapidly and in a short time. The influence of the atmosphere can be reduced.
[0068]
According to the fourth aspect of the present invention, a uniform and stable oxide film can be formed by sequentially performing alkali cleaning and acid cleaning, and the electrostatic capacity is increased.
[0069]
According to the fifth invention, after the final rolling, the aluminum material is washed with an organic solvent before being washed with an alkali or acid, so that the surface of the aluminum material can be degreased and a good oxide film can be formed.
[0070]
According to the sixth invention, since the surface temperature of the heating body is 50 to 450 ° C. and the contact time with the heating body is 0.001 to 30 seconds, the crystallization rate of the surface oxide film and the crystalline oxide fine particles are A stable oxide film having an adequately controlled and moderate thickness can be formed.
[0071]
According to the seventh invention, since the annealing is performed in an inert gas atmosphere at an actual temperature of 450 to 600 ° C. of the aluminum material, the crystalline oxide particles that can be the nucleus of the etch pit are uniformly dispersed in the oxide film. Can be made.
[0072]
According to the eighth invention, since the heating body is a hot roll or a heating plate, good heating contact can be easily performed.
[0073]
According to the ninth invention, the alkali cleaning solution used for the alkali cleaning is one or more selected from sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium orthosilicate, sodium metasilicate, and trisodium phosphate. Since the aqueous solution contains an alkali, the surface oxide film of the aluminum material can be reliably stabilized, and an aluminum material for an electrolytic capacitor electrode that has excellent etching characteristics and high capacitance can be produced.
[0074]
According to the tenth invention, the acid cleaning solution used for the acid cleaning is an aqueous solution containing one or more acids selected from hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, so that the surface oxide film of the aluminum material is obtained. Can be reliably stabilized, and an aluminum material for electrolytic capacitor electrodes can be produced that has excellent etching characteristics and can provide a high capacitance.
[0075]
According to the eleventh invention, an aluminum material for an electrolytic capacitor anode that is excellent in etching characteristics and can obtain a high capacitance can be produced.
[0076]
According to the twelfth invention, since the aluminum purity of the aluminum material is 99.9% or more, it is suitable as an anode material that particularly requires chemical conversion treatment.
[0077]
According to the thirteenth invention, an electrode material for an electrolytic capacitor having a high capacitance can be obtained.
[0078]
According to the fourteenth invention, an aluminum electrolytic capacitor having a high capacitance can be obtained.

Claims (14)

圧延後のアルミニウム材をアルミニウムを溶解し得る液で洗浄した後、アルミニウム材を加熱体との接触により加熱し、さらに焼鈍する工程を含むことを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。A method for producing an aluminum material for electrolytic capacitor electrodes, comprising: a step of washing an aluminum material after rolling with a solution capable of dissolving aluminum, then heating the aluminum material by contact with a heating body, and further annealing. 圧延後のアルミニウム材にアルカリ洗浄を施した後、アルミニウム材を加熱体との接触により加熱し、さらに焼鈍する工程を含むことを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。A method for producing an aluminum material for electrolytic capacitor electrodes, comprising: a step of subjecting an aluminum material after rolling to alkali cleaning, heating the aluminum material by contact with a heating body, and further annealing. 圧延後のアルミニウム材に酸洗浄を施した後、アルミニウム材を加熱体との接触により加熱し、さらに焼鈍する工程を含むことを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。A method for producing an aluminum material for electrolytic capacitor electrodes, comprising: steps of subjecting an aluminum material after rolling to acid cleaning, heating the aluminum material by contact with a heating body, and further annealing the aluminum material. 圧延後のアルミニウム材にアルカリ洗浄、酸洗浄を順次施した後、アルミニウム材を加熱体との接触により加熱し、さらに焼鈍する工程を含むことを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。A method for producing an aluminum material for an electrolytic capacitor electrode, comprising: subjecting a rolled aluminum material to alkali cleaning and acid cleaning in order, heating the aluminum material by contact with a heating body, and further annealing. 圧延後アルミニウム材をアルカリ洗浄もしくは酸洗浄する前に有機溶剤洗浄する請求項1ないし4のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。The method for producing an aluminum material for an electrolytic capacitor electrode according to any one of claims 1 to 4, wherein the aluminum material is washed with an organic solvent before rolling or acid cleaning after rolling. 加熱体の表面温度が50〜450℃、加熱体との接触時間が0.001〜30秒である請求項1ないし5のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 5, wherein the surface temperature of the heating body is 50 to 450 ° C and the contact time with the heating body is 0.001 to 30 seconds. 焼鈍が、アルミニウム材の実体温度450〜600℃にて不活性ガス雰囲気で行われる請求項1ないし6のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 6, wherein the annealing is performed in an inert gas atmosphere at an actual temperature of the aluminum material of 450 to 600 ° C. 加熱体が熱ロールまたは加熱板である請求項1ないし7のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 7, wherein the heating body is a hot roll or a heating plate. アルカリ洗浄に用いるアルカリ洗浄液が水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、オルト珪酸ナトリウム、メタケイ酸ナトリウム、リン酸三ナトリウムから選ばれた1種または2種以上のアルカリを含む水溶液である請求項2および請求項4ないし8のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。The alkali cleaning solution used for alkali cleaning is an aqueous solution containing one or more alkalis selected from sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium orthosilicate, sodium metasilicate, and trisodium phosphate. 2 and the method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 4 to 8. 酸洗浄に用いる酸洗浄液が、塩酸、硫酸、硝酸、リン酸から選ばれた1種または2種以上の酸を含む水溶液である請求項3ないし8のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。9. The electrolytic capacitor electrode according to claim 3, wherein the acid cleaning solution used for the acid cleaning is an aqueous solution containing one or more acids selected from hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid. Manufacturing method of aluminum material. アルミニウム材が電解コンデンサ陽極用である請求項1ないし10のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 10, wherein the aluminum material is used for an electrolytic capacitor anode. アルミニウム材のアルミニウム純度が99.9%以上である請求項1ないし11のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 11, wherein the aluminum material has an aluminum purity of 99.9% or more. 請求項1ないし12のいずれか1項に記載の製造方法によって製造されたアルミニウム箔に、エッチングを実施することを特徴とする電解コンデンサ用電極材の製造方法。The manufacturing method of the electrode material for electrolytic capacitors characterized by etching to the aluminum foil manufactured by the manufacturing method of any one of Claims 1 thru | or 12. 請求項13に記載の製造方法によって製造された電極材が用いられているアルミニウム電解コンデンサ。The aluminum electrolytic capacitor in which the electrode material manufactured by the manufacturing method of Claim 13 is used.
JP2003057737A 2002-04-25 2003-03-04 The manufacturing method of the aluminum material for electrolytic capacitor electrodes, the manufacturing method of the electrode material for electrolytic capacitors, and an aluminum electrolytic capacitor. Expired - Fee Related JP4498682B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003057737A JP4498682B2 (en) 2002-04-25 2003-03-04 The manufacturing method of the aluminum material for electrolytic capacitor electrodes, the manufacturing method of the electrode material for electrolytic capacitors, and an aluminum electrolytic capacitor.
AT03719219T ATE497630T1 (en) 2002-04-25 2003-04-25 METHOD FOR PRODUCING ALUMINUM MATERIAL FOR AN ELECTRODE OF AN ELECTROLYTIC CAPACITOR, ALUMINUM MATERIAL FOR AN ELECTRODE OF AN ELECTROLYTIC CAPACITOR AND METHOD FOR PRODUCING ELECTRODE MATERIAL FOR AN ELECTROLYTIC CAPACITOR
PCT/JP2003/005384 WO2003091482A1 (en) 2002-04-25 2003-04-25 Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capacitor
AU2003235941A AU2003235941A1 (en) 2002-04-25 2003-04-25 Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capacitor
EP03719219A EP1498513B9 (en) 2002-04-25 2003-04-25 Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capacitor
CN03809123.2A CN1646731A (en) 2002-04-25 2003-04-25 Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capac
DE60335943T DE60335943D1 (en) 2002-04-25 2003-04-25 METHOD FOR PRODUCING ALUMINUM MATERIAL FOR AN ELECTRODE OF AN ELECTROLYTIC CONDENSER, ALUMINUM MATERIAL FOR AN ELECTRODE OF AN ELECTROLYTIC CONDENSER AND METHOD FOR PRODUCING ELECTRODE MATERIAL FOR AN ELECTROLYTIC CONDENSER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002123666 2002-04-25
JP2003057737A JP4498682B2 (en) 2002-04-25 2003-03-04 The manufacturing method of the aluminum material for electrolytic capacitor electrodes, the manufacturing method of the electrode material for electrolytic capacitors, and an aluminum electrolytic capacitor.

Publications (2)

Publication Number Publication Date
JP2004006685A true JP2004006685A (en) 2004-01-08
JP4498682B2 JP4498682B2 (en) 2010-07-07

Family

ID=30447410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003057737A Expired - Fee Related JP4498682B2 (en) 2002-04-25 2003-03-04 The manufacturing method of the aluminum material for electrolytic capacitor electrodes, the manufacturing method of the electrode material for electrolytic capacitors, and an aluminum electrolytic capacitor.

Country Status (1)

Country Link
JP (1) JP4498682B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015916A (en) * 2003-06-03 2005-01-20 Showa Denko Kk Method of producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method of producing electrode material for electrolytic capacitor and aluminum electrolytic capacitor
JP2005268773A (en) * 2004-02-17 2005-09-29 Showa Denko Kk Manufacturing method of aluminum material for electrolytic capacitor electrode, the aluminum material for the electrolytic capacitor electrodes, anode material for aluminum electrolytic capacitors, and the aluminum electrolytic capacitor
JP2006108395A (en) * 2004-10-06 2006-04-20 Nichicon Corp Manufacturing method for electrode foil for aluminum electrolytic capacitor
JP2006148085A (en) * 2004-10-19 2006-06-08 Showa Denko Kk Method of manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2006210894A (en) * 2004-12-27 2006-08-10 Showa Denko Kk Manufacturing method, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and the aluminum electrolytic capacitor of aluminum material for electrolytic capacitor electrode
JP2009010330A (en) * 2007-05-25 2009-01-15 Nichicon Corp Method for manufacturing anode foil for aluminum electrolytic capacitor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386878U (en) * 1986-11-25 1988-06-06
JPH05200407A (en) * 1992-01-27 1993-08-10 Showa Alum Corp Production of aluminum foil for electrolytic capacitor
JPH05255821A (en) * 1992-03-09 1993-10-05 Nippon Foil Mfg Co Ltd Treatment of aluminum foil for electrolytic capacitor electrode
JPH05279815A (en) * 1992-03-30 1993-10-26 Nippon Foil Mfg Co Ltd Production of aluminum foil for electrolytic capacitor anode
JP2001210561A (en) * 2000-01-24 2001-08-03 Mitsubishi Alum Co Ltd Aluminium foil for electrolytic capacitor and production method for alminium foil
JP2002173748A (en) * 2000-12-04 2002-06-21 Mitsubishi Alum Co Ltd Method for producing high purity aluminum foil
JP2003338434A (en) * 2001-08-03 2003-11-28 Showa Denko Kk Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the electrolytic capacitor electrode, and manufacturing method of electrode material for electrolytic capacitor
JP2004006684A (en) * 2002-04-22 2004-01-08 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP2004006683A (en) * 2002-04-02 2004-01-08 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP2004088069A (en) * 2002-07-05 2004-03-18 Showa Denko Kk Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the same, and manufacturing method of electrode material for electrolytic capacitor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386878U (en) * 1986-11-25 1988-06-06
JPH05200407A (en) * 1992-01-27 1993-08-10 Showa Alum Corp Production of aluminum foil for electrolytic capacitor
JPH05255821A (en) * 1992-03-09 1993-10-05 Nippon Foil Mfg Co Ltd Treatment of aluminum foil for electrolytic capacitor electrode
JPH05279815A (en) * 1992-03-30 1993-10-26 Nippon Foil Mfg Co Ltd Production of aluminum foil for electrolytic capacitor anode
JP2001210561A (en) * 2000-01-24 2001-08-03 Mitsubishi Alum Co Ltd Aluminium foil for electrolytic capacitor and production method for alminium foil
JP2002173748A (en) * 2000-12-04 2002-06-21 Mitsubishi Alum Co Ltd Method for producing high purity aluminum foil
JP2003338434A (en) * 2001-08-03 2003-11-28 Showa Denko Kk Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the electrolytic capacitor electrode, and manufacturing method of electrode material for electrolytic capacitor
JP2004006683A (en) * 2002-04-02 2004-01-08 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP2004006684A (en) * 2002-04-22 2004-01-08 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP2004088069A (en) * 2002-07-05 2004-03-18 Showa Denko Kk Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the same, and manufacturing method of electrode material for electrolytic capacitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015916A (en) * 2003-06-03 2005-01-20 Showa Denko Kk Method of producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method of producing electrode material for electrolytic capacitor and aluminum electrolytic capacitor
JP2005268773A (en) * 2004-02-17 2005-09-29 Showa Denko Kk Manufacturing method of aluminum material for electrolytic capacitor electrode, the aluminum material for the electrolytic capacitor electrodes, anode material for aluminum electrolytic capacitors, and the aluminum electrolytic capacitor
JP4708808B2 (en) * 2004-02-17 2011-06-22 昭和電工株式会社 Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2006108395A (en) * 2004-10-06 2006-04-20 Nichicon Corp Manufacturing method for electrode foil for aluminum electrolytic capacitor
JP4576192B2 (en) * 2004-10-06 2010-11-04 ニチコン株式会社 Method for producing electrode foil for aluminum electrolytic capacitor
JP2006148085A (en) * 2004-10-19 2006-06-08 Showa Denko Kk Method of manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4652205B2 (en) * 2004-10-19 2011-03-16 昭和電工株式会社 Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2006210894A (en) * 2004-12-27 2006-08-10 Showa Denko Kk Manufacturing method, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and the aluminum electrolytic capacitor of aluminum material for electrolytic capacitor electrode
JP2009010330A (en) * 2007-05-25 2009-01-15 Nichicon Corp Method for manufacturing anode foil for aluminum electrolytic capacitor

Also Published As

Publication number Publication date
JP4498682B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
JP5501152B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4498682B2 (en) The manufacturing method of the aluminum material for electrolytic capacitor electrodes, the manufacturing method of the electrode material for electrolytic capacitors, and an aluminum electrolytic capacitor.
KR20090114485A (en) Process for producing aluminum material for electrode of electrolytic capacitor, aluminum material for electrolytic capacitor, method for producing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4938226B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP5551743B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JPH05279815A (en) Production of aluminum foil for electrolytic capacitor anode
JP4226930B2 (en) Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP4708808B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4732892B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4170797B2 (en) Method for manufacturing electrolytic capacitor electrode aluminum material, electrolytic capacitor electrode aluminum material, and electrolytic capacitor electrode manufacturing method
JP4105565B2 (en) Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP4874596B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4652205B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4308556B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JP4981932B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4105558B2 (en) Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor, and electrolytic capacitor
JP2003338434A (en) Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the electrolytic capacitor electrode, and manufacturing method of electrode material for electrolytic capacitor
JP4629312B2 (en) Method for producing aluminum material for electrolytic capacitor electrode and method for producing electrode material for electrolytic capacitor
JP5123479B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4690182B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4874589B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4874600B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4308552B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JP2009102741A (en) Method of manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, and method of manufacturing electrode material for electrolytic capacitor
WO2003091482A1 (en) Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4498682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160423

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees