JPH07180006A - Production of aluminum foil for electrolytic capacitor electrode - Google Patents

Production of aluminum foil for electrolytic capacitor electrode

Info

Publication number
JPH07180006A
JPH07180006A JP32799393A JP32799393A JPH07180006A JP H07180006 A JPH07180006 A JP H07180006A JP 32799393 A JP32799393 A JP 32799393A JP 32799393 A JP32799393 A JP 32799393A JP H07180006 A JPH07180006 A JP H07180006A
Authority
JP
Japan
Prior art keywords
annealing
aluminum foil
oxide film
foil
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32799393A
Other languages
Japanese (ja)
Inventor
Mitsushi Hayashida
充司 林田
Kozo Hoshino
晃三 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP32799393A priority Critical patent/JPH07180006A/en
Publication of JPH07180006A publication Critical patent/JPH07180006A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To increase the effective area by electrolytic etching and to produce Al foil for the electrode for an electrolytic capacitor high in capacitance by annealing Al foil of a specified grade to remove an oxidized film on the surface, thereafter annealing it again at a specified temp. to coarsen the crystalline grains and furthermore forming an extremely thin oxidized film. CONSTITUTION:Al foil contg., by weight, 0.002 to 0.O05% Fe, 0.002 to 0.005% Si and 0.001 to 0.004% Cu and having the grade of >=99.98% A purity us subjected to primary annealing at 350 to 500 deg.C to regulate the grain size to 55 to 100mum, and on the surface, a relatively thick Al oxide film is formed. Next, it is immersed in an aq. soln. of NaOH to remove an Al oxide film, and after that, it is subjected to secondary annealing at a relatively low temp. of 220 to 300 deg.C in the atmosphere to form an extremely thin oxide film having 25 to 50Angstrom thickness on the surface. This Al foil is subjected to electrolytic etching to increase the effective area of the surface, by which the Al foil as the electrode for an electrolytic capacitor high in capacitance per unit area can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解コンデンサ電極用
アルミニウム箔の製造方法に関し、詳細には電解エッチ
ングによる実効面積の拡大化処理が施されて使用される
電解コンデンサ電極用アルミニウム箔の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum foil for an electrolytic capacitor electrode, and more particularly to a method for producing an aluminum foil for an electrolytic capacitor electrode which is used after being subjected to an effective area enlargement treatment by electrolytic etching. Regarding

【0002】[0002]

【従来の技術】電解コンデンサを小型化・高容量化する
目的で、電解コンデンサ電極用アルミニウム箔は、電解
エッチングにより実効面積(以降、表面積という)を拡
大してから使用される。ここで、表面積の拡大は、単位
面積当たりの静電容量の向上を図り、その結果、電解コ
ンデンサを小型化・高容量化しようとするものであり、
従って、表面積の高拡大化が望まれる。
2. Description of the Related Art In order to reduce the size and increase the capacity of electrolytic capacitors, aluminum foil for electrolytic capacitor electrodes is used after its effective area (hereinafter referred to as surface area) is enlarged by electrolytic etching. Here, the expansion of the surface area is intended to improve the electrostatic capacity per unit area, and as a result, to reduce the size and capacity of the electrolytic capacitor.
Therefore, it is desired to increase the surface area.

【0003】かかる電解エッチングによる表面積の高拡
大化に耐え得る(表面溶解を生じず、エッチングピット
が成長する)電解コンデンサ電極用アルミニウム箔を製
造することを目的として、特定不純物の調整、均熱条
件、表面処理、焼鈍条件が検討され、その結果が多数報
告されている。例えば、特開平4-259357号公報には特定
不純物の調整による方法、特開平2-200749号公報や特開
平4-176847号公報には均熱条件による方法、特開平5-12
436 号公報には表面処理による方法、特開平4-311550号
公報には焼鈍条件による方法が記載されている。
For the purpose of producing an aluminum foil for electrolytic capacitor electrodes which can withstand the increase in surface area due to such electrolytic etching (no surface dissolution occurs, etching pits grow), adjustment of specific impurities and soaking conditions. , Surface treatment and annealing conditions have been investigated and many results have been reported. For example, JP-A-4-259357 discloses a method by adjusting specific impurities, JP-A-2-200749 and JP-A-4-176847 disclose a soaking method, and JP-A-5-12
Japanese Patent Laid-Open No. 4-311550 describes a method by surface treatment, and Japanese Patent Laid-Open No. 4-311550 discloses a method by annealing conditions.

【0004】これらの方法の中、焼鈍条件による方法に
ついては、酸化皮膜を形成し難い雰囲気中において 350
〜450 ℃の温度で焼鈍する方法が採用されている。即
ち、箔圧延後(アルミニウム箔に圧延した後)の最終焼
鈍工程において、立方体方位を多く有する集合組織にし
てアルミニウム箔の電解エッチング特性を向上させるた
めに 350〜450 ℃の温度で焼鈍する。しかし、大気中或
いは大気と略同等に酸素を含む気体(酸素:17〜25vol%
を含有する気体)中で焼鈍すると、酸化皮膜が形成さ
れ、このとき焼鈍温度が 350℃超であるので、形成され
る酸化皮膜の厚さが著しく増大する。このような厚い酸
化皮膜が形成されたものを電解エッチングすると、酸化
皮膜の絶縁性が高いことにより、エッチング性が低下す
る(孔が開いたりして表面積の高拡大化が図れない)。
従って、Dxガス、アルゴン、真空中等の如く酸化皮膜を
形成し難い雰囲気中において 350〜450 ℃の温度で焼鈍
する方法が採用されている。
Among these methods, the method according to the annealing condition is performed in an atmosphere where it is difficult to form an oxide film.
A method of annealing at a temperature of ~ 450 ° C is adopted. That is, in the final annealing step after foil rolling (after rolling to aluminum foil), annealing is performed at a temperature of 350 to 450 ° C. in order to improve the electrolytic etching characteristics of the aluminum foil by forming a texture having many cubic orientations. However, a gas containing oxygen in the atmosphere or almost the same as the atmosphere (oxygen: 17-25 vol%
An oxide film is formed by annealing in a gas containing) and the annealing temperature is higher than 350 ° C. at this time, the thickness of the oxide film formed is significantly increased. When such a thick oxide film is formed by electrolytic etching, the insulating property of the oxide film is high, so that the etching property is deteriorated (a hole is opened and the surface area cannot be increased).
Therefore, a method of annealing at a temperature of 350 to 450 ° C. in an atmosphere where it is difficult to form an oxide film, such as in Dx gas, argon, or vacuum, is adopted.

【0005】[0005]

【発明が解決しようとする課題】前記従来の焼鈍条件に
よる方法によれば、比較的、電解エッチング性が良好で
あり、電解エッチングによる表面積の高拡大化に耐える
ことができるので、一応表面積の高拡大化が図れる。し
かしながら、Dxガス、アルゴン、真空中等の如く酸化皮
膜を形成し難い雰囲気(以降、特殊雰囲気という)中に
おいて焼鈍する必要があり、かかる特殊雰囲気を作り出
す必要があるので、製造費用の上昇を招かざるを得な
い。従って、かかる製造費用の上昇を招く特殊雰囲気中
での焼鈍による方法ではなく、大気中或いは大気と略同
等に酸素を含む気体中(以降、これらを大気同等気体中
という)での焼鈍による方法、即ち大気同等気体中での
焼鈍によって電解エッチング性の向上による表面積の高
拡大化が図れる技術(焼鈍条件等)があれば、好都合で
あり、その技術開発が望まれるところである。
According to the conventional method under the annealing conditions, the electrolytic etching property is relatively good, and it is possible to endure the increase in the surface area by the electrolytic etching. It can be expanded. However, since it is necessary to anneal in an atmosphere in which an oxide film is difficult to form (hereinafter referred to as a special atmosphere) such as in Dx gas, argon, or vacuum, it is necessary to create such a special atmosphere, which causes an increase in manufacturing cost. I don't get. Therefore, it is not a method by annealing in a special atmosphere that causes an increase in the manufacturing cost, but a method by annealing in the atmosphere or a gas containing oxygen approximately equivalent to the atmosphere (hereinafter, these are referred to as atmospheric equivalent gases), That is, it would be convenient to have a technique (annealing condition etc.) that can increase the surface area by improving the electrolytic etching property by annealing in a gas equivalent to the atmosphere, and it is desired to develop the technique.

【0006】本発明はこの様な事情に着目してなされた
ものであって、その目的は、前記特殊雰囲気中での焼鈍
による方法ではなく、基本的に大気同等気体中での焼鈍
による方法であって、電解エッチング性向上による表面
積の高拡大化が図れ、その結果静電容量の向上が図れる
電解コンデンサ電極用アルミニウム箔を得ることができ
る電解コンデンサ電極用アルミニウム箔の製造方法を提
供しようとするものである。
The present invention has been made in view of such circumstances, and its purpose is not a method of annealing in the special atmosphere but basically a method of annealing in a gas equivalent to the atmosphere. Therefore, an attempt is made to provide a method for producing an aluminum foil for an electrolytic capacitor electrode, which can obtain an aluminum foil for an electrolytic capacitor electrode in which the surface area can be increased by improving the electrolytic etching property, and as a result, the capacitance can be improved. It is a thing.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は次のような構成の電解コンデンサ電極用
アルミニウム箔の製造方法としている。即ち、本発明に
係る電解コンデンサ電極用アルミニウム箔の製造方法
は、アルミニウム純度が99.98 %以上であり、且つFeを
0.002〜0.005wt%,Siを 0.002〜0.005wt%,Cuを 0.001
〜0.004wt%含有するアルミニウム箔を、350 〜500 ℃で
焼鈍した後、該焼鈍により形成された酸化皮膜を除去
し、しかる後、酸化性雰囲気中において 220〜330 ℃で
加熱処理してアルミニウム箔の結晶粒径を55〜100 μm
とすると共に、アルミニウム箔表面に膜厚:25〜50Åの
酸化皮膜を形成することを特徴とする電解コンデンサ電
極用アルミニウム箔の製造方法である。
In order to achieve the above object, the present invention provides a method for producing an aluminum foil for electrolytic capacitor electrodes having the following construction. That is, the method for producing an aluminum foil for electrolytic capacitor electrodes according to the present invention has an aluminum purity of 99.98% or more, and Fe
0.002 to 0.005wt%, Si 0.002 to 0.005wt%, Cu 0.001
Aluminum foil containing ~ 0.004 wt% is annealed at 350-500 ° C, then the oxide film formed by the annealing is removed, and then the aluminum foil is heat treated at 220-330 ° C in an oxidizing atmosphere. Grain size of 55-100 μm
And a method for producing an aluminum foil for electrolytic capacitor electrodes, which comprises forming an oxide film having a film thickness of 25 to 50 Å on the surface of the aluminum foil.

【0008】[0008]

【作用】本発明は、主に、大気等の酸化性雰囲気(以
降、大気同等気体という)中でのアルミニウム箔の焼鈍
を、アルミニウム箔の組成、箔厚、焼鈍温度、焼鈍後の
付加工程等を変化させて行い、得られたアルミニウム箔
について性状及び電解エッチング性を調べ、又、電解エ
ッチング後の静電容量を調査し、その結果、(a) 特定の
組成を有するアルミニウム箔を比較的高温で焼鈍して結
晶粒径を大きくすると静電容量が向上するという知見、
(b) 該焼鈍により形成された酸化皮膜をエッチング性向
上のために除去した後、電解エッチングすると表面溶解
を起こして表面積の高拡大化が図れないという不具合が
あるが、該酸化皮膜の除去後に比較的低温で加熱処理し
て薄い特定厚みの酸化皮膜を形成すると、かかる不具合
を生じることなく、電解エッチングし得、表面積の高拡
大化が図れるという知見等が得られ、これら知見に基づ
き完成されたものである。
The function of the present invention is mainly to anneal an aluminum foil in an oxidizing atmosphere such as the atmosphere (hereinafter referred to as an atmosphere-equivalent gas), the composition of the aluminum foil, the foil thickness, the annealing temperature, the additional step after the annealing, etc. The properties and electrolytic etching properties of the obtained aluminum foil were investigated, and the electrostatic capacity after electrolytic etching was also investigated.As a result, (a) an aluminum foil having a specific composition was heated at a relatively high temperature. The finding that the capacitance is improved by annealing and increasing the grain size,
(b) After the oxide film formed by the annealing is removed to improve the etching property, electrolytic etching causes surface dissolution to increase the surface area, but after the oxide film is removed, there is a problem. When heat treatment is performed at a relatively low temperature to form a thin oxide film of a specific thickness, it is possible to carry out electrolytic etching without such a problem, and the knowledge that surface area can be increased can be obtained. It is a thing.

【0009】即ち、アルミニウム純度が99.98%以上であ
り、且つFeを 0.002〜0.005wt%,Siを 0.002〜0.005wt
%,Cuを 0.001〜0.004wt%含有するアルミニウム箔を、
先ず、大気同等気体中において焼鈍すると、図1(○
印:非皮膜除去箔)に例示する如く、焼鈍温度500 ℃ま
では焼鈍温度の上昇に伴って静電容量が上昇することが
わかった。尚、図1は、アルミニウム箔の焼鈍温度と焼
鈍後のアルミニウム箔(○印:非皮膜除去箔)、及び、
後述の焼鈍及び皮膜除去後のアルミニウム箔(●印:皮
膜除去箔)についての20V化成時の静電容量との関係を
調べた結果の一例を示すものである。
That is, the aluminum purity is 99.98% or more, and 0.002 to 0.005 wt% of Fe and 0.002 to 0.005 wt of Si.
%, Cu aluminum 0.001 ~ 0.004wt% containing aluminum foil,
First, when annealed in a gas equivalent to air,
It is found that the electrostatic capacity increases with the increase of the annealing temperature up to the annealing temperature of 500 ° C. as shown in the mark (uncoated film removal foil). In addition, FIG. 1 shows the annealing temperature of the aluminum foil and the aluminum foil after the annealing (circle mark: non-film removal foil), and
It shows an example of the result of examining the relationship between the aluminum foil after annealing and film removal described later (●: film removal foil) and the electrostatic capacity at the time of forming 20V.

【0010】この静電容量の上昇原因として、酸化皮
膜の影響、微細組織の影響が推定される。そこで、こ
の原因把握を目的として、上記焼鈍後のアルミニウム箔
について、50℃の2%NaOH水溶液へ30秒間浸漬する等の
方法により、表面の酸化皮膜(上記焼鈍により形成され
た酸化皮膜)を除去した後、静電容量を測定した。その
結果、図1(●印:皮膜除去箔)に例示する如く、焼鈍
温度300 ℃以下のものでは非皮膜除去箔とほぼ同一の静
電容量であるが、焼鈍温度300 ℃以上のものでは非皮膜
除去箔よりも皮膜除去箔の方が静電容量が大きく、これ
ら両者の静電容量の差は焼鈍温度450 ℃までは焼鈍温度
の上昇に伴って増大するということがわかった。ここ
で、300 ℃以上の焼鈍で形成される酸化皮膜は、自然に
形成される酸化皮膜よりも厚い。故に、結晶粒径が大き
くなることにより静電容量が向上し、厚い酸化皮膜が形
成されることにより静電容量が低下することになる。こ
れらのことから、350 〜500 ℃で焼鈍(以降、1次焼鈍
という)した後、該焼鈍により形成された酸化皮膜を除
去すると、静電容量の大きいアルミニウム箔が得られる
ことがわかった。
The cause of this increase in capacitance is presumed to be the influence of the oxide film and the influence of the fine structure. Therefore, for the purpose of grasping the cause, the surface of the aluminum foil after the above-mentioned annealing is removed by a method of immersing it in a 2% NaOH aqueous solution at 50 ° C for 30 seconds, etc. to remove the surface oxide film (the oxide film formed by the above-mentioned annealing). After that, the capacitance was measured. As a result, as illustrated in Fig. 1 (● mark: film removal foil), the one with an annealing temperature of 300 ℃ or less has almost the same capacitance as the non-film removal foil, but the one with an annealing temperature of 300 ℃ or more does not. It was found that the film-removing foil has a larger capacitance than the film-removing foil, and the difference in the capacitance between the two films increases with increasing annealing temperature up to the annealing temperature of 450 ° C. Here, the oxide film formed by annealing at 300 ° C. or higher is thicker than the oxide film formed naturally. Therefore, the electrostatic capacity is improved by increasing the crystal grain size, and the electrostatic capacity is decreased by forming a thick oxide film. From these, it was found that an aluminum foil having a large capacitance can be obtained by removing the oxide film formed by the annealing after annealing at 350 to 500 ° C. (hereinafter referred to as primary annealing).

【0011】しかし、かかるアルミニウム箔は、このま
までは酸化皮膜が除去された状態にあるので、電解エッ
チング時に表面溶解を起こして表面積の高拡大化が図れ
ないという問題点があると考えられる。そこで、更に、
大気同等気体中において加熱処理(以降、2次焼鈍とい
う)して若干酸化皮膜を形成すれば、この問題点は解消
し得るのではないかと考え、この2次焼鈍の影響を実験
により調べた。その結果、酸化皮膜が除去された状態の
もの(皮膜除去箔)では、電解エッチング時に表面溶解
を起こして表面積の高拡大化が図れず、静電容量が低下
して具合が悪いが、上記皮膜除去箔を大気同等気体中に
おいて加熱処理(2次焼鈍)して酸化皮膜を形成する
と、電解エッチング時に表面溶解を起こさず、表面積の
高拡大化が図れ、静電容量が向上し、特に上記加熱処理
(2次焼鈍)を 220〜330 ℃で行って膜厚:25〜50Åの
酸化皮膜を形成した場合に、静電容量の上昇の度合いが
大きく、充分な静電容量を有する電解コンデンサ電極用
アルミニウム箔が得られることがわかった。
However, since the aluminum foil is in a state in which the oxide film is removed as it is, it is considered that there is a problem that the surface area cannot be increased due to surface dissolution during electrolytic etching. So, further,
It was thought that this problem could be solved if a slight oxide film was formed by heat treatment (hereinafter referred to as secondary annealing) in a gas equivalent to the atmosphere, and the effect of this secondary annealing was investigated by experiments. As a result, in the state where the oxide film is removed (film removal foil), the surface dissolution cannot occur at the time of electrolytic etching to increase the surface area, and the capacitance is lowered, which is unsatisfactory. When the removal foil is heat-treated (secondary annealing) in a gas equivalent to the atmosphere to form an oxide film, surface dissolution does not occur during electrolytic etching, the surface area can be increased, and the electrostatic capacity is improved. For electrolytic capacitor electrodes that have a large degree of increase in electrostatic capacity and have a sufficient electrostatic capacity when a treatment (secondary annealing) is performed at 220 to 330 ° C to form an oxide film with a film thickness of 25 to 50Å It was found that an aluminum foil was obtained.

【0012】この2次焼鈍の影響に関する実験結果の一
例を図2に示す。これは、450 ℃又は400 ℃で1次焼鈍
し、50℃の2%NaOH水溶液で酸化皮膜を除去した後のア
ルミニウム箔について、大気中(酸素:21vol%)におい
て加熱処理(2次焼鈍)を行い、次に、電解エッチング
をした後、20V化成時の静電容量を測定し、これらに基
づき作成されたものである。この図2からも、2次焼鈍
により電解エッチング後アルミニウム箔の静電容量が向
上し、この静電容量向上の程度は2次焼鈍温度が 220〜
330 ℃の場合に特に顕著であることがわかる。尚、図2
の場合、2次焼鈍温度 275℃の場合に静電容量は極大値
を示している。
FIG. 2 shows an example of an experimental result concerning the influence of the secondary annealing. This is a heat treatment (secondary annealing) in the atmosphere (oxygen: 21 vol%) of the aluminum foil after primary annealing at 450 ° C or 400 ° C and removal of the oxide film with 2% NaOH aqueous solution at 50 ° C. Then, after performing electrolytic etching, the electrostatic capacity at the time of forming 20 V was measured, and it was created based on these. From FIG. 2 as well, the electrostatic capacity of the aluminum foil after electrolytic etching is improved by the secondary annealing, and the degree of this electrostatic capacity improvement is that the secondary annealing temperature is 220 to
It can be seen that it is particularly remarkable at 330 ° C. Incidentally, FIG.
In the case of, the capacitance shows a maximum value when the secondary annealing temperature is 275 ° C.

【0013】以上の知見に基づき、本発明に係る電解コ
ンデンサ電極用アルミニウム箔の製造方法は、完成され
たものであり、アルミニウム純度が99.98 %以上であ
り、且つFeを 0.002〜0.005wt%,Siを 0.002〜0.005wt
%,Cuを 0.001〜0.004wt%含有するアルミニウム箔を、3
50 〜500 ℃で焼鈍(1次焼鈍)した後、該焼鈍により
形成された酸化皮膜を除去し、しかる後、酸化性雰囲気
中(大気同等気体中)において 220〜330 ℃で加熱処理
(2次焼鈍)してアルミニウム箔の結晶粒径を55〜100
μm とすると共に、アルミニウム箔表面に膜厚:25〜50
Åの酸化皮膜を形成するようにしているのである。従っ
て、本発明に係る電解コンデンサ電極用アルミニウム箔
の製造方法によれば、前記従来の特殊雰囲気中での焼鈍
による方法と異なり、基本的に大気同等気体中での焼鈍
による方法であって、電解エッチング性向上による表面
積の高拡大化が図れ、その結果静電容量の向上が図れる
電解コンデンサ電極用アルミニウム箔を得ることができ
る。即ち、焼鈍については特殊雰囲気中ではなく、大気
同等気体中、例えば大気雰囲気中で行えばよいので、簡
便化される。
Based on the above findings, the method for producing an aluminum foil for electrolytic capacitor electrodes according to the present invention has been completed, the aluminum purity is 99.98% or more, and Fe is 0.002 to 0.005 wt%, Si 0.002-0.005wt
3% aluminum foil containing 0.001 to 0.004 wt% Cu
After annealing at 50 to 500 ° C (primary annealing), the oxide film formed by the annealing is removed, and then heat treatment at 220 to 330 ° C in an oxidizing atmosphere (in the atmosphere equivalent gas) (secondary) Annealing) to reduce the grain size of aluminum foil to 55-100
μm and film thickness on aluminum foil surface: 25-50
The Å oxide film is formed. Therefore, according to the method for producing an aluminum foil for an electrolytic capacitor electrode according to the present invention, unlike the conventional method by annealing in a special atmosphere, it is basically a method by annealing in an atmosphere-equivalent gas, It is possible to obtain an aluminum foil for electrolytic capacitor electrodes in which the surface area can be increased by improving the etching property, and as a result, the capacitance can be improved. That is, the annealing can be performed in a gas equivalent to the air, for example, in the air atmosphere, not in a special atmosphere, which is simplified.

【0014】ここで、本発明における数値限定理由を以
下説明する。アルミニウム箔の組成に関し、アルミニウ
ム純度を 99.98%以上としているのは、99.98%未満にす
ると晶出物を多数形成し、電解エッチング時に粗大孔と
なり、静電容量の低下を招くからである。
The reason for limiting the numerical values in the present invention will be described below. With respect to the composition of the aluminum foil, the aluminum purity is set to 99.98% or more because when it is less than 99.98%, many crystallized substances are formed and coarse pores are formed during electrolytic etching, resulting in a decrease in capacitance.

【0015】Fe含有量を 0.002〜0.005wt%としているの
は、0.002wt%未満ではエッチングピット形成の起点とな
る析出物が著しく減少し、静電容量の低下を招き、0.00
5wt%超では晶出物を多数形成し、電解エッチング時に粗
大孔となり、静電容量の低下を招くからである。Si含有
量を0.002 〜0.005wt%としているのは、0.002wt%未満で
はエッチングピット形成の起点となる析出物が著しく減
少し、静電容量の低下を招き、0.005wt%超では晶出物を
多数形成し、電解エッチング時に粗大孔となり、静電容
量の低下を招くからである。又、Cu含有量を 0.001〜0.
004wt%としているのは、0.001wt%未満ではエッチングピ
ット形成の起点となる析出物が著しく減少し、静電容量
の低下を招き、0.004wt%超では晶出物を多数形成し、電
解エッチング時に粗大孔となり、静電容量の低下を招く
からである。
The Fe content is set to 0.002 to 0.005 wt% because when it is less than 0.002 wt%, the precipitates which are the starting points of the formation of etching pits are remarkably reduced and the capacitance is lowered.
This is because if it exceeds 5 wt%, many crystallized substances are formed and coarse pores are formed during electrolytic etching, resulting in a decrease in capacitance. The Si content is set to 0.002 to 0.005 wt% because when it is less than 0.002 wt%, the precipitates that are the starting points of etching pits are significantly reduced, leading to a decrease in electrostatic capacity, and when it exceeds 0.005 wt%, crystallized substances are formed. This is because a large number of holes are formed and coarse pores are formed during electrolytic etching, resulting in a decrease in electrostatic capacity. Also, the Cu content is 0.001 to 0.
004 wt%, if less than 0.001 wt%, the precipitates that form the starting point of etching pits are significantly reduced, leading to a decrease in capacitance, and if it exceeds 0.004 wt%, many crystallized substances are formed, and during electrolytic etching. This is because the holes become coarse and the capacitance is lowered.

【0016】1次焼鈍温度を350 〜500 ℃としているの
は、350 ℃未満にすると結晶粒径が充分に大きくならな
いため、静電容量の向上が図れず、500 ℃超では1次焼
鈍による静電容量の向上効果が飽和し、加熱エネルギが
無駄になる他、酸化皮膜厚が150 Åを超え、酸化皮膜除
去を短時間に行うことができなくなるからである。
The primary annealing temperature is set in the range of 350 to 500 ° C. When the temperature is less than 350 ° C., the crystal grain size does not become sufficiently large, so that the electrostatic capacity cannot be improved. This is because the effect of improving the electric capacity is saturated, the heating energy is wasted, and the oxide film thickness exceeds 150 Å, which makes it impossible to remove the oxide film in a short time.

【0017】2次焼鈍温度を 220〜330 ℃としているの
は、220 ℃未満にすると形成される酸化皮膜が薄くなり
過ぎて2次焼鈍の酸化皮膜形成による静電容量の向上の
効果が小さくて不充分であり、330 ℃超にすると形成さ
れる酸化皮膜が厚くなり過ぎて酸化皮膜の絶縁性が高く
なるため、エッチング性が低下し、その結果静電容量が
低下するからである。
The secondary annealing temperature is set to 220 to 330 ° C. The reason why the oxide film formed is too thin when the temperature is less than 220 ° C. and the effect of improving the capacitance due to the oxide film formation in the secondary annealing is small. This is because the oxide film is insufficient, and if the temperature exceeds 330 ° C., the oxide film formed becomes too thick and the insulating property of the oxide film becomes high, so that the etching property deteriorates, and as a result, the capacitance decreases.

【0018】アルミニウム箔の結晶粒径を55〜100 μm
としているのは、55μm 未満にすると結晶粒径が小さく
て静電容量の向上が図れず、100 μm 超にすると機械的
強度が低下し、製造工程において切断等が生じ、実用的
ではないからである。なお、上記結晶粒径:55〜100 μ
m は、2次焼鈍後のアルミニウム箔での結晶粒径である
が、この結晶粒径の調整は前述の如く主に1次焼鈍によ
りなされるものである。即ち、2次焼鈍は焼鈍温度が 2
20〜330 ℃であって低いので、殆ど結晶粒の粗大化や微
細化が起こらず、2次焼鈍によって結晶粒径は殆ど変化
せず、結晶粒径は1次焼鈍により殆ど決定されるので、
その1次焼鈍により調整されることになる。
The crystal grain size of the aluminum foil is 55 to 100 μm
The reason for this is that if it is less than 55 μm, the crystal grain size is too small to improve the capacitance, and if it exceeds 100 μm, the mechanical strength is reduced and cutting etc. occurs in the manufacturing process, which is not practical. is there. The above crystal grain size: 55 to 100 μ
m is the grain size of the aluminum foil after the secondary annealing, and the grain size is adjusted mainly by the primary annealing as described above. That is, the secondary annealing has an annealing temperature of 2
Since the temperature is low at 20 to 330 ° C, the crystal grains are not coarsened or refined, the crystal grain size is hardly changed by the secondary annealing, and the crystal grain size is almost determined by the primary annealing.
It will be adjusted by the primary annealing.

【0019】2次焼鈍後のアルミニウム箔表面の酸化皮
膜厚を25〜50Åとしているのは、25Å未満にすると電解
エッチング時に表面溶解を起こして表面積の高拡大化が
図れず、静電容量が不充分となり、50Å超にすると酸化
皮膜の絶縁性が高くなるため、エッチング性が低下し、
その結果静電容量が低下するからである。
The thickness of the oxide film on the surface of the aluminum foil after the secondary annealing is set to 25 to 50 Å because if it is less than 25 Å, the surface is dissolved during electrolytic etching and the surface area cannot be increased, resulting in an unsatisfactory capacitance. If it exceeds 50Å, the insulating property of the oxide film will be high, and the etching property will decrease.
As a result, the capacitance decreases.

【0020】尚、前記1次焼鈍後の酸化皮膜の除去は、
NaOH水溶液へ浸漬する方法、燐酸−クロム酸混液に浸漬
する方法、塩酸に浸漬する方法、希硫酸に浸漬する方法
等により行うことができる。
The oxide film removed after the primary annealing is
It can be carried out by a method of immersing in an aqueous solution of NaOH, a method of immersing in a mixed solution of phosphoric acid-chromic acid, a method of immersing in hydrochloric acid, a method of immersing in dilute sulfuric acid, and the like.

【0021】NaOH水溶液へ浸漬する方法を適用する場
合、NaOH水溶液の温度が高く、又、NaOH濃度が1%高い
方が、反応性が高いため、短時間で酸化皮膜除去処理で
きる利点があるものの、NaOH水溶液の温度:55℃超では
アルミニウム箔表面が粗面化し、そのため電解エッチン
グ時に化学溶解が促進され、静電容量が低下する傾向が
あり、又、NaOH濃度:10%超でも同様の傾向がある。Na
OH水溶液への浸漬時間:60秒超の場合にも同様の傾向が
ある。NaOH水溶液の温度:30℃未満、NaOH濃度:1%未
満、又は、浸漬時間:5秒未満では酸化皮膜除去処理し
難くなる傾向がある。従って、NaOH水溶液の温度:30〜
55℃、NaOH濃度:1〜10%、浸漬時間:5〜60秒にする
ことが望ましい。燐酸−クロム酸混液に浸漬する方法を
適用する場合、混液の温度:30〜80℃、浸漬時間:1〜
5分にするとよい。
In the case of applying the method of immersing in an aqueous NaOH solution, the higher the temperature of the aqueous NaOH solution and the higher the NaOH concentration is 1%, the higher the reactivity and the advantage that the oxide film removal treatment can be carried out in a short time. , Temperature of NaOH aqueous solution: When the temperature exceeds 55 ° C, the aluminum foil surface becomes rough, which promotes chemical dissolution during electrolytic etching, which tends to lower the electrostatic capacity. Also, when the NaOH concentration exceeds 10%, the same tendency occurs. There is. Na
There is a similar tendency when the immersion time in the OH aqueous solution: more than 60 seconds. If the temperature of the aqueous solution of NaOH is less than 30 ° C., the concentration of NaOH is less than 1%, or the immersion time is less than 5 seconds, the oxide film removal treatment tends to be difficult. Therefore, the temperature of NaOH aqueous solution: 30 ~
It is desirable that the temperature is 55 ° C, the NaOH concentration is 1 to 10%, and the immersion time is 5 to 60 seconds. When applying the method of immersing in a phosphoric acid-chromic acid mixed solution, the temperature of the mixed solution: 30 to 80 ° C, the immersion time: 1 to
5 minutes is recommended.

【0022】[0022]

【実施例】表1に示す組成を有するアルミニウム箔(箔
圧延後のコイル状態)について、バッチ炉を用いて大気
雰囲気で1次焼鈍を行った。ここで、1次焼鈍の温度及
び時間は、表7に示す如く変化させた(1次焼鈍/実施
例1〜5の欄)。尚、コイルの幅方向で均一に酸化皮膜
を形成させるため、焼鈍時間を比較的長時間にしてい
る。
Example An aluminum foil having the composition shown in Table 1 (coil state after foil rolling) was subjected to primary annealing in an air atmosphere using a batch furnace. Here, the temperature and time of the primary annealing were changed as shown in Table 7 (primary annealing / columns of Examples 1 to 5). The annealing time is set to be relatively long in order to form an oxide film uniformly in the width direction of the coil.

【0023】上記1次焼鈍後、1次焼鈍により形成され
た酸化皮膜を除去するために50℃の5%NaOH水溶液へ30
秒間浸漬した。しかる後、大気雰囲気で2次焼鈍を行っ
た。ここで、2次焼鈍温度及び時間は、表7に示す如く
変化させた(2次焼鈍/実施例1〜5の欄)。
After the above-mentioned primary annealing, in order to remove the oxide film formed by the primary annealing, a 30% 5% NaOH aqueous solution at 50 ° C. is used.
Soaked for 2 seconds. Then, secondary annealing was performed in the air atmosphere. Here, the secondary annealing temperature and time were changed as shown in Table 7 (secondary annealing / columns of Examples 1 to 5).

【0024】上記2次焼鈍後のアルミニウム箔につい
て、試験片を採取し、この試験片を用いてアルミニウム
箔表面の酸化皮膜厚を測定し、又、結晶粒径を測定し
た。ここで、酸化皮膜厚の測定は静電容量法により行
い、その測定条件は表6に示す通りである。結晶粒径の
測定は、線分法により求め、標本数n=5の平均値とし
た。その結果、酸化皮膜厚は表7に示す如く39〜40Åで
あることが確認された(2次焼鈍後酸化皮膜厚/実施例
1〜5の欄)。従って、上記2次焼鈍後のアルミニウム
箔は、本発明の実施例に係る電解コンデンサ電極用アル
ミニウム箔の製造方法により得られた電解コンデンサ電
極用アルミニウム箔である(以降、実施例1〜5に係る
アルミニウム箔という)。
A test piece was taken from the aluminum foil after the secondary annealing, and the oxide film thickness on the surface of the aluminum foil was measured using this test piece, and the crystal grain size was also measured. Here, the oxide film thickness is measured by the capacitance method, and the measurement conditions are as shown in Table 6. The crystal grain size was measured by the line segment method, and the average value of the sample number n = 5 was used. As a result, it was confirmed that the oxide film thickness was 39 to 40Å as shown in Table 7 (the oxide film thickness after secondary annealing / columns of Examples 1 to 5). Therefore, the aluminum foil after the secondary annealing is an aluminum foil for electrolytic capacitor electrodes obtained by the method for manufacturing an aluminum foil for electrolytic capacitor electrodes according to the examples of the present invention (hereinafter, referred to as Examples 1 to 5). Called aluminum foil).

【0025】一方、比較のために、表1に示す組成を有
するアルミニウム箔(箔圧延後のコイル状態)につい
て、バッチ炉を用いてDxガス雰囲気で1次焼鈍を行っ
た。ここで、1次焼鈍の温度及び時間は、表7に示す如
く変化させた(1次焼鈍/比較例1〜4の欄)。この1
次焼鈍後のアルミニウム箔について、酸化皮膜厚及び結
晶粒径を測定したところ、酸化皮膜厚は表7に示す如く
52〜67Åであり(比較例1〜4の欄)、又、結晶粒径は
55〜88μm であった。尚、この酸化皮膜厚は1次焼鈍後
のものであるが、表7においては便宜上、2次焼鈍後酸
化皮膜厚の欄に記載している。この1次焼鈍後のアルミ
ニウム箔は、比較例に係る方法により得られた電解コン
デンサ電極用アルミニウム箔である(以降、比較例1〜
4に係るアルミニウム箔という)。
On the other hand, for comparison, an aluminum foil having the composition shown in Table 1 (coil state after foil rolling) was subjected to primary annealing in a Dx gas atmosphere using a batch furnace. Here, the temperature and time of the primary annealing were changed as shown in Table 7 (columns of primary annealing / Comparative Examples 1 to 4). This one
When the oxide film thickness and the crystal grain size of the aluminum foil after the subsequent annealing were measured, the oxide film thickness was as shown in Table 7.
52 to 67Å (columns of Comparative Examples 1 to 4), and the crystal grain size is
It was 55 to 88 μm. This oxide film thickness is that after the primary annealing, but in Table 7, for convenience, it is described in the column of the oxide film thickness after the secondary annealing. The aluminum foil after the primary annealing is the aluminum foil for electrolytic capacitor electrodes obtained by the method according to the comparative example (hereinafter, comparative examples 1 to 1).
4 called aluminum foil).

【0026】上記実施例1〜5に係るアルミニウム箔、
比較例1〜4に係るアルミニウム箔について、表2に示
す電解液を用いて表3に示す電解条件により電解エッチ
ングを行った後、表4に示す化成処理液を用いて20V化
成を行った。しかる後、表5に示す電解液を用いて対極
法により静電容量の測定を行った。その結果を表7に示
す。表7からわかる如く、実施例1〜5に係るアルミニ
ウム箔は、比較例1〜4に係るアルミニウム箔に比し、
全般的に静電容量が高い。より詳細には、同一1次焼鈍
温度・時間でみると(1次焼鈍温度及び時間が同一のも
の同士で比較すると)、実施例に係るアルミニウム箔は
比較例に係るアルミニウム箔に比し、かなり静電容量が
高い。例えば、比較例3に係るアルミニウム箔(1次焼
鈍温度:400 ℃、時間:24hr)は静電容量:42.3μF/cm
2 であるのに対し、実施例2に係るアルミニウム箔(1
次焼鈍温度:400 ℃、時間:24hr)は静電容量:49.6μ
F/cm2 であり、極めて高い。尚、このように極めて高い
といえるのは、両者の差:7.3 μF/cm2 は電解コンデン
サ電極の分野では極めて大きいからである。
The aluminum foil according to Examples 1 to 5,
The aluminum foils according to Comparative Examples 1 to 4 were subjected to electrolytic etching under the electrolysis conditions shown in Table 3 using the electrolytic solution shown in Table 2, and then subjected to 20 V chemical conversion using the chemical conversion treatment solution shown in Table 4. Then, the capacitance was measured by the counter electrode method using the electrolytic solutions shown in Table 5. The results are shown in Table 7. As can be seen from Table 7, the aluminum foils according to Examples 1 to 5 are higher than the aluminum foils according to Comparative Examples 1 to 4,
Capacitance is generally high. More specifically, when viewed at the same primary annealing temperature and time (comparing those having the same primary annealing temperature and time), the aluminum foil according to the example is considerably higher than the aluminum foil according to the comparative example. High capacitance. For example, the aluminum foil according to Comparative Example 3 (primary annealing temperature: 400 ° C., time: 24 hr) has a capacitance of 42.3 μF / cm.
2 , while the aluminum foil (1
Next annealing temperature: 400 ℃, time: 24hr) Capacitance: 49.6μ
F / cm 2, which is extremely high. The reason why it is extremely high is because the difference between them: 7.3 μF / cm 2 is extremely large in the field of electrolytic capacitor electrodes.

【0027】尚、実施例1〜5に係るアルミニウム箔に
おいて、実施例2〜5に係るものが比較的静電容量が高
く、その中で実施例2〜3に係るものは1次焼鈍時間及
び2次焼鈍時間が比較的短いので、この実施例1〜5の
中では実施例2〜3に係る条件(1次焼鈍時間:24hr、
2次焼鈍時間:6hr)を採用するのが性能及び経済性か
らみて望ましいといえる。
Among the aluminum foils according to Examples 1 to 5, those according to Examples 2 to 5 have a relatively high electrostatic capacity, and among them, those according to Examples 2 to 3 have a primary annealing time and Since the secondary annealing time is relatively short, the conditions (primary annealing time: 24 hr, according to Examples 2 to 3 among the Examples 1 to 5).
It can be said that it is desirable to adopt the secondary annealing time: 6 hours in view of performance and economy.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【表5】 [Table 5]

【0033】[0033]

【表6】 [Table 6]

【0034】[0034]

【表7】 [Table 7]

【0035】[0035]

【発明の効果】本発明に係る電解コンデンサ電極用アル
ミニウム箔の製造方法は、従来の特殊雰囲気(Dxガス、
アルゴン、真空中等の如く酸化皮膜を形成し難い雰囲
気)中での焼鈍による方法と異なり、焼鈍に際して特殊
雰囲気を要することなく、電解エッチング性向上による
表面積の高拡大化が図れ、その結果静電容量の向上が図
れる電解コンデンサ電極用アルミニウム箔を得ることが
でき、従って、静電容量の向上が図れる電解コンデンサ
電極用アルミニウム箔を簡便に且つ経済性良く得ること
ができるようになるという効果を奏する。
The method for producing an aluminum foil for an electrolytic capacitor electrode according to the present invention has a conventional special atmosphere (Dx gas,
Unlike the method of annealing in an atmosphere where it is difficult to form an oxide film such as argon or vacuum), a special atmosphere is not required for annealing, and the surface area can be increased by improving the electrolytic etching property. It is possible to obtain an aluminum foil for electrolytic capacitor electrodes, which can improve the battery capacity, and therefore, it is possible to easily and economically obtain an aluminum foil for electrolytic capacitor electrodes that can improve the electrostatic capacitance.

【図面の簡単な説明】[Brief description of drawings]

【図1】アルミニウム箔の焼鈍温度と静電容量との関係
を示す図である。
FIG. 1 is a diagram showing a relationship between an annealing temperature of an aluminum foil and a capacitance.

【図2】アルミニウム箔の2次焼鈍温度と静電容量との
関係を示す図である。
FIG. 2 is a diagram showing a relationship between a secondary annealing temperature of an aluminum foil and a capacitance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム純度が99.98 %以上であ
り、且つFeを 0.002〜0.005wt%,Siを 0.002〜0.005wt
%,Cuを 0.001〜0.004wt%含有するアルミニウム箔を、3
50 〜500 ℃で焼鈍した後、該焼鈍により形成された酸
化皮膜を除去し、しかる後、酸化性雰囲気中において 2
20〜330 ℃で加熱処理してアルミニウム箔の結晶粒径を
55〜100 μm とすると共に、アルミニウム箔表面に膜
厚:25〜50Åの酸化皮膜を形成することを特徴とする電
解コンデンサ電極用アルミニウム箔の製造方法。
1. An aluminum purity of 99.98% or more, 0.002 to 0.005 wt% of Fe, and 0.002 to 0.005 wt of Si.
3% aluminum foil containing 0.001 to 0.004 wt% Cu
After annealing at 50 to 500 ° C, the oxide film formed by the annealing is removed, and then in an oxidizing atmosphere.
Heat treatment at 20-330 ℃ to reduce the grain size of aluminum foil.
A method for producing an aluminum foil for electrolytic capacitor electrodes, which comprises forming an oxide film having a thickness of 55 to 100 μm and a film thickness of 25 to 50 Å on the surface of the aluminum foil.
JP32799393A 1993-12-24 1993-12-24 Production of aluminum foil for electrolytic capacitor electrode Withdrawn JPH07180006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32799393A JPH07180006A (en) 1993-12-24 1993-12-24 Production of aluminum foil for electrolytic capacitor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32799393A JPH07180006A (en) 1993-12-24 1993-12-24 Production of aluminum foil for electrolytic capacitor electrode

Publications (1)

Publication Number Publication Date
JPH07180006A true JPH07180006A (en) 1995-07-18

Family

ID=18205312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32799393A Withdrawn JPH07180006A (en) 1993-12-24 1993-12-24 Production of aluminum foil for electrolytic capacitor electrode

Country Status (1)

Country Link
JP (1) JPH07180006A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226930A (en) * 2001-02-02 2002-08-14 Nippon Foil Mfg Co Ltd Hard aluminum foil for electrode of electrolytic capacitor
JP2005015916A (en) * 2003-06-03 2005-01-20 Showa Denko Kk Method of producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method of producing electrode material for electrolytic capacitor and aluminum electrolytic capacitor
WO2005078751A1 (en) * 2004-02-17 2005-08-25 Showa Denko K.K. Method of manufacturing aluminum material for electrolytic capacitor electrodes, aluminum material for electrolytic capacitor electrodes, anode material for aluminum electrolytic capacitors, and aluminum electrolytic capacitors
JP2005268773A (en) * 2004-02-17 2005-09-29 Showa Denko Kk Manufacturing method of aluminum material for electrolytic capacitor electrode, the aluminum material for the electrolytic capacitor electrodes, anode material for aluminum electrolytic capacitors, and the aluminum electrolytic capacitor
JP2006148085A (en) * 2004-10-19 2006-06-08 Showa Denko Kk Method of manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2006210894A (en) * 2004-12-27 2006-08-10 Showa Denko Kk Manufacturing method, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and the aluminum electrolytic capacitor of aluminum material for electrolytic capacitor electrode
JP2011006747A (en) * 2009-06-26 2011-01-13 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226930A (en) * 2001-02-02 2002-08-14 Nippon Foil Mfg Co Ltd Hard aluminum foil for electrode of electrolytic capacitor
JP2005015916A (en) * 2003-06-03 2005-01-20 Showa Denko Kk Method of producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method of producing electrode material for electrolytic capacitor and aluminum electrolytic capacitor
WO2005078751A1 (en) * 2004-02-17 2005-08-25 Showa Denko K.K. Method of manufacturing aluminum material for electrolytic capacitor electrodes, aluminum material for electrolytic capacitor electrodes, anode material for aluminum electrolytic capacitors, and aluminum electrolytic capacitors
JP2005268773A (en) * 2004-02-17 2005-09-29 Showa Denko Kk Manufacturing method of aluminum material for electrolytic capacitor electrode, the aluminum material for the electrolytic capacitor electrodes, anode material for aluminum electrolytic capacitors, and the aluminum electrolytic capacitor
JP2006148085A (en) * 2004-10-19 2006-06-08 Showa Denko Kk Method of manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4652205B2 (en) * 2004-10-19 2011-03-16 昭和電工株式会社 Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2006210894A (en) * 2004-12-27 2006-08-10 Showa Denko Kk Manufacturing method, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and the aluminum electrolytic capacitor of aluminum material for electrolytic capacitor electrode
JP2011006747A (en) * 2009-06-26 2011-01-13 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor

Similar Documents

Publication Publication Date Title
JPH07180006A (en) Production of aluminum foil for electrolytic capacitor electrode
JP2752422B2 (en) Method for producing aluminum material for electrolytic capacitor electrode
JPH1081945A (en) Aluminum foil for electrolytic capacitor electrode and its production
JPH07201673A (en) Manufacture of aluminum material for electrolytic capacitor electrode
JP3776788B2 (en) Aluminum foil for electrolytic capacitor electrode and manufacturing method thereof
US5417839A (en) Method for manufacturing aluminum foils used as electrolytic capacitor electrodes
JPH0722094B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode
JPH1032146A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JP3676601B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP3450083B2 (en) Aluminum foil for electrode of electrolytic capacitor and method for producing the same
JPH11290906A (en) Manufacture of aluminum foil for electrode of electrolytic capacitor
JPH04179110A (en) Aluminum alloy foil for electrolytic capacitor electrode
JPH06145923A (en) Manufacture of aluminum foil for electrolytic condenser anode
JP3337506B2 (en) Method for producing aluminum material for electrolytic capacitor electrode
JP3320467B2 (en) Aluminum material for electrolytic capacitor electrode and method for producing the same
JP3297840B2 (en) Aluminum foil for electrode of electrolytic capacitor
JP4105558B2 (en) Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor, and electrolytic capacitor
JPH04311550A (en) Production of aluminum foil for electrode of electrolytic capacitor
JPH0797688A (en) Production of aluminum foil used as anode of electrolytic capacitor
JPH03183749A (en) Production of anode foil for electrolytic capacitor
JPH10265879A (en) Aluminum foil for electrolytic capacitor
JPH0456309A (en) Manufacture of etched foil for electrolytic capacitor
JPH08293442A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JP3767924B2 (en) Aluminum foil for low-voltage electrolytic capacitor electrode and manufacturing method thereof
JPH02254140A (en) Production of aluminum foil for electrolytic capacitor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306