JP2009010330A - Method for manufacturing anode foil for aluminum electrolytic capacitor - Google Patents

Method for manufacturing anode foil for aluminum electrolytic capacitor Download PDF

Info

Publication number
JP2009010330A
JP2009010330A JP2008080103A JP2008080103A JP2009010330A JP 2009010330 A JP2009010330 A JP 2009010330A JP 2008080103 A JP2008080103 A JP 2008080103A JP 2008080103 A JP2008080103 A JP 2008080103A JP 2009010330 A JP2009010330 A JP 2009010330A
Authority
JP
Japan
Prior art keywords
pretreatment
foil
etching step
electrolytic capacitor
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008080103A
Other languages
Japanese (ja)
Other versions
JP5004844B2 (en
Inventor
Takeshi Ichikawa
武志 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2008080103A priority Critical patent/JP5004844B2/en
Publication of JP2009010330A publication Critical patent/JP2009010330A/en
Application granted granted Critical
Publication of JP5004844B2 publication Critical patent/JP5004844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which can manufacture a high-capacity anode foil for an electrolytic capacitor by controlling a pit generating point uniformly using an inexpensive and simple method in an etching step. <P>SOLUTION: In a method for manufacturing the anode foil for aluminum electrolytic capacitor which has a first etching step of generating a tunnel-like pit in an aluminum foil, and a second etching step for expanding the bore diameter of the pit generated in the first etching step, the method has, before the first etching step, a step of performing a first pretreatment of immersing the aluminum foil in first pretreatment solution containing phosphorous acid and nitric acid, and a second pretreatment of immersing the aluminum foil in an alkaline second pretreatment solution containing metal ion. It is desirable to performing a drying treatment without modification after the second pretreatment. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はアルミニウム電解コンデンサ(以下、電解コンデンサと称す)に用いられる陽極箔の製造方法に関し、特に中高圧用の電解コンデンサ用陽極箔の製造方法に関するものである。   The present invention relates to a method for producing an anode foil used for an aluminum electrolytic capacitor (hereinafter referred to as an electrolytic capacitor), and more particularly to a method for producing an anode foil for a medium-high voltage electrolytic capacitor.

近年、電解コンデンサの小形化、コストダウンへの要望がますます高まり、電解コンデンサ用陽極箔(以下、陽極箔と称す)の単位面積当たりの静電容量を高める技術にはより一層の進歩が求められている。   In recent years, there has been an increasing demand for electrolytic capacitor miniaturization and cost reduction, and further progress is required in technology for increasing the capacitance per unit area of anode foil for electrolytic capacitors (hereinafter referred to as anode foil). It has been.

陽極箔の静電容量を高める、すなわち実効表面積を拡大するには、酸性溶液中で化学的または電気化学的にエッチングを行う方法が採られている。
また、中高圧用に使用される陽極箔のエッチング工程は、汚れや自然酸化皮膜、圧延油などを取り除く前処理工程を経て、トンネル状のエッチングピット(以下、ピットと称す)を形成する第1エッチング工程と、そのピットを陽極酸化電圧に適した孔径まで拡大する第2エッチング工程に分割して行うのが主流となっており、特に第1エッチング工程において、いかに多くのトンネルピットを分散させて生成させることができるかが重要となる。
In order to increase the capacitance of the anode foil, that is, to increase the effective surface area, a method of chemically or electrochemically etching in an acidic solution is employed.
In addition, the etching process of the anode foil used for medium and high pressure is a first process for forming tunnel-like etching pits (hereinafter referred to as pits) through a pretreatment process for removing dirt, natural oxide film, rolling oil, and the like. The mainstream is to divide the etching process into a second etching process that expands the pits to a hole diameter suitable for the anodic oxidation voltage. In particular, in the first etching process, how many tunnel pits are dispersed. Whether it can be generated is important.

そのために、アルミニウム原箔表層に濃縮した微量不純物を付着させ、ピット発生の基点とする手法が一般的となっているが、濃縮度合が不均一となってしまうのが欠点であった。
その解決策として、酸性またはアルカリ性の水溶液に浸漬処理を行い、その後アルミニウムよりも自然電極電位の高い金属イオンを含む酸性溶液中でカソード電流を印加して原箔表面にピット発生基点となる金属イオンを均一に付着させるという製造方法が提案されている(例えば、特許文献1参照)。
For this reason, a method of attaching a small amount of concentrated impurities to the surface layer of the aluminum foil and using it as a starting point of pit generation has become common, but it has been a disadvantage that the degree of concentration becomes uneven.
As a solution, a metal ion that becomes a pit generation base point on the surface of the original foil by immersing it in an acidic or alkaline aqueous solution and then applying a cathode current in an acidic solution containing a metal ion having a higher natural electrode potential than aluminum. There has been proposed a manufacturing method for uniformly attaching (see, for example, Patent Document 1).

特開平9−167721号公報JP-A-9-167721

しかしながら、特許文献1に開示の方法では、アルミニウム箔を、金属イオンを含有した酸性水溶液中に浸漬すると、アルミニウム箔表面に金属イオンが吸着する量が増大せず、金属イオンを吸着させるのにカソード電流印加工程が必要となる場合がある。このときには生産コスト高となる上、通常、直後の第1エッチング工程でアノード電流印加が必要となるため、設備面の煩雑化につながってしまう。   However, in the method disclosed in Patent Document 1, when the aluminum foil is immersed in an acidic aqueous solution containing metal ions, the amount of metal ions adsorbed on the surface of the aluminum foil does not increase, and the cathode is used to adsorb metal ions. A current application step may be required. In this case, the production cost is high, and normally, an anode current needs to be applied in the first etching step immediately after that, which leads to complicated facilities.

本発明は、この問題を解決するものであり、簡易な方法でピット発生点を均一に制御して高容量の電解コンデンサ用陽極箔を安価に製造できる方法を提供することを目的とするものである。   The present invention is to solve this problem, and an object of the present invention is to provide a method for producing a high-capacity electrolytic capacitor anode foil at a low cost by uniformly controlling pit generation points by a simple method. is there.

上記課題を解決するため、本発明では、アルミニウム箔にトンネル状ピットを発生させる第1エッチング工程と、第1エッチング工程で発生したピットの孔径を拡大するための第2エッチング工程とを有する電解コンデンサ用陽極箔の製造方法において、前記第1エッチング工程の前に、前記アルミニウム箔を第1前処理液に浸漬する第1前処理と、該アルミニウム箔を金属イオンを含むアルカリ性の第2前処理液に浸漬する第2前処理とを有することを特徴とする。   In order to solve the above-mentioned problem, in the present invention, an electrolytic capacitor having a first etching step for generating tunnel-like pits in an aluminum foil and a second etching step for expanding the hole diameter of the pits generated in the first etching step In the method for manufacturing an anode foil, a first pretreatment for immersing the aluminum foil in a first pretreatment liquid and an alkaline second pretreatment liquid containing metal ions before the first etching step. And a second pretreatment immersed in the substrate.

本発明において、前記第2前処理液として、水酸化ナトリウム、炭酸ナトリウム、ケイ酸ナトリウムのうち少なくとも1種を含むアルカリ性溶液に、Zn、Sn、Ti、Cu、Bi、Pb、Mgのうち少なくとも1種の金属塩を混合した溶液を用い、かつ、第2前処理液の液温が80℃以上であることが好ましい。   In the present invention, as the second pretreatment liquid, an alkaline solution containing at least one of sodium hydroxide, sodium carbonate, and sodium silicate is used, and at least one of Zn, Sn, Ti, Cu, Bi, Pb, and Mg. It is preferable to use a solution in which seed metal salts are mixed and the liquid temperature of the second pretreatment liquid is 80 ° C. or higher.

本発明において、前記第2前処理工程と第1エッチング工程との間に乾燥処理工程を有することが好ましい。   In the present invention, it is preferable to have a drying treatment step between the second pretreatment step and the first etching step.

本発明において、前記乾燥処理の温度は25〜100℃であることが好ましい。   In this invention, it is preferable that the temperature of the said drying process is 25-100 degreeC.

本発明では、第1前処理において、リン酸および硝酸を含む酸性の第1前処理液によってアルミニウム箔の表面濃縮不純物を取り除きながら表面を活性化させ、第2前処理において、金属イオンを含むアルカリ性の第2前処理液に浸漬することにより、アルミニウム箔表面が中和された後、箔表面がアルカリ性雰囲気になるため、アルミニウムイオンと金属イオンの電位差を利用する金属イオンの吸着を効率的に行わせることができるとともに、分布が均一で、かつ長さの揃ったピットを発生させることができ、その結果、単位面積あたりの静電容量が高いエッチング箔を得ることができると考えられる。   In the present invention, in the first pretreatment, the surface is activated while removing the surface concentrated impurities of the aluminum foil with the acidic first pretreatment liquid containing phosphoric acid and nitric acid, and in the second pretreatment, the alkali containing metal ions is activated. After the surface of the aluminum foil is neutralized by dipping in the second pretreatment liquid, the foil surface becomes an alkaline atmosphere, so that the metal ions are efficiently adsorbed using the potential difference between the aluminum ions and the metal ions. It is considered that pits having uniform distribution and uniform length can be generated, and as a result, an etching foil having a high capacitance per unit area can be obtained.

また、本発明の電解コンデンサ用陽極箔の製造方法によれば、前記第2前処理は、カソード電流印加ではなく、処理液への浸漬処理が行われるため、安価で簡易な設備によってピット発生のための金属塩をより均一にアルミニウム箔表面に付着させることができる。
これにより単位面積あたりの静電容量が高いエッチング箔を提供することができ、電解コンデンサの小形化に寄与することができる。
Further, according to the method for manufacturing an anode foil for an electrolytic capacitor of the present invention, the second pretreatment is not cathodic current application, but is immersed in a treatment solution, so that pits are generated by inexpensive and simple equipment. Therefore, the metal salt can be more uniformly attached to the surface of the aluminum foil.
As a result, an etching foil having a high capacitance per unit area can be provided, which can contribute to downsizing of the electrolytic capacitor.

また、本発明では、第2前処理後に水洗することなくそのまま乾燥処理を行うことにより、アルミニウム箔表面に金属イオンが付着するために、さらなるピット分布の均一化が進むので、単位面積あたりの静電容量がより高いエッチング箔を得ることができると考えられる。   In the present invention, since the metal ions adhere to the surface of the aluminum foil by performing the drying process without washing with water after the second pretreatment, the pit distribution is further uniformized. It is considered that an etching foil having a higher electric capacity can be obtained.

以下、実施例に基づいて本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

[実施例1]
純度99.99%、厚さ110μmの高純度軟質アルミニウム箔を使用し、第1前処理として、リン酸10.0mol/L、硝酸1.0mol/Lの混合溶液(第1処理液)にアルミニウム箔を15秒間浸漬した。その際の液温は70℃である。
[Example 1]
A high-purity soft aluminum foil having a purity of 99.99% and a thickness of 110 μm is used. As a first pretreatment, aluminum is added to a mixed solution (first treatment liquid) of 10.0 mol / L phosphoric acid and 1.0 mol / L nitric acid. The foil was immersed for 15 seconds. The liquid temperature in that case is 70 degreeC.

次に、第2前処理として、Pbイオン(30ppm)を含む0.01mol/Lの水酸化ナトリウム水溶液(第2処理液)を80℃に加熱し、その溶液にアルミニウム箔を60秒間浸漬した。   Next, as a second pretreatment, a 0.01 mol / L sodium hydroxide aqueous solution (second treatment liquid) containing Pb ions (30 ppm) was heated to 80 ° C., and an aluminum foil was immersed in the solution for 60 seconds.

十分な水洗を行った後、第1エッチング工程として、硫酸3.0mol/L、塩化アルミニウム1.0mol/Lの混合溶液を75℃に加熱し、該溶液中で、上記のアルミニウム箔に電流密度0.2A/cm、電気量18C/cmにて、直流電流を印加する処理を行った。 After sufficient water washing, as a first etching step, a mixed solution of sulfuric acid 3.0 mol / L and aluminum chloride 1.0 mol / L is heated to 75 ° C., and the current density is applied to the aluminum foil in the solution. A treatment for applying a direct current was performed at 0.2 A / cm 2 and an electric quantity of 18 C / cm 2 .

続いて、第2エッチング工程として、塩酸0.50mol/L、塩化アルミニウム1.0mol/Lの混合溶液を85℃に加熱し、上記のエッチング箔を15分間浸漬してピットの孔径拡大を行い、水洗、脱塩素処理を施し、エッチング箔試料を作製した。   Subsequently, as a second etching step, a mixed solution of hydrochloric acid 0.50 mol / L and aluminum chloride 1.0 mol / L is heated to 85 ° C., and the etching foil is immersed for 15 minutes to expand the pit hole diameter, Washing with water and dechlorination were performed to prepare an etching foil sample.

[実施例2〜4]第2前処理液の浸漬温度比較
第2前処理液の温度を70、90、100℃の範囲で変更した以外は、実施例1と同様の方法でエッチング箔試料を作製した。
[Examples 2 to 4] Comparison of immersion temperature of second pretreatment liquid Etching foil samples were prepared in the same manner as in Example 1 except that the temperature of the second pretreatment liquid was changed in the range of 70, 90, and 100 ° C. Produced.

(比較例1)
第2前処理を行わない以外は、実施例1と同様の方法でエッチング箔試料を作製した。
(Comparative Example 1)
An etching foil sample was produced in the same manner as in Example 1 except that the second pretreatment was not performed.

(比較例2)
上記の第1前処理、第2前処理の代わりに、自然酸化皮膜や圧延油を取り除くための公知の前処理(0.5mol/Lのリン酸水溶液に3分間浸漬)のみを行い、第1および第2前処理を行わない以外は、実施例1と同様の方法でエッチング箔試料を作製した。
(Comparative Example 2)
Instead of the first pretreatment and the second pretreatment, only a known pretreatment for removing a natural oxide film and rolling oil (immersion in a 0.5 mol / L phosphoric acid aqueous solution for 3 minutes) is performed. An etching foil sample was prepared in the same manner as in Example 1 except that the second pretreatment was not performed.

(比較例3)
上記の第1前処理を、自然酸化皮膜や圧延油を取り除くための公知の前処理条件である0.5mol/Lのリン酸水溶液への3分間浸漬を行う以外は、実施例1と同様の方法でエッチング箔試料を作製した。
(Comparative Example 3)
The first pretreatment is the same as in Example 1 except that the first pretreatment is performed for 3 minutes in a 0.5 mol / L phosphoric acid aqueous solution, which is a known pretreatment condition for removing the natural oxide film and rolling oil. The etching foil sample was produced by the method.

(比較例4)
上記の第1前処理を、10.0mol/Lのリン酸水溶液のみで行う以外は、実施例1と同様の方法でエッチング箔試料を作製した。
(Comparative Example 4)
An etching foil sample was prepared in the same manner as in Example 1 except that the first pretreatment was performed only with a 10.0 mol / L phosphoric acid aqueous solution.

(比較例5)
上記の第1前処理を、1.0mol/Lの硝酸水溶液のみで行う以外は、実施例1と同様の方法でエッチング箔試料を作製した。
(Comparative Example 5)
An etching foil sample was prepared in the same manner as in Example 1 except that the first pretreatment was performed only with a 1.0 mol / L nitric acid aqueous solution.

[実施例5〜10]第2前処理液の含有金属塩比較
上記の実施例1において、第2前処理液の含有する金属塩を、Pbの代わりに、Zn、Sn、Ti、Cu、Bi、Mgとしたものについても、実施例1と同様の方法でエッチング箔試料を作製した。なお、金属イオン濃度はいずれも30ppmとした。
[Examples 5 to 10] Comparison of metal salt contained in second pretreatment liquid In Example 1 above, the metal salt contained in the second pretreatment liquid was replaced by Zn, Sn, Ti, Cu, Bi instead of Pb. Etching foil samples were prepared by the same method as in Example 1 for Mg. The metal ion concentration was 30 ppm.

[実施例11、12]第2前処理液のアルカリ性液種の比較
上記の実施例1において、第2前処理液のアルカリ性液種を水酸化ナトリウムの代わりに炭酸ナトリウム、ケイ酸ナトリウムを用いた水溶液(濃度は何れも0.02mol/L)(実施例11、12)についても、実施例1と同様の方法でエッチング箔試料を作製した。
[Examples 11 and 12] Comparison of alkaline liquid type of second pretreatment liquid In Example 1 above, sodium carbonate and sodium silicate were used as the alkaline liquid type of the second pretreatment liquid instead of sodium hydroxide. Etching foil samples were prepared in the same manner as in Example 1 for aqueous solutions (both concentrations were 0.02 mol / L) (Examples 11 and 12).

[実施例1a〜1e]第2前処理後、水洗なしで乾燥(温度)の比較
上記の実施例1において、第2前処理後、水洗なしでそのまま乾燥処理を行った。なお、乾燥処理温度は各々、25、45、80、100、120℃とした以外は、実施例1と同様の方法でエッチング箔試料を作製した。
[Examples 1a to 1e] Comparison of drying (temperature) without washing with water after the second pretreatment In Example 1, the drying treatment was performed as it was without washing with water after the second pretreatment. In addition, the etching foil sample was produced by the method similar to Example 1 except the drying process temperature having been 25, 45, 80, 100, and 120 degreeC, respectively.

[実施例5b〜10b]第2前処理液の含有金属塩、水洗なしで乾燥(温度変更)の比較
上記の実施例5〜10において、第2前処理後、水洗なしでそのまま、乾燥処理温度45℃、乾燥時間5分間で乾燥処理を行った以外は、実施例5〜10と同様の方法でエッチング箔試料を作製した。
[Examples 5b to 10b] Comparison of the metal salt contained in the second pretreatment liquid and drying (temperature change) without washing In the above Examples 5 to 10, the drying treatment temperature was maintained without washing after the second pretreatment. Etching foil samples were prepared in the same manner as in Examples 5 to 10 except that the drying treatment was performed at 45 ° C. and a drying time of 5 minutes.

上記の実施例1〜12、1a〜1e、5b〜10b、比較例1〜5のエッチング箔試料について、濃度100g/L、液温90℃のホウ酸水溶液中で400V化成を行い、各試料について静電容量と、折曲強度(φ1.0mm、2.5N荷重、折曲角度90度の条件下で1往復を4回とする)を測定した。その結果を表1に示す。   For the etching foil samples of Examples 1 to 12, 1a to 1e, 5b to 10b, and Comparative Examples 1 to 5, 400V conversion was performed in a boric acid aqueous solution having a concentration of 100 g / L and a liquid temperature of 90 ° C. Capacitance and bending strength (φ1.0 mm, 2.5N load, bending angle 90 °, one round trip was set to 4 times) were measured. The results are shown in Table 1.

Figure 2009010330
Figure 2009010330

[第2前処理液への浸漬有無、第1前処理液への浸漬有無比較] 実施例1、比較例1、2
実施例1と比較例1とを比較すると、表1の結果から分かるように、第1前処理のみで第2前処理を行わない場合、ピット発生点となる不純物が取り除かれた状態であるため、正常なエッチングが行われず静電容量が、大幅に低下し、また、折曲強度も低下した。よって、第2前処理が必須であることが分かる。
また、比較例2のように、第1および第2前処理を行わない場合、ピット発生点となる不純物が残存するが、均一に分布していないため、静電容量が若干低下し、折曲強度が低下した。
[Comparison of presence / absence of immersion in second pretreatment liquid and presence / absence of immersion in first pretreatment liquid] Example 1, Comparative Examples 1 and 2
When Example 1 and Comparative Example 1 are compared, as can be seen from the results in Table 1, when the second pretreatment is not performed with only the first pretreatment, the impurities that are the pit generation points are removed. As a result, normal etching was not performed, and the capacitance was greatly lowered, and the bending strength was also lowered. Therefore, it turns out that the second pretreatment is essential.
In addition, as in Comparative Example 2, when the first and second pretreatments are not performed, impurities that become pit generation points remain, but since the impurities are not uniformly distributed, the capacitance is slightly lowered and bending is caused. The strength decreased.

[第1前処理の条件比較] 実施例1、比較例3〜5
実施例1と比較例3とを比較すると、表1の結果から分かるように、リン酸および硝酸を含む第1前処理液による第1前処理を行わず、0.5mol/Lのリン酸水溶液のみで行う比較例3の場合、アルミニウム箔の表面濃縮不純物の除去、表面の活性化が不十分になると考えられる。
よって、比較例3の場合、アルミニウム箔表面の不純物の除去、表面活性化が不十分なため、第2前処理において、金属イオンを含むアルカリ性の第2前処理液に浸漬したとき、アルミニウムイオンと金属イオンの電位差を利用する金属イオンの吸着を効率的に行わせることができなくなる。それ故、ピットの分布が不均一で、かつ長さが不揃いとなり、正常なエッチングが行われず、静電容量が低下し、また、折曲強度も低下している。
また、上記の第1前処理を、10.0mol/Lのリン酸水溶液のみで行う場合(比較例4)、または、1.0mol/Lの硝酸水溶液のみで行う場合(比較例5)、上記比較例3よりは若干改善されるが、それでもやはり、静電容量低下、折曲強度低下を十分に抑えることができなかった。
従って、リン酸および硝酸を含む酸性の第1前処理液による第1前処理は、アルミニウム箔表面の濃縮不純物の除去、表面の活性化を十分に行わせ、第2前処理の効果を得る上で、必須条件となる。
[Comparison of Conditions for First Pretreatment] Example 1 and Comparative Examples 3 to 5
When Example 1 and Comparative Example 3 are compared, as can be seen from the results in Table 1, the 0.5 mol / L phosphoric acid aqueous solution is not used without performing the first pretreatment with the first pretreatment liquid containing phosphoric acid and nitric acid. In the case of Comparative Example 3 performed only with this, it is considered that the removal of surface concentrated impurities and the activation of the surface of the aluminum foil are insufficient.
Therefore, in the case of Comparative Example 3, since the removal of impurities on the surface of the aluminum foil and the surface activation are insufficient, in the second pretreatment, when immersed in an alkaline second pretreatment liquid containing metal ions, aluminum ions and Adsorption of metal ions utilizing the potential difference of metal ions cannot be performed efficiently. Therefore, the distribution of pits is not uniform and the lengths are not uniform, normal etching is not performed, the capacitance is lowered, and the bending strength is also lowered.
Moreover, when performing said 1st pre-processing only with 10.0 mol / L phosphoric acid aqueous solution (Comparative Example 4), or when performing only with 1.0 mol / L nitric acid aqueous solution (Comparative Example 5), the said Although it is slightly improved as compared with Comparative Example 3, it was still impossible to sufficiently suppress the decrease in capacitance and the decrease in bending strength.
Therefore, the first pretreatment with the acidic first pretreatment liquid containing phosphoric acid and nitric acid sufficiently removes the concentrated impurities on the surface of the aluminum foil and activates the surface to obtain the effect of the second pretreatment. This is a necessary condition.

[第2前処理液への浸漬温度比較] 実施例1〜4
表1に示す実施例1〜4の結果から明らかなように、実施例1〜4は比較例1〜5と比較し静電容量は同等以上で折曲強度が向上している。さらに、第2前処理液への浸漬温度は80℃以上の場合、静電容量、折曲強度ともに大きく向上しており、より好ましい。80℃以上にすることで、金属塩がアルミニウム箔へ均一に分散し、吸着するためと考えられる。
[Comparison of immersion temperature in second pretreatment liquid] Examples 1 to 4
As is clear from the results of Examples 1 to 4 shown in Table 1, Examples 1 to 4 have a capacitance equal to or higher than that of Comparative Examples 1 to 5 and have improved bending strength. Furthermore, when the immersion temperature in the second pretreatment liquid is 80 ° C. or higher, both the capacitance and the bending strength are greatly improved, which is more preferable. It is considered that the metal salt is uniformly dispersed and adsorbed on the aluminum foil when the temperature is 80 ° C. or higher.

[他の実施例比較] 実施例1、5〜10、11、12
上記実施例では、第2前処理液に水酸化ナトリウムとPbを使用したが、アルカリ性物質を炭酸ナトリウム、ケイ酸ナトリウムに変更した場合も、上記と同様の効果が得られた(実施例1、11、12)。
また、Pbの代わりにZn、Sn、Ti、Cu、Bi、Mgの何れか1種を混合しても、上記と同様の効果が得られた(実施例1、5〜10)。
さらに、Pb、Zn、Sn、Ti、Cu、Bi、Mgの中から複数種混合しても、同様の効果が得られた。
そして、前記第2前処理のアルカリ性として、水酸化ナトリウム、炭酸ナトリウム、ケイ酸ナトリウムを複数種混合した場合も、同様の効果が得られた。
[Comparison of Other Examples] Examples 1, 5 to 10, 11, 12
In the said Example, although sodium hydroxide and Pb were used for the 2nd pre-processing liquid, the effect similar to the above was acquired when the alkaline substance was changed into sodium carbonate and sodium silicate (Example 1, 11, 12).
Further, even when any one of Zn, Sn, Ti, Cu, Bi, and Mg was mixed instead of Pb, the same effects as described above were obtained (Examples 1, 5 to 10).
Furthermore, the same effect was obtained even when plural kinds of Pb, Zn, Sn, Ti, Cu, Bi, and Mg were mixed.
And the same effect was acquired also when multiple types of sodium hydroxide, sodium carbonate, and sodium silicate were mixed as alkalinity of the said 2nd pretreatment.

[第2前処理後、水洗なしで乾燥(温度)の比較] 実施例1a〜1e
実施例1と実施例1a〜1eの結果から分かるように、水洗なしで乾燥処理を行った場合、水洗ありの場合よりも、さらに静電容量が増加している。
ここで、実施例1a〜1eの結果から分かるように、乾燥処理は25〜100℃で行うのが好適である。120℃で行っても、静電容量、折曲強度にさらなる改善効果はみられず、また、25℃以下では乾燥に時間を要するため、乾燥処理は25〜100℃で行うことが望ましい。
[Comparison of drying (temperature) after the second pretreatment without washing with water] Examples 1a to 1e
As can be seen from the results of Example 1 and Examples 1a to 1e, when the drying treatment is performed without water washing, the capacitance is further increased as compared with the case with water washing.
Here, as can be seen from the results of Examples 1a to 1e, the drying process is preferably performed at 25 to 100 ° C. Even if it is performed at 120 ° C., no further improvement effect is observed in the capacitance and bending strength, and it takes time for drying at 25 ° C. or lower.

[第2前処理液の含有金属塩、水洗なしで乾燥(温度)の比較]実施例5〜10、実施例5b〜10b
上記の実施例5〜10と、実施例5b〜10bとを比較すると、第2前処理液の含有する金属塩を、Pbの代わりに、Zn、Sn、Ti、Cu、Bi、Mgとしたものについても上記と同様、水洗なしで乾燥処理を行った場合の方が、水洗ありの場合よりも、静電容量が増加している。
[Comparison of metal salt contained in second pretreatment liquid, drying without washing with water (temperature)] Examples 5 to 10, Examples 5b to 10b
When the above Examples 5 to 10 and Examples 5b to 10b are compared, the metal salt contained in the second pretreatment liquid is Zn, Sn, Ti, Cu, Bi, Mg instead of Pb. Similarly to the above, the electrostatic capacity increases when the drying treatment is performed without washing, as compared with the case with washing.

Claims (4)

アルミニウム箔にトンネル状ピットを発生させる第1エッチング工程と、第1エッチング工程で発生したピットの孔径を拡大するための第2エッチング工程とを有するアルミニウム電解コンデンサ用陽極箔の製造方法において、
前記第1エッチング工程の前に、
前記アルミニウム箔をリン酸および硝酸を含む酸性の第1前処理液に浸漬する第1前処理と、
該アルミニウム箔を金属イオンを含むアルカリ性の第2前処理液に浸漬する第2前処理とを行う工程を有することを特徴とするアルミニウム電解コンデンサ用陽極箔の製造方法。
In the method for producing an anode foil for an aluminum electrolytic capacitor, comprising: a first etching step for generating tunnel-like pits in the aluminum foil; and a second etching step for expanding the hole diameter of the pits generated in the first etching step.
Before the first etching step,
A first pretreatment of immersing the aluminum foil in an acidic first pretreatment liquid containing phosphoric acid and nitric acid;
A method for producing an anode foil for an aluminum electrolytic capacitor, comprising a step of performing a second pretreatment of immersing the aluminum foil in an alkaline second pretreatment liquid containing metal ions.
前記第2前処理液として、水酸化ナトリウム、炭酸ナトリウム、ケイ酸ナトリウムのうち少なくとも1種を含むアルカリ性溶液に、Zn、Sn、Ti、Cu、Bi、Pb、Mgのうち少なくとも1種の金属塩を混合した溶液を用い、かつ、第2前処理液の液温が80℃以上であることを特徴とする請求項1に記載のアルミニウム電解コンデンサ用陽極箔の製造方法。   As the second pretreatment liquid, an alkaline solution containing at least one of sodium hydroxide, sodium carbonate, and sodium silicate, and at least one metal salt of Zn, Sn, Ti, Cu, Bi, Pb, and Mg 2. The method for producing an anode foil for an aluminum electrolytic capacitor according to claim 1, wherein the second pretreatment liquid is 80 ° C. or higher. 前記第2前処理工程と第1エッチング工程との間に、乾燥処理工程を有することを特徴とする請求項1または2に記載のアルミニウム電解コンデンサ用陽極箔の製造方法。   The method for producing an anode foil for an aluminum electrolytic capacitor according to claim 1, further comprising a drying treatment step between the second pretreatment step and the first etching step. 前記乾燥処理の温度が25〜100℃であることを特徴とする請求項1〜3のいずれか1項に記載のアルミニウム電解コンデンサ用陽極箔の製造方法。   The temperature of the said drying process is 25-100 degreeC, The manufacturing method of the anode foil for aluminum electrolytic capacitors of any one of Claims 1-3 characterized by the above-mentioned.
JP2008080103A 2007-05-25 2008-03-26 Method for producing anode foil for aluminum electrolytic capacitor Active JP5004844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008080103A JP5004844B2 (en) 2007-05-25 2008-03-26 Method for producing anode foil for aluminum electrolytic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007139474 2007-05-25
JP2007139474 2007-05-25
JP2008080103A JP5004844B2 (en) 2007-05-25 2008-03-26 Method for producing anode foil for aluminum electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2009010330A true JP2009010330A (en) 2009-01-15
JP5004844B2 JP5004844B2 (en) 2012-08-22

Family

ID=40325080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008080103A Active JP5004844B2 (en) 2007-05-25 2008-03-26 Method for producing anode foil for aluminum electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5004844B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103280327A (en) * 2013-05-16 2013-09-04 陶荣燕 Method for preparing high dielectric constant electrode foil
JP2015079913A (en) * 2013-10-18 2015-04-23 ニチコン株式会社 Method for manufacturing electrode foil for electrolytic capacitor
DE102016107489B4 (en) 2015-09-02 2023-11-09 Mitsubishi Electric Corporation Dither power supply control method and dither power supply control apparatus
WO2023236572A1 (en) * 2022-06-09 2023-12-14 南通海星电子股份有限公司 Preparation process for polyimide-aluminum composite foil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255821A (en) * 1992-03-09 1993-10-05 Nippon Foil Mfg Co Ltd Treatment of aluminum foil for electrolytic capacitor electrode
JP2004006685A (en) * 2002-04-25 2004-01-08 Showa Denko Kk Method of manufacturing aluminum material for electrode of electrolytic capacitor, method of manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2005015916A (en) * 2003-06-03 2005-01-20 Showa Denko Kk Method of producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method of producing electrode material for electrolytic capacitor and aluminum electrolytic capacitor
JP2006108395A (en) * 2004-10-06 2006-04-20 Nichicon Corp Manufacturing method for electrode foil for aluminum electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255821A (en) * 1992-03-09 1993-10-05 Nippon Foil Mfg Co Ltd Treatment of aluminum foil for electrolytic capacitor electrode
JP2004006685A (en) * 2002-04-25 2004-01-08 Showa Denko Kk Method of manufacturing aluminum material for electrode of electrolytic capacitor, method of manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2005015916A (en) * 2003-06-03 2005-01-20 Showa Denko Kk Method of producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method of producing electrode material for electrolytic capacitor and aluminum electrolytic capacitor
JP2006108395A (en) * 2004-10-06 2006-04-20 Nichicon Corp Manufacturing method for electrode foil for aluminum electrolytic capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103280327A (en) * 2013-05-16 2013-09-04 陶荣燕 Method for preparing high dielectric constant electrode foil
JP2015079913A (en) * 2013-10-18 2015-04-23 ニチコン株式会社 Method for manufacturing electrode foil for electrolytic capacitor
DE102016107489B4 (en) 2015-09-02 2023-11-09 Mitsubishi Electric Corporation Dither power supply control method and dither power supply control apparatus
WO2023236572A1 (en) * 2022-06-09 2023-12-14 南通海星电子股份有限公司 Preparation process for polyimide-aluminum composite foil

Also Published As

Publication number Publication date
JP5004844B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5004844B2 (en) Method for producing anode foil for aluminum electrolytic capacitor
JP2007103798A (en) Method of forming aluminum electrode foil for electrolytic capacitor
JP4520385B2 (en) Method for producing aluminum electrode foil for electrolytic capacitor
JP4811939B2 (en) Formation method of electrode foil for electrolytic capacitor
JP4690221B2 (en) Method for producing anode foil for electrolytic capacitor
JPS5825218A (en) Method of producing low voltage electrolytic condenser electrode foil
JP3582451B2 (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JP4163022B2 (en) Manufacturing method of etching foil for electrolytic capacitor
JP4709069B2 (en) Method for producing aluminum electrode foil for electrolytic capacitor
JP2007036048A (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP4758827B2 (en) Method for producing electrode foil for electrolytic capacitor
JP4970369B2 (en) Manufacturing method of etching foil for electrolytic capacitor
JP4690171B2 (en) Method for producing aluminum electrode foil for electrolytic capacitor
JP2010003996A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JP2007036043A (en) Method for manufacturing electrode foil for aluminum electrolytic capacitor
JP2005142343A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JP2008282994A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JP4338444B2 (en) Manufacturing method of etching foil for electrolytic capacitor
JP3728964B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2005175330A (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JP2007299956A (en) Method for manufacturing cathode foil for electrolytic capacitor
JP2008112877A (en) Manufacturing method of electrode foil for electrolytic capacitor
JP2007311681A (en) Method of manufacturing electrode foil of electrolytic capacitor
JP4826204B2 (en) Electrolytically etched aluminum foil and electrolytic capacitor
JP2011066032A (en) Method of manufacturing electrode foil for electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5004844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250