JP2008081811A - Method for producing aluminum foil for electrolytic capacitor - Google Patents

Method for producing aluminum foil for electrolytic capacitor Download PDF

Info

Publication number
JP2008081811A
JP2008081811A JP2006264694A JP2006264694A JP2008081811A JP 2008081811 A JP2008081811 A JP 2008081811A JP 2006264694 A JP2006264694 A JP 2006264694A JP 2006264694 A JP2006264694 A JP 2006264694A JP 2008081811 A JP2008081811 A JP 2008081811A
Authority
JP
Japan
Prior art keywords
pressure
aluminum foil
annealing
coil
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006264694A
Other languages
Japanese (ja)
Inventor
Akira Yoshii
章 吉井
Hideo Watanabe
英雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2006264694A priority Critical patent/JP2008081811A/en
Publication of JP2008081811A publication Critical patent/JP2008081811A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent, when annealing aluminum foil for electrolytic capacitor, the occurrence of nonuniformity of oxide film in a coil-width direction, oxidation phenomena at edges, etc., and the resultant occurrence of inferior etching in the subsequent step. <P>SOLUTION: When annealing aluminum foil produced by cold rolling, the atmosphere is made to a negative-pressure atmosphere and also a pressure decrease by discharge of atmospheric gas and a pressure increase by introduction of atmospheric gas are repeated in a pressure range from 0.4×10<SP>5</SP>to 0.9×10<SP>5</SP>Pa. It is desirable to set the ultimate pressure of pressure decrease and the ultimate pressure of pressure increase at 0.4×10<SP>5</SP>to 0.6×10<SP>5</SP>Pa and 0.7×10<SP>5</SP>to 0.9×10<SP>5</SP>Pa, respectively. By this method, an oxide film having high uniformity in a coil-width direction can be formed on the surface of aluminum foil in coil form without causing winding deviation etc. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は電解コンデンサの電極に用いられる電解コンデンサ用アルミニウム箔の製造方法に関するものである。   The present invention relates to a method for producing an aluminum foil for electrolytic capacitors used for electrodes of electrolytic capacitors.

アルミニウム電解コンデンサの電極には、一般に、厚さ20〜150μmで強酸溶液中でエッチングをして表面積を拡大した高純度アルミニウム箔が使用されている。
上記アルミニウム箔は、高純度のアルミニウム材を原料として冷間圧延を経て所定厚さの箔にされ、その後、上記エッチングにより粗面化がなされる。このアルミニウム箔のうち中高圧用電解コンデンサなどに使用される箔では、上記アルミニウム箔圧延により薄厚にした後、コイル状に巻き取り、このコイルをバッチ炉に収容して、500℃以上の高温で焼鈍して立方晶率を95%以上に高めることでエッチング性を向上させている。
As an electrode of an aluminum electrolytic capacitor, a high-purity aluminum foil having a thickness of 20 to 150 μm and etching in a strong acid solution to expand the surface area is generally used.
The aluminum foil is made into a foil having a predetermined thickness through cold rolling using a high-purity aluminum material as a raw material, and then roughened by the etching. Of these aluminum foils, foils used for medium- and high-voltage electrolytic capacitors are thinned by the above-described aluminum foil rolling, wound into a coil, and accommodated in a batch furnace, at a high temperature of 500 ° C. or higher. Etching is improved by annealing and increasing the cubic ratio to 95% or more.

上記焼鈍では高温での加熱によってアルミニウム箔表面に酸化皮膜が成長するが、この酸化皮膜が過度に成長した場合、著しくエッチング性が低下する。したがって、焼鈍の際には酸化皮膜の厚さが通常20〜80Åになるよう制御されている。このために、焼鈍雰囲気中の酸素濃度、又は露点を管理するのが一般的である。例えば、焼鈍前に焼鈍炉内の真空引きを行った後、Ar、N等の不活性ガスを流入させて炉内の酸素濃度を低減した後、アルミニウム箔を加熱処理する。しかし、箔圧延後のアルミニウム箔表面には、圧延油、水分等が付着しており、上記焼鈍に際し、加熱された圧延油や水分がガス化し、焼鈍雰囲気を汚染するとともに、ガス化した物質がコイル中央部から端部に押し出される際にアルミニウム箔表面で反応し、酸化皮膜のバラツキ、端部酸化等の異常を招くという問題がある。酸化皮膜のバラツキは電解コンデンサの容量のバラツキの原因となる。また、過度に酸化された端部はエッチング性が悪く、良好な粗面化が行えない。 In the annealing, an oxide film grows on the surface of the aluminum foil by heating at a high temperature. However, when this oxide film grows excessively, the etching property is remarkably lowered. Therefore, the thickness of the oxide film is usually controlled to 20 to 80 mm during annealing. For this purpose, it is common to manage the oxygen concentration or dew point in the annealing atmosphere. For example, after evacuating the annealing furnace before annealing, an inert gas such as Ar or N 2 is introduced to reduce the oxygen concentration in the furnace, and then the aluminum foil is heat-treated. However, the rolling oil, moisture, etc. are attached to the surface of the aluminum foil after the foil rolling, and during the annealing, the heated rolling oil and moisture are gasified, contaminating the annealing atmosphere, and gasified substances are present. When extruded from the center of the coil to the end, it reacts on the surface of the aluminum foil, causing problems such as variations in the oxide film and oxidation of the end. Variation in the oxide film causes variation in the capacitance of the electrolytic capacitor. In addition, the excessively oxidized end portion has poor etching property and cannot be roughened.

このような酸化皮膜のバラツキ等を防止するため、例えば、アルミニウム箔に対し脱脂を行って表面を清浄化することで圧延油などの除去を行い、さらに、500〜950Torrの雰囲気で350〜450℃で焼鈍し、一旦、1Torr以下に減圧することで、水分をコイルの各層間から発生させ、これを上記減圧時に炉外に排出し、その後、再度500〜950Torrで450〜600℃に焼鈍することで均一な酸化皮膜を形成することを意図した製造方法(特許文献1参照)が提案されている。
特開平10−152763号公報
In order to prevent such variations in the oxide film, for example, the aluminum foil is degreased to remove the rolling oil by cleaning the surface, and further, 350 to 450 ° C. in an atmosphere of 500 to 950 Torr. And then temporarily reducing the pressure to 1 Torr or less to generate moisture from each layer of the coil, discharging it to the outside of the furnace at the time of the pressure reduction, and then annealing again to 450 to 600 ° C. at 500 to 950 Torr. And a manufacturing method (see Patent Document 1) intended to form a uniform oxide film.
Japanese Patent Laid-Open No. 10-152766

しかし、上記提案技術においては、一旦1Torr以下に減圧する際に、前記コイル内部に残留するガスが急激に排出されることによってコイルの巻きずれが起きたりアルミニウム箔同士の密着が生じてしまうという問題がある。アルミニウム箔同士の密着は、後工程でコイルを巻き直す際にしわを招いてしまう。   However, in the proposed technique, when the pressure is once reduced to 1 Torr or less, the gas remaining inside the coil is suddenly exhausted, so that the coil is unwound or the aluminum foils are in close contact with each other. There is. The adhesion between the aluminum foils causes wrinkles when the coil is rewound in a later process.

本発明は、上記事情を背景としてなされたものであり、巻きずれなどを発生させることなくコイル状のアルミニウム箔表面にコイル幅方向で均一性の高い酸化皮膜を形成することができる電解コンデンサ用アルミニウム箔の製造方法を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and is an aluminum for electrolytic capacitors that can form a highly uniform oxide film in the coil width direction on the surface of the coiled aluminum foil without causing a winding slip or the like. It aims at providing the manufacturing method of foil.

すなわち、本発明の電解コンデンサ用アルミニウム箔の製造方法のうち、請求項1記載の発明は、冷間圧延により製造されたアルミニウム箔を焼鈍する際に、負圧雰囲気にするとともに、0.4×10Pa〜0.9×10Paの圧力範囲において、雰囲気ガスの排出による降圧と雰囲気ガスの導入による昇圧とを繰り返して焼鈍を行うことを特徴とする。 That is, among the methods for producing an aluminum foil for electrolytic capacitors according to the present invention, the invention according to claim 1 has a negative pressure atmosphere when annealing the aluminum foil produced by cold rolling, and 0.4 × in 10 5 Pa~0.9 × 10 5 pressure range Pa, and performing the annealing by repeating the step-up by introduction of the step-down and the ambient gas by the discharge of the atmospheric gas.

請求項2記載の電解コンデンサ用アルミニウム箔の製造方法の発明は、請求項1記載の発明において、前記降圧の到達圧力が0.4×10Pa〜0.6×10Paの範囲内に設定され、前記昇圧の到達圧力が0.7×10Pa〜0.9×10Paの範囲内に設定されていることを特徴とする。 Invention of a manufacturing method according to claim 2 electrolytic aluminum foil capacitor as claimed in the invention of claim 1, wherein, in the ultimate pressure of the step-down in the range of 0.4 × 10 5 Pa~0.6 × 10 5 Pa is set, ultimate pressure of the booster is characterized in that it is in the range of 0.7 × 10 5 Pa~0.9 × 10 5 Pa.

請求項3記載の電解コンデンサ用アルミニウム箔の製造方法の発明は、請求項1または2に記載の発明において、前記降圧と昇圧とがなされる1サイクルが30分以内であることを特徴とする。   The invention of the method for producing an aluminum foil for electrolytic capacitors according to claim 3 is the invention according to claim 1 or 2, wherein one cycle in which the step-down and the step-up are performed is within 30 minutes.

請求項4記載の電解コンデンサ用アルミニウム箔の製造方法の発明は、請求項1〜3のいずれかに記載の発明において、前記アルミニウム箔を昇温させて焼鈍温度で焼鈍させる際に、前記アルミニウム箔が300℃に達しない昇温途中では雰囲気圧力を0.8×10Pa〜0.9×10Paに設定することを特徴とする。 The invention of the method for producing an aluminum foil for electrolytic capacitors according to claim 4 is the invention according to any one of claims 1 to 3, wherein the aluminum foil is heated when the aluminum foil is heated and annealed at an annealing temperature. There and sets the ambient pressure in the middle heated without reaching 300 ° C. to 0.8 × 10 5 Pa~0.9 × 10 5 Pa.

請求項5記載の電解コンデンサ用アルミニウム箔の製造方法の発明は、請求項1〜4のいずれかに記載の発明において、前記降圧と昇圧とは、焼鈍時の冷却温度が200℃に至るまで行われることを特徴とする。   The invention of the method for producing an aluminum foil for electrolytic capacitors according to claim 5 is the invention according to any one of claims 1 to 4, wherein the step-down and step-up are performed until the cooling temperature during annealing reaches 200 ° C. It is characterized by being.

すなわち本発明によれば、焼鈍炉内を負圧雰囲気にすることで、焼鈍中にコイル内で発生するガス(以下不純物ガスとする)がコイル外へ排出される。この際に、0.4×10Pa〜0.9×10Paの圧力範囲において降圧と昇圧とを繰り返すことで、上記不純物ガスが降圧時に円滑かつ速やかにコイル外から炉外に排出され、昇圧時に清浄な雰囲気ガスが炉内に導入されて箔同士の密着が防止され、前記降圧時に不純物ガスがコイル外に排出されるのを一層円滑にする。これにより、不純物ガスが円滑にコイル外に排出されないことによってコイル端部で生じる酸化皮膜のバラツキや端部酸化などの異常発生が防止され、幅方向に均一な酸化皮膜を形成することが可能になる。 That is, according to the present invention, a gas generated in the coil during annealing (hereinafter referred to as impurity gas) is discharged out of the coil by setting the inside of the annealing furnace to a negative pressure atmosphere. At this time, by repeating the pressure reduction and pressure increase in the pressure range of 0.4 × 10 5 Pa to 0.9 × 10 5 Pa, the impurity gas is smoothly and quickly discharged from the outside of the coil to the outside of the coil at the time of pressure reduction. A clean atmosphere gas is introduced into the furnace at the time of pressurization to prevent the foils from sticking to each other, and the impurity gas is more smoothly discharged out of the coil at the time of the pressure decrease. This prevents the occurrence of abnormalities such as variations in the oxide film and oxidation at the end of the coil due to the impurity gas not being smoothly discharged out of the coil, and it is possible to form a uniform oxide film in the width direction. Become.

なお、降圧時の圧力を0.4×10Pa以上に規制することで、0.4×10Pa未満の低圧に減圧した場合に、上記不純物ガスが急激にコイル外に排出されてコイルの巻きずれやアルミニウム箔同士の密着が生じるのを回避することができる。また、過度に低圧にすると、雰囲気ガス濃度が低下して熱伝導性が低下して焼鈍速度が著しく遅くなるため、0.4×10Pa以上の圧力にして熱伝導性を確保する。
なお、降圧時の到達圧力は、0.4×10Pa以上にするとともに、0.6×10Pa以下とするのが望ましい。これにより不純物ガスをコイル外に良好に排出するとともに雰囲気ガスを炉外に速やかに排出することができる。降圧時の到達圧力が0.6×10Pa超であると、不純物ガスの排出作用は得られるが、該作用は十分ではない。降圧時の到達圧力域は、さらに、下限を0.45×10Pa、上限を0.55×10Paに定めるのがさらに望ましい。
In addition, when the pressure at the time of pressure reduction is regulated to 0.4 × 10 5 Pa or more, when the pressure is reduced to a low pressure of less than 0.4 × 10 5 Pa, the impurity gas is suddenly discharged out of the coil and the coil It is possible to avoid the occurrence of winding misalignment and adhesion between aluminum foils. On the other hand, if the pressure is excessively low, the atmospheric gas concentration is lowered, the thermal conductivity is lowered, and the annealing rate is remarkably slowed. Therefore, the thermal conductivity is secured by a pressure of 0.4 × 10 5 Pa or more.
The ultimate pressure at the time of pressure reduction is preferably 0.4 × 10 5 Pa or more and 0.6 × 10 5 Pa or less. As a result, the impurity gas can be discharged well outside the coil, and the atmospheric gas can be quickly discharged outside the furnace. When the ultimate pressure at the time of pressure reduction is more than 0.6 × 10 5 Pa, an impurity gas discharging action can be obtained, but this action is not sufficient. More preferably, the lower limit of the ultimate pressure range at the time of pressure reduction is set to 0.45 × 10 5 Pa and the upper limit is set to 0.55 × 10 5 Pa.

また、昇圧時の圧力を0.9×10Pa以下にすることで、コイル外への上記不純物ガスの排出が継続してなされる。また、焼鈍炉に備えられているコイル搬出入用などの蓋が十分に吸着されて密閉性が増し、蓋周辺外部からの大気の侵入が防止される。一方、0.9×10Paを超えて昇圧させると、前記不純物ガスの排出が不十分になり、また、前記蓋の吸着力が小さくなって、大気が焼鈍炉内に侵入しやすくなる。
なお、昇圧時の到達圧力は、0.9×10Pa以下にするとともに、0.7×10Pa以上とするのが望ましい。0.7×10Pa以上とすることにより雰囲気ガスを外部から炉内に十分に導入をして焼鈍中のコイルの密着を効果的に防止することができる。昇圧時の到達圧力域は、さらに、下限を0.75×10Pa、上限を0.9×10Paに定めるのがさらに望ましい。
Moreover, the said impurity gas is continuously discharged | emitted out of a coil by making the pressure at the time of pressure rise into 0.9 * 10 < 5 > Pa or less. In addition, the cover for carrying in and out the coil provided in the annealing furnace is sufficiently adsorbed to increase the sealing performance, and the intrusion of air from the outside of the periphery of the cover is prevented. On the other hand, when the pressure is increased beyond 0.9 × 10 5 Pa, the impurity gas is not sufficiently discharged, and the adsorbing force of the lid is reduced, so that the atmosphere easily enters the annealing furnace.
The ultimate pressure at the time of pressure increase is preferably 0.9 × 10 5 Pa or less and preferably 0.7 × 10 5 Pa or more. By setting the pressure to 0.7 × 10 5 Pa or more, the atmosphere gas can be sufficiently introduced from the outside into the furnace, and adhesion of the coil during annealing can be effectively prevented. It is more desirable that the lower limit of the ultimate pressure range at the time of pressurization is 0.75 × 10 5 Pa and the upper limit is 0.9 × 10 5 Pa.

なお、上記降圧および昇圧によるサイクルは、1サイクル当たり30分以内とするのが望ましい。これは、コイル内より発生するガスは常時発生しているため、これを効果的に除去するためには、ガスの排出と清浄な雰囲気の導入が必要となる。そのため、1サイクルを30分以内と定める。これ以上では発生したガスによる汚染防止が不十分になる。
また、上記降圧および昇圧によるサイクルは、焼鈍時冷却過程で200℃に降温するまで行うのが望ましい。これは、降温中においても200℃程度までは、コイルからのガスの発生があり、このガスを排出しつつ箔の密着を防止するために、上記降圧と、昇圧を繰り返すのが望ましい。なお、200℃よりも低温になった状態では、ガス発生は殆ど認められない。なお、これ以上の温度で炉出した場合、大気中の酸素による端部酸化が生じるため、できるだけ低温にて炉出することが望ましい。
It should be noted that the cycle by step-down and step-up is preferably within 30 minutes per cycle. This is because gas generated from the inside of the coil is always generated, and in order to effectively remove this, it is necessary to discharge the gas and introduce a clean atmosphere. Therefore, one cycle is defined as 30 minutes or less. Above this, the prevention of contamination by the generated gas is insufficient.
Moreover, it is desirable to perform the cycle by the pressure | voltage fall and pressure | voltage rise until it falls to 200 degreeC in the cooling process at the time of annealing. This is because gas is generated from the coil up to about 200 ° C. even during the temperature drop, and it is desirable to repeat the above-described step-down and step-up in order to prevent adhesion of the foil while discharging this gas. In the state where the temperature is lower than 200 ° C., almost no gas generation is observed. In addition, since it will be end oxidation by oxygen in air | atmosphere when it takes out at a temperature more than this, it is desirable to carry out at a low temperature as much as possible.

また、上記焼鈍では、昇温時に300℃に達するまでは、炉内圧力は、上記降圧および昇圧による圧力変動によることなく、0.8×10Pa〜0.9×10Paの圧力範囲に設定するのが望ましい。これは、焼鈍の昇温途中、300℃に達するまでは、温度上昇速度が遅いため、炉内圧力を極端に下げて熱伝導性が低い状態にすると、さらに温度の上昇が緩慢になり、生産効率が悪くなるためである。また、0.8×10Pa以上の圧力にするのが望ましい。なお、300℃に達するまでの昇温中でもガス排出作用を得るとともに、炉の蓋の密着性を増すために、炉内圧力は0.9×10Pa以下にするのが望ましい。 Further, in the above annealing, until reaching 300 ° C. at the time of Atsushi Nobori, the pressure inside the furnace, without due to pressure variations due to the buck and boost pressure range of 0.8 × 10 5 Pa~0.9 × 10 5 Pa It is desirable to set to. This is because the rate of temperature rise is slow until the temperature reaches 300 ° C. during the temperature rise of annealing. If the pressure inside the furnace is lowered extremely to make the thermal conductivity low, the temperature rise will become even slower and the production will be slow. This is because the efficiency becomes worse. Moreover, it is desirable to set it as the pressure of 0.8 * 10 < 5 > Pa or more. It is desirable that the pressure in the furnace be 0.9 × 10 5 Pa or less in order to obtain a gas discharge action and increase the adhesion of the furnace lid even during the temperature rise up to 300 ° C.

以上、説明したように本発明の電解コンデンサ用アルミニウム箔の製造方法によれば、冷間圧延により製造されたアルミニウム箔を焼鈍する際に、負圧雰囲気にするとともに、0.4×10Pa〜0.9×10Paの圧力範囲において、雰囲気ガスの排出による降圧と雰囲気ガスの導入による昇圧とを繰り返して焼鈍を行うので、アルミニウム箔の密着が発生することなくアルミニウム箔コイル内から残油や水分などによる不純物ガスが効率よく排出され、コイルの幅方向で均一な酸化皮膜を形成することができる。また、上記不純物ガスは、昇降圧時の圧力調整によって急激に排出されることはなく、コイルの巻きずれ発生を回避することができる。酸化皮膜が均一に形成されたアルミニウム箔は、良好なエッチング性を有しており、エッチングによる粗面化によって単位面積当たりの静電容量に優れ、かつ静電容量のバラツキの小さい電解コンデンサ用アルミニウム箔電極を得ることができる。 As described above, according to the method for producing an aluminum foil for electrolytic capacitors of the present invention, when an aluminum foil produced by cold rolling is annealed, a negative pressure atmosphere is provided and 0.4 × 10 5 Pa is provided. In the pressure range of ˜0.9 × 10 5 Pa, annealing is performed by repeatedly reducing the pressure by discharging the atmospheric gas and increasing the pressure by introducing the atmospheric gas, so that the aluminum foil remains in the aluminum foil coil without adhesion. Impurity gases such as oil and moisture are efficiently discharged, and a uniform oxide film can be formed in the width direction of the coil. Further, the impurity gas is not rapidly exhausted by pressure adjustment during the step-up / step-down operation, and the occurrence of coil winding deviation can be avoided. Aluminum foil with a uniform oxide film has good etching properties, and has excellent electrostatic capacity per unit area due to roughening by etching, and has a small variation in electrostatic capacity. A foil electrode can be obtained.

以下に、本発明の一実施形態を図1、2に基づいて説明する。
本発明で用いられるアルミニウム箔は、好適にはアルミニウム純度99.9%以上のアルミニウム材を用いて製造をすることができる。該アルミニウム材では、エッチング性を向上させるために、種々の微量元素を添加したものであっても良い。
上記製造においては、鋳造などによる溶製、均質化処理(省略も可能)、熱間圧延、冷間圧延を経て所定の厚さ(一般には20〜150μm厚)のアルミニウム箔とされる。また、連続鋳造圧延を経て、冷間圧延によりアルミニウム箔を製造するものであってもよい。ただし、本発明としては、アルミニウム箔に用いるアルミニウム材の組成、焼鈍に至るまでの製造方法が特に限定をされるものではなく、アルミニウム箔の厚さが上記に限定されるものでもない。
Below, one Embodiment of this invention is described based on FIG.
The aluminum foil used in the present invention can be preferably manufactured using an aluminum material having an aluminum purity of 99.9% or more. The aluminum material may be one to which various trace elements are added in order to improve the etching property.
In the above production, an aluminum foil having a predetermined thickness (generally 20 to 150 μm thickness) is obtained through melting, homogenization treatment (can be omitted) by casting, hot rolling, and cold rolling. Moreover, an aluminum foil may be manufactured by cold rolling after continuous casting and rolling. However, in the present invention, the composition of the aluminum material used for the aluminum foil and the manufacturing method up to annealing are not particularly limited, and the thickness of the aluminum foil is not limited to the above.

前記工程により冷間圧延後に得られるアルミニウム箔は、本発明で製造条件を定める焼鈍が施される。該焼鈍では、焼鈍炉が用いられるが、本発明としては焼鈍炉は負圧雰囲気が得られるものであればよく、焼鈍炉の構成が特に限定されるものではない。該焼鈍炉1の一例を図1に示す。該焼鈍炉1は、冷間圧延後のアルミニウム箔を巻き取ったアルミニウム箔コイル10を収容可能な容積を有しており、該アルミニウム箔コイル10を搬出入するための開閉部2を有し、該開閉部2を外側から密閉する蓋3を有している。また、焼鈍炉1は、前記蓋3で密閉した状態で、真空引き、雰囲気ガスの排出、導入が可能なガス排出・導入部4を有している。また、焼鈍炉1は、当然にアルミニウム箔コイル10を加熱するための加熱手段(図示しない)を備えている。   The aluminum foil obtained after the cold rolling by the above-mentioned process is subjected to annealing that defines the production conditions in the present invention. In the annealing, an annealing furnace is used. In the present invention, the annealing furnace is not particularly limited as long as a negative pressure atmosphere can be obtained. An example of the annealing furnace 1 is shown in FIG. The annealing furnace 1 has a volume capable of accommodating an aluminum foil coil 10 wound with an aluminum foil after cold rolling, and has an opening / closing portion 2 for carrying the aluminum foil coil 10 in and out. A lid 3 for sealing the opening / closing part 2 from the outside is provided. Moreover, the annealing furnace 1 has a gas discharge / introduction section 4 that can be evacuated, discharged and introduced with atmospheric gas in a state of being sealed with the lid 3. Moreover, the annealing furnace 1 is naturally provided with heating means (not shown) for heating the aluminum foil coil 10.

上記焼鈍では、焼鈍雰囲気を負圧雰囲気にすることが必須であり、さらにHガスなどの還元性雰囲気や、Ar、N等の不活性ガス雰囲気にして焼鈍中にアルミニウム箔表面に形成される酸化皮膜厚を調整するのが望ましい。なお、該雰囲気では、還元性ガスと不活性ガスとが混合されたものでもよく、焼鈍中に雰囲気ガス成分を変更するものであってもよい。また、本願発明における焼鈍の雰囲気が上記に限定されるものでもない。なお、上記酸化皮膜厚は、好適には20〜80Åであるが、本発明としては酸化皮膜厚が特に限定されるものではない。 In the above annealing, it is essential to set the annealing atmosphere to a negative pressure atmosphere. Further, a reducing atmosphere such as H 2 gas or an inert gas atmosphere such as Ar or N 2 is formed on the surface of the aluminum foil during annealing. It is desirable to adjust the thickness of the oxide film. In this atmosphere, a reducing gas and an inert gas may be mixed, or an atmosphere gas component may be changed during annealing. Further, the annealing atmosphere in the present invention is not limited to the above. The oxide film thickness is preferably 20 to 80 mm, but the oxide film thickness is not particularly limited in the present invention.

焼鈍に際しては、蓋3を開け開閉部2を通して焼鈍炉1内にアルミニウム箔コイル10を搬入し、その後、蓋3を閉めて焼鈍炉1内を密閉する。
さらに焼鈍前にはガス排出・導入部4を通して焼鈍炉内を好適には100Pa以下まで真空排気し、炉内の酸素分圧を充分に下げるのが望ましい。望ましくはこの真空排気を2回以上行うとより効果的である。真空排気後、前記雰囲気ガスをガス排出・導入部4を通して焼鈍炉1内に導入する。雰囲気ガスとしてHガスを用いる場合は、真空排気後に一旦Ar、N等の不活性ガスを充填した後、Hガスを導入することが望ましい。また、Ar、N等の不活性ガスを雰囲気とする場合は真空引き直後に該当ガスにて充填を行うことができる。
At the time of annealing, the lid 3 is opened and the aluminum foil coil 10 is carried into the annealing furnace 1 through the opening / closing part 2, and then the lid 3 is closed to seal the inside of the annealing furnace 1.
Further, before annealing, the inside of the annealing furnace is preferably evacuated to 100 Pa or less through the gas discharge / introduction section 4 to sufficiently reduce the oxygen partial pressure in the furnace. Desirably, it is more effective to perform this evacuation twice or more. After evacuation, the atmospheric gas is introduced into the annealing furnace 1 through the gas discharge / introduction section 4. When H 2 gas is used as the atmospheric gas, it is desirable to introduce H 2 gas after filling with an inert gas such as Ar or N 2 after evacuation. Further, when an inert gas such as Ar or N 2 is used as the atmosphere, the gas can be filled immediately after evacuation.

雰囲気ガス充填終了後、図2に示すように焼鈍(加熱)を開始する。なお、昇温の途中では、アルミニウム箔コイル10の温度が少なくとも300℃に達するまでの領域では炉内圧力を0.8×10Pa〜0.9×10Paとするのが望ましい。この炉内圧力においても、コイル内部で残油等による不純物ガスが発生し、コイル外に排出することができる。また、負圧雰囲気であることにより、前記蓋3が焼鈍炉本体側に強固に吸着され、開閉部2と前記蓋3とが重ねられた開閉部2周縁の隙間から大気が焼鈍炉1内に侵入するのを防止する。 After the atmospheric gas filling is completed, annealing (heating) is started as shown in FIG. In the course of temperature increase, the temperature of the aluminum foil coil 10 and inner pressure of 0.8 × 10 5 Pa~0.9 × 10 5 Pa in the area to reach at least 300 ° C. is preferred. Even at the pressure in the furnace, impurity gas due to residual oil or the like is generated inside the coil and can be discharged out of the coil. In addition, because of the negative pressure atmosphere, the lid 3 is firmly adsorbed to the annealing furnace main body side, and the atmosphere enters the annealing furnace 1 from the gap between the opening and closing portion 2 and the opening and closing portion 2 and the lid 3 overlapped. Prevent intrusion.

アルミニウム箔コイル10の温度が300℃以上になると、0.4×10Pa〜0.9×10Paの範囲内、好適には、降圧の到達圧力を0.4×10Pa〜0.6×10Paの範囲内、昇圧の到達圧力を0.7×10Pa〜0.9×10Paの範囲内にして、焼鈍炉1内の降圧と昇圧とを繰り返す。降圧と昇圧とが行われるサイクルは30分以内とするのが望ましい。
焼鈍時間は、コイルの大きさ、焼鈍温度、コイルから発生する不純物ガスの排出進行程度などを考慮して定めることができ、焼鈍温度などを含めて本発明としては特定のものに限定されるものではないが、例えば、焼鈍温度450〜580℃、焼鈍時間2〜24時間を挙げることができる。また、上記降圧と昇圧とは、焼鈍全体に亘るものではなく、一部の期間においておこなってもよいが、好適には焼鈍温度での加熱後、冷却に際し、コイル温度が200℃に達するまでは継続するのが望ましい。
When the temperature of the aluminum foil coil 10 becomes equal to or higher than 300 ℃, 0.4 × 10 5 Pa~0.9 × 10 5 in the range of Pa, preferably, the step-down of the ultimate pressure of 0.4 × 10 5 Pa~0 in the range of .6 × 10 5 Pa, and the ultimate pressure of the booster in the range of 0.7 × 10 5 Pa~0.9 × 10 5 Pa, repeating the step-up and step-down in the annealing furnace 1. The cycle in which the step-down and step-up are performed is preferably within 30 minutes.
The annealing time can be determined in consideration of the size of the coil, the annealing temperature, the progress of discharge of impurity gas generated from the coil, etc., and the present invention is limited to a specific one including the annealing temperature. However, for example, an annealing temperature of 450 to 580 ° C. and an annealing time of 2 to 24 hours can be mentioned. Further, the step-down and the step-up are not performed over the entire annealing, and may be performed during a part of the period, but preferably after heating at the annealing temperature, until the coil temperature reaches 200 ° C. upon cooling. It is desirable to continue.

上記降圧、昇圧時の炉内状況について図2に基づいて説明する。
焼鈍には、加熱によって上記のようにコイル内で圧延油などによって不純物ガスが発生している。この不純物ガスは、炉内圧力が適度な圧力にまで降圧されることによって急激ではないものの速やかにアルミニウム箔コイル10外へと排出される。この不純物ガスは、焼鈍炉1内の雰囲気ガスがガス排出・導入部4を通して焼鈍炉1外へ排出されるのに伴って焼鈍炉1外へ排出される。なお、炉内圧力が降圧到達圧力に達した後、該圧力で保持すると上記雰囲気ガスおよび不純物ガスの焼鈍炉1外への排出は停止するが、アルミニウム箔コイル10からより穏やかに不純物ガスをコイル外に排出させることができる。
The in-furnace situation at the time of step-down and step-up will be described with reference to FIG.
In annealing, impurity gas is generated by rolling oil or the like in the coil as described above by heating. This impurity gas is quickly discharged out of the aluminum foil coil 10 although it is not abrupt when the pressure in the furnace is reduced to an appropriate pressure. This impurity gas is discharged out of the annealing furnace 1 as the atmospheric gas in the annealing furnace 1 is discharged out of the annealing furnace 1 through the gas discharge / introduction section 4. When the pressure inside the furnace reaches the pressure reduction ultimate pressure and the pressure is maintained at that pressure, the discharge of the atmospheric gas and the impurity gas to the outside of the annealing furnace 1 is stopped, but the impurity gas is more gently coiled from the aluminum foil coil 10. It can be discharged outside.

次いで、焼鈍炉1内に前記ガス排出・導入部4を通して雰囲気ガスを導入しつつ炉内圧力を適度な圧力にまで昇圧されると、焼鈍炉1内に清浄な雰囲気ガスが拡散し、雰囲気ガスによるアルミニウム箔コイル10が汚損されることがない。また、適度な圧力で負圧が維持されているため、その量は低減するものの、アルミニウム箔コイル10からの不純物ガスの排出がなされる。この際には、雰囲気圧力が上昇することでコイルでのアルミニウム箔同士の密着が抑止される。なお、炉内圧力が昇圧到達圧力に達した後、該圧力で保持する場合、コイル内圧が炉圧に達成するまで不純物ガスはコイルより排出されるが、ガス発生は継続的に起こるため、コイル内圧が炉圧を上回り、不純物ガスのコイル内滞留が生じ、皮膜への悪影響が生じる。したがって、定常的にコイル内ガスの排出、雰囲気の導入を行なうためには、炉圧を停滞させないよう制御することが望ましい。
なお、上記降圧、昇圧時には、焼鈍炉1内が適圧の負圧に維持されることで、蓋3が強固に焼鈍炉本体に密着して良好な密閉性を維持している。
上記降圧、昇圧を繰り返すことで、アルミニウム箔コイル10の巻きずれや密着を招くことなく、アルミニウム箔コイル10内で発生する不純物ガスを速やかにコイル外に排出することができ、該不純物ガスによりアルミニウム箔表面に形成される酸化皮膜に異常を来すことがない。この結果、アルミニウム箔には、コイル幅方向においても均質に酸化皮膜が形成される。
Next, when the atmospheric pressure is increased to an appropriate pressure while introducing the atmospheric gas into the annealing furnace 1 through the gas discharge / introduction section 4, clean atmospheric gas diffuses into the annealing furnace 1, and the atmospheric gas The aluminum foil coil 10 is not soiled. Further, since the negative pressure is maintained at an appropriate pressure, the amount is reduced, but the impurity gas is discharged from the aluminum foil coil 10. At this time, the atmospheric pressure rises to prevent the aluminum foils in the coil from closely contacting each other. In addition, when the furnace pressure reaches the pressure increase ultimate pressure and is held at that pressure, the impurity gas is discharged from the coil until the coil pressure reaches the furnace pressure, but gas generation occurs continuously. The internal pressure exceeds the furnace pressure, the impurity gas stays in the coil, and the film is adversely affected. Therefore, in order to constantly discharge the gas in the coil and introduce the atmosphere, it is desirable to control so that the furnace pressure does not stagnate.
At the time of pressure reduction and pressure increase, the inside of the annealing furnace 1 is maintained at an appropriate negative pressure, so that the lid 3 is firmly adhered to the annealing furnace main body and maintains a good sealing property.
By repeating the above-described step-down and step-up steps, the impurity gas generated in the aluminum foil coil 10 can be quickly discharged out of the coil without incurring winding deviation or adhesion of the aluminum foil coil 10, There is no abnormality in the oxide film formed on the foil surface. As a result, an oxide film is uniformly formed on the aluminum foil even in the coil width direction.

上記焼鈍により得られた電解コンデンサ用アルミニウム箔は、エッチングに供する。該エッチングは電解エッチング、化学エッチングを問わないものであり、所望のエッチング方法を採用することができる。該エッチングでは、アルミニウム箔表面にバラツキがなく均質な酸化皮膜が形成されているため、良好なエッチングが均等になされ、高くて均質な粗面化率が得られる。この電解コンデンサ用アルミニウム箔を電極として用いた電解コンデンサは優れた静電容量を得ることができる。   The aluminum foil for electrolytic capacitors obtained by the annealing is subjected to etching. The etching may be electrolytic etching or chemical etching, and a desired etching method can be employed. In the etching, a uniform oxide film is formed on the surface of the aluminum foil without any variation. Therefore, good etching is uniformly performed, and a high and uniform roughening rate is obtained. An electrolytic capacitor using the aluminum foil for electrolytic capacitors as an electrode can obtain an excellent electrostatic capacity.

なお、上記実施形態では、焼鈍炉内の降圧、昇圧の繰り返しに際し、圧力変化率などについては説明をしておらず、本発明では、降圧、昇圧時の圧力変化率を所望により設定することができ、本発明としては特定のものに限定されない。
図3は、上記降圧、昇圧における圧力変化パターン例を示すものであり、各パターンについて以下に説明する。
In the above embodiment, the pressure change rate and the like are not described when the pressure reduction and pressure increase in the annealing furnace are repeated. In the present invention, the pressure change rate during pressure reduction and pressure increase can be set as desired. The present invention is not limited to a specific one.
FIG. 3 shows examples of pressure change patterns in the above-described step-down and step-up steps. Each pattern will be described below.

図3(a)に示すパターンでは、昇温時に300℃まで所定の負圧圧力に維持した後、急激な降圧と、緩やかな昇圧を繰り返しており、昇圧においては、次第に圧力変化率が大きくなるように圧力を変化させている。
図3(b)に示すパターンでは、昇温時に300℃まで所定の負圧圧力に維持した後、急激な降圧と、緩やかな一定の変化率での昇圧を繰り返しており、昇圧時には、到達圧力で所定時間圧力保持を行っている。
図3(c)に示すパターンでは、昇温時に300℃まで所定の負圧圧力に維持した後、徐々に圧力変化率が小さくなるよう降圧し、その後、徐々に圧力変化率が大きくなるような昇圧を繰り返しており、降圧から昇圧に至る際には、徐々に圧力を増し、昇圧から降圧に至る際には急激に圧力を減少させている。
図3(d)に示すパターンでは、昇温時に300℃まで所定の負圧圧力に維持した後、徐々にほぼ一定の圧力変化率で降圧させ、降圧時に到達圧力で所定時間圧力保持した後、徐々にほぼ一定の圧力変化率で昇圧させており、昇圧時の圧力変化率の絶対値は、降圧時の圧力変化率の絶対値よりもやや大きくなっている。
さらに、 図3(e)に示すパターンでは、昇温時に300℃まで所定の負圧圧力に維持した後、急激に降圧させ、降圧時到達圧力で所定時間圧力保持した後、急激に昇圧させており、昇圧時到達圧力では、圧力保持を殆どせずに降圧に移行している。
さらに、 図3(f)に示すパターンでは、昇温時に300℃まで所定の負圧圧力に維持した後、急激に降圧させ、降圧時到達圧力では、圧力保持を殆どせずに昇圧に移行して、急激に昇圧させており、昇圧時到達圧力で所定時間圧力保持している。
In the pattern shown in FIG. 3A, after the pressure is maintained at a predetermined negative pressure up to 300 ° C. when the temperature rises, the rapid pressure reduction and the gentle pressure increase are repeated, and the pressure change rate gradually increases in the pressure increase. So that the pressure is changed.
In the pattern shown in FIG. 3B, after maintaining a predetermined negative pressure up to 300 ° C. at the time of temperature rise, a rapid pressure drop and a pressure increase at a moderate constant change rate are repeated. The pressure is maintained for a predetermined time.
In the pattern shown in FIG. 3 (c), after maintaining a predetermined negative pressure up to 300 ° C. when the temperature is raised, the pressure is gradually lowered so that the rate of change in pressure gradually decreases, and then the rate of change in pressure gradually increases. The pressure increase is repeated, and the pressure is gradually increased when the pressure is lowered to the pressure increase, and the pressure is rapidly decreased when the pressure is lowered from the pressure increase.
In the pattern shown in FIG. 3 (d), after maintaining a predetermined negative pressure up to 300 ° C. at the time of temperature increase, the pressure is gradually decreased at a substantially constant pressure change rate, and the pressure is maintained at the ultimate pressure at the time of pressure decrease for a predetermined time. The pressure is gradually increased at a substantially constant pressure change rate, and the absolute value of the pressure change rate at the time of pressure increase is slightly larger than the absolute value of the pressure change rate at the time of pressure reduction.
Further, in the pattern shown in FIG. 3 (e), the temperature is maintained at a predetermined negative pressure up to 300 ° C. when the temperature is raised, then the pressure is rapidly decreased, the pressure is maintained at the pressure reached when the pressure is decreased for a predetermined time, and then the pressure is rapidly increased. Thus, the pressure reached at the time of pressure increase shifts to pressure decrease with little pressure holding.
Furthermore, in the pattern shown in FIG. 3 (f), after maintaining a predetermined negative pressure up to 300 ° C. when the temperature is increased, the pressure is rapidly decreased, and at the pressure reached at the time of the decrease, the pressure is shifted to a pressure increase with little pressure retention. Thus, the pressure is increased rapidly, and the pressure is held for a predetermined time at the pressure reached at the time of pressure increase.

以上、本発明について上記各実施形態に基づいて説明をしたが、本発明は、上記説明の内容に限定をされるものではなく、本発明の範囲を逸脱しない範囲で適宜の変更が可能である。   As mentioned above, although this invention was demonstrated based on said each embodiment, this invention is not limited to the content of the said description, A suitable change is possible in the range which does not deviate from the scope of the present invention. .

以下に、本発明の実施例について説明する。
4N5のアルミニウム地金を用い、Si:10〜15ppm、Fe:10〜15ppm、Cu:30〜60ppm、Pb:0.3〜0.6ppm含有に調整したアルミニウムスラブを作成した。得られたスラブを550〜600℃×3〜12時間の均質化処理を行った後、500〜600℃の温度で熱間圧延を開始し、95〜98%の圧下を行い、250〜300℃で巻き上げた。熱間圧延を行ったコイルを98〜99%冷間圧延した後、200〜300℃×3〜10時間の中間焼鈍を行った。
中間焼鈍終了後、10〜30%の最終圧延を行った。圧延後、切断を行い、500〜550mm幅150kgコイルを作成した。
Examples of the present invention will be described below.
An aluminum slab adjusted to contain Si: 10 to 15 ppm, Fe: 10 to 15 ppm, Cu: 30 to 60 ppm, and Pb: 0.3 to 0.6 ppm using a 4N5 aluminum ingot. The obtained slab was subjected to homogenization treatment at 550 to 600 ° C. for 3 to 12 hours, and then hot rolling was started at a temperature of 500 to 600 ° C., reduction of 95 to 98% was performed, and 250 to 300 ° C. Rolled up. The hot-rolled coil was cold-rolled 98 to 99%, and then subjected to intermediate annealing at 200 to 300 ° C. for 3 to 10 hours.
10-30% of final rolling was performed after completion | finish of intermediate annealing. After rolling, cutting was performed to create a 500-550 mm wide 150 kg coil.

得られたコイルを焼鈍炉に入れ、100Pa以下に減圧した後、Arガス、又はNガスを充填し、0.9×10Paまで復圧した。復圧後、再度100Pa以下に真空引きし、Ar又はNガスを充填し、表1に示す焼鈍開始炉内圧(0.6〜1.05×10Pa)まで復圧した。 The obtained coil was put in an annealing furnace, and after reducing the pressure to 100 Pa or less, Ar gas or N 2 gas was filled, and the pressure was restored to 0.9 × 10 5 Pa. After returning to the original pressure, the pressure was again reduced to 100 Pa or less, filled with Ar or N 2 gas, and returned to the annealing start furnace pressure (0.6 to 1.05 × 10 5 Pa) shown in Table 1.

雰囲気を焼鈍開始雰囲気圧にした後、Ar又はNガス又はHガスを1〜100ml/min供給しながら焼鈍中の炉内圧を表1に示す圧力にして焼鈍を行った。
コイル温度が300℃になるまでは、雰囲気圧力を発明材では、0.8×10〜0.9×10Paの範囲内に維持し、コイル温度300℃以上の温度範囲では、雰囲気圧力を表1に示すように降圧と昇圧とを繰り返して焼鈍を行った。比較例では、同様の圧力または圧力条件を代えて焼鈍を行った。各供試材の焼鈍では、500℃以上で6時間保持し、該焼鈍温度での加熱終了後、冷却速度20〜150℃/Hrで冷却し、コイル温度が200℃に低下するまでは、上記降圧と昇圧とを繰り返した。冷却の間も、表1に示す雰囲気圧力を維持できるよう、減圧および雰囲気ガス供給を制御した。
After setting the atmosphere to an annealing start atmospheric pressure, annealing was performed with the furnace pressure during annealing set to the pressure shown in Table 1 while supplying Ar, N 2 gas, or H 2 gas at 1 to 100 ml / min.
Until the coil temperature reaches 300 ° C., the atmospheric pressure is maintained in the range of 0.8 × 10 5 to 0.9 × 10 5 Pa in the invention material, and in the temperature range of the coil temperature of 300 ° C. or higher, the atmospheric pressure is maintained. As shown in Table 1, annealing was performed by repeating the step-down and the step-up. In the comparative example, annealing was performed by changing the same pressure or pressure condition. In the annealing of each specimen, it is held at 500 ° C. or higher for 6 hours, and after the heating at the annealing temperature is completed, the sample is cooled at a cooling rate of 20 to 150 ° C./Hr until the coil temperature decreases to 200 ° C. Step-down and step-up were repeated. During the cooling, the pressure reduction and the atmospheric gas supply were controlled so that the atmospheric pressure shown in Table 1 could be maintained.

コイル温度が200℃以下になった時点で、焼鈍炉内からコイルを取り出し、得られた焼鈍コイルの巻きずれの検査と、酸化皮膜厚さの測定を行った。巻きずれは、コイル全体における主となる端部位置を基準にして、部分的に外側にずれた部分の外側ずれ量を測定し、外側ずれ量が2mm以下のものを○、2mm超5mm以下のものを△、5mm超のものを×と評価し、表2に示した。また、酸化皮膜厚さは、コイルの外周部(最外周より10m長さ内側位置)と内周部(最内周より15m長さ外側位置)のそれぞれにおいて、異なる幅方向位置でESCA(X線光電子分光法)により酸化皮膜厚さを測定し、その結果を表2に示した。これら酸化皮膜厚さの位置によるバラツキについて、各供試材の外周3点及び内周3点の計6点における(最大−最小)/最小%で算出した。   When the coil temperature became 200 ° C. or less, the coil was taken out from the annealing furnace, and the winding deviation of the obtained annealing coil was inspected and the thickness of the oxide film was measured. Winding deviation is measured based on the position of the main end of the coil as a whole. The amount of outside deviation of the part that is partially outside is measured, and the outside deviation is 2 mm or less. The results were evaluated as Δ and those exceeding 5 mm as x, and are shown in Table 2. Further, the thickness of the oxide film is determined by ESCA (X-rays) at different positions in the width direction at the outer peripheral part (inner position 10 m from the outermost periphery) and the inner peripheral part (external position 15 m from the innermost periphery). The oxide film thickness was measured by photoelectron spectroscopy, and the results are shown in Table 2. The variation due to the position of the oxide film thickness was calculated as (maximum-minimum) / minimum% at a total of 6 points, 3 points on the outer periphery and 3 points on the inner periphery.

また、焼鈍コイルの巻きなおしを行い、しわの発生度合いにより箔の密着性について評価を行った。その際、しわなしを○、最長しわ長さ50cm以下を△、最長しわ長さ50cm超を×として評価し、表2に示した。また、端面の変色具合を観察し、端部より10mm以上の幅にて変色が確認できる場合×、5mm以上の場合は△、それ以外を○として評価を行った。これらの結果も表2に示した。   Further, the annealing coil was rewound, and the adhesiveness of the foil was evaluated based on the degree of wrinkle generation. At that time, the evaluation was made as “No” wrinkle, “△” for the longest wrinkle length of 50 cm or less, and “×” for the longest wrinkle length of more than 50 cm. Further, the degree of discoloration of the end face was observed, and the case where discoloration could be confirmed with a width of 10 mm or more from the end portion was evaluated. These results are also shown in Table 2.

Figure 2008081811
Figure 2008081811

Figure 2008081811
Figure 2008081811

本発明の一実施形態に用いられる焼鈍炉の構成および降圧、昇圧時のガスの流れを説明する図である。It is a figure explaining the structure of the annealing furnace used for one Embodiment of this invention, and the gas flow at the time of pressure | voltage fall and pressure | voltage rise. 同じく、焼鈍時の温度パターンと圧力パターンを示す図である。Similarly, it is a figure which shows the temperature pattern and pressure pattern at the time of annealing. 本発明の他の実施形態における焼鈍時の各圧力パターンを示す図(a〜f)である。It is a figure (af) which shows each pressure pattern at the time of annealing in other embodiment of this invention.

符号の説明Explanation of symbols

1 焼鈍炉
2 開閉部
3 蓋
4 ガス排出・導入部
1 Annealing furnace 2 Opening / closing part 3 Lid 4 Gas exhaust / introduction part

Claims (5)

冷間圧延により製造されたアルミニウム箔を焼鈍する際に、負圧雰囲気にするとともに、0.4×10Pa〜0.9×10Paの圧力範囲において、雰囲気ガスの排出による降圧と雰囲気ガスの導入による昇圧とを繰り返して焼鈍を行うことを特徴とする電解コンデンサ用アルミニウム箔の製造方法。 When annealing the aluminum foil produced by cold rolling, with a negative pressure atmosphere in the pressure range of 0.4 × 10 5 Pa~0.9 × 10 5 Pa, the step-down by the discharge of atmospheric gases and atmosphere A method for producing an aluminum foil for an electrolytic capacitor, characterized in that annealing is repeated by increasing the pressure by introducing gas. 前記降圧の到達圧力が0.4×10Pa〜0.6×10Paの範囲内に設定され、前記昇圧の到達圧力が0.7×10Pa〜0.9×10Paの範囲内に設定されていることを特徴とする請求項1記載の電解コンデンサ用アルミニウム箔の製造方法。 The ultimate pressure of the step-down is in the range of 0.4 × 10 5 Pa~0.6 × 10 5 Pa, the ultimate pressure of the booster is 0.7 × 10 5 Pa~0.9 × 10 5 Pa The method for producing an aluminum foil for an electrolytic capacitor according to claim 1, wherein the method is set within a range. 前記降圧と昇圧とがなされる1サイクルが30分以内であることを特徴とする請求項1または2に記載の電解コンデンサ用アルミニウム箔の製造方法。   The method for producing an aluminum foil for an electrolytic capacitor according to claim 1 or 2, wherein one cycle in which the step-down and the step-up are performed is within 30 minutes. 前記アルミニウム箔を昇温させて焼鈍温度で焼鈍させる際に、前記アルミニウム箔が300℃に達しない昇温途中では雰囲気圧力を0.8×10Pa〜0.9×10Paに設定することを特徴とする請求項1〜3のいずれかに記載の電解コンデンサ用アルミニウム箔の製造方法。 When to annealing at annealing temperature was raised to the aluminum foil, in the middle heated to the aluminum foil does not reach 300 ° C. sets the ambient pressure to 0.8 × 10 5 Pa~0.9 × 10 5 Pa The manufacturing method of the aluminum foil for electrolytic capacitors in any one of Claims 1-3 characterized by the above-mentioned. 前記降圧と昇圧とは、焼鈍時の冷却温度が200℃に至るまで行われることを特徴とする請求項1〜4のいずれかに記載の電解コンデンサ用アルミニウム箔の製造方法。   The method for producing an aluminum foil for an electrolytic capacitor according to any one of claims 1 to 4, wherein the step-down and the step-up are performed until the cooling temperature during annealing reaches 200 ° C.
JP2006264694A 2006-09-28 2006-09-28 Method for producing aluminum foil for electrolytic capacitor Pending JP2008081811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006264694A JP2008081811A (en) 2006-09-28 2006-09-28 Method for producing aluminum foil for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006264694A JP2008081811A (en) 2006-09-28 2006-09-28 Method for producing aluminum foil for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2008081811A true JP2008081811A (en) 2008-04-10

Family

ID=39352960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006264694A Pending JP2008081811A (en) 2006-09-28 2006-09-28 Method for producing aluminum foil for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2008081811A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719771A (en) * 2012-07-12 2012-10-10 中南大学 Thermal treatment process of aluminum foil stock
CN109468554A (en) * 2018-11-19 2019-03-15 广西柳州银海铝业股份有限公司 The removing method of cold rolling aluminium flanging part annealing hickie

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719771A (en) * 2012-07-12 2012-10-10 中南大学 Thermal treatment process of aluminum foil stock
CN102719771B (en) * 2012-07-12 2013-11-13 中南大学 Thermal treatment process of aluminum foil stock
CN109468554A (en) * 2018-11-19 2019-03-15 广西柳州银海铝业股份有限公司 The removing method of cold rolling aluminium flanging part annealing hickie
CN109468554B (en) * 2018-11-19 2020-12-01 广西柳州银海铝业股份有限公司 Method for eliminating white spot of cold-rolled aluminum coil edge annealing

Similar Documents

Publication Publication Date Title
JP6009683B2 (en) Tantalum sputtering target and manufacturing method thereof
WO2006095752A1 (en) Semiconductor device manufacturing method and substrate treatment device
JP2008081811A (en) Method for producing aluminum foil for electrolytic capacitor
KR20120075460A (en) Expanded-graphite sheet
JP4876672B2 (en) Capacitor manufacturing method
JP2010109335A (en) Removing method and processing device for silicon oxide film
JP4638675B2 (en) Niobium wire, production method thereof and use of niobium wire
JP2008266746A (en) Aluminum foil for electrolytic capacitor and its manufacturing method
JP2004319794A (en) Aluminum material for electrolytic capacitor electrode, its manufacturing method and electrolytic capacitor
JP3797645B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP3676601B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JPH07180006A (en) Production of aluminum foil for electrolytic capacitor electrode
JP4993730B2 (en) Method for producing aluminum foil material for vapor deposition
JP4671218B2 (en) Method for producing aluminum foil for electrolytic capacitor
JP4732892B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2008082644A (en) Heating device and manufacturing method of aluminum foil for electrolytic capacitor
JP5498678B2 (en) Silicon wafer manufacturing method
JP2003129202A (en) Production method for aluminum foil for electrolytic capacitor electrode
JP2005079330A (en) Aluminum foil for electrolytic capacitor electrode and its manufacturing method
JP2006152394A (en) Aluminum foil for electrolytic capacitor
JP7350829B2 (en) Substrate processing method
JP3337506B2 (en) Method for producing aluminum material for electrolytic capacitor electrode
KR20230090855A (en) Substrate processing method
JPH0461068B2 (en)
JPH10251817A (en) Heat treatment of aluminum laminated material