JP4629312B2 - Method for producing aluminum material for electrolytic capacitor electrode and method for producing electrode material for electrolytic capacitor - Google Patents

Method for producing aluminum material for electrolytic capacitor electrode and method for producing electrode material for electrolytic capacitor Download PDF

Info

Publication number
JP4629312B2
JP4629312B2 JP2003060614A JP2003060614A JP4629312B2 JP 4629312 B2 JP4629312 B2 JP 4629312B2 JP 2003060614 A JP2003060614 A JP 2003060614A JP 2003060614 A JP2003060614 A JP 2003060614A JP 4629312 B2 JP4629312 B2 JP 4629312B2
Authority
JP
Japan
Prior art keywords
aluminum material
electrolytic capacitor
aluminum
heating
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003060614A
Other languages
Japanese (ja)
Other versions
JP2004100033A (en
Inventor
秀樹 西森
和宏 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003060614A priority Critical patent/JP4629312B2/en
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to AU2003235941A priority patent/AU2003235941A1/en
Priority to AT03719219T priority patent/ATE497630T1/en
Priority to DE60335943T priority patent/DE60335943D1/en
Priority to EP03719219A priority patent/EP1498513B9/en
Priority to CN03809123.2A priority patent/CN1646731A/en
Priority to PCT/JP2003/005384 priority patent/WO2003091482A1/en
Publication of JP2004100033A publication Critical patent/JP2004100033A/en
Application granted granted Critical
Publication of JP4629312B2 publication Critical patent/JP4629312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電解コンデンサ電極用アルミニウム材の製造方法及び電解コンデンサ用電極材の製造方法に関する。
【0002】
なお、この明細書において「アルミニウム」の語はその合金を含む意味で用い、アルミニウム材には箔と板およびこれらを用いた成形体が含まれる。
【0003】
【従来の技術及び課題】
アルミニウム電解コンデンサ用電極材として一般に用いられているアルミニウム材は、大きな表面積を有して単位面積当たりの静電容量の大きいものであることが要求されるため、電気化学的あるいは化学的エッチング処理を施して、アルミニウム材の実効面積を拡大することが行われている。
【0004】
直流エッチング法でトンネル状ピットを生成させる電解コンデンサ用アルミニウム材は、アルミニウム材料の溶解成分調整、スラブ鋳造、均熱処理、熱間圧延、冷間圧延、仕上冷間圧延(低圧下圧延)を行った後、 (100)面の結晶方位を発達させるために、500℃前後の温度での最終焼鈍することにより製造される。ここで、最終焼鈍とは、仕上げ冷間圧延の後もしくは仕上げ冷間圧延、洗浄の後に実施する工程である。
【0005】
エッチング前のアルミニウム材の表層酸化膜が厚すぎるとエッチピットの生成が妨害されるため、前記最終焼鈍はアルミニウム材の表層酸化膜の成長を抑制するために真空雰囲気もしくは不活性ガス雰囲気中で行われる。このため、最終焼鈍後に得られる表層酸化膜は薄く、酸水溶液中やアルカリ水溶液中で溶解しやすいものとなる。
【0006】
しかしながら、最終焼鈍前に行われる洗浄後の表面状態や、洗浄以前に行われる圧延により得られる表面状態の影響により、最終焼鈍後に得られるアルミニウム材の表層は、微小領域において不均質なものになりやすい。
【0007】
また、最終焼鈍により生成するアルミニウム材の表層酸化膜は、最終焼鈍前のアルミニウム材表面に存在する水分やAl-OH基、焼鈍雰囲気中に含まれる微量酸素等の影響を受ける。このため、コイルの状態でアルミニウム材を焼鈍する場合には、コイルの幅方向および長手方向で酸化の程度が異なり、エッチング特性がばらつく恐れがある。
【0008】
最終焼鈍後のアルミニウム材のエッチング特性を均一なものにし静電容量を向上させるには、最終焼鈍後にアルミニウム材の表層をさらに酸化させることが有効である。
【0009】
下記特許文献1には、最終焼鈍後のアルミニウム材を大気中、真空中もしくは不活性雰囲気中で加熱し、表面にピットの基点となる欠陥を多く生成させ、それ以外の表面の溶解を防止し静電容量を向上させる方法が開示されている。
【0010】
下記特許文献2には、最終焼鈍(仕上焼鈍)後のアルミニウム箔をアルカリ水溶液で洗浄した後、150〜400℃にて雰囲気加熱することにより静電容量の向上とばらつきの低減を図っている。
【0011】
しかしながら、上記従来の最終焼鈍後の加熱処理は大気中、真空中あるいは不活性ガス中で行われるため、酸素や水蒸気量の影響を受けやすく、再現性良く酸化膜をエッチングに適したものにするには水蒸気量等精確な雰囲気制御が必要であり、アルミニウム箔表面が目的の温度に達するのに時間がかかるという問題点があった。
【0012】
【特許文献1】
特開平11−36053号公報
【0013】
【特許文献2】
特開平5−255821号公報 この発明は、このような従来技術の問題点を解決するためになされたものであって、精確な雰囲気制御を要することなく、短時間で処理でき、アルミニウム材の表層酸化膜が均一でエッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法及び電解コンデンサ用電極材の製造方法を提供することを課題とする。
【0014】
【課題を解決するための手段】
本発明は、以下の手段を提供する。即ち、
(1)アルミニウムスラブに熱間圧延、冷間圧延、最終焼鈍を実施してアルミニウム材としたのち、このアルミニウム材を加熱体との接触により加熱することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
(2)加熱体の表面温度が80〜400℃、アルミニウム材と加熱体との接触時間が0.001〜60秒である請求項1に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(3)最終焼鈍がアルミニウム実体温度450〜600℃にて不活性ガス雰囲気中で行われる請求項1または請求項2に記載の電解コンデンサ電極用アルミニウム電極材の製造方法
(4)
加熱体が熱ロールである前項1ないし前項3のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(5)加熱体との接触後、アルミニウム材を冷却する前項1ないし前項4のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(6)アルミニウム材の冷却を冷却ロールとの接触により行う前項5に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(7) 前項1ないし前項6のいずれかに記載の製造方法によって製造されたアルミニウム材に、直流エッチングを実施することを特徴とする電解コンデンサ用電極材の製造方法。
【0015】
上記のように、この発明は、アルミニウムスラブに熱間圧延、冷間圧延、最終焼鈍を実施してアルミニウム材としたのち、このアルミニウム材を加熱体との接触により加熱することを特徴とする。
【0016】
即ち、最終焼鈍後に加熱体との接触によりアルミニウム材を加熱することにより、アルミニウム材の表層酸化膜を均一なものにし、これによりエッチング特性に優れた電解コンデンサ電極用アルミニウム材を得ることが出来る。加熱方法として接触加熱を用いるのは、加熱体表面により、短時間で均一にアルミニウム材の表面を目的の温度に到達させることができ、制御が比較的容易であり生産性に優れる、急速かつ短時間で加熱できるため雰囲気の影響を受けにくい、アルミニウム材の幅方向・長手方向に均一な酸化膜が形成できる、という利点を有するためである。
【0017】
以下に、電解コンデンサ用アルミニウム材の製造方法を説明する。
【0018】
アルミニウム材の純度は電解コンデンサ用に使用される範囲であれば特に限定されないが、純度99.9質量%以上のものが好ましく、特に99.95質量%以上が好ましい。なお、本発明においてアルミニウム材の純度は100%からFe,Si, Cu, Mn, Cr, Zn, TiおよびGaの合計濃度(質量%)を差し引いた値とする。
【0019】
アルミニウム材の製造は、特に限定されず、アルミニウム材料の溶解成分調整・スラブ鋳造、均熱処理、熱間圧延、冷間圧延、仕上冷間圧延(低圧下圧延)、最終焼鈍、接触加熱の順に実施されるが、アルミニウム材のエッチング条件との関係で、アルミニウム材の製造工程条件は適宜変更される。なお、圧延工程の途中において、前工程の圧延により生じたアルミニウム材の結晶組織の歪みを解消する目的で焼鈍(中間焼鈍と称す)を実施しても良い。
【0020】
また、熱間圧延後、冷間圧延途中あるいは仕上冷間圧延後最終焼鈍前においてアルミニウム表面の不純物や油分を除去する目的で洗浄を行ってもよい。前記洗浄に用いる洗浄液は特に限定されないが、例えばアルカリ水溶液、酸水溶液、有機溶剤等が用いられる。
【0021】
熱間圧延後のアルミニウム材は最終焼鈍後の接触加熱までコイルの状態で処理してもよく、途中の工程でアルミニウム材を切断し、カットサンプルとして処理しても良い。コイルの状態で処理する場合には、例えば最終焼鈍前、最終焼鈍後、接触加熱後等任意の工程間においてスリットを行っても良い。
【0022】
仕上冷間圧延後、要すれば洗浄等を行った後、アルミニウム材の結晶組織の方位を(100)方位に整えてエッチング特性を向上させることを主目的として最終焼鈍がなされる。
【0023】
この最終焼鈍においては、酸化膜の厚さを最終焼鈍工程で増大させ過ぎて、エッチング特性を劣化させないように、最終焼鈍後の酸化皮膜の合計厚さがハンターホール法(M.S.Hunter and P. Fowle, J. Electrochem. Soc., 101[9], 483(1954)参照)による厚さで2.5〜5nmとなるように最終焼鈍を実施するのが好ましい。また、最終焼鈍後のアルミニウム材の(100)面積率は90%以上が好ましい。
【0024】
この最終焼鈍における処理雰囲気は特に限定されるものではないが、酸化皮膜の厚さを増大させすぎないように、水分および酸素の少ない雰囲気中で加熱するのが好ましい。具体的には、アルゴン、窒素などの不活性ガス中あるいは0.1Pa以下の真空中で加熱することが好ましい。
【0025】
最終焼鈍の方法は特に限定されるものではなく、コイルに巻き取った状態でバッチ焼鈍しても良く、コイルを巻き戻し連続焼鈍した後コイルに巻き取っても良く、バッチ焼鈍と連続焼鈍の少なくともどちらかを複数回行っても良い。
【0026】
最終焼鈍時の温度、時間は特に限定されるものではないが、例えばコイルの状態でバッチ焼鈍を行う場合は、アルミニウム実体温度450〜600℃にて、10〜50時間焼鈍するのが好ましい。アルミニウム実体温度が450℃未満、時間が10分未満では、アルミニウム表層の状態がエッチングに適したものにならない可能性があり、(100)面の結晶方位の発達も不十分となる恐れがあるからである。逆に600℃を越えて焼鈍すると、コイルでバッチ焼鈍する場合はアルミニウム材が密着を起こし易くなり、また50時間を超えて焼鈍してもエッチング面積拡大効果は飽和し、却って熱エネルギーコストの増大を招く。特に好ましい温度は、アルミニウム実体温度で460〜580℃、時間は20分〜40時間である。
【0027】
また、昇温速度・パターンは特に限定されず、一定速度で昇温させても良く、昇温、温度保持を繰り返しながらステップ昇温・冷却させても良く、焼鈍工程にてアルミニウム実体温度450〜600℃の温度域で合計10分〜50時間焼鈍されれば良い。
【0028】
最終焼鈍後のアルミニウム材は、必要に応じて表面を洗浄した後、その表層酸化膜を均質なものにするために接触加熱される。加熱手段は、熱ロール、加熱ベルト、加熱板など接触加熱が可能なものであれば良く、片面ずつ加熱しても良く、裏表の一方のみを加熱してもよい。加熱体の加熱表面の材質としては、ステンレス、メッキ、セラミックス、テフロン樹脂(登録商標)、シリコーン樹脂等自由に選択できるが、アルミニウム材の表面酸化膜が加熱体の表面に凝着しない物質が好ましい。
【0029】
アルミニウム材に接触させる加熱体の表面温度は80〜400℃が好ましい。加熱体の表面温度が80℃未満では、加熱が不十分となり、エッチングによりエッチピットが均一に生成しない恐れがある。一方、400℃より高くなると、酸化膜が厚くなりすぎ、冷却時に皺が発生し、操業上の問題が生じる恐れがある。特に好ましい加熱体表面温度は100〜350℃である。さらに好ましい加熱体表面温度は160〜290℃である。
【0030】
アルミニウム材表面と加熱体表面との接触時間は0.001〜60秒とするのが好ましい。接触時間が0.001秒未満では、アルミニウム材の表面酸化膜を均質なものとすることができず、エッチピットの生成が不均一になる恐れがある。一方、60秒より長くすると、酸化膜が厚くなりすぎエッチピットが発生しにくくなる恐れがある。好ましい接触時間は、0.01〜30秒であり、特に0.05〜10秒である。
【0031】
加熱体の表面温度及び接触時間は、接触前のアルミニウム材の表面酸化膜の特性を考慮して適宜選択すればよい。接触加熱雰囲気は特に限定されず、特別な雰囲気制御も必要なく空気中で実施できる。
【0032】
加熱体として熱ロールを用いた加熱装置の一例としては、アルミニウム材の表裏面を目的の温度で接触加熱するために、少なくとも2個の熱ロールを配置した装置が挙げられる。アルミニウム材を熱ロール等で接触加熱した後のアルミニウム材の巻き取り時に皺が生じる場合には、熱ロールなどによる加熱後1個もしくは複数個の冷却ロール等の冷却体を通過させ、アルミニウム材を冷却させてから巻き取る構成としても良い。特に、冷却体として冷却ロールを用いることで、簡便にかつ連続的に冷却を行うことができる。また、熱ロールなどによりアルミニウム材を目的の接触加熱温度に加熱する前に、別の熱ロールを用いて、目的の接触加熱温度より低い温度にアルミニウム材の温度を予備的に上げておいてもよい。
【0033】
最終焼鈍後の接触加熱により得られる電解コンデンサ電極用アルミニウム材の厚さは特に規定されない。
【0034】
最終焼鈍後の接触加熱を終了したアルミニウム材には、拡面積率向上のためエッチング処理を実施する。エッチング処理条件は特に限定されないが、好ましくは直流エッチング法を採用するのが良い。直流エッチング法によって、前記均質な表層酸化膜を有するアルミニウム材が深く太くエッチングされ、多数のトンネル状ピットが生成され、高静電容量が実現される。
【0035】
エッチング処理後、望ましくは化成処理を行って陽極材とするのが良く、特に、中圧用および高圧用の電解コンデンサ電極材として用いるのが良い。もとより、陰極材として用いることを妨げるものではない。
【0036】
上記のような陽極材及び/または陰極材を電極材として用いることによりアルミニウム電解コンデンサが構成される。この電解コンデンサでは、電極材の拡面率が増大しているため、大きな静電容量を有するものとなる。
【0037】
なお、静電容量の測定は、化成処理されたエッチド箔について、例えば80g/Lのホウ酸アンモニウム水溶液、30℃中で、白金板を対極として120Hzにて測定する等、常法に従って行えばよい。
【0038】
この発明のコンデンサは、実施例のものに限定されることはない。
【0039】
【実施例】
以下に本発明の実施例および比較例を示す。
(実施例1)
厚さ110μmに圧延された純度99.99質量%のアルミニウム材を35℃の0.1質量%水酸化ナトリウム水溶液に10秒間浸漬した後、水洗乾燥した。乾燥後のアルミニウム材を重ねた状態でアルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて4時間保持させ、次いで冷却した後炉出した。次に、アルミニウム材を表面温度が200℃のステンレス製加熱板2枚の間に挟み、2秒間接触加熱を行い電解コンデンサ電極用アルミニウム材を得た。
(実施例2)
加熱板表面温度が80℃、加熱体への接触時間が28秒であること以外は、実施例1と同様にして電解コンデンサ電極用アルミニウム材を得た。
(実施例3)
加熱板表面温度が100℃、加熱体への接触時間が20秒であること以外は、実施例1と同様にして電解コンデンサ電極用アルミニウム材を得た。
(実施例4)
加熱板表面温度が160℃、加熱体への接触時間が10秒であること以外は、実施例1と同様にして電解コンデンサ電極用アルミニウム材を得た。
(実施例5)
加熱板表面温度が290℃、加熱体への接触時間が2秒であること以外は、実施例1と同様にして電解コンデンサ電極用アルミニウム材を得た。
(実施例6)
厚さ110μmに圧延された純度99.99質量%のアルミニウム材を35℃の0.1質量%水酸化ナトリウム水溶液に10秒間浸漬した後、水洗乾燥した。乾燥後のアルミニウム材を重ねた状態でアルゴン雰囲気下でアルミニウム箔の実体温度を室温から500℃まで50℃/hで昇温させた後、500℃にて4時間保持させ、次いで冷却した後炉出した。次に、アルミニウム材を表面温度が200℃のステンレス製加熱板2枚の間に挟み、3秒間接触加熱を行い電解コンデンサ電極用アルミニウム材を得た。
(実施例7)
厚さ110μmに圧延された純度99.99質量%のアルミニウム材を35℃の0.1質量%水酸化ナトリウム水溶液に10秒間浸漬した後、水洗乾燥した。乾燥後のアルミニウム材を重ねた状態でアルゴン雰囲気下でアルミニウム材の実体温度を室温から470℃まで50℃/hで昇温させた後、470℃にて4時間保持させ、次いで冷却した後炉出した。次に、アルミニウム材を表面温度が200℃のステンレス製加熱板2枚の間に挟み、15秒間接触加熱を行い電解コンデンサ電極用アルミニウム材を得た。
(実施例8)
厚さ110μmに圧延された純度99.99質量%のアルミニウム材を35℃の0.1質量%水酸化ナトリウム水溶液に10秒間浸漬した後、水洗乾燥した。乾燥後のアルミニウム材を重ねた状態でアルゴン雰囲気下でアルミニウム材の実体温度を室温から560℃まで50℃/hで昇温させた後、560℃にて4時間保持させ、次いで冷却した後炉出した。次に、アルミニウム材を表面温度が200℃のステンレス製加熱板2枚の間に挟み、2秒間接触加熱を行い電解コンデンサ電極用アルミニウム材を得た。
(実施例9)
厚さ110μmに圧延された純度99.99質量%のアルミニウム材を35℃の0.1質量%水酸化ナトリウム水溶液に10秒間浸漬した後、水洗乾燥した。乾燥後のアルミニウム材を重ねた状態でアルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて4時間保持させ、次いで冷却した後炉出した。次に、アルミニウム材を表面温度が350℃の熱ロールに0.01秒間接触することにより加熱を行い電解コンデンサ電極用アルミニウム材を得た。
(実施例10)
厚さ110μmに圧延された純度99.99質量%のアルミニウム材を35℃の0.1質量%水酸化ナトリウム水溶液に10秒間浸漬した後、水洗乾燥した。乾燥後のアルミニウム材を重ねた状態でアルゴン雰囲気下でアルミニウム材の実体温度を室温から500℃まで50℃/hで昇温させた後、500℃にて4時間保持させ、次いで冷却した後炉出した。次に、アルミニウム材を表面温度が380℃の熱ロールに0.01秒間接触することにより加熱を行い電解コンデンサ電極用アルミニウム材を得た。
(実施例11)
熱ロールの表面温度が200℃、アルミニウム材と熱ロール表面の接触時間が0.05秒であること以外は実施例10と同様にして電解コンデンサ電極用アルミニウム材を得た。
(実施例12)
厚さ110μmに圧延された純度99.99質量%のアルミニウム材を35℃の0.1質量%水酸化ナトリウム水溶液に10秒間浸漬した後、水洗乾燥した。乾燥後のアルミニウム材を重ねた状態でアルゴン雰囲気下でアルミニウム材の実体温度を室温から520℃まで50℃/hで昇温させた後、520℃にて4時間保持させ、次いで冷却した後炉出した。次に、アルミニウム材を表面温度が200℃の熱ロールに0.1秒間接触することにより加熱を行い電解コンデンサ電極用アルミニウム材を得た。
(実施例13)
厚さ110μmに圧延された純度99.99質量%のアルミニウム材を35℃の0.1質量%水酸化ナトリウム水溶液に10秒間浸漬した後、水洗乾燥した。乾燥後のアルミニウム材を重ねた状態でアルゴン雰囲気下でアルミニウム材の実体温度を室温から500℃まで50℃/hで昇温させた後、500℃にて4時間保持させ、次いで冷却した後炉出した。次に、アルミニウム材を表面温度が200℃の熱ロールに2秒間接触することにより加熱を行ったのち表面温度が30℃の冷却ロールに接触させ電解コンデンサ電極用アルミニウム材を得た。
(比較例1)
接触加熱を行わないこと以外は実施例1と同じ方法で電解コンデンサ電極用アルミニウム材を得た。
上記実施例1〜13および比較例1で得られた箔を、HCl 1.0mol/lとH2SO4 3.5mol/lを含む液温75℃の水溶液に浸漬した後、電流密度0.2A/cm2で電解処理を施した。電解処理後の箔をさらに前記組成の塩酸―硫酸混合水溶液に90℃にて360秒浸漬し、ピット径を太くしエッチド箔を得た。得られたエッチド箔を化成電圧270VにてEIAJ規格に従い化成処理した静電容量測定用サンプルとした。各サンプルについて測定した静電容量を、比較例1を100とした場合の相対値にて表1に示す。
【0040】
【表1】

Figure 0004629312
【0041】
上記実施例と比較例の比較により、最終焼鈍焼鈍後に接触加熱を行うことにより静電容量が向上することが分かる。
【0042】
【発明の効果】
