JP2008266746A - Aluminum foil for electrolytic capacitor and its manufacturing method - Google Patents

Aluminum foil for electrolytic capacitor and its manufacturing method Download PDF

Info

Publication number
JP2008266746A
JP2008266746A JP2007113805A JP2007113805A JP2008266746A JP 2008266746 A JP2008266746 A JP 2008266746A JP 2007113805 A JP2007113805 A JP 2007113805A JP 2007113805 A JP2007113805 A JP 2007113805A JP 2008266746 A JP2008266746 A JP 2008266746A
Authority
JP
Japan
Prior art keywords
ppm
aluminum foil
average content
foil
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007113805A
Other languages
Japanese (ja)
Other versions
JP4237236B2 (en
Inventor
Akira Yoshii
章 吉井
Hideo Watanabe
英雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2007113805A priority Critical patent/JP4237236B2/en
Publication of JP2008266746A publication Critical patent/JP2008266746A/en
Application granted granted Critical
Publication of JP4237236B2 publication Critical patent/JP4237236B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • ing And Chemical Polishing (AREA)
  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a surface roughening ratio in application of aluminum foil for an electrolytic capacitor of a high working voltage by effectively performing diameter expansion when etching the aluminum foil for the electrolytic capacitor. <P>SOLUTION: The aluminum foil consists of the composition containing 10 to 30 ppm Si, 10 to 20 ppm Fe, 0.3 to 3 ppm Pb, 10 to 70 ppm Cu, and 10 to 50 ppm Ni, and the balance ≥99.9% Al and inevitable impurities, and the Ni concentration distribution maintains ≥10 times the average content over the entire part in the average content of 0.1 μm depth from the surface layer, ≤0.5 times the average content over the entire part in the average content of 1 to ≤5 μm depth from the surface layer, and ≥80% of the average content over the entire part at 20 μm depth. The Ni concentration distribution is obtained by heating up the aluminum foil of the composition in an inert gas or gaseous hydrogen or an atmosphere of a gaseous mixture composed thereof, and heating up the aluminum foil at a heating up rate 30 to 100°C/hour in a process of at least 300 to 450°C and subjecting the aluminum foil to final annealing of a holding time 2 to 24 hours. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、電解コンデンサの電極に用いるためにエッチングに供される電解コンデンサ用アルミニウム箔およびその製造方法に関するものである。   The present invention relates to an aluminum foil for an electrolytic capacitor used for etching for use in an electrode of an electrolytic capacitor, and a method for manufacturing the same.

中高圧電解コンデンサに用いられる中高圧用アルミニウム箔は、直流電解を行いピット状の穴を無数に開け、表面積を拡大して使用されている。このエッチングピットを均一に発生させるため、立方体方位占有率が95%以上の箔が用いられている。
立方体方位占有率を高めるため、通常4N純度のアルミニウムを用い、成分をSi5〜30ppm、Fe5〜20ppm、Cu10〜70ppm、Pb0.2〜3.0ppmに調整し、熱間圧延、冷間圧延、中間焼鈍、冷間圧延を経て、90〜130μm厚さに圧延された箔を450℃以上、3時間以上の焼鈍を行い使用されている。
Medium and high pressure aluminum foils used for medium and high voltage electrolytic capacitors are used with direct current electrolysis to open countless pit-shaped holes to increase the surface area. In order to uniformly generate the etching pits, a foil having a cube orientation occupation ratio of 95% or more is used.
In order to increase the cube orientation occupancy, usually 4N purity aluminum is used, and the components are adjusted to Si 5-30 ppm, Fe 5-20 ppm, Cu 10-70 ppm, Pb 0.2-3.0 ppm, hot rolling, cold rolling, intermediate A foil rolled to a thickness of 90 to 130 μm through annealing and cold rolling is used after annealing at 450 ° C. or more for 3 hours or more.

このアルミニウム箔はエッチングを行い、表面積を拡大して使用される。エッチングは塩酸、硫酸、硝酸、燐酸等の酸、又は混酸中で行われる。高純度アルミニウムは耐酸性が強いため化学溶解のみでのエッチングピット発生は困難である。そのため直流電解エッチングが行われる。エッチングピットを発生させた後、ピット径の拡大処理として、酸溶液中での電解処理、または化学溶解処理が行われる。コンデンサの使用電圧が高くなるにつれて、より大きなピット径が求められるようになり、エッチング効率の高い箔が求められるようになっている。
特許文献1では、Cu10〜100ppm、Ni10〜500ppmの含有により立方晶率を得やすくし、結果としてエッチング性を高めることを目的とした電解コンデンサ用アルミニウム箔が提案されている。
特開昭61−255911号公報
This aluminum foil is used by etching to enlarge the surface area. Etching is performed in acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, or mixed acids. Since high-purity aluminum has strong acid resistance, it is difficult to generate etching pits only by chemical dissolution. Therefore, direct current electrolytic etching is performed. After generating the etching pits, electrolytic treatment in an acid solution or chemical dissolution treatment is performed as a pit diameter enlargement treatment. As the working voltage of the capacitor increases, a larger pit diameter is required, and a foil with high etching efficiency is required.
Patent Document 1 proposes an aluminum foil for an electrolytic capacitor intended to make it easy to obtain a cubic crystal ratio by containing Cu 10 to 100 ppm and Ni 10 to 500 ppm, and as a result, to improve etching properties.
JP-A 61-255911

しかし、上記特許文献1の実施例によると、最終焼鈍を真空焼鈍で行っている。真空焼鈍は熱伝導率が低いため、アルミニウム箔の昇温速度が著しく遅くなる。このため、Niは箔表層部へ濃縮してしまい、本特許の主目的である箔内部の溶解性を高める効果が得られないという問題がある。   However, according to the Example of the said patent document 1, the final annealing is performed by vacuum annealing. Since vacuum annealing has a low thermal conductivity, the temperature rising rate of the aluminum foil is remarkably slow. For this reason, Ni concentrates to the foil surface layer part, and there is a problem that the effect of increasing the solubility inside the foil, which is the main purpose of this patent, cannot be obtained.

本発明は、上記事情を背景としてなされたものであり、箔表面および箔内部での溶解性を高めることで、エッチングに際し、大きな径のピットを効果的に形成してエッチング効率を高める電解コンデンサ用アルミニウム箔およびその製造方法を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and for electrolytic capacitors that improve the etching efficiency by effectively forming large-diameter pits during etching by increasing the solubility on the foil surface and inside the foil. An object is to provide an aluminum foil and a method for producing the same.

すなわち、本発明の電解コンデンサ用アルミニウム箔は、質量比で、Si:10〜30ppm、Fe:10〜20ppm、Pb:0.3〜3ppm、Cu:10〜70ppm、Ni:10〜50ppmを含有し、残部が99.9%以上のAlと不可避不純物からなる組成を有し、Ni濃度分布において、表層より0.1μm深さまでの平均含有量が全体平均含有量(Ni:10〜50ppm)の10倍以上であり、1〜5μm深さでの平均含有量が前記全体平均含有量の0.5倍以下であり、且つ20μm深さ以上では前記全体平均含有量の80%以上を維持していることを特徴とする。   That is, the aluminum foil for electrolytic capacitors of this invention contains Si: 10-30ppm, Fe: 10-20ppm, Pb: 0.3-3ppm, Cu: 10-70ppm, Ni: 10-50ppm by mass ratio. The balance is 99.9% or more of Al and inevitable impurities. In the Ni concentration distribution, the average content from the surface layer to the depth of 0.1 μm is 10% of the total average content (Ni: 10 to 50 ppm). The average content at a depth of 1 to 5 μm is 0.5 times or less of the total average content, and at a depth of 20 μm or more, 80% or more of the total average content is maintained. It is characterized by that.

また、本発明の電解コンデンサ用アルミニウム箔の製造方法の発明は、質量比で、Si:10〜30ppm、Fe:10〜20ppm、Pb:0.3〜3ppm、Cu:10〜70ppm、Ni:10〜50ppmを含有し、残部が99.9%以上のAlと不可避不純物からなる組成を有するアルミニウム箔を、不活性ガスまたは水素ガスもしくはこれらの混合ガス雰囲気中で、少なくとも300〜450℃の過程で昇温速度30〜100℃/時間で昇温させ、保持温度500〜580℃、保持時間2〜24時間で最終焼鈍することを特徴とする。   Moreover, invention of the manufacturing method of the aluminum foil for electrolytic capacitors of this invention is Si: 10-30ppm, Fe: 10-20ppm, Pb: 0.3-3ppm, Cu: 10-70ppm, Ni: 10 by mass ratio. An aluminum foil containing ˜50 ppm and having the balance of 99.9% or more of Al and unavoidable impurities in an atmosphere of inert gas, hydrogen gas or a mixed gas thereof at least at a temperature of 300 to 450 ° C. The temperature is increased at a temperature increase rate of 30 to 100 ° C./hour, and the final annealing is performed at a holding temperature of 500 to 580 ° C. and a holding time of 2 to 24 hours.

本発明者らは、特定の元素を添加し、焼鈍条件を制御するなどして、該元素を適度に分布させることでアルミニウム箔の化学溶解性を高められることを見出した。具体的には、Niを添加し、焼鈍時の昇温速度を制御することで、Niの濃度を適正に制御することができる。
Niは焼鈍の際、箔表層に濃縮し、Al−Ni系析出物を生成する。Al−Ni系析出物はバルクのAlより電気的に貴であるため、局部電池を生成し溶解性を高めることができる。又、Niの濃縮は、箔表層数μm部分で生じるため、箔内部には添加したNiが存在している。このNiはアルミニウム内部の溶解性を高める。その結果、エッチングピット径拡大処理において、ピット径拡大が促進され、より大きなピット径を得ることができる。Niを表面濃縮させ、且つ、箔内部に添加量ベースで存在させるために、昇温速度と表面酸化皮膜制御が有効である。
The inventors of the present invention have found that the chemical solubility of the aluminum foil can be enhanced by adding a specific element and controlling the annealing conditions to appropriately distribute the element. Specifically, the concentration of Ni can be appropriately controlled by adding Ni and controlling the rate of temperature rise during annealing.
When Ni is annealed, it concentrates on the foil surface layer and produces Al—Ni-based precipitates. Since Al—Ni-based precipitates are more noble than bulk Al, a local battery can be generated and solubility can be increased. Further, since Ni concentration occurs in the portion of the foil surface layer of several μm, the added Ni exists inside the foil. This Ni increases the solubility in the aluminum. As a result, in the etching pit diameter expansion process, the pit diameter expansion is promoted, and a larger pit diameter can be obtained. In order to concentrate Ni on the surface and to make it exist in the inside of the foil on an added amount basis, the rate of temperature rise and surface oxide film control are effective.

以下に、本発明で規定する各条件について説明する。
(アルミニウム箔成分)
アルミニウム純度99.9%以上
アルミニウム箔の純度が99.9%未満であると、立方晶率が低下するため望ましくない。なお、不可避不純物としては地金特有の成分が含まれる。三層地金、偏析地金を用いようとも、Si、Fe、Pb、Cu、Niを調整後のアルミニウム純度として99.9%以上が確保されれば問題はない。
Below, each condition prescribed | regulated by this invention is demonstrated.
(Aluminum foil component)
Aluminum purity of 99.9% or more If the purity of the aluminum foil is less than 99.9%, the cubic crystal ratio decreases, which is not desirable. Inevitable impurities include components specific to bullion. Even if three-layer metal or segregated metal is used, there is no problem as long as 99.9% or more is secured as the aluminum purity after adjusting Si, Fe, Pb, Cu, and Ni.

Si:10〜30ppm
Siが10ppm未満の場合、精製コストが増加するため、工業的には望ましくない。一方、30ppm超の場合、立方晶率が低下するため望ましくない。このため、Si含有量を上記範囲に定める。好適には下限は10ppm、上限は20ppmである。
Si: 10-30 ppm
When Si is less than 10 ppm, the purification cost increases, which is not desirable industrially. On the other hand, if it exceeds 30 ppm, the cubic rate decreases, which is not desirable. For this reason, Si content is defined to the said range. Preferably, the lower limit is 10 ppm and the upper limit is 20 ppm.

Fe:10〜20ppm
Feが10ppm未満の場合、精製コストが増加するため、工業的には望ましくない。一方、20ppm超の場合、立方晶率が低下するため望ましくない。このため、Fe含有量を上記範囲に定める。好適には下限は10ppm、上限は15ppmである。
Fe: 10-20ppm
When Fe is less than 10 ppm, the purification cost increases, which is not industrially desirable. On the other hand, if it exceeds 20 ppm, the cubic rate decreases, which is not desirable. For this reason, Fe content is defined to the said range. Preferably, the lower limit is 10 ppm and the upper limit is 15 ppm.

Pb:0.3〜3ppm
Pbは酸化皮膜を脆化しエッチング性を高める元素である。ただし、0.3ppm未満ではその効果が期待できず、一方、3ppm超の場合、箔表層の過剰溶解を招く。このためPb含有量を上記範囲に定める。好適には下限は0.3ppm、上限は1.5ppmである。
Pb: 0.3 to 3 ppm
Pb is an element that makes the oxide film brittle and improves the etching property. However, if it is less than 0.3 ppm, the effect cannot be expected, while if it exceeds 3 ppm, excessive dissolution of the foil surface layer is caused. Therefore, the Pb content is set within the above range. Preferably the lower limit is 0.3 ppm and the upper limit is 1.5 ppm.

Cu:10〜70ppm
Cuは箔内部の溶解性を高める元素である。ただし、10ppm未満の場合、Niとの複合効果が少なくなり、化学溶解性が低下する。このため、ピット径拡大効果が望めなくなる。一方、70ppm超の場合、立方晶率が低下するため、望ましくない。したがって、Cu含有量を上記範囲に定める。好適には下限は20ppm、上限は40ppmである。
Cu: 10 to 70 ppm
Cu is an element that enhances the solubility in the foil. However, if it is less than 10 ppm, the combined effect with Ni is reduced and the chemical solubility is lowered. For this reason, the effect of expanding the pit diameter cannot be expected. On the other hand, if it exceeds 70 ppm, the cubic rate decreases, which is not desirable. Therefore, the Cu content is set within the above range. Preferably the lower limit is 20 ppm and the upper limit is 40 ppm.

Ni:10〜50ppm
Niは表面濃縮を起こし、Al−Ni系析出物を生成し、箔表面の溶解性を高めると共に、箔内部に残留することで、箔内部の溶解性を高める元素である。10ppm未満の場合、箔内部での溶解性向上が見込めない。一方、50ppm超の場合、箔表層の溶解性が強くなり、エッチングでの制御が困難になる。このため、Ni含有量を上記範囲に定める。好適には下限は20ppm、上限は40ppmである。
Ni: 10-50ppm
Ni is an element that causes surface concentration and produces Al—Ni-based precipitates to increase the solubility of the foil surface and to increase the solubility inside the foil by remaining inside the foil. When it is less than 10 ppm, improvement in solubility inside the foil cannot be expected. On the other hand, when it exceeds 50 ppm, the solubility of the foil surface layer becomes strong, and the control by etching becomes difficult. For this reason, Ni content is defined to the said range. Preferably the lower limit is 20 ppm and the upper limit is 40 ppm.

300〜450℃での昇温速度:30〜100℃/時間
Niの濃縮は300℃以上から生じるため、少なくとも焼鈍温度300〜450℃の間にて、30〜100℃/時間の昇温速度を維持する必要がある。昇温速度が30℃/時間未満の場合、箔内部のNiも表層に移動し濃縮するため、ピット径拡大効果が得られない。又、100℃/時間超の場合、Niが濃縮する以前に表面酸化皮膜が成長し、Niの濃縮を妨げるため、化学溶解性の低下を招く。したがって、少なくとも焼鈍温度300〜450℃における昇温速度を上記範囲に定める。450℃を超えた温度域では、保持温度に近づくにつれて昇温速度を小さくすることができる。ただし、保持温度が高い場合には、450℃を超えて上記昇温速度を維持することができる。なお、上記と同様の理由で昇温速度の下限を40/時間、上限を80℃/時間とするのが望ましい。
Temperature increase rate at 300 to 450 ° C .: 30 to 100 ° C./hour Since Ni concentration occurs from 300 ° C. or higher, at a temperature increase rate of 30 to 100 ° C./hour at least between the annealing temperatures of 300 to 450 ° C. Need to be maintained. When the rate of temperature rise is less than 30 ° C./hour, Ni inside the foil also moves to the surface layer and concentrates, so that the effect of expanding the pit diameter cannot be obtained. On the other hand, when the temperature exceeds 100 ° C./hour, the surface oxide film grows before the Ni is concentrated and prevents the Ni from being concentrated, resulting in a decrease in chemical solubility. Therefore, the temperature rising rate at least at an annealing temperature of 300 to 450 ° C. is set in the above range. In the temperature range exceeding 450 ° C., the rate of temperature rise can be reduced as the temperature approaches the holding temperature. However, when the holding temperature is high, the temperature rising rate can be maintained above 450 ° C. For the same reason as described above, it is desirable that the lower limit of the heating rate is 40 / hour and the upper limit is 80 ° C./hour.

保持温度:500〜580℃、保持時間2〜24時間
アルミニウム箔を上記温度範囲に保持して焼鈍することで、高い立方晶率(例えば95%以上)が得られる。保持温度が500℃未満または保持時間が2時間未満であると、十分な立方晶率を得ることが難しくなる。一方、580℃超、24時間超の場合、皮膜の過剰生成が起こりエッチング性が低下する。又、箔が密着し剥離不良となる。
Holding temperature: 500 to 580 ° C., holding time 2 to 24 hours By holding the aluminum foil in the above temperature range and annealing, a high cubic crystal ratio (for example, 95% or more) can be obtained. If the holding temperature is less than 500 ° C. or the holding time is less than 2 hours, it is difficult to obtain a sufficient cubic rate. On the other hand, when the temperature exceeds 580 ° C. for more than 24 hours, excessive film formation occurs and the etching property decreases. In addition, the foil comes into close contact with each other, resulting in poor peeling.

表面酸化皮膜厚さ20〜100Å
焼鈍後の表面酸化皮膜は20〜100Åに制御することが望ましい。20Å未満の場合、箔の耐食性が低下し、焼鈍された箔の保存性が悪くなり、表面酸化等の異常原因となる。一方、100Å超の場合、エッチングの際、均一性が低下し、容量低下の原因となる。望ましくは40〜60Åである。尚、皮膜厚さはESCA(X線光電子分光法)での値とする。
Surface oxide film thickness 20-100mm
It is desirable to control the surface oxide film after annealing to 20 to 100%. When the thickness is less than 20%, the corrosion resistance of the foil is lowered, the storage stability of the annealed foil is deteriorated, and abnormal causes such as surface oxidation are caused. On the other hand, when the thickness exceeds 100 mm, the uniformity is reduced during etching, causing a reduction in capacity. It is preferably 40 to 60 mm. The film thickness is a value obtained by ESCA (X-ray photoelectron spectroscopy).

焼鈍雰囲気
昇温速度、酸化皮膜厚さを上記範囲とするためには、焼鈍時の雰囲気を適切に選定する必要がある。
真空焼鈍では、焼鈍時の熱伝導が著しく悪くなるため、昇温速度が低下する。更に、箔表層の酸化皮膜が薄くなるため好ましくない。大気焼鈍の場合、箔表層の酸化皮膜が厚くなり、エッチング性が低下するため好ましくない。Ar、N等不活性ガス雰囲気の場合、露点、酸素分圧を制御することで、適度な酸化皮膜を形成することができるが、昇温速度を所定範囲とするためには、焼鈍するアルミニウム箔の形状、数量等検討する必要がある。工業的に、コイル状のアルミ箔をTon単位で焼鈍を行う場合、水素ガスで行うことが望ましい。熱伝導率が高いため、十分な焼鈍速度が得られると共に、還元性雰囲気であるため、酸化皮膜の成長も抑制できるためである。しかし、不活性ガスにおいても適切な条件を選定することで、焼鈍速度、酸化皮膜厚さの目標は達成できるため、排除するものではない。真空焼鈍、大気焼鈍では、昇温速度、酸化皮膜厚さの目標を達成することはできない。なお、雰囲気ガスとしては、不活性ガスと水素ガスとを混合したものであってもよい。
Annealing atmosphere In order to make the temperature rising rate and oxide film thickness within the above ranges, it is necessary to appropriately select the atmosphere during annealing.
In vacuum annealing, the heat conduction during annealing is significantly deteriorated, so that the rate of temperature rise is reduced. Furthermore, since the oxide film on the foil surface layer becomes thin, it is not preferable. In the case of atmospheric annealing, the oxide film on the foil surface layer becomes thick and the etching property is lowered, which is not preferable. In the case of an inert gas atmosphere such as Ar or N 2 , an appropriate oxide film can be formed by controlling the dew point and the oxygen partial pressure. It is necessary to consider the shape and quantity of the foil. Industrially, when annealing a coiled aluminum foil in units of Ton, it is desirable to perform with hydrogen gas. This is because the thermal conductivity is high, so that a sufficient annealing rate can be obtained, and since it is a reducing atmosphere, the growth of the oxide film can also be suppressed. However, the selection of appropriate conditions for the inert gas can also achieve the targets of the annealing rate and the oxide film thickness, and is not excluded. In vacuum annealing and atmospheric annealing, the targets of the rate of temperature rise and the thickness of the oxide film cannot be achieved. The atmosphere gas may be a mixture of an inert gas and hydrogen gas.

Ni濃度分布
焼鈍後のNiの存在状態は、図1に示す状態にする必要がある。すなわち、箔表層部0.1μm深さ迄はアルミニウム箔全体の平均含有量の10倍以上濃縮させる必要がある。この10倍以上とは、箔表層部から0.1μm深さまでの平均含有量が全体平均含有量の10倍以上であることを意味している。これ未満では、箔表層の反応性が低下するためピット数が減少し容量が低くなる。一方、20μm深さ以上ではアルミニウム箔全体の平均含有量の80%以上を実質的に維持する必要がある。これは、箔内部の溶解性を高め、ピット径を拡大しやすくするためである。
また、箔内部のNiは移動させず、表層付近のNiは表面濃縮するため、Niの欠乏領域が深さ1〜5μm深さの間で生じる。表面濃縮が添加量の10倍以上の場合、深さ1〜5μm領域では、平均含有量がアルミニウム箔全体の平均含有量の1/2以下となる。
Ni concentration distribution The existence state of Ni after annealing needs to be in the state shown in FIG. That is, it is necessary to concentrate 10 times or more of the average content of the entire aluminum foil up to the depth of 0.1 μm of the foil surface layer. The term “10 times or more” means that the average content from the foil surface layer portion to the depth of 0.1 μm is 10 times or more of the total average content. Below this, the reactivity of the foil surface layer decreases, so the number of pits decreases and the capacity decreases. On the other hand, at a depth of 20 μm or more, it is necessary to substantially maintain 80% or more of the average content of the entire aluminum foil. This is to increase the solubility in the foil and facilitate the enlargement of the pit diameter.
Further, Ni inside the foil is not moved, and Ni in the vicinity of the surface layer is concentrated on the surface, so that a Ni-deficient region occurs between 1 to 5 μm deep. When the surface concentration is 10 times or more of the addition amount, the average content is ½ or less of the average content of the entire aluminum foil in the depth of 1 to 5 μm.

以上説明したように、本発明の電解コンデンサ用アルミニウム箔によれば、質量比で、Si:10〜30ppm、Fe:10〜20ppm、Pb:0.3〜3ppm、Cu:10〜70ppm、Ni:10〜50ppmを含有し、残部が99.9%以上のAlと不可避不純物からなる組成を有し、Ni濃度分布において、表層より0.1μm深さまでの平均含有量が全体平均含有量(Ni:10〜50ppm)の10倍以上であり、1〜5μm深さでの平均含有量が前記全体平均含有量の0.5倍以下であり、且つ20μm深さ以上では前記全体平均含有量の80%以上を維持しているので、箔表面および箔内部での溶解性が良好に得られ、エッチングに際し、拡径されたピットを効率よく生成して、表面積を拡大することができる。   As described above, according to the aluminum foil for electrolytic capacitors of the present invention, by mass ratio, Si: 10 to 30 ppm, Fe: 10 to 20 ppm, Pb: 0.3 to 3 ppm, Cu: 10 to 70 ppm, Ni: It contains 10 to 50 ppm, the balance is 99.9% or more of Al and inevitable impurities, and in the Ni concentration distribution, the average content from the surface layer to a depth of 0.1 μm is the overall average content (Ni: 10 to 50 ppm), the average content at a depth of 1 to 5 μm is 0.5 times or less of the total average content, and at a depth of 20 μm or more, 80% of the total average content Since the above is maintained, the solubility on the foil surface and inside the foil can be obtained satisfactorily, and the pits having an enlarged diameter can be efficiently generated and the surface area can be increased during etching.

また、本発明の電解コンデンサ用アルミニウム箔の製造方法によれば、質量比で、Si:10〜30ppm、Fe:10〜20ppm、Pb:0.3〜3ppm、Cu:10〜70ppm、Ni:10〜50ppmを含有し、残部が99.9%以上のAlと不可避不純物からなる組成を有するアルミニウム箔を、不活性ガスまたは水素ガスもしくはこれらの混合ガス雰囲気中で、少なくとも300〜450℃の過程で昇温速度30〜100℃/時間で昇温させ、、保持温度500〜580℃、保持時間2〜24時間で最終焼鈍するので、Niの分布を適正に制御して箔表層と箔内部とにそれぞれNiを適量存在させて、前記電解コンデンサ用アルミニウム箔による作用を確実に得ることを可能にする。   Moreover, according to the manufacturing method of the aluminum foil for electrolytic capacitors of this invention, by mass ratio, Si: 10-30ppm, Fe: 10-20ppm, Pb: 0.3-3ppm, Cu: 10-70ppm, Ni: 10 An aluminum foil containing ˜50 ppm and having the balance of 99.9% or more of Al and unavoidable impurities in an atmosphere of inert gas, hydrogen gas or a mixed gas thereof at least at a temperature of 300 to 450 ° C. The temperature is increased at a rate of temperature increase of 30 to 100 ° C./hour, and the final annealing is performed at a holding temperature of 500 to 580 ° C. and a holding time of 2 to 24 hours. An appropriate amount of Ni is present in each case, thereby making it possible to reliably obtain the action of the aluminum foil for electrolytic capacitors.

純度99.9%以上で本発明の成分となるように調製された高純度アルミニウム材を用意する。該アルミニウム材は、好適には純度99.95%以上とする。
該アルミニウム材は常法により得ることができ、本発明としては特にその製造方法が限定されるものではない。例えば、半連続鋳造によって得たスラブを熱間圧延したものを用いることができ、その他に連続鋳造により得られる高純度アルミニウム材を用いるものであってもよい。上記熱間圧延または連続鋳造圧延によって例えば数mm厚程度のシート材とする。このシート材に対し冷間圧延を行い、数十μmから100μm程度のアルミニウム合金箔を得る。なお、冷間圧延途中あるいは冷間圧延終了後に適宜脱脂を加えてもよく、また冷間圧延の途中で適宜中間焼鈍を加えても差し支えない。
A high-purity aluminum material prepared to be a component of the present invention with a purity of 99.9% or more is prepared. The aluminum material preferably has a purity of 99.95% or more.
The aluminum material can be obtained by a conventional method, and the production method is not particularly limited in the present invention. For example, a hot-rolled slab obtained by semi-continuous casting can be used, and a high-purity aluminum material obtained by continuous casting can also be used. For example, a sheet material having a thickness of about several mm is formed by the hot rolling or continuous casting rolling. This sheet material is cold-rolled to obtain an aluminum alloy foil of about several tens of μm to 100 μm. In addition, degreasing may be appropriately added during the cold rolling or after the end of the cold rolling, and intermediate annealing may be appropriately added during the cold rolling.

最終冷間圧延後には、最終焼鈍熱処理を行う。最終焼鈍の加熱条件は、前記した添加元素のうち特にNiを表層部に濃縮させるとともに、内部に該Niを残存させるために重要であり、好適には、Hなどを用いた還元性雰囲気または、Ar、N等の不活性雰囲気もしくはこれらの混合ガス雰囲気中で、少なくとも300〜450℃の間で30〜100℃/時間の昇温速度によって加熱をし、500〜580℃×2〜24時間保持して加熱することで平均厚さで20〜100Åの酸化皮膜を有するアルミニウム合金箔を得ることができる。還元性雰囲気では、Hなどの還元性ガスに不活性ガスや微量の酸素などを混合した混合ガスを用いることも可能である。立方晶率は95%以上であるのが望ましい。上記焼鈍によって前記添加元素が表層部に濃縮する。なお、焼鈍を真空下で行うと、表面に酸化皮膜が適切に形成されずエッチング時に良好なエッチングが困難になる。 After the final cold rolling, a final annealing heat treatment is performed. The heating conditions for the final annealing are particularly important for concentrating Ni in the surface layer portion among the above-described additive elements, and for leaving the Ni inside, preferably a reducing atmosphere using H 2 or the like In an inert atmosphere such as Ar, N 2 or a mixed gas atmosphere thereof, heating is performed at a temperature increase rate of 30 to 100 ° C./hour between at least 300 to 450 ° C., and 500 to 580 ° C. × 2 to 24 An aluminum alloy foil having an oxide film with an average thickness of 20 to 100 mm can be obtained by heating for a period of time. In a reducing atmosphere, it is possible to use a mixed gas obtained by mixing a reducing gas such as H 2 with an inert gas or a small amount of oxygen. It is desirable that the cubic crystal ratio is 95% or more. The said additional element concentrates on a surface layer part by the said annealing. When annealing is performed under vacuum, an oxide film is not properly formed on the surface, and good etching becomes difficult during etching.

上記最終焼鈍によって、特にNiの深さ方向での濃度分布が制御され、表層から0.1μmの深さまでのNi平均濃度は、アルミニウム箔全体のNiの平均濃度の10倍以上となる。また、1〜5μmの深さでは、表層側への濃縮によってNi濃度が減少し、アルミニウム箔全体のNiの平均濃度の0.5倍以下となっている。また、20μm以上の深さでは、アルミニウム箔全体のNiの平均濃度が80%以上に実質的に維持されている。   The final annealing particularly controls the concentration distribution of Ni in the depth direction, and the average Ni concentration from the surface layer to a depth of 0.1 μm is 10 times or more the average concentration of Ni in the entire aluminum foil. Moreover, in the depth of 1-5 micrometers, Ni density | concentration reduces by concentration to the surface layer side, and is 0.5 times or less of the average density | concentration of Ni of the whole aluminum foil. At a depth of 20 μm or more, the average concentration of Ni in the entire aluminum foil is substantially maintained at 80% or more.

上記各工程を経て得られたアルミニウム箔には、その後、エッチング処理がなされる。該エッチング工程は塩酸を主体とする電解液を用いた電解エッチングにより行うことができる。なお、本発明としては電解液の種別が特に限定されるものではない。また、本発明では、表層にAl−Ni系析出物が存在する為、無電解エッチングも可能である。
エッチング処理は、表層部除去工程と、エッチングピット発生工程と、エッチングピット孔径拡大工程により行うことができる。 表層部除去工程は、酸化皮膜を含む表層部を溶解することによって除去する。表層部除去後は、アルミニウム箔表面にエッチングピットを発生させるエッチングピット発生工程を行う。エッチングピット発生工程後に、エッチングピット孔径拡大工程を行う。この箔を化成処理し、必要な耐電圧を得た後、常法により電解コンデンサに電極として組み込むことにより静電容量の高いコンデンサが得られる。
The aluminum foil obtained through the above steps is then subjected to an etching process. The etching step can be performed by electrolytic etching using an electrolytic solution mainly composed of hydrochloric acid. In the present invention, the type of the electrolytic solution is not particularly limited. Further, in the present invention, since Al—Ni-based precipitates are present on the surface layer, electroless etching is also possible.
The etching process can be performed by a surface layer portion removing process, an etching pit generating process, and an etching pit hole diameter expanding process. The surface layer portion removing step is performed by dissolving the surface layer portion including the oxide film. After the surface layer portion is removed, an etching pit generation step for generating etching pits on the aluminum foil surface is performed. After the etching pit generation process, an etching pit hole diameter expanding process is performed. This foil is subjected to a chemical conversion treatment to obtain a required withstand voltage, and then a capacitor having a high capacitance is obtained by incorporating it as an electrode in an electrolytic capacitor by a conventional method.

本発明は中高圧電解コンデンサの陽極として使用するのが好適であるが、本発明としてはこれに限定されるものではなく、より化成電圧の低いコンデンサ用としても使用することができ、また電解コンデンサの陰極用の材料として使用することもできる。   The present invention is preferably used as an anode of a medium-high voltage electrolytic capacitor. However, the present invention is not limited to this, and can be used for a capacitor having a lower formation voltage. It can also be used as a cathode material.

4N純度のアルミニウム地金を用い、表1に示す組成(残部99.99%Alとその他不可避不純物)に調整した後、半連続鋳造法によってアルミニウムスラブを作成した。580℃、2時間以上の均熱処理を行った後、熱間圧延を行った。その際、仕上がり温度を230℃〜350℃とし、加工率を90%以上とした。熱間圧延後、冷間圧延を行った。その際、150℃〜300℃、2〜24時間の中間焼鈍を行い、さらに10〜20%の冷間加工を行って120μmのアルミニウム箔とした。尚、中間焼鈍は冷間圧延での加工率が95%以上の段階で行った。
得られたアルミニウム箔を、表2に示す条件で焼鈍した。昇温速度は、300〜450℃の間における値である。その後、1M/LのNaOH、45℃溶液に浸漬時間を変える事によって表層部の溶解深さを変えて溶解を行い、残物のアルミニウム箔をICPにより分析し、溶解前後の値から表層部から0.1μm深さまでの平均Ni含有量、1〜5μm深さの平均Ni含有量、20μm以上の深さのNi含有量を算出し、その結果を表2に示した。
After adjusting the composition shown in Table 1 (the balance 99.99% Al and other inevitable impurities) using 4N purity aluminum ingot, an aluminum slab was prepared by a semi-continuous casting method. Hot rolling was performed after soaking at 580 ° C. for 2 hours or more. At that time, the finishing temperature was 230 ° C. to 350 ° C., and the processing rate was 90% or more. After hot rolling, cold rolling was performed. At that time, intermediate annealing at 150 ° C. to 300 ° C. for 2 to 24 hours was performed, and further cold working of 10 to 20% was performed to obtain a 120 μm aluminum foil. In addition, the intermediate annealing was performed at a stage where the processing rate in cold rolling was 95% or more.
The obtained aluminum foil was annealed under the conditions shown in Table 2. The rate of temperature increase is a value between 300 and 450 ° C. Then, the surface layer part was dissolved by changing the dissolution depth by changing the immersion time in 1 M / L NaOH, 45 ° C. solution, and the remaining aluminum foil was analyzed by ICP. The average Ni content up to a depth of 0.1 μm, the average Ni content at a depth of 1 to 5 μm, and the Ni content at a depth of 20 μm or more were calculated, and the results are shown in Table 2.

また、前記溶解を行っていない供試材に対し、1M塩酸+3M硫酸、80℃中で、300mA/cmの直流電流を120秒印加し、ピット発生エッチングを行った。ピット発生エッチングを行った後、同液中に20分浸漬しピット径を拡大した。得られたエッチング箔を電解研磨し、表層を20μm除去した後、SEMでピット形状を観察した。SEM画像を画像解析し、ピット径を算出した。その結果を表2に示した。又、エッチング箔を100g/lのホウ酸溶液85℃中で300Vの電圧を印加し化成を行い、その後、静電容量を測定した。実施例1を100%とし、他を相対比較した。 In addition, pit generation etching was performed by applying a direct current of 300 mA / cm 2 for 120 seconds in 1M hydrochloric acid + 3M sulfuric acid at 80 ° C. for the specimen not dissolved. After performing pit generation etching, the pit diameter was expanded by immersion in the same solution for 20 minutes. The obtained etching foil was electropolished and the surface layer was removed by 20 μm, and then the pit shape was observed by SEM. The SEM image was analyzed and the pit diameter was calculated. The results are shown in Table 2. Further, the etching foil was formed by applying a voltage of 300 V in 85 g of a boric acid solution of 100 g / l, and then the capacitance was measured. Example 1 was set to 100%, and the others were compared relative to each other.

Figure 2008266746
Figure 2008266746

Figure 2008266746
Figure 2008266746

本発明の電解コンデンサ用アルミニウム箔の深さ方向でのNi濃度分布を示す図である。It is a figure which shows Ni concentration distribution in the depth direction of the aluminum foil for electrolytic capacitors of this invention.

Claims (2)

質量比で、Si:10〜30ppm、Fe:10〜20ppm、Pb:0.3〜3ppm、Cu:10〜70ppm、Ni:10〜50ppmを含有し、残部が99.9%以上のAlと不可避不純物からなる組成を有し、Ni濃度分布において、表層より0.1μm深さまでの平均含有量が全体平均含有量(Ni:10〜50ppm)の10倍以上であり、1〜5μm深さでの平均含有量が前記全体平均含有量の0.5倍以下であり、且つ20μm深さ以上では前記全体平均含有量の80%以上を維持していることを特徴とする電解コンデンサ用アルミニウム箔。   Si: 10 to 30 ppm, Fe: 10 to 20 ppm, Pb: 0.3 to 3 ppm, Cu: 10 to 70 ppm, Ni: 10 to 50 ppm, with the balance being 99.9% or more of Al and inevitable It has a composition consisting of impurities, and in the Ni concentration distribution, the average content from the surface layer to the depth of 0.1 μm is 10 times or more of the total average content (Ni: 10 to 50 ppm), and at a depth of 1 to 5 μm. The aluminum foil for electrolytic capacitors, wherein the average content is 0.5 times or less of the total average content, and 80% or more of the total average content is maintained at a depth of 20 μm or more. 質量比で、Si:10〜30ppm、Fe:10〜20ppm、Pb:0.3〜3ppm、Cu:10〜70ppm、Ni:10〜50ppmを含有し、残部が99.9%以上のAlと不可避不純物からなる組成を有するアルミニウム箔を、不活性ガスまたは水素ガスもしくはこれらの混合ガス雰囲気中で、少なくとも300〜450℃の過程で昇温速度30〜100℃/時間で昇温させ、保持温度500〜580℃、保持時間2〜24時間で最終焼鈍することを特徴とする電解コンデンサ用アルミニウム箔の製造方法。   Si: 10 to 30 ppm, Fe: 10 to 20 ppm, Pb: 0.3 to 3 ppm, Cu: 10 to 70 ppm, Ni: 10 to 50 ppm, with the balance being 99.9% or more of Al and inevitable An aluminum foil having a composition composed of impurities is heated at a temperature rising rate of 30 to 100 ° C./hour in a process of at least 300 to 450 ° C. in an atmosphere of inert gas, hydrogen gas or a mixed gas thereof, and a holding temperature of 500 The manufacturing method of the aluminum foil for electrolytic capacitors characterized by performing final annealing in -580 degreeC and holding time 2-24 hours.
JP2007113805A 2007-04-24 2007-04-24 Aluminum foil for electrolytic capacitor and manufacturing method thereof Expired - Fee Related JP4237236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007113805A JP4237236B2 (en) 2007-04-24 2007-04-24 Aluminum foil for electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007113805A JP4237236B2 (en) 2007-04-24 2007-04-24 Aluminum foil for electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008266746A true JP2008266746A (en) 2008-11-06
JP4237236B2 JP4237236B2 (en) 2009-03-11

Family

ID=40046622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007113805A Expired - Fee Related JP4237236B2 (en) 2007-04-24 2007-04-24 Aluminum foil for electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4237236B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101736042B1 (en) 2009-09-30 2017-05-16 도요 알루미늄 가부시키가이샤 Perforated aluminum foil, and process for production thereof
WO2018051520A1 (en) * 2016-09-16 2018-03-22 日本蓄電器工業株式会社 Electrode member for electrolytic capacitor and electrolytic capacitor
JP2021061431A (en) * 2020-12-28 2021-04-15 日本蓄電器工業株式会社 Electrode member for electrolytic capacitor and electrolytic capacitor
JP7033664B2 (en) 2019-04-04 2022-03-10 乳源東陽光優艾希杰精箔有限公司 Manufacturing method of 1XXX cathode foil for aluminum electrolytic capacitors

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101736042B1 (en) 2009-09-30 2017-05-16 도요 알루미늄 가부시키가이샤 Perforated aluminum foil, and process for production thereof
WO2018051520A1 (en) * 2016-09-16 2018-03-22 日本蓄電器工業株式会社 Electrode member for electrolytic capacitor and electrolytic capacitor
CN109716468A (en) * 2016-09-16 2019-05-03 日本蓄电器工业株式会社 Electrolytic capacitor electrod assembly and electrolytic capacitor
JPWO2018051520A1 (en) * 2016-09-16 2019-07-11 日本蓄電器工業株式会社 Electrode member for electrolytic capacitor and electrolytic capacitor
US10957491B2 (en) 2016-09-16 2021-03-23 Japan Capacitor Industrial Co., Ltd. Electrolytic capacitor-specific electrode member and electrolytic capacitor
CN109716468B (en) * 2016-09-16 2022-07-08 日本蓄电器工业株式会社 Electrode member for electrolytic capacitor and electrolytic capacitor
JP7033664B2 (en) 2019-04-04 2022-03-10 乳源東陽光優艾希杰精箔有限公司 Manufacturing method of 1XXX cathode foil for aluminum electrolytic capacitors
JP2021061431A (en) * 2020-12-28 2021-04-15 日本蓄電器工業株式会社 Electrode member for electrolytic capacitor and electrolytic capacitor
JP7028481B2 (en) 2020-12-28 2022-03-02 日本蓄電器工業株式会社 Electrode members for electrolytic capacitors and electrolytic capacitors

Also Published As

Publication number Publication date
JP4237236B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JP2013124402A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP4237236B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP2012167348A (en) Method for producing aluminum foil for electrolytic capacitor
JP2009249668A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP2005179719A (en) Aluminum foil for electrolytic capacitor, and its production method
JP4721448B2 (en) Method for producing aluminum foil for electrolytic capacitor
JP2007046093A (en) Aluminum foil for electrolytic capacitor electrode, and manufacturing method therefor
JP4521771B2 (en) Aluminum material for electrolytic capacitor electrodes
JP4071232B2 (en) Aluminum foil for electrolytic capacitors
JP2007169690A (en) Aluminum foil for electrolytic capacitor
JP4793827B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP5117673B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2014181368A (en) Aluminum alloy foil for electrolytic capacitor and production method thereof
JP3920301B2 (en) Aluminum foil for electrolytic capacitors
JP3920306B1 (en) Aluminum foil for electrolytic capacitors
JP3797645B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP2011006747A (en) Aluminum foil for electrolytic capacitor
JP4827103B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP2008150692A (en) Aluminum material for electrolytic capacitor electrode
JP4539911B2 (en) Aluminum foil for electrode capacitor anode and manufacturing method thereof
JP4539912B2 (en) Aluminum foil for electrolytic capacitor anode and manufacturing method thereof
JP2010013714A (en) Aluminum foil for electrolytic capacitor electrode
JP3930033B1 (en) Aluminum foil for electrolytic capacitors
JP4732892B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP5681397B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080925

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees