JPH0797688A - Production of aluminum foil used as anode of electrolytic capacitor - Google Patents

Production of aluminum foil used as anode of electrolytic capacitor

Info

Publication number
JPH0797688A
JPH0797688A JP26540193A JP26540193A JPH0797688A JP H0797688 A JPH0797688 A JP H0797688A JP 26540193 A JP26540193 A JP 26540193A JP 26540193 A JP26540193 A JP 26540193A JP H0797688 A JPH0797688 A JP H0797688A
Authority
JP
Japan
Prior art keywords
aluminum foil
oxide film
thickness
electrolytic capacitor
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26540193A
Other languages
Japanese (ja)
Inventor
Hiromi Goto
博己 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP26540193A priority Critical patent/JPH0797688A/en
Publication of JPH0797688A publication Critical patent/JPH0797688A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To expand the surface area of an aluminum foil used as the anode of an electrolytic capacitor and to increase the capacity of the electrolytic capacitor. CONSTITUTION:The aluminum foil is subjected to high-temp. heat treatment and thereafter the thickness of the oxide film formed on the surface of the aluminum foil is reduced to <=4nm by the ion beam machining such as the argon sputtering, etc., and then the surface of the aluminum foil is subjected to roughening treatment. Thus, the roughening treatment is surely performed to expand the surface area of the aluminum foil and accordingly the capacity of the electrolytic capacitor can be remarkably increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、静電容量が高くて、
特に中高圧用電極箔に好適な電解コンデンサ陽極用アル
ミニウム箔の製造方法に関するものである。
This invention has a high electrostatic capacity,
In particular, the present invention relates to a method for manufacturing an aluminum foil for an electrolytic capacitor anode, which is suitable for an electrode foil for medium and high voltage.

【0002】[0002]

【従来の技術】高い静電容量が必要とされる中高圧用な
どの電解コンデンサの電極箔には、一般に99.9%以
上の純度のアルミニウム箔が使用されている。このアル
ミニウム箔の製造過程では、常法により熱間圧延および
冷間圧延を行ない、その際には必要に応じて途中で中間
熱処理を行い、最終的に、例えば中高圧用箔について
は、100μm前後の厚さに箔圧延される。その後、ア
ルミニウム箔には500〜600℃に加熱する最終焼鈍
が施される。さらにこれら工程を経たアルミニウム箔に
は、静電容量を増大させるために、表面の粗面化処理が
行われている。粗面化処理は、中高圧用アルミニウム箔
についていえば、例えば塩酸を主体とした溶液中で直流
電流によって電解エッチングを行い、アルミニウム箔の
表面から内部に向かってキャピラリー状ピットを成長さ
せて表面積を増大させるものである。
2. Description of the Related Art Aluminum foil having a purity of 99.9% or more is generally used as the electrode foil of electrolytic capacitors for medium and high voltage applications which require high capacitance. In the manufacturing process of this aluminum foil, hot rolling and cold rolling are performed by a conventional method, in which case intermediate heat treatment is carried out if necessary, and finally, for example, about 100 μm for medium-high voltage foil. The foil is rolled to a thickness of. Then, the aluminum foil is subjected to final annealing by heating to 500 to 600 ° C. Further, the aluminum foil that has undergone these steps is subjected to surface roughening treatment in order to increase the capacitance. As for the surface roughening treatment, for aluminum foil for medium and high pressure, for example, electrolytic etching is performed by direct current in a solution mainly containing hydrochloric acid, and capillary pits are grown inward from the surface of the aluminum foil to increase the surface area. To increase.

【0003】なお、上記した最終焼鈍を500℃〜60
0℃の高温で行う理由は、上記したピットの成長に関係
している。すなわち、最終焼鈍を低温で行なった場合に
は材料中に結晶格子の歪みが残留する可能性が高く、こ
の歪みが粗面化工程におけるキャピラリー状ピットの成
長を阻害して、表面積の拡大効果を低下させると考えら
れている。したがって、最終焼鈍は、結晶格子の歪みを
できるだけ残さないように、高温で行なうことが必要に
なる。また、エッチングにおける粗面化効果に対して
は、酸化皮膜の厚さも大きく影響すると考えられてい
る。そのため最終焼鈍の雰囲気は非常に重要であり、現
状では少しでも焼鈍後の酸化皮膜厚を薄くするように、
酸素量の非常に少い不活性ガス雰囲気あるいは10-4
a程度の真空中で焼鈍が行われている。このような雰囲
気の下で現状の工程で形成される表面の酸化皮膜の厚み
は50±5Å程度である。
The above-mentioned final annealing is performed at 500 ° C. to 60 ° C.
The reason for the high temperature of 0 ° C. is related to the growth of the above-mentioned pits. That is, when the final annealing is performed at a low temperature, the strain of the crystal lattice is likely to remain in the material, and this strain hinders the growth of the capillary pits in the roughening step, thus increasing the surface area. It is believed to reduce. Therefore, the final annealing needs to be performed at a high temperature so that the distortion of the crystal lattice is left as little as possible. Further, it is considered that the thickness of the oxide film has a great influence on the roughening effect in etching. Therefore, the atmosphere of the final annealing is very important, and at present, to reduce the oxide film thickness after annealing as much as possible,
Inert gas atmosphere with very low oxygen content or 10 -4 P
Annealing is performed in a vacuum of about a. The thickness of the oxide film on the surface formed in the current process in such an atmosphere is about 50 ± 5Å.

【0004】この際に厚み算出の基礎になる式は以下の
式(1)であり、各因子はX線光電子分析装置(例えば
島津製作所製ESCA、K−1)で得られるものであ
る。 式 d=23.7ln(1/Ib)‥‥‥‥‥‥‥‥(1) ここで d :酸化皮膜厚さ(Å) Ib:金属アルミニウムの光電子スペクトルのピーク面
積と酸化アルミ状態のアルミニウムの光電子スペクトル
のピーク面積の比
At this time, the equation which is the basis of the thickness calculation is the following equation (1), and each factor is obtained by an X-ray photoelectron analyzer (for example, ESCA, K-1 manufactured by Shimadzu Corporation). Formula d = 23.7ln (1 / Ib) ‥‥‥‥‥‥‥‥‥‥‥‥ (1) where d: oxide film thickness (Å) Ib: peak area of photoelectron spectrum of metallic aluminum and aluminum in the aluminum oxide state Ratio of peak areas of photoelectron spectrum

【0005】[0005]

【発明が解決しようとする問題点】しかし、前記従来技
術で製造されるアルミニウム箔はしばしば粗面化工程の
エッチング時に、表面の未エッチング部が発生する。こ
の未エッチング部はキャピラリー状ピットの発生がない
ため表面積拡大に寄与せず、高い静電容量は期待できな
い。この未エッチング部発生の原因としては酸化皮膜の
厚さが考えられる。そこで、最終焼鈍の雰囲気を一層厳
格に管理して、酸化皮膜の厚さを薄くする方法が考えら
れる。ところが、このようにして厚さを減少させても、
粗面化処理における未エッチング部分の減少に大きな効
果はなく、雰囲気管理の厳格化によってコストアップが
増大する割には静電容量の向上には寄与しないという問
題がある。
However, the aluminum foil produced by the above-mentioned conventional technique often has an unetched portion on the surface during etching in the roughening step. Since this unetched portion does not generate capillary pits, it does not contribute to the increase of the surface area and high capacitance cannot be expected. The thickness of the oxide film is considered to be the cause of this unetched portion. Therefore, a method of more strictly controlling the atmosphere of the final annealing to reduce the thickness of the oxide film can be considered. However, even if the thickness is reduced in this way,
There is no great effect in reducing the unetched portion in the surface roughening treatment, and there is a problem that it does not contribute to the improvement of the electrostatic capacitance although the cost increases due to the stricter atmosphere management.

【0006】そこで本願発明者は、未エッチング部分の
発生原因について種々検討した結果、酸化皮膜の不均一
性が影響するのではないかと考えた。例えば箔を製造す
る際に冷間圧延で用いられた潤滑剤がアルミニウム箔に
付着し、これが焼鈍における高温で分解することによっ
てアルミニウム箔の酸化皮膜が変質する等によって、質
の不均一性が生じることが考えられる。また、酸化皮膜
の厚さが不均一であることも考えられる。そこで、本願
発明者は、酸化被膜を加工して、均一な薄膜にすること
により後工程の粗面化処理が確実になされて、静電容量
が増大するのではないかと考えた。本発明は、上記事情
を背景としてなされたものであり、粗面化工程における
未エッチング部の発生をできるだけ抑えて、均一なエッ
チング表面を形成することにより高い静電容量を確保す
ることができるアルミニウム箔を提供することを目的と
するものである。
Therefore, the present inventor has conducted various studies on the cause of the generation of the unetched portion, and has thought that the nonuniformity of the oxide film may have an effect. For example, the lubricant used in cold rolling during the production of foil adheres to the aluminum foil, which decomposes at high temperatures during annealing, which causes the oxide film of the aluminum foil to deteriorate, resulting in non-uniform quality. It is possible. It is also possible that the thickness of the oxide film is non-uniform. Therefore, the inventor of the present application has thought that the oxide film may be processed to form a uniform thin film, so that the roughening treatment in the subsequent step may be surely performed, and the capacitance may be increased. The present invention has been made in view of the above circumstances, and it is possible to secure a high electrostatic capacity by forming a uniform etched surface by suppressing the occurrence of an unetched portion in the roughening step as much as possible. The purpose is to provide a foil.

【0007】[0007]

【問題を解決するための手段】上記課題を解決するた
め、本願発明の電解コンデンサ陽極用アルミニウム箔の
製造方法は、アルミニウム箔を高温熱処理した後、アル
ミニウム箔表面に形成された酸化皮膜をイオンビーム加
工によって4nm以下に減厚し、その後、アルミニウム
箔表面の粗面化処理を行なうことを特徴とする。
In order to solve the above problems, a method for manufacturing an aluminum foil for an electrolytic capacitor anode according to the present invention is such that an oxide film formed on the surface of an aluminum foil is subjected to an ion beam treatment after the aluminum foil is subjected to a high temperature heat treatment. It is characterized in that the thickness is reduced to 4 nm or less by processing, and then the surface of the aluminum foil is roughened.

【0008】なお、本願発明に用いられるアルミニウム
箔としては、99.9%以上の純度のアルミニウム箔を
例示することができるが、これに限定されるものではな
く、要は、電解コンデンサ陽極用アルミニウム箔の原料
となるアルミニウム箔であればよい。また、高温熱処理
としては、一般に高温焼鈍を挙げることができるが、酸
化皮膜を成長させる高温熱処理などであってもよく、要
は粗面化処理の前に行われる高温処理であればよい。
The aluminum foil used in the present invention can be exemplified by an aluminum foil having a purity of 99.9% or more, but the aluminum foil is not limited to this. Any aluminum foil may be used as the foil raw material. As the high-temperature heat treatment, generally, high-temperature annealing can be mentioned, but high-temperature heat treatment for growing an oxide film or the like may be used, and the essential point is that the high-temperature treatment is performed before the roughening treatment.

【0009】次に、イオンビーム加工としては、第2の
発明に示すようにアルゴン等のイオンを用いたスパッタ
を挙げることができ、その他に、電子ビーム加工等を挙
げることができる。これらイオンビーム加工によれば、
アルカリ溶液洗浄等の湿式法のように酸化皮膜を変質さ
せるおそれがなく、酸化皮膜を均一に加工することがで
きる。なお粗面化処理は、従来行われている電界エッチ
ングなどによって行うことができる。
Next, as the ion beam processing, as shown in the second invention, sputtering using ions such as argon can be cited, and in addition, electron beam processing and the like can be cited. According to these ion beam processing,
Unlike the wet method such as washing with an alkaline solution, there is no risk of degrading the oxide film, and the oxide film can be processed uniformly. The surface roughening treatment can be performed by conventional electric field etching or the like.

【0010】[0010]

【作用】すなわち、本願発明によれば、高温熱処理後の
アルミニウム箔の酸化皮膜を、イオンビーム加工で減厚
することによって、酸化皮膜の変質等を招くことなく、
質及び厚さともに均一な酸化皮膜に加工することができ
る。このような酸化皮膜を有するアルミニウム箔を粗面
化処理することにより、粗面化処理が効率よく、かつ確
実になされ、アルミニウム箔の表面積が大幅に増大し
て、静電容量を効果的に向上させることができる。な
お、イオンビーム加工の手段は湿式で行う場合に比べ、
元来形成されていた酸化皮膜の質を変えず、厚みのみを
単純に変える処理と言える。従って酸化表面の耐電圧が
低下し、均一、かつ一様に電解エッチングがされるよう
になったものと考えられる。
In other words, according to the present invention, the thickness of the oxide film of the aluminum foil after the high temperature heat treatment is reduced by ion beam processing, so that the quality of the oxide film is not deteriorated.
It is possible to process an oxide film with uniform quality and thickness. By roughening the aluminum foil having such an oxide film, the roughening treatment is performed efficiently and surely, the surface area of the aluminum foil is significantly increased, and the electrostatic capacity is effectively improved. Can be made. In addition, compared with the case where the method of ion beam processing is wet,
It can be said that this is a treatment that simply changes the thickness without changing the quality of the oxide film that was originally formed. Therefore, it is considered that the withstand voltage of the oxidized surface is lowered and the electrolytic etching is performed uniformly and uniformly.

【0011】なお、イオンビーム加工後の酸化皮膜の厚
さを4nm以下に限定した理由は、4nmを越えると未
エッチング部が多く残り、静電容量の向上に寄与しない
ためである。なお、アルミニウムの表面には、常温空気
中で自然発生的に酸化皮膜が形成されるが、この酸化皮
膜の厚みが約2nmであるので、工業的には、減厚後の
酸化皮膜厚を2nm以上とするのが望ましい。
The reason why the thickness of the oxide film after ion beam processing is limited to 4 nm or less is that if it exceeds 4 nm, many unetched portions remain and it does not contribute to the improvement of the electrostatic capacitance. An oxide film is spontaneously formed on the surface of aluminum in the air at room temperature. Since the thickness of this oxide film is about 2 nm, the thickness of the oxide film after reduction is industrially 2 nm. It is desirable to set it as above.

【0012】[0012]

【実施例】以下に、本発明の一実施例を説明する。常法
により純度99.99%のロール上りアルミニウム箔
(厚さ100μm)を製造し、このアルミニウム箔に非
酸化性雰囲気中で510℃、5時間の焼鈍を行った。次
に、実施例としてアルミニウム箔の10cm2の領域に
アルゴンスパッタを1分または2分にわたり行った。ま
た、焼鈍後アルゴンスパッタを行なわない試料を従来材
とし、焼鈍後、カセイソーダ溶液による洗浄を行った試
料を比較材とした。
EXAMPLE An example of the present invention will be described below. A roll-up aluminum foil (thickness: 100 μm) having a purity of 99.99% was manufactured by a conventional method, and this aluminum foil was annealed at 510 ° C. for 5 hours in a non-oxidizing atmosphere. Next, as an example, argon sputter was performed on a 10 cm 2 area of the aluminum foil for 1 minute or 2 minutes. A sample that was not annealed with argon after annealing was used as a conventional material, and a sample that was washed with caustic soda solution after annealing was used as a comparative material.

【0013】各アルミニウム箔の焼鈍後とスパッタまた
は湿式処理後の酸化皮膜厚を前述した(1)式に基づい
て測定、計算し、その結果をそれぞれ表1に示した。さ
らに各試料に対し、粗面化手順として塩酸1モル/リッ
トル、硫酸2.5モル/リットル、80℃の溶液中で、
電流密度0.5A/cm2で30秒間通電して電解エッ
チングした。その後、各試料について、化成電圧250
voltで静電容量を求めた。それらの結果を表1に示
す。
The thickness of the oxide film after annealing and after sputtering or wet treatment of each aluminum foil was measured and calculated based on the above formula (1), and the results are shown in Table 1. Further, for each sample, as a roughening procedure, in a solution of hydrochloric acid 1 mol / liter, sulfuric acid 2.5 mol / liter, and 80 ° C.,
Electrolytic etching was carried out by applying current for 30 seconds at a current density of 0.5 A / cm 2 . Then, for each sample, formation voltage 250
The electrostatic capacity was determined by volt. The results are shown in Table 1.

【0014】その結果、発明材は、従来材に比べ、未エ
ッチング部が非常に少くなっており、表1で示されるよ
うに、酸化皮膜の厚さが減少して、それに伴って、静電
容量が大きく向上していることが明らかである。一方、
従来材では未エッチング部分が多く残り、静電容量は小
さい。また、酸化皮膜の減厚をイオンビーム加工法によ
らず、湿式のアルカリ溶液で洗浄した比較材では、酸化
皮膜厚は発明材と同程度に小さいものの、静電容量の向
上効果は見られず、逆に低下している。この場合、酸化
被膜の変質があったものと考えられる。以上の点から、
イオンビーム加工、特にアルゴンスパッタによる酸化皮
膜の減厚が静電容量の向上に大きく寄与していることが
明らかとなった。
As a result, the invented material has much less unetched parts than the conventional material, and as shown in Table 1, the thickness of the oxide film is reduced, which causes electrostatic discharge. It is clear that the capacity has improved significantly. on the other hand,
The conventional material has a large amount of unetched portions and has a small capacitance. Further, in the comparative material which was washed with a wet alkaline solution without using the ion beam processing method to reduce the thickness of the oxide film, the oxide film thickness was as small as the invention material, but the effect of improving the capacitance was not observed. , On the contrary, it is decreasing. In this case, it is considered that the oxide film was altered. From the above points,
It was clarified that ion beam processing, especially reduction of the thickness of the oxide film by argon sputtering greatly contributes to the improvement of the capacitance.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】以上説明したように本願発明の電解コン
デンサ陽極用アルミニウム箔の製造方法によれば、アル
ミニウム箔を高温熱処理した後、アルミニウム箔表面に
形成された酸化皮膜をアルゴンスパッタ等のイオンビー
ム加工によって4nm以下に減厚し、その後、アルミニ
ウム箔表面の粗面化処理を行なうので、粗面化処理が確
実になされ、静電容量が大きく増大したコンデンサを得
ることができる。
As described above, according to the method for producing an aluminum foil for electrolytic capacitor anodes of the present invention, after the aluminum foil is heat-treated at a high temperature, the oxide film formed on the surface of the aluminum foil is subjected to an ion beam such as argon sputtering. Since the thickness of the aluminum foil is reduced to 4 nm or less by processing and thereafter the surface of the aluminum foil is roughened, the roughening treatment is surely performed, and a capacitor having a significantly increased capacitance can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム箔を高温熱処理した後、ア
ルミニウム箔表面に形成された酸化皮膜をイオンビーム
加工によって4nm以下に減厚し、その後、アルミニウ
ム箔表面の粗面化処理を行なうことを特徴とする電解コ
ンデンサ陽極用アルミニウム箔の製造方法
1. An aluminum foil is heat treated at a high temperature, an oxide film formed on the surface of the aluminum foil is reduced to a thickness of 4 nm or less by ion beam processing, and then a roughening treatment is performed on the surface of the aluminum foil. Method for manufacturing aluminum foil for electrolytic capacitor anode
【請求項2】 イオンビーム加工は、アルゴンスパッタ
であることを特徴とする請求項1記載の電解コンデンサ
陽極用アルミニウム箔の製造方法
2. The method for producing an aluminum foil for an electrolytic capacitor anode according to claim 1, wherein the ion beam processing is argon sputtering.
JP26540193A 1993-09-30 1993-09-30 Production of aluminum foil used as anode of electrolytic capacitor Pending JPH0797688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26540193A JPH0797688A (en) 1993-09-30 1993-09-30 Production of aluminum foil used as anode of electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26540193A JPH0797688A (en) 1993-09-30 1993-09-30 Production of aluminum foil used as anode of electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0797688A true JPH0797688A (en) 1995-04-11

Family

ID=17416658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26540193A Pending JPH0797688A (en) 1993-09-30 1993-09-30 Production of aluminum foil used as anode of electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0797688A (en)

Similar Documents

Publication Publication Date Title
JPH07180006A (en) Production of aluminum foil for electrolytic capacitor electrode
JPH0797688A (en) Production of aluminum foil used as anode of electrolytic capacitor
JP3776788B2 (en) Aluminum foil for electrolytic capacitor electrode and manufacturing method thereof
JPH1081945A (en) Aluminum foil for electrolytic capacitor electrode and its production
JP3797645B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP2002173748A (en) Method for producing high purity aluminum foil
JPH1032146A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JPH07201673A (en) Manufacture of aluminum material for electrolytic capacitor electrode
JP3352798B2 (en) Aluminum electrolytic capacitor anode foil
JP3450083B2 (en) Aluminum foil for electrode of electrolytic capacitor and method for producing the same
JP3676601B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP4671218B2 (en) Method for producing aluminum foil for electrolytic capacitor
JP3320467B2 (en) Aluminum material for electrolytic capacitor electrode and method for producing the same
JP3337506B2 (en) Method for producing aluminum material for electrolytic capacitor electrode
JP4629312B2 (en) Method for producing aluminum material for electrolytic capacitor electrode and method for producing electrode material for electrolytic capacitor
JP4308556B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JP4530244B2 (en) Aluminum foil for electrolytic capacitor electrode
JP2002008953A (en) Method of manufacturing aluminum foil for electrolytic capacitor
JPH05200406A (en) Production of aluminum foil for electrolytic capacitor
JP4105565B2 (en) Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JPH0581164B2 (en)
JP4707045B2 (en) Aluminum foil for electrolytic capacitor electrode
JPH02254140A (en) Production of aluminum foil for electrolytic capacitor
JPH10152763A (en) Production of aluminum foil coil for electrolytic capacitor
JPH03183749A (en) Production of anode foil for electrolytic capacitor