この発明は、上述の次第で、最終焼鈍後に加熱体との接触によりアルミニウム材を加熱することにより、アルミニウム材の表層酸化膜を均質にでき、エッチング特性に優れた電解コンデンサ用アルミニウム材を製造することができる。特に、加熱方法として接触加熱を用いるから、均一に短時間でアルミニウム箔表面を目的の温度に到達させることができるため、温度制御が比較的容易で、しかも急速かつ短時間で加熱できるため雰囲気の影響を少なくできる。従って、この電解コンデンサ用アルミニウム材をエッチングすることにより、エッチピットが均一に生成し、その結果拡面率を向上でき、ひいては静電容量の増大した電解コンデンサ電極材となし得、結果として、大きな静電容量を有するアルミニウム電解コンデンサを得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an electrolytic capacitor electrode aluminum material and a method for manufacturing an electrolytic capacitor electrode material.
[0002]
In this specification, the term “aluminum” is used to include alloys thereof, and aluminum materials include foils and plates and molded bodies using these.
[0003]
[Prior art and problems]
An aluminum material generally used as an electrode material for an aluminum electrolytic capacitor is required to have a large surface area and a large capacitance per unit area. Therefore, an electrochemical or chemical etching treatment is required. To increase the effective area of the aluminum material.
[0004]
The aluminum material for electrolytic capacitors that generates tunnel-like pits by direct current etching method was subjected to the adjustment of dissolved components of aluminum material, slab casting, soaking, hot rolling, cold rolling, and finish cold rolling (low pressure rolling). Later, it is manufactured by final annealing at a temperature of around 500 ° C. in order to develop the crystal orientation of the (100) plane. Here, the final annealing is a step performed after finish cold rolling or after finish cold rolling and washing.
[0005]
Since the formation of etch pits is hindered when the surface oxide film of the aluminum material before etching is too thick, the final annealing is performed in a vacuum atmosphere or an inert gas atmosphere in order to suppress the growth of the surface oxide film of the aluminum material. Is called. For this reason, the surface oxide film obtained after the final annealing is thin and easily dissolved in an acid aqueous solution or an alkali aqueous solution.
[0006]
However, the surface layer of the aluminum material obtained after the final annealing becomes inhomogeneous in a minute region due to the influence of the surface state after the cleaning performed before the final annealing and the surface state obtained by rolling performed before the cleaning. Cheap.
[0007]
Further, the surface oxide film of the aluminum material generated by the final annealing is affected by moisture, Al—OH groups, trace oxygen contained in the annealing atmosphere, etc. present on the surface of the aluminum material before the final annealing. For this reason, when an aluminum material is annealed in the coil state, the degree of oxidation differs in the width direction and the longitudinal direction of the coil, and the etching characteristics may vary.
[0008]
In order to make the etching characteristics of the aluminum material after the final annealing uniform and improve the capacitance, it is effective to further oxidize the surface layer of the aluminum material after the final annealing.
[0009]
In the following Patent Document 1, the aluminum material after the final annealing is heated in the air, in a vacuum or in an inert atmosphere, and a lot of defects serving as pit base points are generated on the surface, and the other surfaces are prevented from melting. A method for improving capacitance is disclosed.
[0010]
In Patent Document 2 below, the aluminum foil after the final annealing (finish annealing) is washed with an alkaline aqueous solution and then heated at 150 to 400 ° C. to improve the capacitance and reduce variations.
[0011]
However, since the conventional heat treatment after the final annealing is performed in the air, in a vacuum, or in an inert gas, it is easily affected by the amount of oxygen and water vapor, and makes the oxide film suitable for etching with good reproducibility. Has a problem that precise control of the atmosphere such as the amount of water vapor is required, and it takes time for the surface of the aluminum foil to reach the target temperature.
[0012]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-36053
[Patent Document 2]
SUMMARY OF THE INVENTION The present invention has been made in order to solve such problems of the prior art, and can be processed in a short time without requiring precise atmosphere control. It is an object of the present invention to provide a method for producing an electrolytic capacitor electrode aluminum material having a uniform oxide film and excellent etching characteristics, and a method for producing an electrolytic capacitor electrode material.
[0014]
[Means for Solving the Problems]
The present invention provides the following means. That is,
(1) An aluminum material for an electrolytic capacitor electrode, characterized in that hot rolling, cold rolling and final annealing are performed on an aluminum slab to form an aluminum material, and then the aluminum material is heated by contact with a heating body. Production method.
(2) The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 1, wherein the surface temperature of the heating body is 80 to 400 ° C., and the contact time between the aluminum material and the heating body is 0.001 to 60 seconds.
(3) The method for producing an aluminum electrode material for electrolytic capacitor electrodes according to claim 1 or 2, wherein the final annealing is performed in an inert gas atmosphere at an aluminum body temperature of 450 to 600 ° C (4).
4. The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of items 1 to 3, wherein the heating body is a heat roll.
(5) The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of the preceding items 1 to 4, wherein the aluminum material is cooled after contact with the heating body.
(6) The method for producing an aluminum material for electrolytic capacitor electrodes as described in 5 above, wherein the aluminum material is cooled by contact with a cooling roll.
(7) A method for producing an electrode material for an electrolytic capacitor, comprising performing direct current etching on the aluminum material produced by the production method according to any one of items 1 to 6 above.
[0015]
As described above, the present invention is characterized in that after an aluminum slab is subjected to hot rolling, cold rolling, and final annealing to obtain an aluminum material, the aluminum material is heated by contact with a heating body.
[0016]
That is, by heating the aluminum material by contact with the heating body after the final annealing, the surface oxide film of the aluminum material is made uniform, thereby obtaining an aluminum material for an electrolytic capacitor electrode excellent in etching characteristics. Contact heating is used as a heating method because the surface of the heating body can uniformly reach the target temperature in a short time on the surface of the heating body, and is relatively easy to control and excellent in productivity. This is because it can be heated in time and is not easily affected by the atmosphere, and it has the advantage that a uniform oxide film can be formed in the width direction and longitudinal direction of the aluminum material.
[0017]
Below, the manufacturing method of the aluminum material for electrolytic capacitors is demonstrated.
[0018]
The purity of the aluminum material is not particularly limited as long as it is within the range used for electrolytic capacitors, but it is preferably 99.9% by mass or more, particularly preferably 99.95% by mass or more. In the present invention, the purity of the aluminum material is a value obtained by subtracting the total concentration (mass%) of Fe, Si, Cu, Mn, Cr, Zn, Ti and Ga from 100%.
[0019]
The production of the aluminum material is not particularly limited, and is performed in the order of adjustment of the melting component of the aluminum material, slab casting, soaking, hot rolling, cold rolling, finish cold rolling (low pressure rolling), final annealing, and contact heating. However, the manufacturing process conditions for the aluminum material are appropriately changed in relation to the etching conditions for the aluminum material. In the middle of the rolling process, annealing (referred to as intermediate annealing) may be performed for the purpose of eliminating distortion of the crystal structure of the aluminum material caused by rolling in the previous process.
[0020]
In addition, after hot rolling, washing may be performed for the purpose of removing impurities and oil on the aluminum surface during cold rolling or before finish cold rolling and before final annealing. The cleaning liquid used for the cleaning is not particularly limited. For example, an alkaline aqueous solution, an acid aqueous solution, an organic solvent, or the like is used.
[0021]
The aluminum material after hot rolling may be processed in the state of a coil until contact heating after the final annealing, or the aluminum material may be cut in a middle step and processed as a cut sample. When processing in the state of a coil, you may slit between arbitrary processes, such as after final annealing, after final annealing, after contact heating, for example.
[0022]
After finishing cold rolling, after performing cleaning or the like, final annealing is performed mainly for the purpose of improving the etching characteristics by adjusting the orientation of the crystal structure of the aluminum material to the (100) orientation.
[0023]
In this final annealing, the total thickness of the oxide film after the final annealing is determined by the Hunter Hall method (MSHunter and P. Fowle, MS) so that the thickness of the oxide film is not increased excessively in the final annealing process and the etching characteristics are not deteriorated. J. Electrochem. Soc., 101 [9], 483 (1954)), the final annealing is preferably performed so that the thickness is 2.5 to 5 nm. The (100) area ratio of the aluminum material after the final annealing is preferably 90% or more.
[0024]
The treatment atmosphere in the final annealing is not particularly limited, but it is preferable to heat in an atmosphere with little moisture and oxygen so as not to increase the thickness of the oxide film. Specifically, it is preferable to heat in an inert gas such as argon or nitrogen or in a vacuum of 0.1 Pa or less.
[0025]
The method of final annealing is not particularly limited, and batch annealing may be performed in a state where the coil is wound around the coil, winding may be performed after rewinding and continuous annealing of the coil, and at least batch annealing and continuous annealing may be performed. Either one may be performed multiple times.
[0026]
The temperature and time during the final annealing are not particularly limited. For example, when batch annealing is performed in a coil state, it is preferable to perform annealing at an aluminum body temperature of 450 to 600 ° C. for 10 to 50 hours. If the aluminum body temperature is less than 450 ° C. and the time is less than 10 minutes, the state of the aluminum surface layer may not be suitable for etching, and the development of crystal orientation of the (100) plane may be insufficient. It is. On the other hand, if the annealing temperature exceeds 600 ° C, the aluminum material is likely to adhere when batch annealing is performed with a coil, and the effect of expanding the etching area is saturated even if annealing is performed for more than 50 hours. Invite. A particularly preferable temperature is 460 to 580 ° C. at the aluminum body temperature, and the time is 20 minutes to 40 hours.
[0027]
Further, the temperature raising rate / pattern is not particularly limited, and it may be raised at a constant rate, or may be stepped up and cooled while repeating temperature raising and temperature holding. It may be annealed in a temperature range of 600 ° C. for a total of 10 minutes to 50 hours.
[0028]
The aluminum material after the final annealing is subjected to contact heating in order to make the surface oxide film uniform after cleaning the surface as necessary. Any heating means may be used as long as it can perform contact heating, such as a heat roll, a heating belt, and a heating plate. Heating may be performed one side at a time, or only one of the front and back sides may be heated. As the material of the heating surface of the heating body, stainless steel, plating, ceramics, Teflon resin (registered trademark), silicone resin, etc. can be freely selected, but a substance in which the surface oxide film of the aluminum material does not adhere to the surface of the heating body is preferable. .
[0029]
The surface temperature of the heating body brought into contact with the aluminum material is preferably 80 to 400 ° C. When the surface temperature of the heating body is less than 80 ° C., the heating becomes insufficient, and etching pits may not be uniformly generated by etching. On the other hand, if the temperature is higher than 400 ° C., the oxide film becomes too thick, and soot is generated during cooling, which may cause operational problems. A particularly preferable heating body surface temperature is 100 to 350 ° C. A more preferable heating body surface temperature is 160 to 290 ° C.
[0030]
The contact time between the aluminum material surface and the heated body surface is preferably 0.001 to 60 seconds. If the contact time is less than 0.001 seconds, the surface oxide film of the aluminum material cannot be made uniform, and the generation of etch pits may be nonuniform. On the other hand, if it is longer than 60 seconds, the oxide film becomes too thick and it is difficult to generate etch pits. The preferred contact time is 0.01 to 30 seconds, especially 0.05 to 10 seconds.
[0031]
What is necessary is just to select suitably the surface temperature and contact time of a heating body considering the characteristic of the surface oxide film of the aluminum material before a contact. The contact heating atmosphere is not particularly limited, and can be carried out in the air without special atmosphere control.
[0032]
As an example of a heating apparatus using a hot roll as a heating body, an apparatus in which at least two hot rolls are arranged to contact and heat the front and back surfaces of an aluminum material at a target temperature can be mentioned. If wrinkles occur during winding of the aluminum material after the aluminum material is contact-heated with a hot roll or the like, after heating with the hot roll or the like, pass one or more cooling bodies such as cooling rolls, It is good also as a structure which winds up after making it cool. In particular, by using a cooling roll as the cooling body, cooling can be performed easily and continuously. In addition, before heating the aluminum material to the target contact heating temperature with a hot roll or the like, the temperature of the aluminum material may be preliminarily raised to a temperature lower than the target contact heating temperature using another heat roll. Good.
[0033]
The thickness of the aluminum material for electrolytic capacitor electrodes obtained by contact heating after the final annealing is not particularly defined.
[0034]
The aluminum material that has been subjected to the contact heating after the final annealing is subjected to an etching process in order to improve the area expansion ratio. Etching conditions are not particularly limited, but preferably a direct current etching method is employed. By the direct current etching method, the aluminum material having the homogeneous surface oxide film is etched deeply and thickly to generate a large number of tunnel-like pits, thereby realizing a high electrostatic capacity.
[0035]
After the etching treatment, a chemical conversion treatment is preferably performed to obtain an anode material. In particular, it is preferably used as an electrolytic capacitor electrode material for medium pressure and high pressure. Of course, it does not prevent the use as a cathode material.
[0036]
An aluminum electrolytic capacitor is configured by using the anode material and / or the cathode material as described above as an electrode material. In this electrolytic capacitor, since the surface area expansion ratio of the electrode material is increased, the electrolytic capacitor has a large capacitance.
[0037]
Capacitance may be measured in accordance with a conventional method, such as measurement of a chemically treated etched foil in an 80 g / L ammonium borate aqueous solution at 30 ° C. using a platinum plate as a counter electrode at 120 Hz. .
[0038]
The capacitor of the present invention is not limited to that of the example.
[0039]
【Example】
Examples of the present invention and comparative examples are shown below.
Example 1
An aluminum material having a purity of 99.99% by mass rolled to a thickness of 110 μm was immersed in a 0.1% by mass sodium hydroxide aqueous solution at 35 ° C. for 10 seconds, and then washed with water and dried. After drying the aluminum material, the actual temperature of the aluminum material was raised from room temperature to 540 ° C at 50 ° C / h in an argon atmosphere, held at 540 ° C for 4 hours, and then cooled and the furnace I put it out. Next, the aluminum material was sandwiched between two stainless steel heating plates having a surface temperature of 200 ° C., and contact heating was performed for 2 seconds to obtain an aluminum material for electrolytic capacitor electrodes.
(Example 2)
An aluminum material for electrolytic capacitor electrodes was obtained in the same manner as in Example 1 except that the surface temperature of the heating plate was 80 ° C. and the contact time with the heating body was 28 seconds.
(Example 3)
An aluminum material for electrolytic capacitor electrodes was obtained in the same manner as in Example 1 except that the surface temperature of the heating plate was 100 ° C. and the contact time with the heating body was 20 seconds.
Example 4
An aluminum material for electrolytic capacitor electrodes was obtained in the same manner as in Example 1 except that the surface temperature of the heating plate was 160 ° C. and the contact time with the heating body was 10 seconds.
(Example 5)
An aluminum material for electrolytic capacitor electrodes was obtained in the same manner as in Example 1 except that the surface temperature of the heating plate was 290 ° C. and the contact time with the heating body was 2 seconds.
(Example 6)
An aluminum material having a purity of 99.99% by mass rolled to a thickness of 110 μm was immersed in a 0.1% by mass sodium hydroxide aqueous solution at 35 ° C. for 10 seconds, and then washed with water and dried. After the aluminum material was dried, the actual temperature of the aluminum foil was raised from room temperature to 500 ° C at 50 ° C / h in an argon atmosphere, held at 500 ° C for 4 hours, and then cooled and the furnace I put it out. Next, an aluminum material was sandwiched between two stainless steel heating plates having a surface temperature of 200 ° C., and contact heating was performed for 3 seconds to obtain an aluminum material for an electrolytic capacitor electrode.
(Example 7)
An aluminum material having a purity of 99.99% by mass rolled to a thickness of 110 μm was immersed in a 0.1% by mass sodium hydroxide aqueous solution at 35 ° C. for 10 seconds, and then washed with water and dried. After the dried aluminum material was stacked, the actual temperature of the aluminum material was raised from room temperature to 470 ° C at 50 ° C / h in an argon atmosphere, held at 470 ° C for 4 hours, and then cooled and the furnace I put it out. Next, an aluminum material was sandwiched between two stainless steel heating plates having a surface temperature of 200 ° C., and contact heating was performed for 15 seconds to obtain an aluminum material for an electrolytic capacitor electrode.
(Example 8)
An aluminum material having a purity of 99.99% by mass rolled to a thickness of 110 μm was immersed in a 0.1% by mass sodium hydroxide aqueous solution at 35 ° C. for 10 seconds, and then washed with water and dried. After the dried aluminum material was stacked, the actual temperature of the aluminum material was raised from room temperature to 560 ° C at 50 ° C / h in an argon atmosphere, held at 560 ° C for 4 hours, and then cooled and the furnace I put it out. Next, the aluminum material was sandwiched between two stainless steel heating plates having a surface temperature of 200 ° C., and contact heating was performed for 2 seconds to obtain an aluminum material for electrolytic capacitor electrodes.
Example 9
An aluminum material having a purity of 99.99% by mass rolled to a thickness of 110 μm was immersed in a 0.1% by mass sodium hydroxide aqueous solution at 35 ° C. for 10 seconds, and then washed with water and dried. After drying the aluminum material, the actual temperature of the aluminum material was raised from room temperature to 540 ° C at 50 ° C / h in an argon atmosphere, held at 540 ° C for 4 hours, and then cooled and the furnace I put it out. Next, the aluminum material was heated by contacting with a hot roll having a surface temperature of 350 ° C. for 0.01 seconds to obtain an aluminum material for electrolytic capacitor electrodes.
(Example 10)
An aluminum material having a purity of 99.99% by mass rolled to a thickness of 110 μm was immersed in a 0.1% by mass sodium hydroxide aqueous solution at 35 ° C. for 10 seconds, and then washed with water and dried. After the dried aluminum material is stacked, the actual temperature of the aluminum material is raised from room temperature to 500 ° C at 50 ° C / h in an argon atmosphere, held at 500 ° C for 4 hours, and then cooled before the furnace I put it out. Next, the aluminum material was heated by contacting with a hot roll having a surface temperature of 380 ° C. for 0.01 seconds to obtain an aluminum material for electrolytic capacitor electrodes.
(Example 11)
An aluminum material for electrolytic capacitor electrodes was obtained in the same manner as in Example 10 except that the surface temperature of the hot roll was 200 ° C. and the contact time between the aluminum material and the hot roll surface was 0.05 seconds.
(Example 12)
An aluminum material having a purity of 99.99% by mass rolled to a thickness of 110 μm was immersed in a 0.1% by mass sodium hydroxide aqueous solution at 35 ° C. for 10 seconds, and then washed with water and dried. After the dried aluminum material was stacked, the actual temperature of the aluminum material was raised from room temperature to 520 ° C at 50 ° C / h in an argon atmosphere, held at 520 ° C for 4 hours, and then cooled and the furnace I put it out. Next, the aluminum material was heated by contact with a hot roll having a surface temperature of 200 ° C. for 0.1 seconds to obtain an aluminum material for electrolytic capacitor electrodes.
(Example 13)
An aluminum material having a purity of 99.99% by mass rolled to a thickness of 110 μm was immersed in a 0.1% by mass sodium hydroxide aqueous solution at 35 ° C. for 10 seconds, and then washed with water and dried. After the dried aluminum material is stacked, the actual temperature of the aluminum material is raised from room temperature to 500 ° C at 50 ° C / h in an argon atmosphere, held at 500 ° C for 4 hours, and then cooled before the furnace I put it out. Next, the aluminum material was heated by bringing it into contact with a hot roll having a surface temperature of 200 ° C. for 2 seconds, and then brought into contact with a cooling roll having a surface temperature of 30 ° C. to obtain an aluminum material for an electrolytic capacitor electrode.
(Comparative Example 1)
An aluminum material for electrolytic capacitor electrodes was obtained in the same manner as in Example 1 except that contact heating was not performed.
After immersing the foils obtained in Examples 1 to 13 and Comparative Example 1 in an aqueous solution containing HCl 1.0 mol / l and H 2 SO 4 3.5 mol / l at a liquid temperature of 75 ° C., the current density was 0.2 A / cm. Electrolytic treatment was performed in 2 . The foil after the electrolytic treatment was further immersed in a hydrochloric acid-sulfuric acid mixed aqueous solution having the above composition at 90 ° C. for 360 seconds to increase the pit diameter and obtain an etched foil. The obtained etched foil was used as a capacitance measurement sample obtained by chemical conversion treatment according to EIAJ standards at a chemical conversion voltage of 270V. The capacitance measured for each sample is shown in Table 1 as relative values when Comparative Example 1 is 100.
[0040]
[Table 1]
Figure 0004629312
[0041]
From the comparison between the above example and the comparative example, it can be seen that the capacitance is improved by performing contact heating after the final annealing.
[0042]
【The invention's effect】
According to the present invention, an aluminum material for an electrolytic capacitor having excellent etching characteristics can be produced by heating the aluminum material by contact with a heating body after the final annealing, thereby making the surface oxide film of the aluminum material uniform. be able to. In particular, since contact heating is used as the heating method, the surface of the aluminum foil can reach the target temperature uniformly in a short time, so that temperature control is relatively easy, and heating can be performed quickly and in a short time. The influence can be reduced. Therefore, by etching this aluminum material for electrolytic capacitors, etch pits are uniformly generated, and as a result, the area expansion rate can be improved, and as a result, an electrolytic capacitor electrode material having an increased capacitance can be obtained. An aluminum electrolytic capacitor having a capacitance can be obtained.

Claims (7)

アルミニウムスラブに熱間圧延、冷間圧延、最終焼鈍を実施してアルミニウム材としたのち、このアルミニウム材を加熱体との接触により加熱することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。  A method for producing an aluminum material for electrolytic capacitor electrodes, comprising subjecting an aluminum slab to hot rolling, cold rolling, and final annealing to obtain an aluminum material, and then heating the aluminum material by contact with a heating body. 加熱体の表面温度が80〜400℃、アルミニウム材と加熱体との接触時間が0.001〜60秒である請求項1に記載の電解コンデンサ電極用アルミニウム材の製造方法。  The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 1, wherein the surface temperature of the heating body is 80 to 400 ° C, and the contact time between the aluminum material and the heating body is 0.001 to 60 seconds. 最終焼鈍がアルミニウム実体温度450〜600℃にて不活性ガス雰囲気中で行われる請求項1または請求項2に記載の電解コンデンサ電極用アルミニウム電極材の製造方法  The method for producing an aluminum electrode material for electrolytic capacitor electrodes according to claim 1 or 2, wherein the final annealing is performed in an inert gas atmosphere at an aluminum body temperature of 450 to 600 ° C. 加熱体が熱ロールである請求項1ないし請求項3のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。  The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 3, wherein the heating body is a heat roll. 加熱体との接触後、アルミニウム材を冷却する請求項1ないし請求項4のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。  The manufacturing method of the aluminum material for electrolytic capacitor electrodes in any one of Claim 1 thru | or 4 which cools an aluminum material after contact with a heating body. アルミニウム材の冷却を冷却ロールとの接触により行う請求項5に記載の電解コンデンサ電極用アルミニウム材の製造方法。  The manufacturing method of the aluminum material for electrolytic capacitor electrodes of Claim 5 which cools an aluminum material by contact with a cooling roll. 請求項1ないし請求項6のいずれかに記載の製造方法によって製造されたアルミニウム材に、直流エッチングを実施することを特徴とする電解コンデンサ用電極材の製造方法。A method for producing an electrode material for an electrolytic capacitor, comprising subjecting the aluminum material produced by the production method according to any one of claims 1 to 6 to direct current etching.
JP2003060614A 2002-04-25 2003-03-06 Method for producing aluminum material for electrolytic capacitor electrode and method for producing electrode material for electrolytic capacitor Expired - Fee Related JP4629312B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003060614A JP4629312B2 (en) 2002-07-18 2003-03-06 Method for producing aluminum material for electrolytic capacitor electrode and method for producing electrode material for electrolytic capacitor
AT03719219T ATE497630T1 (en) 2002-04-25 2003-04-25 METHOD FOR PRODUCING ALUMINUM MATERIAL FOR AN ELECTRODE OF AN ELECTROLYTIC CAPACITOR, ALUMINUM MATERIAL FOR AN ELECTRODE OF AN ELECTROLYTIC CAPACITOR AND METHOD FOR PRODUCING ELECTRODE MATERIAL FOR AN ELECTROLYTIC CAPACITOR
DE60335943T DE60335943D1 (en) 2002-04-25 2003-04-25 METHOD FOR PRODUCING ALUMINUM MATERIAL FOR AN ELECTRODE OF AN ELECTROLYTIC CONDENSER, ALUMINUM MATERIAL FOR AN ELECTRODE OF AN ELECTROLYTIC CONDENSER AND METHOD FOR PRODUCING ELECTRODE MATERIAL FOR AN ELECTROLYTIC CONDENSER
EP03719219A EP1498513B9 (en) 2002-04-25 2003-04-25 Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capacitor
AU2003235941A AU2003235941A1 (en) 2002-04-25 2003-04-25 Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capacitor
CN03809123.2A CN1646731A (en) 2002-04-25 2003-04-25 Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capac
PCT/JP2003/005384 WO2003091482A1 (en) 2002-04-25 2003-04-25 Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002209459 2002-07-18
JP2003060614A JP4629312B2 (en) 2002-07-18 2003-03-06 Method for producing aluminum material for electrolytic capacitor electrode and method for producing electrode material for electrolytic capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008323625A Division JP2009102741A (en) 2002-07-18 2008-12-19 Method of manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, and method of manufacturing electrode material for electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2004100033A JP2004100033A (en) 2004-04-02
JP4629312B2 true JP4629312B2 (en) 2011-02-09

Family

ID=32300317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060614A Expired - Fee Related JP4629312B2 (en) 2002-04-25 2003-03-06 Method for producing aluminum material for electrolytic capacitor electrode and method for producing electrode material for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4629312B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727309B2 (en) * 2011-06-23 2015-06-03 三菱アルミニウム株式会社 Aluminum foil for electrolytic capacitor electrode and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004100033A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP2013153218A (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4938226B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4629312B2 (en) Method for producing aluminum material for electrolytic capacitor electrode and method for producing electrode material for electrolytic capacitor
JPH05279815A (en) Production of aluminum foil for electrolytic capacitor anode
JP4498682B2 (en) The manufacturing method of the aluminum material for electrolytic capacitor electrodes, the manufacturing method of the electrode material for electrolytic capacitors, and an aluminum electrolytic capacitor.
JP4767480B2 (en) Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for electrolytic capacitor electrode, and manufacturing method of electrode material for electrolytic capacitor
JPH03122260A (en) Production of alumnum material for electrolytic capacitor electrode
JP4308556B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JP4170797B2 (en) Method for manufacturing electrolytic capacitor electrode aluminum material, electrolytic capacitor electrode aluminum material, and electrolytic capacitor electrode manufacturing method
JP2009102741A (en) Method of manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, and method of manufacturing electrode material for electrolytic capacitor
JP2013032591A (en) Method of producing aluminum material for electrode of electrolytic capacitor, aluminum material for electrode of electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4732892B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4226930B2 (en) Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JPH07201673A (en) Manufacture of aluminum material for electrolytic capacitor electrode
JP4981932B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JPH1136053A (en) Production of aluminum material for electrolytic capacitor and aluminum material for electrolytic-capacitor
JP3539631B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP4105565B2 (en) Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP3676601B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP2003129202A (en) Production method for aluminum foil for electrolytic capacitor electrode
JP3337506B2 (en) Method for producing aluminum material for electrolytic capacitor electrode
JPH05200407A (en) Production of aluminum foil for electrolytic capacitor
JP4308552B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JP4690182B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4105558B2 (en) Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor, and electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4629312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees