JP2008082644A - Heating device and manufacturing method of aluminum foil for electrolytic capacitor - Google Patents

Heating device and manufacturing method of aluminum foil for electrolytic capacitor Download PDF

Info

Publication number
JP2008082644A
JP2008082644A JP2006264641A JP2006264641A JP2008082644A JP 2008082644 A JP2008082644 A JP 2008082644A JP 2006264641 A JP2006264641 A JP 2006264641A JP 2006264641 A JP2006264641 A JP 2006264641A JP 2008082644 A JP2008082644 A JP 2008082644A
Authority
JP
Japan
Prior art keywords
heating chamber
chamber
aluminum foil
main heating
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006264641A
Other languages
Japanese (ja)
Inventor
Akira Yoshii
章 吉井
Hideo Watanabe
英雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2006264641A priority Critical patent/JP2008082644A/en
Publication of JP2008082644A publication Critical patent/JP2008082644A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To actualize normal growth of an oxide film on an aluminum foil for electrolytic capacitor when annealed, without being influenced by the air. <P>SOLUTION: An aluminum foil coil 30 manufactured with cold rolling is stored in a main heating chamber 10 of an annealing furnace 1 having a sealed multiple chamber structure with an innermost chamber formed as the main heating chamber 10, and chambers 10, 20 are sealed. Negative pressure and positive pressure are given to the main heating chamber 10 and to a sub heating chamber 20 outside the main heating chamber, respectively, for heating annealing. Thus, annealing is performed in a negative pressure atmosphere without causing the entry of the air into the main heating chamber 10 and a cubic rate is increased while producing the homogeneous oxide film on the aluminum foil. The electrolytic capacitor aluminum foil superior in etching quality is effectively obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、アルミニウム箔コイルなどの加熱を行う加熱装置および該加熱装置を焼鈍炉として用いる電解コンデンサ用アルミニウム箔の製造方法に関する。   The present invention relates to a heating device for heating an aluminum foil coil and the like, and a method for producing an aluminum foil for an electrolytic capacitor using the heating device as an annealing furnace.

アルミニウム電解コンデンサの電極には、一般に、厚さ20〜150μmで強酸溶液中でエッチングをして表面積を拡大した高純度アルミニウム箔が使用されている。該アルミニウム箔は、高純度のアルミニウム材を原料として冷間圧延を経て所定厚さの箔として製造され、その後、上記エッチングにより粗面化がなされる。このアルミニウム箔のうち中高圧用電解コンデンサなどに使用される箔では、上記アルミニウム箔圧延により薄厚にした後、コイル状に巻き取り、このコイルをバッチ式の焼鈍炉に収容して、500℃以上の高温で焼鈍して立方晶率を95%以上に高めることでエッチング性を向上させている。   As an electrode of an aluminum electrolytic capacitor, a high-purity aluminum foil having a thickness of 20 to 150 μm and etching in a strong acid solution to expand the surface area is generally used. The aluminum foil is manufactured as a foil having a predetermined thickness through cold rolling using a high-purity aluminum material as a raw material, and then roughened by the etching. Of these aluminum foils, foils used for medium- and high-voltage electrolytic capacitors are made thin by rolling the aluminum foil, and then wound into a coil shape. The etching property is improved by annealing at a high temperature and increasing the cubic crystal ratio to 95% or more.

上記焼鈍では高温での加熱によってアルミニウム箔表面に酸化皮膜が成長するが、この酸化皮膜が正常に成長しないとエッチング性が著しく低下する。例えば、雰囲気中の酸素濃度、水分量が増加すると酸化皮膜の異常成長が生じ、端部酸化等の不具合が生じる。このため、通常は、炉外部からの外気進入を防止して炉内圧を大気圧より高めた状態で焼鈍を行なっている。しかし、箔圧延後のアルミニウム箔表面には、圧延油、水分等が付着しており、上記焼鈍に際し、加熱された圧延油や水分がガス化し、焼鈍雰囲気を汚染するとともに、ガス化した物質がコイル中央部から端部に押し出される際にアルミニウム箔表面で反応し、酸化皮膜のバラツキ、端部酸化等の異常を招くという問題がある。酸化皮膜のバラツキは電解コンデンサの容量のバラツキの原因となる。また、過度に酸化された端部はエッチング性が悪く、良好な粗面化が行えない。   In the above annealing, an oxide film grows on the surface of the aluminum foil by heating at a high temperature. However, if this oxide film does not grow normally, the etching property is remarkably lowered. For example, when the oxygen concentration and moisture content in the atmosphere increase, the oxide film grows abnormally and causes defects such as end oxidation. For this reason, normally, annealing is performed in a state where the outside pressure from the outside of the furnace is prevented and the pressure inside the furnace is higher than the atmospheric pressure. However, the rolling oil, moisture, etc. are attached to the surface of the aluminum foil after the foil rolling, and during the annealing, the heated rolling oil and moisture are gasified, contaminating the annealing atmosphere, and the gasified substance is present. When extruded from the center of the coil to the end, it reacts on the surface of the aluminum foil, causing problems such as variations in the oxide film and oxidation of the end. Variation in the oxide film causes variation in the capacitance of the electrolytic capacitor. In addition, the excessively oxidized end portion has poor etching property, and good roughening cannot be performed.

これに対し、焼鈍炉内部を負圧にすることで、焼鈍加熱の際に箔表面から発生する圧延油又は吸着水がガス化した物質を効率的に除去する方法が提案されている。しかし負圧焼鈍を行なった場合、外気の進入を招きやすくなるため、この進入を防止することが必要である。例えば、廃棄物をガス化する際に、炉内を負圧にするガス化炉では、ガス化炉とガス化炉へ廃棄物を供給する装置との連結部に排ガスを導入することで大気の侵入を防止する手段が提案されている(特許文献1参照)。しかし、上記焼鈍炉では、吸引したガスを再度炉内に導入することは炉内を汚染するために適用が不可である。そこで、従来は、焼鈍炉に備えるコイル搬出入用の開閉蓋の周囲から大気が侵入しないように、炉壁と開閉蓋との境界にOリングを配置するとともに、Oリングと炉との密着部分にグリスを用いることで密着性を高めている。
特開2003−14218号公報
On the other hand, there has been proposed a method for efficiently removing the gasified material of rolling oil or adsorbed water generated from the surface of the foil during annealing and heating by setting the inside of the annealing furnace to a negative pressure. However, when negative pressure annealing is performed, it is easy to invite outside air, so it is necessary to prevent this entry. For example, when gasifying waste, a gasification furnace with a negative pressure inside the furnace introduces exhaust gas into the connection between the gasification furnace and a device for supplying waste to the gasification furnace. Means for preventing intrusion have been proposed (see Patent Document 1). However, in the above annealing furnace, it is impossible to apply the sucked gas again into the furnace because the inside of the furnace is contaminated. Therefore, conventionally, an O-ring is arranged at the boundary between the furnace wall and the opening / closing lid so that the atmosphere does not enter from the periphery of the opening / closing lid for carrying in and out the coil provided in the annealing furnace, and a close contact portion between the O-ring and the furnace Adhesion is improved by using grease.
JP 2003-14218 A

しかし、焼鈍炉は一般に400℃以上に加熱して焼鈍が行われるため、炉やOリングの熱膨張もあり、開閉蓋周辺で完全に密着状態を保つことが困難である。このため、負圧で焼鈍した場合、微小な隙間から外気が炉内に進入し、酸素濃度が高くなり、表面酸化皮膜の異常成長が発生してエッチング性を損ねるという問題がある。   However, since an annealing furnace is generally heated to 400 ° C. or more and annealed, there is thermal expansion of the furnace and the O-ring, and it is difficult to maintain a close contact state around the open / close lid. For this reason, when annealing is performed under negative pressure, there is a problem that outside air enters the furnace through a minute gap, the oxygen concentration becomes high, abnormal growth of the surface oxide film occurs, and the etching property is impaired.

本発明は、上記事情を背景としてなされたものであり、加熱室内を負圧雰囲気に維持できるとともに大気の侵入を効果的に防止する加熱装置および該加熱装置を用いることでアルミニウム箔に均質な酸化皮膜を形成しつつ焼鈍を行うことでエッチング性を向上させることができる電解コンデンサ用アルミニウム箔の製造方法を提供することを目的とする。   The present invention has been made against the background of the above circumstances. A heating device that can maintain a negative pressure atmosphere in the heating chamber and effectively prevent the intrusion of the air, and a uniform oxidation on the aluminum foil by using the heating device. It aims at providing the manufacturing method of the aluminum foil for electrolytic capacitors which can improve etching property by annealing, forming a membrane | film | coat.

すなわち、本発明の加熱装置のうち、請求項1記載の発明は、最内室を主加熱室とする密閉多重室構造からなることを特徴とする。
請求項2記載の加熱装置の発明は、請求項1記載の発明において、各室が独立して雰囲気調整が可能であることを特徴とする。
請求項3記載の加熱装置の発明は、請求項1または2に記載の発明において、前記主加熱室が負圧に調整可能であり、該主加熱室の外側の副加熱室が正圧に調整可能であることを特徴とする。
That is, among the heating devices of the present invention, the invention according to claim 1 is characterized by having a sealed multiple chamber structure in which the innermost chamber is the main heating chamber.
According to a second aspect of the present invention, there is provided a heating apparatus according to the first aspect, wherein each chamber can be independently adjusted in atmosphere.
According to a third aspect of the present invention, there is provided a heating apparatus according to the first or second aspect, wherein the main heating chamber can be adjusted to a negative pressure, and the sub-heating chamber outside the main heating chamber is adjusted to a positive pressure. It is possible.

請求項4記載の電解コンデンサ用アルミニウム箔の製造方法の発明は、最内室を主加熱室とする密閉多重室構造からなる焼鈍炉の前記主加熱室に、冷間圧延により製造されたアルミニウム箔コイルを収納して各室を密閉し、該主加熱室を負圧にするとともに、該主加熱室外側の副加熱室を正圧にして加熱焼鈍することを特徴とする。   The invention of the method for manufacturing an aluminum foil for electrolytic capacitors according to claim 4 is an aluminum foil manufactured by cold rolling in the main heating chamber of an annealing furnace having a sealed multi-chamber structure having the innermost chamber as a main heating chamber. The coil is housed, each chamber is sealed, the main heating chamber is set to a negative pressure, and the sub-heating chamber outside the main heating chamber is set to a positive pressure and heat annealing is performed.

本発明の加熱装置では、最内室にある主加熱室が他の多重室によって大気から隔てられ、該主加熱室の雰囲気が良好に維持されるとともに、加熱装置外部の大気の影響を極力なくすことができる。また、各室を独立して雰囲気調整可能にすることで主加熱室の雰囲気をより適切に設定、維持することができる。特に、主加熱室を負圧に調整可能にし、その外側の副加熱室を正圧に調整可能にすることで、大気が加熱装置内部に侵入するのを確実に防止し、一方、主加熱室では大気の侵入を排除して負圧環境を確保することができる。ただし、正圧の副加熱室から負圧の主加熱室への雰囲気ガスの侵入が予想されるので、これを想定して副加熱室の雰囲気調整を行うのが望ましい。
なお、本発明の加熱装置は、加熱処理を行う種々の用途での適用が可能であり、特定の用途での利用に限定されるものではない。好適には加熱炉、特に厳格な雰囲気調整が必要とされる焼鈍炉に好適である。
In the heating device of the present invention, the main heating chamber in the innermost chamber is separated from the atmosphere by other multiple chambers, the atmosphere of the main heating chamber is maintained well, and the influence of the atmosphere outside the heating device is minimized. be able to. Moreover, the atmosphere of the main heating chamber can be set and maintained more appropriately by making each chamber independently adjustable. In particular, the main heating chamber can be adjusted to a negative pressure, and the outer sub-heating chamber can be adjusted to a positive pressure to reliably prevent the atmosphere from entering the heating device, while the main heating chamber Then, it is possible to secure a negative pressure environment by eliminating air intrusion. However, since the invasion of atmospheric gas from the positive-pressure sub-heating chamber to the negative-pressure main heating chamber is expected, it is desirable to adjust the atmosphere of the sub-heating chamber assuming this.
Note that the heating device of the present invention can be applied in various applications for performing heat treatment, and is not limited to use in a specific application. Preferably, it is suitable for a heating furnace, particularly an annealing furnace that requires strict atmosphere adjustment.

また、本発明の電解コンデンサ用アルミニウム箔の製造方法では、上記加熱装置を焼鈍炉として用いることで、負圧とした主加熱室での大気侵入が阻止される。この結果、焼鈍加熱の際に箔表面から発生する圧延油や吸着水によるガス化した物質を効率的に主加熱室から除去してアルミニウム箔コイルにこれら物質が再付着するのを防止する。また、大気侵入による雰囲気中への酸素や水分の増加が防止され、酸化皮膜が正常に成長しつつ焼鈍がなされる。   Moreover, in the manufacturing method of the aluminum foil for electrolytic capacitors of this invention, air | atmosphere penetration | invasion in the main heating chamber made into the negative pressure is prevented by using the said heating apparatus as an annealing furnace. As a result, the gasified material by the rolling oil and adsorbed water generated from the foil surface during annealing is efficiently removed from the main heating chamber to prevent these materials from reattaching to the aluminum foil coil. Further, increase of oxygen and moisture into the atmosphere due to air intrusion is prevented, and annealing is performed while the oxide film grows normally.

なお、主加熱室の負圧圧力は、0.5×10Pa〜0.9×10Paに維持するのが望ましい。負圧圧力は、過度に低くすると、上記ガス化物質が急激にコイル外に排出されてコイルの巻きずれやアルミニウム箔同士の密着が生じる。また、雰囲気ガス濃度が低下して熱伝導性が低下して焼鈍速度が著しく遅くなる。これらの点から負圧圧力は0.5×10Pa以上とするのが望ましい。また、負圧圧力が十分に低くない場合、前記ガス化物質の排出が不十分になり、主加熱室内が汚染されやすくなる。これらの点から負圧圧力は0.9×10Pa以下とするのが望ましい。なお、負圧圧力は、上記圧力範囲内で一定にしてもよく、また、上記圧力範囲内で圧力を変動させてもよい。 The negative-pressure force of the main heating chamber is desirably maintained at 0.5 × 10 5 Pa~0.9 × 10 5 Pa. If the negative pressure is excessively reduced, the gasified substance is rapidly discharged out of the coil, causing coil misalignment and close contact between aluminum foils. Further, the atmospheric gas concentration is lowered, the thermal conductivity is lowered, and the annealing rate is remarkably slowed. From these points, the negative pressure is preferably 0.5 × 10 5 Pa or more. Further, when the negative pressure is not sufficiently low, the gasification substance is not sufficiently discharged, and the main heating chamber is easily contaminated. From these points, the negative pressure is preferably 0.9 × 10 5 Pa or less. The negative pressure may be constant within the pressure range, or the pressure may be varied within the pressure range.

また、主加熱室外側の正圧圧力は、1.013×10Pa〜1.1×10Paの範囲内に維持するのが望ましい。1.013×10Pa以上とすることで副加熱室を正圧(大気圧以上)にすることができる。また、正圧圧力が過度に高くなると、副加熱室から主加熱室へ雰囲気ガスが侵入しやすくなり、主加熱室の雰囲気が不安定になる。これらの点から正圧圧力を上記範囲に定めるのが望ましい。
なお、上記負圧、正圧の維持は、焼鈍の終了まで維持しても良いが、少なくとも降温時にコイル温度が200℃に達するまでは上記圧力を維持するのが望ましい。これは、降温中においても200℃程度までは、コイルからのガスの発生があり、このガスを効果的に排出するとともに炉内を清浄に保つために、上記正圧、負圧の維持が望ましいためである。なお、複数の副加熱室を多重に備える場合には、副加熱室の正圧圧力が互いに異なるものであってもよい。
The positive-pressure force of the main heating chamber outer is desirably maintained within the range of 1.013 × 10 5 Pa~1.1 × 10 5 Pa. By setting the pressure to 1.013 × 10 5 Pa or more, the sub-heating chamber can be set to a positive pressure (atmospheric pressure or more). In addition, when the positive pressure is excessively high, atmospheric gas easily enters the main heating chamber from the sub-heating chamber, and the atmosphere in the main heating chamber becomes unstable. From these points, it is desirable to set the positive pressure within the above range.
The negative pressure and the positive pressure may be maintained until the end of annealing, but it is desirable to maintain the pressure until the coil temperature reaches 200 ° C. at least when the temperature is lowered. This is because gas is generated from the coil up to about 200 ° C. even during the temperature drop, and it is desirable to maintain the positive pressure and the negative pressure in order to effectively discharge the gas and keep the inside of the furnace clean. Because. In the case where a plurality of sub-heating chambers are provided in multiple, the positive pressures of the sub-heating chambers may be different from each other.

また、主加熱室と副加熱室の雰囲気ガスは同じものを用いるのが望ましい。これにより正圧の副加熱室の雰囲気ガスが負圧の主加熱室に侵入する場合にも、主加熱室が該侵入によって汚染されることがなく主加熱室の雰囲気を安定して維持することができる。
なお、雰囲気ガスは、焼鈍に適するように、Ar、N等不活性ガス、Hなどの還元性ガスの単独または混合ガスを用いることができる。なお、雰囲気ガスは、焼鈍の進行に伴って成分を変更するものであってもよい。
In addition, it is desirable to use the same atmospheric gas in the main heating chamber and the sub-heating chamber. As a result, even when the atmospheric gas in the sub-heating chamber of the positive pressure enters the main heating chamber of the negative pressure, the main heating chamber is not contaminated by the penetration and the atmosphere of the main heating chamber is stably maintained. Can do.
Incidentally, the atmospheric gas, so as to be suitable for annealing, can be used Ar, N 2 Hitoshifu active gas, alone or mixed gas of a reducing gas such as H 2. In addition, atmospheric gas may change a component with progress of annealing.

以上説明したように、本発明の加熱装置によれば、最内室を主加熱室とする密閉多重室構造からなるので、主加熱室に対する大気の影響を極力小さくして安定した雰囲気を維持することが可能になる。   As described above, according to the heating device of the present invention, since it has a sealed multiple chamber structure in which the innermost chamber is the main heating chamber, the influence of the atmosphere on the main heating chamber is minimized to maintain a stable atmosphere. It becomes possible.

また、本発明の電解コンデンサ用アルミニウム箔の製造方法によれば、最内室を主加熱室とする密閉多重室構造からなる焼鈍炉の前記主加熱室に、冷間圧延により製造されたアルミニウム箔コイルを収納して各室を密閉し、該主加熱室を負圧にするとともに、該主加熱室外側の副加熱室を正圧にして加熱焼鈍するので、主加熱室内で大気の侵入を招くことなく負圧雰囲気で焼鈍を行うことができ、アルミニウム箔に均質な酸化皮膜を生成しつつ立方晶率を高めることができ、エッチング性に優れた電解コンデンサ用アルミニウム箔を得ることができる。該アルミニウム箔を用いてエッチングを行うことにより粗面化が良好になされ、該アルミニウム箔を用いることでばらつきがなく、単位面積当たりの静電容量に優れた電解コンデンサが得られる効果がある。   Moreover, according to the manufacturing method of the aluminum foil for electrolytic capacitors of this invention, the aluminum foil manufactured by cold rolling in the said main heating chamber of the annealing furnace which consists of a sealed multi-chamber structure which uses an innermost chamber as a main heating chamber The coil is housed to seal each chamber, the main heating chamber is set to a negative pressure, and the sub-heating chamber outside the main heating chamber is set to a positive pressure for heat annealing. Therefore, annealing can be performed in a negative pressure atmosphere, and the cubic crystal ratio can be increased while forming a uniform oxide film on the aluminum foil, and an aluminum foil for electrolytic capacitors excellent in etching property can be obtained. Etching using the aluminum foil makes it possible to obtain a roughened surface. By using the aluminum foil, there is an effect that there is no variation and an electrolytic capacitor excellent in capacitance per unit area can be obtained.

以下に、本発明の加熱装置および該加熱装置を用いた電解コンデンサ用アルミニウム箔の製造方法の実際形態について図1、2に基づいて説明する。
加熱装置に相当する焼鈍炉1は、炉壁で囲まれた内側の主加熱室10と該主加熱室10を外側から覆う同じく炉壁で囲まれた副加熱室20とを有する二重室構造を有しており、各室は、それぞれアルミニウム箔コイル30を搬出入するための開閉蓋11、21を備えている。これらの開閉蓋11、21で各室の開放部12、22を塞ぐことで各室は密閉状態になる。なお、この実施形態では、主加熱室10と副加熱室20とからなる二重室構造の加熱装置について説明をしているが、本発明としてはこれに限定されるものではなく、3重室以上の構成からなるものであってもよい。また、各室間は、周囲が完全に空間で隔てられている必要はなく、各室が、少なくとも開放部を覆う空間で隔てられているものであればよい。
Below, the actual form of the heating apparatus of this invention and the manufacturing method of the aluminum foil for electrolytic capacitors using this heating apparatus is demonstrated based on FIG.
An annealing furnace 1 corresponding to a heating device has a double chamber structure having an inner main heating chamber 10 surrounded by a furnace wall and a sub-heating chamber 20 surrounded by the furnace wall that covers the main heating chamber 10 from the outside. Each chamber includes open / close lids 11 and 21 for carrying the aluminum foil coil 30 in and out. By closing the open portions 12 and 22 of the chambers with the opening and closing lids 11 and 21, the chambers are sealed. In addition, in this embodiment, although the heating apparatus of the double chamber structure which consists of the main heating chamber 10 and the subheating chamber 20 is demonstrated, it is not limited to this as this invention, A triple chamber You may consist of the above structures. Moreover, it is not necessary for the surroundings to be completely separated from each other by a space, as long as each chamber is separated by a space covering at least the open portion.

上記主加熱室10および副加熱室20には、それぞれ雰囲気ガス供給管13、23が接続されており、各雰囲気ガス供給管13、23は、それぞれ雰囲気ガスを貯蔵したガスタンク2、3が接続されている。なお、雰囲気ガス供給管13、23で共通するガスタンクを用いるものであっても良い。また、各雰囲気ガス供給管13、23では、上流側から順次、開閉弁13a、23a、減圧弁13b、23b、圧力計13c、23cが設けられており、所定圧の雰囲気ガスを任意にそれぞれ主加熱室10と副加熱室20へと供給可能になっている。
また、上記主加熱室10および副加熱室20には、排気管15、25が接続されており、該排気管15、25は合流して排気ポンプ4に接続されている。排気管15、25には、下流側から順に、開閉弁15a、25a、リリーフ弁25bが介設されている。上記リリーフ弁25bにより副加熱室20の圧力が所定値を超えないように調整可能となっている。
なお、焼鈍炉1は、図示しない加熱手段を備えており、内部雰囲気を所望の温度に調整することが可能になっている。
Atmospheric gas supply pipes 13 and 23 are connected to the main heating chamber 10 and the sub-heating chamber 20, respectively. The atmospheric gas supply pipes 13 and 23 are connected to gas tanks 2 and 3 respectively storing atmospheric gases. ing. Note that a common gas tank may be used for the atmosphere gas supply pipes 13 and 23. Each atmospheric gas supply pipe 13 and 23 is provided with on / off valves 13a and 23a, pressure reducing valves 13b and 23b, and pressure gauges 13c and 23c sequentially from the upstream side, and an atmospheric gas of a predetermined pressure is arbitrarily selected as the main gas. Supply to the heating chamber 10 and the sub-heating chamber 20 is possible.
Further, exhaust pipes 15 and 25 are connected to the main heating chamber 10 and the sub-heating chamber 20, and the exhaust pipes 15 and 25 are joined together and connected to the exhaust pump 4. On the exhaust pipes 15 and 25, on-off valves 15a and 25a and a relief valve 25b are provided in this order from the downstream side. The relief valve 25b can be adjusted so that the pressure in the sub-heating chamber 20 does not exceed a predetermined value.
The annealing furnace 1 is provided with a heating means (not shown), and the internal atmosphere can be adjusted to a desired temperature.

次に、上記焼鈍炉1を用いた電解コンデンサ用アルミニウム箔の製造方法について説明する。
電解コンデンサ用アルミニウム箔は、好適にはアルミニウム純度99.9%以上のアルミニウム材を用いて製造をすることができる。該アルミニウム材では、エッチング性を向上させるために、種々の微量元素を添加したものであっても良い。
上記製造においては、鋳造などによる溶製、均質化処理(省略も可能)、熱間圧延、冷間圧延を経て所定の厚さ(一般には20〜150μm厚)のアルミニウム箔とされる。また、連続鋳造圧延を経て、冷間圧延によりアルミニウム箔を製造するものであってもよい。ただし、本発明としては、アルミニウム箔に用いるアルミニウム材の組成、焼鈍に至るまでの製造方法が特に限定をされるものではなく、アルミニウム箔の厚さが上記に限定されるものでもない。
Next, the manufacturing method of the aluminum foil for electrolytic capacitors using the said annealing furnace 1 is demonstrated.
The aluminum foil for electrolytic capacitors can be preferably manufactured using an aluminum material having an aluminum purity of 99.9% or more. The aluminum material may be one to which various trace elements are added in order to improve the etching property.
In the above production, an aluminum foil having a predetermined thickness (generally 20 to 150 μm thickness) is obtained through melting, homogenization treatment (can be omitted) by casting, hot rolling, and cold rolling. Moreover, an aluminum foil may be manufactured by cold rolling after continuous casting and rolling. However, in the present invention, the composition of the aluminum material used for the aluminum foil and the manufacturing method up to annealing are not particularly limited, and the thickness of the aluminum foil is not limited to the above.

前記冷間圧延により得られたアルミニウム箔は巻き取られてアルミニウム箔コイル30とされる。焼鈍に際しては、焼鈍炉1の開閉蓋11および開閉蓋21を開け、開閉部22、12を通して主加熱室10内にアルミニウム箔コイル30を搬入し、その後、蓋11、21を閉めて主加熱室10および副加熱室20内を密閉する。
そして焼鈍前には、図2に示すように、排気管15、25を通し、開閉弁15a、25a開いて排気ポンプ4によって主加熱室10および副加熱室20内を好適には100Pa以下まで真空排気し、炉内の酸素分圧を充分に下げるのが望ましい。望ましくはこの真空排気を2回以上行うとより効果的である。
The aluminum foil obtained by the cold rolling is wound up to form an aluminum foil coil 30. During annealing, the opening / closing lid 11 and the opening / closing lid 21 of the annealing furnace 1 are opened, the aluminum foil coil 30 is carried into the main heating chamber 10 through the opening / closing portions 22 and 12, and then the lids 11 and 21 are closed to close the main heating chamber. 10 and the sub-heating chamber 20 are sealed.
Before the annealing, as shown in FIG. 2, the exhaust pipes 15 and 25 are opened, the on-off valves 15 a and 25 a are opened, and the inside of the main heating chamber 10 and the sub-heating chamber 20 is preferably vacuumed to 100 Pa or less by the exhaust pump 4. It is desirable to exhaust and sufficiently reduce the oxygen partial pressure in the furnace. Desirably, it is more effective to perform this evacuation twice or more.

真空排気後、開閉弁15a、25aを閉じ、開閉弁13a、23aを開いて、図2に示すように、ガスタンク2、3から雰囲気ガス供給管13、23を通して雰囲気ガスを主加熱室10および副加熱室20に導入する。雰囲気ガスは、減圧弁13b、23bによってそれぞれ所定の圧力に調整されて各室に供給される。各室の圧力は、圧力計13c、23cで測定することができる。雰囲気ガスとしてHガスを用いる場合は、前記真空排気後に一旦Ar、N等の不活性ガスを充填した後、Hガスを導入することが望ましい。また、Ar、N等の不活性ガスを雰囲気とする場合は、前記真空引き直後に該当ガスにて充填を行うことができる。 After evacuation, the on-off valves 15a and 25a are closed, the on-off valves 13a and 23a are opened, and the atmosphere gas is supplied from the gas tanks 2 and 3 through the atmosphere gas supply pipes 13 and 23 as shown in FIG. Introduce into the heating chamber 20. The atmospheric gas is adjusted to a predetermined pressure by the pressure reducing valves 13b and 23b and supplied to each chamber. The pressure in each chamber can be measured with pressure gauges 13c and 23c. When H 2 gas is used as the atmospheric gas, it is desirable to introduce H 2 gas after filling with an inert gas such as Ar or N 2 after the evacuation. In addition, when an inert gas such as Ar or N 2 is used as the atmosphere, the gas can be filled immediately after the evacuation.

雰囲気ガスの充填に際しては、副加熱室20側では、開閉弁25aを閉じたままにして副加熱室20内を設定した正圧圧力(1.013×10Pa〜1.1×10Pa)に維持するように雰囲気ガスの供給を制御する。圧力超過はリリーフ弁25bによって阻止される。一方、主加熱室10側では、上記雰囲気ガスの充填に際し、設定した負圧圧力(0.5×10Pa〜0.9×10Pa)付近では、開閉弁15aを開いて排気ポンプ4で排気しつつ雰囲気ガスを供給し続けて主加熱室10内を上記設定の負圧圧力に維持する。 At the time of filling of the atmospheric gas, with sub-heating chamber 20 side, positive-pressure force remain closed off valve 25a was set sub-heating chamber 20 (1.013 × 10 5 Pa~1.1 × 10 5 Pa ) To control the supply of atmospheric gas. Excessive pressure is blocked by the relief valve 25b. On the other hand, in the main heating chamber 10, upon filling of the atmospheric gas in the vicinity negative pressure pressure set (0.5 × 10 5 Pa~0.9 × 10 5 Pa), discharge pump 4 by opening the on-off valve 15a Then, the atmospheric gas is continuously supplied while evacuating in order to maintain the inside of the main heating chamber 10 at the negative pressure set above.

また、焼鈍炉1では、図2に示すように、上記雰囲気ガスの導入に伴って加熱を開始し、所定温度にまで昇温させ、該所定温度で所定の時間保持する焼鈍を行う。焼鈍時間は、コイルの大きさ、焼鈍温度、コイルから発生する不純物ガスの排出進行程度などを考慮して定めることができ、焼鈍温度などを含めて本発明としては特定のものに限定されるものではないが、例えば、焼鈍温度200〜580℃、焼鈍時間2〜36時間を挙げることができる。所定時間、所定温度に保持した後、降温する際には、低温でもガス化が生じるので、コイル温度が200℃に達するまでは上記正圧および負圧の制御を継続するのが望ましい。
加熱終了後、アルミニウム箔コイル30が200℃以下になった後、開閉蓋21、11を開いて開放部11、21を通して焼鈍炉1外にアルミニウム箔コイル30を取り出して焼鈍を終了する。
Moreover, in the annealing furnace 1, as shown in FIG. 2, heating is started with the introduction of the atmospheric gas, the temperature is raised to a predetermined temperature, and annealing is performed at the predetermined temperature for a predetermined time. The annealing time can be determined in consideration of the size of the coil, the annealing temperature, the progress of discharge of impurity gas generated from the coil, etc., and the present invention is limited to a specific one including the annealing temperature. However, for example, an annealing temperature of 200 to 580 ° C. and an annealing time of 2 to 36 hours can be mentioned. When the temperature is lowered after being held at a predetermined temperature for a predetermined time, gasification occurs even at a low temperature. Therefore, it is desirable to continue the control of the positive pressure and the negative pressure until the coil temperature reaches 200 ° C.
After the heating is finished, after the aluminum foil coil 30 has become 200 ° C. or less, the open / close lids 21 and 11 are opened, and the aluminum foil coil 30 is taken out of the annealing furnace 1 through the open portions 11 and 21 to finish the annealing.

また、上記焼鈍時の炉内状況について説明する。
焼鈍時には、加熱によって上記のようにコイル内で圧延油などによって不純物ガスが発生している。この不純物ガスは、炉内圧力が負圧に維持されることでアルミニウム箔コイル30外へと排出される。この不純物ガスは、主加熱室10内の雰囲気ガスが排気管15を通して焼鈍炉1外へ排出されるのに伴って排気される。
Moreover, the in-furnace situation at the time of the said annealing is demonstrated.
During annealing, impurity gas is generated by rolling oil or the like in the coil as described above due to heating. This impurity gas is discharged out of the aluminum foil coil 30 by maintaining the furnace pressure at a negative pressure. This impurity gas is exhausted as the atmospheric gas in the main heating chamber 10 is exhausted out of the annealing furnace 1 through the exhaust pipe 15.

一方、副加熱室20と主加熱室10との間では、副加熱室20の圧力が高く保たれており、副加熱室20側の雰囲気ガスが主加熱室10側に侵入するおそれがあるが、副加熱室20側の雰囲気は大気と異なり調整された雰囲気であり、しかもこの実施形態では主加熱室10側と同じ種類の雰囲気ガスが使用されているので、上記侵入が生じた場合でも主加熱室10での雰囲気汚染のおそれはなく、良好な焼鈍が行われる。
また、副加熱室20と焼鈍炉1外との間では、副加熱室20側が同圧か高い圧力に設定されているため、副加熱室20側への大気の侵入はなく、副加熱室20側の雰囲気も清浄に保たれる。
上記圧力制御により、アルミニウム箔コイル30の巻きずれや密着を招くことなく、アルミニウム箔コイル30内で発生する不純物ガスを速やかにコイル外に排出することができ、該不純物ガスによりアルミニウム箔表面に形成される酸化皮膜に異常を来すことがない。この結果、コイル端面の異常酸化及び、アルミニウム箔表面の酸化皮膜異常成長を抑制した、均一性の優れた焼鈍コイルを得ることができる。
On the other hand, the pressure of the sub-heating chamber 20 is kept high between the sub-heating chamber 20 and the main heating chamber 10, and the atmosphere gas on the sub-heating chamber 20 side may enter the main heating chamber 10 side. The atmosphere on the side of the sub-heating chamber 20 is an adjusted atmosphere unlike the atmosphere, and in this embodiment, the same type of atmospheric gas as that on the side of the main heating chamber 10 is used. There is no fear of atmospheric contamination in the heating chamber 10, and good annealing is performed.
Further, between the sub-heating chamber 20 and the outside of the annealing furnace 1, the sub-heating chamber 20 side is set to the same pressure or a higher pressure, so that no air enters the sub-heating chamber 20 side, and the sub-heating chamber 20 The atmosphere on the side is also kept clean.
By the above pressure control, the impurity gas generated in the aluminum foil coil 30 can be quickly discharged out of the coil without causing winding displacement or adhesion of the aluminum foil coil 30, and the impurity gas forms on the surface of the aluminum foil. There is no abnormality in the oxidized film. As a result, it is possible to obtain an annealed coil with excellent uniformity that suppresses abnormal oxidation of the coil end face and abnormal growth of the oxide film on the surface of the aluminum foil.

上記焼鈍により得られた電解コンデンサ用アルミニウム箔は、エッチングに供する。該エッチングは電解エッチング、化学エッチングを問わないものであり、所望のエッチング方法を採用することができる。該エッチングでは、アルミニウム箔表面にバラツキがなく均質な酸化皮膜が形成されているため、良好なエッチングが均等になされ、高くて均質な粗面化率が得られる。この電解コンデンサ用アルミニウム箔を電極として用いた電解コンデンサは優れた静電容量を得ることができる。
以上、本発明について上記各実施形態に基づいて説明をしたが、本発明は、上記説明の内容に限定をされるものではなく、本発明の範囲を逸脱しない範囲で適宜の変更が可能である。
The aluminum foil for electrolytic capacitors obtained by the annealing is subjected to etching. The etching may be electrolytic etching or chemical etching, and a desired etching method can be employed. In the etching, a uniform oxide film is formed on the surface of the aluminum foil without any variation. Therefore, good etching is uniformly performed, and a high and uniform roughening rate is obtained. An electrolytic capacitor using the aluminum foil for electrolytic capacitors as an electrode can obtain an excellent electrostatic capacity.
As described above, the present invention has been described based on the above embodiments, but the present invention is not limited to the contents of the above description, and appropriate modifications can be made without departing from the scope of the present invention. .

本発明の一実施形態における焼鈍炉を示す概略図である。It is the schematic which shows the annealing furnace in one Embodiment of this invention. 同じ、焼鈍時の圧力および加熱パターンを示す図である。It is the same figure which shows the pressure and heating pattern at the time of annealing.

符号の説明Explanation of symbols

1 焼鈍炉
2 ガスタンク
3 ガスタンク
4 排気ポンプ
10 主加熱室
11 開閉蓋
12 開放部
13 雰囲気ガス供給管
13a 開閉弁
13b 減圧弁
13c 圧力計
15 排気管
15a 開閉弁
15b リリーフ弁
20 副加熱室
21 開閉蓋
22 開放部
23 雰囲気ガス供給管
23a 開閉弁
23b 減圧弁
23c 圧力計
25a 開閉弁
25b リリーフ弁
DESCRIPTION OF SYMBOLS 1 Annealing furnace 2 Gas tank 3 Gas tank 4 Exhaust pump 10 Main heating chamber 11 Opening and closing cover 12 Opening part 13 Atmospheric gas supply pipe 13a Opening and closing valve 13b Pressure reducing valve 13c Pressure gauge 15 Exhaust pipe 15a Opening and closing valve 15b Relief valve 20 Subheating chamber 21 Opening and closing cover 22 Opening portion 23 Atmospheric gas supply pipe 23a Open / close valve 23b Pressure reducing valve 23c Pressure gauge 25a Open / close valve 25b Relief valve

Claims (4)

最内室を主加熱室とする密閉多重室構造からなることを特徴とする加熱装置。   A heating apparatus comprising a sealed multiple chamber structure in which the innermost chamber is a main heating chamber. 各室が独立して雰囲気調整が可能であることを特徴とする請求項1記載の加熱装置。   The heating apparatus according to claim 1, wherein each chamber is capable of adjusting the atmosphere independently. 前記主加熱室が負圧に調整可能であり、該主加熱室の外側の副加熱室が正圧に調整可能であることを特徴とする請求項1または2に記載の加熱装置。   The heating apparatus according to claim 1 or 2, wherein the main heating chamber can be adjusted to a negative pressure, and the sub-heating chamber outside the main heating chamber can be adjusted to a positive pressure. 最内室を主加熱室とする密閉多重室構造からなる焼鈍炉の前記主加熱室に、冷間圧延により製造されたアルミニウム箔コイルを収納して各室を密閉し、該主加熱室を負圧にするとともに、該主加熱室外側の副加熱室を正圧にして加熱焼鈍することを特徴とする電解コンデンサ用アルミニウム箔の製造方法。   An aluminum foil coil manufactured by cold rolling is accommodated in the main heating chamber of an annealing furnace having a closed multiple chamber structure in which the innermost chamber is the main heating chamber, each chamber is sealed, and the main heating chamber is negatively charged. A method for producing an aluminum foil for an electrolytic capacitor, characterized in that the subheating chamber outside the main heating chamber is heated to a positive pressure while being heated and annealed.
JP2006264641A 2006-09-28 2006-09-28 Heating device and manufacturing method of aluminum foil for electrolytic capacitor Pending JP2008082644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006264641A JP2008082644A (en) 2006-09-28 2006-09-28 Heating device and manufacturing method of aluminum foil for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006264641A JP2008082644A (en) 2006-09-28 2006-09-28 Heating device and manufacturing method of aluminum foil for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2008082644A true JP2008082644A (en) 2008-04-10

Family

ID=39353694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006264641A Pending JP2008082644A (en) 2006-09-28 2006-09-28 Heating device and manufacturing method of aluminum foil for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2008082644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181882A (en) * 2013-03-21 2014-09-29 Ngk Insulators Ltd Heat treatment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181882A (en) * 2013-03-21 2014-09-29 Ngk Insulators Ltd Heat treatment device

Similar Documents

Publication Publication Date Title
TWI416630B (en) Method of manufacturing semiconductor device and substrate processing apparatus
KR101609182B1 (en) Method of manufacturing capacitor, capacitor and method of forming dielectric film for use in capacitor
EP2199262B1 (en) Method of making a silica crucible with pure and bubble free inner crucible layer
JP2011014704A (en) Method of manufacturing semiconductor device and substrate processing system
JP2010010513A (en) Substrate processing method, and substrate processing apparatus
JP2009099582A (en) Method of forming polysilicon film
KR20090026086A (en) Manufacturing method of semiconductor device and substrate processing apparatus
JP2006190787A (en) Substrate treatment apparatus and method of manufacturing semiconductor device
KR100861853B1 (en) Film formation method, film formation apparatus and storage medium
TWI248990B (en) Fluorine producer and level control method of electrolyte thereof
JP2005093677A (en) Film forming method and heat treatment equipment
JP2008082644A (en) Heating device and manufacturing method of aluminum foil for electrolytic capacitor
US7064084B2 (en) Oxide film forming method
JP2007201083A (en) Process for fabricating capacitor
US20100178437A1 (en) Apparatus for Generating Gas Having Extremely Low Oxygen Concentration, Processing System and Thin Film Depositing Method Therewith, and Inert Gas Generated as Such
JP4870536B2 (en) Vapor growth method
JP2007260624A (en) Vacuum vessel for use in vacuum apparatus, and method for manufacturing the same
JP2008081811A (en) Method for producing aluminum foil for electrolytic capacitor
JP5457287B2 (en) Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
KR0139767B1 (en) Semiconductor device and fabricating method therefor
JP2011044577A (en) Method of manufacturing semiconductor device
US20220384178A1 (en) Etching method and etching apparatus
WO2002007206A1 (en) Method for manufacturing silicon wafer
JP2005079280A (en) Oxidation method
JP2009200158A (en) Thin film deposition method