JP2003129202A - Production method for aluminum foil for electrolytic capacitor electrode - Google Patents

Production method for aluminum foil for electrolytic capacitor electrode

Info

Publication number
JP2003129202A
JP2003129202A JP2001326855A JP2001326855A JP2003129202A JP 2003129202 A JP2003129202 A JP 2003129202A JP 2001326855 A JP2001326855 A JP 2001326855A JP 2001326855 A JP2001326855 A JP 2001326855A JP 2003129202 A JP2003129202 A JP 2003129202A
Authority
JP
Japan
Prior art keywords
annealing furnace
gas
aluminum foil
electrolytic capacitor
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001326855A
Other languages
Japanese (ja)
Other versions
JP3765077B2 (en
Inventor
Kaneshige Yamamoto
兼滋 山本
Akihiro Yamaguchi
昭弘 山口
Tsugio Kataoka
次雄 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Foil Manufacturing Co Ltd
Original Assignee
Nippon Foil Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Foil Manufacturing Co Ltd filed Critical Nippon Foil Manufacturing Co Ltd
Priority to JP2001326855A priority Critical patent/JP3765077B2/en
Publication of JP2003129202A publication Critical patent/JP2003129202A/en
Application granted granted Critical
Publication of JP3765077B2 publication Critical patent/JP3765077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method for aluminum foil for an electrolytic capacitor electrode in order for obtaining an electrode foil for an electrolytic capacitor with a high electrostatic capacity. SOLUTION: Aluminum foil (coil) is put in an annealing oven. Before the step of raising the inside temperature of the annealing oven to a specified value, air is exhausted from the annealing oven to reduce the inside pressure to 50 Pa or lower and an inert gas such as a nitrogen gas, an argon gas, or a helium gas is introduced into the oven. The amount of the inert gas introduced is set so that the inside pressure reaches the atmospheric pressure or higher. Then, the temperature-raising step is started. After starting the temperature-raising step and before ending the step, the inert gas in the oven is replaced with a reducing gas containing at least 10 vol.% hydrogen gas. The amount of the reducing gas is also set so that the inside pressure reaches the atmospheric pressure or higher. After the completion of the temperature-raising step, the aluminum foil is subjected to a holding step, a cooling step, and the final annealing step, thus giving the aluminum foil for an electrolytic capacitor electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高静電容量の電解
コンデンサ電極箔を得るのに好適なアルミニウム箔の製
造方法に関し、特に高圧用陽極箔や低圧用陽極箔等を得
るのに好適なアルミニウム箔の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum foil suitable for obtaining a high capacitance electrolytic capacitor electrode foil, and particularly suitable for obtaining a high voltage anode foil or a low voltage anode foil. The present invention relates to a method for manufacturing an aluminum foil.

【0002】[0002]

【従来の技術】従来より、電解コンデンサ電極箔は、ア
ルミニウム箔にエッチングを施すことにより、製造され
ている。エッチングは、アルミニウム箔の表面に微細な
トンネル状エッチピット又は海綿状エッチピットを形成
させ、箔の表面積を増大させて、静電容量を高めるため
に行われる。従って、高静電容量の電解コンデンサ用電
極箔を得るためには、エッチング特性の良好なアルミニ
ウム箔を使用して、製造する必要がある。
2. Description of the Related Art Conventionally, electrolytic capacitor electrode foils have been manufactured by etching aluminum foil. The etching is performed to form fine tunnel-like etch pits or spongy etch pits on the surface of the aluminum foil, increase the surface area of the foil, and increase the capacitance. Therefore, in order to obtain an electrode foil for an electrolytic capacitor having a high electrostatic capacity, it is necessary to manufacture it by using an aluminum foil having good etching characteristics.

【0003】アルミニウム箔のエッチング特性は、箔表
面に形成された酸化皮膜の厚さに関係することが知られ
ている。即ち、酸化皮膜の厚さが厚すぎると、エッチン
グ処理の際の前処理においても、酸化皮膜が十分に除去
されないため、エッチング処理しても、トンネル状エッ
チピットや海綿状エッチピットが形成されにくくなるこ
とが知られている。ところで、アルミニウム箔の製造工
程中、酸化皮膜の厚さが厚くなりやすいのは、最終焼鈍
工程である。即ち、最終焼鈍工程において、アルミニウ
ム箔が高温下に長時間置かれるため、ここでアルミニウ
ム箔表面が雰囲気中の含酸素化合物によって酸化され、
酸化皮膜が成長するのである。
It is known that the etching characteristics of aluminum foil are related to the thickness of the oxide film formed on the foil surface. That is, if the thickness of the oxide film is too thick, the oxide film is not sufficiently removed even in the pretreatment during the etching process, and therefore tunnel-like etch pits or spongy etch pits are not easily formed even after the etching treatment. Is known to be. By the way, it is the final annealing step that the thickness of the oxide film is likely to be large during the manufacturing process of the aluminum foil. That is, in the final annealing step, since the aluminum foil is placed under high temperature for a long time, the surface of the aluminum foil is oxidized by the oxygen-containing compound in the atmosphere,
The oxide film grows.

【0004】このため、本件出願人は、最終焼鈍工程
を、実質的に含酸素化合物(例えば、酸素、二酸化炭
素、一酸化炭素、オゾン、水蒸気)の不存在下で行うこ
とを提案した(特開平2−240246号公報)。確か
に、この方法は、最終焼鈍工程において、酸化皮膜の成
長をある程度防止しうるものである。しかし、それでも
なお、雰囲気中に存在する微量の含酸素化合物の存在に
より、酸化皮膜の成長を十分に防止することができなか
った。なお、雰囲気中の微量の含酸素化合物は、焼鈍前
から焼鈍炉中に存在する場合と、焼鈍中に、アルミニウ
ム箔表面に残留している油分等から発生する場合とがあ
る。
Therefore, the applicant of the present application has proposed to carry out the final annealing step substantially in the absence of an oxygen-containing compound (for example, oxygen, carbon dioxide, carbon monoxide, ozone, water vapor). Kaihei 2-240246). Certainly, this method can prevent the growth of an oxide film to some extent in the final annealing step. However, even then, it was not possible to sufficiently prevent the growth of the oxide film due to the presence of a trace amount of the oxygen-containing compound in the atmosphere. The small amount of oxygen-containing compound in the atmosphere may exist in the annealing furnace before the annealing, or may be generated from the oil remaining on the surface of the aluminum foil during the annealing.

【0005】[0005]

【発明が解決しようとする課題】そこで、本件出願人
は、焼鈍炉内の温度を所定温度まで昇温させる昇温工
程、焼鈍炉内を所定温度に保持する保持工程及び焼鈍炉
内の温度を降温させる冷却工程よりなる最終焼鈍工程に
おいて、特に焼鈍工程の最初の昇温工程で、焼鈍炉内を
還元性ガスである水素ガスを含む雰囲気とすることによ
り、水素ガスで焼鈍炉内の微量の含酸素化合物を捕捉
し、この微量の含酸素化合物がアルミニウム箔表面の酸
化皮膜を成長させるのを防止する技術を提案した(特願
2000−188586)。
Therefore, the applicant of the present invention has set a temperature raising step for raising the temperature in the annealing furnace to a predetermined temperature, a holding step for holding the temperature in the annealing furnace at a predetermined temperature, and a temperature in the annealing furnace. In the final annealing step consisting of the cooling step of lowering the temperature, particularly in the first temperature raising step of the annealing step, by making the atmosphere in the annealing furnace containing hydrogen gas that is a reducing gas, a small amount of hydrogen gas in the annealing furnace is used. A technique has been proposed in which an oxygen-containing compound is captured and a trace amount of the oxygen-containing compound is prevented from growing an oxide film on the surface of an aluminum foil (Japanese Patent Application No. 2000-188586).

【0006】本発明は、上記特願2000−18858
6に係る発明を利用したものであり、還元性ガスを扱う
ことに伴う危険を回避するための工夫を施し、最終焼鈍
作業の安全性を確保しようというものである。
The present invention is directed to the above-mentioned Japanese Patent Application No. 2000-18858.
The invention according to No. 6 is used, and it is intended to ensure the safety of the final annealing work by devising a device for avoiding the danger associated with handling the reducing gas.

【0007】[0007]

【課題を解決するための手段】即ち、本発明は、アルミ
ニウム箔を焼鈍炉内で最終焼鈍して、電解コンデンサ電
極用アルミニウム箔を製造する方法において、該焼鈍炉
内の温度を所定温度まで昇温させる昇温工程の前に該焼
鈍炉内から大気を排気して、該焼鈍炉内の圧力を50P
a以下にした後、窒素、アルゴン、ヘリウム等の不活性
ガスを導入し、その後、該焼鈍炉内の該不活性ガスを、
水素ガスを10容積%以上含む還元性ガスに置換しなが
ら、該昇温工程を経ることを特徴とする電解コンデンサ
電極用アルミニウム箔の製造方法に関するものである。
That is, the present invention provides a method for producing an aluminum foil for electrolytic capacitor electrodes by finally annealing an aluminum foil in an annealing furnace to raise the temperature in the annealing furnace to a predetermined temperature. Before the heating step of heating, the atmosphere in the annealing furnace is evacuated, and the pressure in the annealing furnace is adjusted to 50 P.
After adjusting the temperature to a or less, an inert gas such as nitrogen, argon, or helium is introduced, and then the inert gas in the annealing furnace is
The present invention relates to a method for producing an aluminum foil for electrolytic capacitor electrodes, which comprises performing the temperature raising step while replacing hydrogen gas with a reducing gas containing 10% by volume or more.

【0008】この方法は、まず、昇温前に焼鈍炉内の大
気を排気する。排気した後の真空度(焼鈍炉内の圧力)
は50Pa以下とする。真空度が50Paを超えると、
焼鈍炉内の酸素濃度が高すぎて、最終焼鈍時に、アルミ
ニウム箔表面の酸化皮膜が成長する恐れが生じる。
According to this method, first, the atmosphere in the annealing furnace is exhausted before the temperature is raised. Degree of vacuum after evacuation (pressure in annealing furnace)
Is 50 Pa or less. When the degree of vacuum exceeds 50 Pa,
If the oxygen concentration in the annealing furnace is too high, the oxide film on the surface of the aluminum foil may grow during the final annealing.

【0009】排気後、不活性ガスを焼鈍炉内に導入す
る。不活性ガスとしては、窒素ガス,アルゴンガス,ヘ
リウムガス等が用いられる。排気後に不活性ガスを導入
する理由は、排気後に直ちに還元性ガスである水素ガス
を導入すると、負圧(大気圧未満)の状態で還元性ガス
だけでなく、焼鈍炉外に存在する大気中の酸素も焼鈍炉
内に混入する恐れがあり、還元性ガスと酸素が反応し
て、急激に可燃する危険性があるからである。焼鈍炉内
に不活性ガスを導入する量は任意であるが、一般的に、
焼鈍炉内の圧力が大気圧よりも高くなる程度(例えば、
大気圧よりも0.1〜5kPa高くなる程度)の量を導
入するのがよい。大気圧よりも低い程度の導入量である
と、焼鈍炉外から大気が流れ込む恐れがあり、焼鈍炉内
に酸素が含まれてしまう恐れがあるからである。
After evacuation, an inert gas is introduced into the annealing furnace. Nitrogen gas, argon gas, helium gas, etc. are used as the inert gas. The reason for introducing the inert gas after exhausting is that if hydrogen gas, which is a reducing gas, is introduced immediately after exhausting, not only the reducing gas in the negative pressure (less than atmospheric pressure) state but also the atmosphere existing outside the annealing furnace. This is because there is a risk that the oxygen of the above may also be mixed into the annealing furnace, and the reducing gas and oxygen react with each other, resulting in a sudden flammability. The amount of the inert gas introduced into the annealing furnace is arbitrary, but generally,
The degree to which the pressure in the annealing furnace becomes higher than atmospheric pressure (for example,
It is preferable to introduce an amount of 0.1 to 5 kPa higher than the atmospheric pressure. This is because if the amount of introduction is lower than atmospheric pressure, the atmosphere may flow from outside the annealing furnace, and oxygen may be contained in the annealing furnace.

【0010】焼鈍炉内に不活性ガスを導入した後、この
不活性ガスを、水素ガスを10容積%以上含む還元性ガ
スで置換する。この還元性ガスは、水素ガス100容積
%であっても良いし、水素ガスと窒素ガスやアルゴンガ
ス等の不活性ガスとの混合ガスであっても良い。水素ガ
スが10容積%未満である還元性ガスを用いると、水素
ガスによる還元作用、即ち、焼鈍炉内に存在する微量の
含酸素化合物を捕捉する作用が低下し、アルミニウム箔
表面の酸化皮膜が成長する恐れがある。焼鈍炉内の不活
性ガスを、水素ガスを10容積%以上含む還元性ガスで
置換した後の焼鈍炉内の圧力は、大気圧よりも0.1〜
5kPa高く維持するのが好ましい。焼鈍炉内の圧力が
大気圧よりも低いと、焼鈍炉の隙間から、酸素を含む大
気が炉内に流入する恐れがあるためである。なお、焼鈍
炉に隙間が生じているか否かは、焼鈍前に漏れ試験(例
えば、ヘリウムリークデデクタによる漏れ試験)を行っ
て調べておくのが好ましい。この漏れ試験で漏れが認め
られなくても、最終焼鈍中に、焼鈍炉に隙間が生じ、大
気が流入する恐れがあるので、やはり、焼鈍炉内の圧力
は、大気圧よりも高くしておくのが好ましい。
After introducing an inert gas into the annealing furnace, the inert gas is replaced with a reducing gas containing 10% by volume or more of hydrogen gas. The reducing gas may be 100% by volume of hydrogen gas, or may be a mixed gas of hydrogen gas and an inert gas such as nitrogen gas or argon gas. If a reducing gas containing less than 10% by volume of hydrogen gas is used, the reducing action of hydrogen gas, that is, the action of capturing a trace amount of oxygen-containing compounds in the annealing furnace is reduced, and the oxide film on the surface of the aluminum foil is reduced. May grow. The pressure in the annealing furnace after the inert gas in the annealing furnace is replaced with a reducing gas containing 10% by volume or more of hydrogen gas is 0.1 to more than atmospheric pressure.
It is preferable to keep it higher than 5 kPa. This is because if the pressure in the annealing furnace is lower than the atmospheric pressure, the atmosphere containing oxygen may flow into the furnace through the gap in the annealing furnace. It should be noted that it is preferable to conduct a leak test (for example, a leak test using a helium leak detector) before annealing to determine whether or not a gap is formed in the annealing furnace. Even if no leak is found in this leak test, there is a possibility that a gap will be created in the annealing furnace during the final annealing and the atmosphere will flow in, so the pressure inside the annealing furnace must be higher than atmospheric pressure. Is preferred.

【0011】昇温工程は、焼鈍炉内の大気を排気した後
であれば、何時開始しても差し支えない。一般的には、
大気を排気した後、不活性ガスを導入した後に、昇温を
開始するのが好ましい。また、昇温工程の終了は、焼鈍
炉内を還元性ガスで置換した後であれば、何時であって
も差し支えない。一般的には、焼鈍炉内を還元性ガスで
置換した後、1時間以上経過後に昇温工程を終了するの
が好ましい。
The temperature raising step can be started any time after the atmosphere in the annealing furnace is exhausted. In general,
It is preferable to start the temperature rise after exhausting the atmosphere and then introducing the inert gas. Further, the temperature rising step may be completed at any time after the inside of the annealing furnace is replaced with the reducing gas. Generally, it is preferable to finish the temperature raising step after 1 hour or more has passed after replacing the inside of the annealing furnace with the reducing gas.

【0012】昇温工程を終えた後、その雰囲気のまま保
持工程及び冷却工程を経て最終焼鈍を施しても良い。こ
の場合、特に冷却工程では、焼鈍炉内の圧力が低下する
ので、焼鈍炉内に大気が流入する可能性がある(焼鈍炉
に漏れがなければ、大気が流入しない可能性もあ
る。)。そこで、冷却工程又は保持工程において、還元
性ガス又は不活性ガスを焼鈍炉内に導入して、焼鈍炉内
の圧力を大気圧よりも、0.1〜5kPa高くしておく
のが好ましい。即ち、昇温工程、保持工程及び冷却工程
の全ての工程で、焼鈍炉内の圧力を大気圧よりも、0.
1〜5kPa高くしておけば、焼鈍炉に隙間があって
も、大気が焼鈍炉内に流入しにくく、好ましい。保持工
程や冷却工程で導入する還元性ガスとしては、上述した
水素ガスを10容積%以上含む還元性ガスを用いれば良
い。また、不活性ガスとしても、上述した窒素ガスやア
ルゴンガス等を用いれば良い。焼鈍炉内の圧力が(大気
圧+0.1kPa)よりも低いと、大気が焼鈍炉内に流
入する恐れが生じる。また、焼鈍炉内の圧力が(大気圧
+5kPa)を超えると、炉本体を耐圧構造にしなけれ
ばならず、炉製造コストが高くなるため、不合理であ
る。
After the temperature raising step is completed, final annealing may be performed through a holding step and a cooling step in that atmosphere. In this case, especially in the cooling step, the pressure in the annealing furnace is lowered, so that the atmosphere may flow into the annealing furnace (if there is no leakage in the annealing furnace, the atmosphere may not flow in). Therefore, in the cooling step or the holding step, it is preferable to introduce a reducing gas or an inert gas into the annealing furnace so that the pressure in the annealing furnace is higher than the atmospheric pressure by 0.1 to 5 kPa. That is, in all of the temperature raising step, the holding step, and the cooling step, the pressure in the annealing furnace is set to 0.
It is preferable that the pressure is increased by 1 to 5 kPa because it is difficult for the air to flow into the annealing furnace even if there is a gap in the annealing furnace. As the reducing gas introduced in the holding step or the cooling step, the reducing gas containing 10% by volume or more of the above-mentioned hydrogen gas may be used. Further, as the inert gas, the above-mentioned nitrogen gas or argon gas may be used. If the pressure in the annealing furnace is lower than (atmospheric pressure + 0.1 kPa), the atmosphere may flow into the annealing furnace. Further, if the pressure in the annealing furnace exceeds (atmospheric pressure + 5 kPa), the furnace body has to have a pressure resistant structure, and the furnace manufacturing cost increases, which is irrational.

【0013】昇温工程、保持工程及び冷却工程の全ての
工程で、常に、焼鈍炉内の圧力を大気圧よりも0.1〜
5kPa高くしておくには、焼鈍炉内に還元性ガス又は
不活性ガスを流入させながら、全ての工程を実施するの
が良い。また、流入させるガスとしては、一般的には、
水素ガスを10容積%以上含む還元性ガスを用いるのが
好ましい。
In all of the temperature raising step, the holding step and the cooling step, the pressure in the annealing furnace is always set to 0.1 to more than atmospheric pressure.
In order to increase the pressure by 5 kPa, it is preferable to carry out all the steps while flowing the reducing gas or the inert gas into the annealing furnace. In addition, as the gas to be introduced, generally,
It is preferable to use a reducing gas containing 10% by volume or more of hydrogen gas.

【0014】また、昇温工程を終えた後、その雰囲気ガ
スを置換しても良い。例えば、昇温工程を終えた後、昇
温工程終了時における雰囲気ガスである水素ガスを10
容積%以上含む還元性ガスを、窒素ガスやアルゴンガス
等の不活性ガスに置換しても良い。昇温工程は、少なく
とも、水素ガスを含む還元性ガス雰囲気で行わなければ
ならないが、保持工程や冷却工程(特に保持工程)は、
還元性ガスを含まない不活性ガス雰囲気で行っても良
い。これは、含酸素化合物が当初から焼鈍炉に残留して
いることが多く、またアルミニウム箔から生じる含酸素
化合物も昇温工程で生じることが多いからである。
After the temperature raising step is completed, the atmosphere gas may be replaced. For example, after completing the temperature raising step, the hydrogen gas, which is the atmospheric gas at the end of the temperature raising step, is changed to 10
The reducing gas containing at least volume% may be replaced with an inert gas such as nitrogen gas or argon gas. The temperature raising step must be performed at least in a reducing gas atmosphere containing hydrogen gas, but the holding step and the cooling step (particularly the holding step) are
You may perform in the inert gas atmosphere which does not contain reducing gas. This is because the oxygen-containing compound often remains in the annealing furnace from the beginning, and the oxygen-containing compound generated from the aluminum foil is often generated in the temperature rising step.

【0015】また、冷却工程終了後において、焼鈍炉内
が還元性ガス雰囲気となっているときは、焼鈍炉内から
アルミニウム箔を取り出す前に、還元性ガスを不活性ガ
スに置換するのが好ましい。即ち、焼鈍炉内からアルミ
ニウム箔を取り出すときには、焼鈍炉内が不活性ガス雰
囲気となっているのが好ましい。これは、焼鈍路内から
アルミニウム箔を取り出すとき、万が一、焼鈍炉内が負
圧(大気圧未満)であると、大気が焼鈍炉内に流入する
可能性があり、この時、大量の還元性ガスが存在する
と、還元性ガスと酸素が反応して、急激に可燃する危険
性があるからである。
Further, after the cooling step, when the inside of the annealing furnace is in a reducing gas atmosphere, it is preferable to replace the reducing gas with an inert gas before taking out the aluminum foil from the inside of the annealing furnace. . That is, when the aluminum foil is taken out from the annealing furnace, the inside of the annealing furnace is preferably in an inert gas atmosphere. This is because when the aluminum foil is taken out from the annealing path, if the inside of the annealing furnace has a negative pressure (less than atmospheric pressure), the atmosphere may flow into the annealing furnace. This is because, when gas is present, the reducing gas and oxygen react with each other, and there is a risk of rapid flammability.

【0016】以上のような最終焼鈍を、アルミニウム箔
に施すことによって、表面酸化皮膜の薄い電解コンデン
サ電極用アルミニウム箔が得られるのである。そして、
この電極用アルミニウム箔は、最終焼鈍を経ているの
で、軟質アルミニウム箔ということになる。
By subjecting the aluminum foil to the final annealing as described above, an aluminum foil for electrolytic capacitor electrodes having a thin surface oxide film can be obtained. And
Since the aluminum foil for electrodes has undergone the final annealing, it is a soft aluminum foil.

【0017】[0017]

【実施例】実施例1 通常の均質化処理,熱間圧延,冷間圧延,中間焼鈍,冷
間仕上圧延及び洗浄工程を経て得られた、厚さ0.10
6mmアルミニウム箔を準備した。このアルミニウム箔
(コイル)を焼鈍炉内に置いた。そして、焼鈍炉内から
大気を排気して、焼鈍炉内の真空度を10Paとした。
その後、窒素ガスを焼鈍炉内に導入し、炉内の圧力を
(大気圧+0.5kPa)とした。この状態で、昇温工
程を開始した。そして、約30分後に、水素ガス100
容積%よりなる還元性ガスを焼鈍炉内に導入し、焼鈍炉
内の窒素ガスを還元性ガスで置換し、炉内の圧力を(大
気圧+0.5kPa)とした。なお、昇温工程における
昇温速度は、当初は約200℃/hr.であるが、昇温
工程の途中、昇温速度を減速したり昇温を停止して、約
15時間かけて、アルミニウム箔自体の温度を550℃
とした。
Example 1 A thickness of 0.10 obtained through ordinary homogenizing treatment, hot rolling, cold rolling, intermediate annealing, cold finish rolling and washing steps.
A 6 mm aluminum foil was prepared. This aluminum foil (coil) was placed in an annealing furnace. Then, the atmosphere was evacuated from the inside of the annealing furnace, and the degree of vacuum in the annealing furnace was set to 10 Pa.
Then, nitrogen gas was introduced into the annealing furnace, and the pressure inside the furnace was set to (atmospheric pressure + 0.5 kPa). In this state, the temperature raising step was started. Then, after about 30 minutes, hydrogen gas 100
A reducing gas consisting of volume% was introduced into the annealing furnace, the nitrogen gas in the annealing furnace was replaced with the reducing gas, and the pressure in the furnace was set to (atmospheric pressure + 0.5 kPa). The rate of temperature increase in the temperature increasing step is initially about 200 ° C./hr. However, during the heating process, the temperature of the aluminum foil itself is reduced to 550 ° C. over a period of about 15 hours by decelerating the heating rate or stopping the heating.
And

【0018】昇温工程を終えた後、550℃で約5時間
保持した(保持工程)。その後、降温速度約200℃/
hr.で降温させ、焼鈍炉内の温度を50℃として、ア
ルミニウム箔を冷却した(冷却工程)。この昇温工程、
保持工程及び冷却工程のいずれの工程でも、水素ガス1
00容積%よりなる還元性ガスを、焼鈍炉内に1.0N
l(ノルマルリットル)/min.の流入量で流入させ
ると共に、焼鈍炉内の圧力が(大気圧+0.5kPa)
に維持されるよう、適宜、焼鈍炉内のガスを排気した。
冷却工程を終え、アルミニウム箔が十分に冷却した後、
アルミニウム箔を取り出す前に、焼鈍炉内に還元性ガス
を排気して、焼鈍炉内の圧力を100Pa程度とした。
その後、焼鈍炉内に窒素ガスを導入し、炉内の圧力を大
気圧以上として、炉内の還元性ガスを概ね全部追い出し
た。そして、この状態で、アルミニウム箔(コイル)を
取り出した。以上のような条件で、アルミニウム箔に最
終焼鈍を施して電解コンデンサ陽極用アルミニウム箔を
得た。
After the temperature raising process was completed, the temperature was maintained at 550 ° C. for about 5 hours (holding process). After that, the temperature drop rate is about 200 ℃ /
hr. Then, the temperature in the annealing furnace was set to 50 ° C. and the aluminum foil was cooled (cooling step). This temperature raising step,
In both the holding step and the cooling step, hydrogen gas 1
Reducing gas consisting of 00 volume% was added to the annealing furnace at 1.0N
1 (normal liter) / min. And the pressure in the annealing furnace is (atmospheric pressure + 0.5 kPa)
The gas in the annealing furnace was appropriately exhausted so that the temperature was maintained at.
After finishing the cooling process and cooling the aluminum foil sufficiently,
Before taking out the aluminum foil, the reducing gas was exhausted into the annealing furnace so that the pressure in the annealing furnace was about 100 Pa.
Then, nitrogen gas was introduced into the annealing furnace, the pressure inside the furnace was raised to atmospheric pressure or higher, and almost all the reducing gas inside the furnace was expelled. Then, in this state, the aluminum foil (coil) was taken out. Under the above conditions, the aluminum foil was subjected to final annealing to obtain an aluminum foil for an electrolytic capacitor anode.

【0019】実施例2 (i)排気した際の焼鈍炉内の真空度を50Paとする
こと、(ii)昇温速度を約50℃/hr.とすること、
及び(iii )降温速度を約50℃/hr.とすることの
他は、実施例1と同様の方法により、電解コンデンサ陽
極用アルミニウム箔を得た。
Example 2 (i) The degree of vacuum in the annealing furnace when evacuated was set to 50 Pa, and (ii) the rate of temperature rise was about 50 ° C./hr. What to do
And (iii) the temperature decrease rate is about 50 ° C./hr. An aluminum foil for an electrolytic capacitor anode was obtained in the same manner as in Example 1, except that

【0020】実施例3 (i)水素ガス100容積%よりなる還元性ガスに代え
て、水素ガス50容積%と窒素ガス50容積%よりなる
還元性ガスを焼鈍炉内に導入し、炉内の圧力を(大気圧
+2.0kPa)とすること、及び(ii)水素ガス50
容積%と窒素ガス50容積%よりなる還元性ガスを、焼
鈍炉内に2.0Nl(ノルマルリットル)/min.の
流入量で流入させると共に、焼鈍炉内の圧力が(大気圧
+2.0kPa)に維持されるよう、適宜、焼鈍炉内の
ガスを排気することの他は、実施例2と同様の方法によ
り、電解コンデンサ陽極用アルミニウム箔を得た。
Example 3 (i) Instead of the reducing gas consisting of 100% by volume of hydrogen gas, a reducing gas consisting of 50% by volume of hydrogen gas and 50% by volume of nitrogen gas was introduced into the annealing furnace, and The pressure is (atmospheric pressure + 2.0 kPa), and (ii) hydrogen gas 50
A reducing gas consisting of 50% by volume of nitrogen gas and 50% by volume of nitrogen gas was introduced into the annealing furnace at 2.0 Nl (normal liter) / min. By the same method as in Example 2, except that the gas in the annealing furnace is appropriately exhausted so that the pressure in the annealing furnace is maintained at (atmospheric pressure + 2.0 kPa). An aluminum foil for an electrolytic capacitor anode was obtained.

【0021】実施例4 実施例3で用いた水素ガス50容積%と窒素ガス50容
積%よりなる還元性ガスに代えて、水素ガス25容積%
と窒素ガス75容積%よりなる還元性ガスを用いる他
は、実施例3と同様の方法により、電解コンデンサ陽極
用アルミニウム箔を得た。
Example 4 In place of the reducing gas consisting of 50% by volume of hydrogen gas and 50% by volume of nitrogen gas used in Example 3, 25% by volume of hydrogen gas was used.
An aluminum foil for an electrolytic capacitor anode was obtained in the same manner as in Example 3, except that a reducing gas containing 75% by volume of nitrogen gas was used.

【0022】比較例1 (i)排気した際の焼鈍炉内の真空度を100Paとす
ること、及び(ii)水素ガス50容積%と窒素ガス50
容積%よりなる還元性ガスに代えて、窒素ガス100容
積%によりなる不活性ガスを用いることの他は、実施例
3と同様の方法により、電解コンデンサ陽極用アルミニ
ウム箔を得た。
Comparative Example 1 (i) The degree of vacuum in the annealing furnace when exhausted was 100 Pa, and (ii) 50% by volume of hydrogen gas and 50% of nitrogen gas.
An aluminum foil for an electrolytic capacitor anode was obtained in the same manner as in Example 3 except that an inert gas consisting of 100% by volume of nitrogen gas was used in place of the reducing gas consisting of% by volume.

【0023】比較例2 (i)排気した際の焼鈍炉内の真空度を200Paとす
ること、及び(ii)実施例3で用いた水素ガス50容積
%と窒素ガス50容積%よりなる還元性ガスに代えて、
アルゴンガス100容積%よりなる不活性ガスを用いる
ことの他は、実施例3と同様の方法により、電解コンデ
ンサ陽極用アルミニウム箔を得た。
Comparative Example 2 (i) The degree of vacuum in the annealing furnace when exhausted was 200 Pa, and (ii) the reducibility of 50% by volume of hydrogen gas and 50% by volume of nitrogen gas used in Example 3. Instead of gas,
An aluminum foil for an electrolytic capacitor anode was obtained in the same manner as in Example 3, except that an inert gas consisting of 100% by volume of argon gas was used.

【0024】得られた各電解コンデンサ陽極用アルミニ
ウム箔について、以下の条件で酸化皮膜の厚さ(nm)
を測定し、表1に示した。 〔酸化皮膜の厚さ〕各電解コンデンサ陽極用アルミニウ
ム箔から巾10mm×長さ130mmの試料片を採取
し、長さ100mmの部分まで、10質量%濃度のアジ
ピン酸アンモニウム水溶液(液温25℃)中に浸漬し、
DC0.4mAの定電流を流した時の電圧−時間曲線の
変曲点の電圧(V)に1.4(nm/V)を乗じた値
を、酸化皮膜の厚さとした。
With respect to each of the obtained aluminum foils for anodes of electrolytic capacitors, the thickness (nm) of the oxide film under the following conditions:
Was measured and shown in Table 1. [Thickness of oxide film] A sample piece having a width of 10 mm and a length of 130 mm is taken from each aluminum foil for the anode of each electrolytic capacitor, and an aqueous solution of ammonium adipate having a concentration of 10 mass% (liquid temperature 25 ° C) is formed up to a portion having a length of 100 mm. Soak in,
The value obtained by multiplying the voltage (V) at the inflection point of the voltage-time curve when a constant current of 0.4 mA DC was applied by 1.4 (nm / V) was taken as the thickness of the oxide film.

【0025】また、得られた各電解コンデンサ陽極用ア
ルミニウム箔に、以下の条件でエッチング処理及び化成
処理を施した。 〔エッチング処理〕 前処理:濃度0.1質量%の水酸化ナトリウム水溶液
(液温50℃)中に、各電解コンデンサ陽極用アルミニ
ウム箔から採取した各試料箔を60秒間浸漬した。 本処理:1モル濃度塩酸+3モル濃度硫酸の混合水溶液
(液温85℃)中に、前処理を終えた各試料箔を浸漬
し、DC0.2A/cm2の電流密度で240秒間の電
解エッチングを行い、更にその後、同混合水溶液中にて
10分間浸漬してエッチングを終了した。エッチング終
了後、常法によって水洗及び乾燥した。なお、上記モル
濃度は、モル/lのことである。 〔化成処理〕エッチング処理を終えた各試料箔から、巾
10mm×長さ50mmの各試験箔を採取した。この各
試験箔を、EIAJ法に則って、対向電極をSUS 3
04として、化成処理を375Vf.で行い、各陽極試
料箔を得た。
Further, the obtained aluminum foil for electrolytic capacitor anodes was subjected to etching treatment and chemical conversion treatment under the following conditions. [Etching treatment] Pretreatment: Each sample foil taken from the aluminum foil for anode of each electrolytic capacitor was immersed for 60 seconds in an aqueous sodium hydroxide solution (solution temperature: 50 ° C) having a concentration of 0.1% by mass. Main treatment: Each pre-treated sample foil is immersed in a mixed aqueous solution of 1 molar hydrochloric acid + 3 molar sulfuric acid (liquid temperature 85 ° C), and electrolytic etching is performed for 240 seconds at a current density of DC 0.2 A / cm 2. After that, the substrate was further immersed in the mixed aqueous solution for 10 minutes to complete the etching. After the etching was completed, it was washed with water and dried by a conventional method. The above molar concentration means mol / l. [Chemical conversion treatment] Each test foil having a width of 10 mm and a length of 50 mm was sampled from each sample foil after the etching treatment. The counter electrode of each of these test foils was made of SUS 3 in accordance with the EIAJ method.
04, the chemical conversion treatment is 375 Vf. And each anode sample foil was obtained.

【0026】得られた各陽極試料箔を用いて、以下の方
法で静電容量(μF/cm2)を測定した。即ち、この
陽極試料箔1枚(大きさ:巾10mm×長さ50mm)
を、13質量%濃度の五硼酸アンモニウム水溶液(液温
30℃)中に浸漬し、対向電極を静電容量が40000
μF以上のエッチドアルミニウム箔として、120Hz
の直列等価回路でLCRメーターを用いて静電容量(μ
F/cm2)を測定した。この結果を、表1に示した。
表1に示した静電容量は、比較例1の電解コンデンサ陽
極用アルミニウム箔から得られた陽極試料箔の静電容量
を100%として、これとの相対比較で求めたものであ
る。
The capacitance (μF / cm 2 ) of each of the obtained anode sample foils was measured by the following method. That is, one piece of this anode sample foil (size: width 10 mm x length 50 mm)
Is immersed in an aqueous solution of ammonium pentaborate having a concentration of 13% by mass (solution temperature 30 ° C.), and the counter electrode has a capacitance of 40,000.
120Hz as etched aluminum foil of μF or more
Of the capacitance (μ
F / cm 2 ) was measured. The results are shown in Table 1.
The capacitances shown in Table 1 are obtained by relative comparison with the capacitance of the anode sample foil obtained from the aluminum foil for electrolytic capacitor anodes of Comparative Example 1 as 100%.

【0027】 〔表1〕 ━━━━━━━━━━━━━━━━━━━━━━━━━━ 酸化皮膜の厚さ(nm) 静電容量(%) ━━━━━━━━━━━━━━━━━━━━━━━━━━ 実施例1 2.68 109.8 実施例2 2.81 108.8 実施例3 2.96 110.2 実施例4 3.02 107.3 比較例1 3.22 100.0 比較例2 3.44 99.3 ━━━━━━━━━━━━━━━━━━━━━━━━━━[0027]     [Table 1]           ━━━━━━━━━━━━━━━━━━━━━━━━━━                       Thickness of oxide film (nm) Capacitance (%)           ━━━━━━━━━━━━━━━━━━━━━━━━━━             Example 1 2.68 109.8             Example 2 2.81 108.8             Example 3 2.96 110.2             Example 4 3.02 107.3             Comparative Example 1 3.22 100.0             Comparative Example 2 3.44 99.3           ━━━━━━━━━━━━━━━━━━━━━━━━━━

【0028】表1の結果から明らかなように、実施例に
係る方法で得られた各電解コンデンサ電極用アルミニウ
ム箔の場合、比較例のものに比べて、酸化皮膜の厚さは
相対的に薄く、得られる電極箔の静電容量も高かった。
As is clear from the results shown in Table 1, in the case of each aluminum foil for electrolytic capacitor electrodes obtained by the method according to the example, the thickness of the oxide film is relatively smaller than that of the comparative example. The capacitance of the obtained electrode foil was also high.

【0029】[0029]

【発明の効果】以上説明したように、本発明に係る方法
で得られた電解コンデンサ電極用アルミニウム箔は、表
面酸化皮膜の厚さが薄く、エッチング特性に優れてお
り、これをエッチング処理して得られた電解コンデンサ
電極箔(特に、陽極箔)は静電容量が大きく、単位面積
当たり大容量のコンデンサを得ることができるという効
果を奏する。
As described above, the aluminum foil for electrolytic capacitor electrodes obtained by the method according to the present invention has a thin surface oxide film and excellent etching characteristics. The obtained electrolytic capacitor electrode foil (in particular, anode foil) has a large electrostatic capacity, and has an effect that a capacitor having a large capacity per unit area can be obtained.

【0030】また、本発明は、焼鈍炉内を排気した後、
直ちに還元性ガスを導入するのではなく、いったん、不
活性ガスを導入した後、還元性ガスで置換する。従っ
て、還元性ガスが大気中の酸素を伴って勢いよく焼鈍炉
内に進入しにくく、還元性ガスと酸素との反応による可
燃の危険が少ない。従って、アルミニウム箔の最終焼鈍
を安全に行うことができるという効果を奏する。更に、
焼鈍炉からアルミニウム箔を取り出すときに、焼鈍炉内
を不活性ガス雰囲気にしておいた場合にも、還元性ガス
と酸素との急激な反応を回避でき、安全に作業を行える
という効果を奏する。
Further, according to the present invention, after exhausting the inside of the annealing furnace,
Instead of immediately introducing the reducing gas, the inert gas is first introduced and then replaced with the reducing gas. Therefore, the reducing gas is hard to vigorously enter the annealing furnace together with oxygen in the atmosphere, and the risk of flammability due to the reaction between the reducing gas and oxygen is small. Therefore, there is an effect that the final annealing of the aluminum foil can be safely performed. Furthermore,
Even when the inside of the annealing furnace is kept in an inert gas atmosphere when the aluminum foil is taken out from the annealing furnace, the rapid reaction between the reducing gas and oxygen can be avoided, and the work can be performed safely.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 661 C22F 1/00 691Z 682 H01G 9/04 346 691 9/24 B (72)発明者 片岡 次雄 滋賀県草津市山寺町笹谷61−8 日本製箔 株式会社滋賀工場内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22F 1/00 661 C22F 1/00 691Z 682 H01G 9/04 346 691 9/24 B (72) Inventor Kataoka Tsuguo 61-8 Sasaya, Yamadera-cho, Kusatsu-shi, Shiga Nihon Foil Co., Ltd. Shiga factory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム箔を焼鈍炉内で最終焼鈍し
て、電解コンデンサ電極用アルミニウム箔を製造する方
法において、該焼鈍炉内の温度を所定温度まで昇温させ
る昇温工程の前に該焼鈍炉内から大気を排気して、該焼
鈍炉内の圧力を50Pa以下にした後、窒素ガス、アル
ゴンガス、ヘリウムガス等の不活性ガスを導入し、その
後、該焼鈍炉内の該不活性ガスを、水素ガスを10容積
%以上含む還元性ガスに置換しながら、該昇温工程を経
ることを特徴とする電解コンデンサ電極用アルミニウム
箔の製造方法。
1. A method for producing an aluminum foil for an electrolytic capacitor electrode by final annealing an aluminum foil in an annealing furnace, wherein the annealing is performed before a temperature raising step of raising the temperature in the annealing furnace to a predetermined temperature. The atmosphere is evacuated from the furnace and the pressure in the annealing furnace is set to 50 Pa or less, then an inert gas such as nitrogen gas, argon gas, or helium gas is introduced, and then the inert gas in the annealing furnace. Is replaced with a reducing gas containing 10% by volume or more of hydrogen gas, and the heating step is performed, and a method for manufacturing an aluminum foil for electrolytic capacitor electrodes, comprising:
【請求項2】 焼鈍炉内に、窒素ガス、アルゴンガス、
ヘリウムガス等の不活性ガスを導入して、該焼鈍炉内の
圧力を大気圧よりも高くした後、該焼鈍炉内の該不活性
ガスを、水素ガスを10容積%以上含む還元性ガスに置
換する請求項1記載の電解コンデンサ電極用アルミニウ
ム箔の製造方法。
2. Inside the annealing furnace, nitrogen gas, argon gas,
After introducing an inert gas such as helium gas to increase the pressure in the annealing furnace above atmospheric pressure, the inert gas in the annealing furnace is reduced to a reducing gas containing 10% by volume or more of hydrogen gas. The method for producing an aluminum foil for an electrolytic capacitor electrode according to claim 1, wherein the aluminum foil is replaced.
【請求項3】 昇温工程後、焼鈍炉内を所定温度に保持
する保持工程及び焼鈍炉内の温度を降温させる冷却工程
においても、該焼鈍炉内の雰囲気を還元性ガス雰囲気に
する請求項1記載の電解コンデンサ電極用アルミニウム
箔の製造方法。
3. The atmosphere in the annealing furnace is set to a reducing gas atmosphere also in the holding step of holding the inside of the annealing furnace at a predetermined temperature and the cooling step of lowering the temperature in the annealing furnace after the temperature raising step. 1. The method for producing an aluminum foil for an electrolytic capacitor electrode according to 1.
【請求項4】 焼鈍炉内の圧力を、常に、大気圧よりも
0.1〜5kPa高く維持して最終焼鈍を行う請求項1
記載の電解コンデンサ電極用アルミニウム箔の製造方
法。
4. The final annealing is performed while the pressure in the annealing furnace is always kept higher than the atmospheric pressure by 0.1 to 5 kPa.
A method for producing an aluminum foil for an electrolytic capacitor electrode as described above.
【請求項5】 焼鈍炉内の不活性ガスを、水素ガスを1
0容積%以上含む還元性ガスに置換した後、該焼鈍炉内
に、水素ガスを10容積%以上含む還元性ガスを流入さ
せながら最終焼鈍を行う請求項1記載の電解コンデンサ
電極用アルミニウム箔の製造方法。
5. An inert gas in the annealing furnace is hydrogen gas
The aluminum foil for electrolytic capacitor electrodes according to claim 1, wherein after the replacement with a reducing gas containing 0% by volume or more, final annealing is performed while flowing the reducing gas containing 10% by volume or more of hydrogen gas into the annealing furnace. Production method.
【請求項6】 冷却工程を終えて、焼鈍炉からアルミニ
ウム箔を取り出す前に、該焼鈍炉内の雰囲気を不活性ガ
ス雰囲気とする請求項1乃至5のいずれか一項に記載の
電解コンデンサ電極用アルミニウム箔の製造方法。
6. The electrolytic capacitor electrode according to claim 1, wherein the atmosphere in the annealing furnace is an inert gas atmosphere before the aluminum foil is taken out from the annealing furnace after the cooling step. For manufacturing aluminum foil for automobiles.
JP2001326855A 2001-10-24 2001-10-24 Method for producing aluminum foil for electrolytic capacitor electrode Expired - Fee Related JP3765077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001326855A JP3765077B2 (en) 2001-10-24 2001-10-24 Method for producing aluminum foil for electrolytic capacitor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001326855A JP3765077B2 (en) 2001-10-24 2001-10-24 Method for producing aluminum foil for electrolytic capacitor electrode

Publications (2)

Publication Number Publication Date
JP2003129202A true JP2003129202A (en) 2003-05-08
JP3765077B2 JP3765077B2 (en) 2006-04-12

Family

ID=19143166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001326855A Expired - Fee Related JP3765077B2 (en) 2001-10-24 2001-10-24 Method for producing aluminum foil for electrolytic capacitor electrode

Country Status (1)

Country Link
JP (1) JP3765077B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115428A (en) * 2006-11-06 2008-05-22 Mitsubishi Alum Co Ltd Method for producing aluminum foil for electrolytic capacitor
WO2012050118A1 (en) * 2010-10-13 2012-04-19 オーディオ・ラボ有限会社 Method for producing metal material and metal material
CN110783108A (en) * 2019-10-18 2020-02-11 佛山科学技术学院 Method for manufacturing corrosion foil
CN114657484A (en) * 2022-03-16 2022-06-24 广西正润新材料科技有限公司 Annealing method of electronic aluminum foil for aluminum electrolytic capacitor
CN114807792A (en) * 2022-04-28 2022-07-29 镇江银海科技材料有限公司 Cooling device for surface heat treatment of explosion-proof aluminum foil and cooling method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115428A (en) * 2006-11-06 2008-05-22 Mitsubishi Alum Co Ltd Method for producing aluminum foil for electrolytic capacitor
WO2012050118A1 (en) * 2010-10-13 2012-04-19 オーディオ・ラボ有限会社 Method for producing metal material and metal material
CN103154296A (en) * 2010-10-13 2013-06-12 佳能电子株式会社 Method for producing metal material and metal material
KR20140138331A (en) * 2010-10-13 2014-12-03 캐논 덴시 가부시키가이샤 Method for producing metal material and metal material
KR101658300B1 (en) * 2010-10-13 2016-09-22 캐논 덴시 가부시키가이샤 Method for producing metal material and metal material
US9627108B2 (en) 2010-10-13 2017-04-18 Canon Denshi Kabushiki Kaisha Method and apparatus for manufacturing metal material and metal material
EP2628815A4 (en) * 2010-10-13 2018-01-24 Canon Denshi Kabushiki Kaisha Method for producing metal material and metal material
CN110783108A (en) * 2019-10-18 2020-02-11 佛山科学技术学院 Method for manufacturing corrosion foil
CN110783108B (en) * 2019-10-18 2022-03-25 佛山科学技术学院 Method for manufacturing corrosion foil
CN114657484A (en) * 2022-03-16 2022-06-24 广西正润新材料科技有限公司 Annealing method of electronic aluminum foil for aluminum electrolytic capacitor
CN114807792A (en) * 2022-04-28 2022-07-29 镇江银海科技材料有限公司 Cooling device for surface heat treatment of explosion-proof aluminum foil and cooling method thereof
CN114807792B (en) * 2022-04-28 2023-08-01 镇江银海科技材料有限公司 Cooling device for surface heat treatment of explosion-proof aluminum foil and cooling method thereof

Also Published As

Publication number Publication date
JP3765077B2 (en) 2006-04-12

Similar Documents

Publication Publication Date Title
EP1374262B1 (en) Capacitor substrates made of refractory metal nitrides
JP2003129202A (en) Production method for aluminum foil for electrolytic capacitor electrode
JP3539631B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP3797645B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP4671218B2 (en) Method for producing aluminum foil for electrolytic capacitor
JP3216477B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JPH09167720A (en) Aluminum solid electrolyte capacitor electrode manufacturing method
JP5498678B2 (en) Silicon wafer manufacturing method
JP2005015916A (en) Method of producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method of producing electrode material for electrolytic capacitor and aluminum electrolytic capacitor
JP3676601B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JPH1116787A (en) Manufacture of aluminum electrode foil for electrolytic capacitor large in electrostatic capacitance per unit loss of weight on etching
JP4629312B2 (en) Method for producing aluminum material for electrolytic capacitor electrode and method for producing electrode material for electrolytic capacitor
JP2006108395A (en) Manufacturing method for electrode foil for aluminum electrolytic capacitor
JP4732892B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4308556B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JP3407470B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JP3309177B2 (en) Surface enlargement treatment method for electrode foil for aluminum electrolytic capacitor
JP2008081811A (en) Method for producing aluminum foil for electrolytic capacitor
JP4421765B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP3450083B2 (en) Aluminum foil for electrode of electrolytic capacitor and method for producing the same
JP2000309836A (en) Aluminum foil for electrolytic capacitor anode and its production
JPH1187189A (en) Manufacture of aluminum foil for electrolytic capacitor
JP3320467B2 (en) Aluminum material for electrolytic capacitor electrode and method for producing the same
JP2639553B2 (en) Manufacturing method of aluminum foil for electrolytic capacitors
JP4981932B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3765077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees