JP4938226B2 - Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor - Google Patents

Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor Download PDF

Info

Publication number
JP4938226B2
JP4938226B2 JP2004165819A JP2004165819A JP4938226B2 JP 4938226 B2 JP4938226 B2 JP 4938226B2 JP 2004165819 A JP2004165819 A JP 2004165819A JP 2004165819 A JP2004165819 A JP 2004165819A JP 4938226 B2 JP4938226 B2 JP 4938226B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
aluminum material
aluminum
aqueous solution
capacitor electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004165819A
Other languages
Japanese (ja)
Other versions
JP2005015916A (en
Inventor
秀樹 西森
和宏 児玉
知典 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2004165819A priority Critical patent/JP4938226B2/en
Publication of JP2005015916A publication Critical patent/JP2005015916A/en
Application granted granted Critical
Publication of JP4938226B2 publication Critical patent/JP4938226B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、電解コンデンサ電極用アルミニウム材の製造方法、電解コンデンサ電極用アルミニウム材、電解コンデンサ用電極材の製造方法及びアルミニウム電解コンデンサに関する。   The present invention relates to a method for producing an aluminum material for electrolytic capacitor electrodes, an aluminum material for electrolytic capacitor electrodes, a method for producing an electrode material for electrolytic capacitors, and an aluminum electrolytic capacitor.

なお、この明細書において「アルミニウム」の語はその合金を含む意味で用い、アルミニウム材には箔と板およびこれらを用いた成形体が含まれる。   In this specification, the term “aluminum” is used to include alloys thereof, and aluminum materials include foils and plates and molded bodies using these.

アルミニウム電解コンデンサ用電極材料として一般に用いられるアルミニウム材は、静電容量を大きくする目的で、電気化学的あるいは化学的エッチング処理を施して、アルミニウム箔の実効面積を拡大することが行われている。   An aluminum material generally used as an electrode material for an aluminum electrolytic capacitor is subjected to electrochemical or chemical etching treatment to increase the effective area of the aluminum foil for the purpose of increasing the capacitance.

直流エッチング法でトンネル状ピットを生成させる電解コンデンサ陽極用アルミニウム材の製造において、通常は(100)面の結晶方位を発達させるために500℃前後の温度で不活性雰囲気もしくは真空中で最終焼鈍するのが一般的である。最終焼鈍は、仕上冷間圧延より後工程で行われる。   In the production of aluminum materials for electrolytic capacitor anodes that generate tunnel-like pits by direct current etching, the final annealing is usually performed in an inert atmosphere or vacuum at a temperature of around 500 ° C. in order to develop the crystal orientation of the (100) plane. It is common. Final annealing is performed in a later process than finish cold rolling.

最終焼鈍により生成するアルミニウム材表層の酸化膜の特性はその後のエッチング特性を大きく左右するため、圧延終了後であって最終焼鈍前のアルミニウム材を洗浄して、アルミニウム表層を如何に制御するかが重要である。   The characteristics of the oxide film on the surface layer of the aluminum material produced by the final annealing greatly affect the subsequent etching characteristics, so how to control the aluminum surface layer by cleaning the aluminum material after the end of rolling and before the final annealing. is important.

圧延終了後のアルミニウム材表面には油分や圧延で形成された不均質な酸化膜が存在する。また、アルミニウム材の表面近傍には、圧延時のロールコーテイング等による汚染層が不均一に存在する。これら油分、不均質な酸化膜および汚染層は、仕上冷間圧延のあとに行う最終焼鈍工程で生成する酸化膜の不均質性をもたらし、作製したアルミニウム材のエッチング特性を劣化させ、エッチングによる実効面積の拡大を阻害すると考えられる。   On the surface of the aluminum material after completion of rolling, there is an oil component or a heterogeneous oxide film formed by rolling. Further, a contaminated layer due to roll coating during rolling is unevenly present in the vicinity of the surface of the aluminum material. These oil, non-homogeneous oxide film and contaminated layer cause inhomogeneity of the oxide film generated in the final annealing process after finish cold rolling, deteriorate the etching characteristics of the produced aluminum material, and make it effective by etching. It is thought to inhibit the area expansion.

このため、圧延終了後のアルミニウム材を最終焼鈍前に洗浄することが提案されている(例えば特許文献1)。   For this reason, it has been proposed that the aluminum material after rolling is cleaned before the final annealing (for example, Patent Document 1).

特許文献1では、冷間の箔圧延工程の前および/又は後に、該箔地を硝酸を主成分とする洗浄剤で処理することを特徴とする電解コンデンサ用アルミニウム箔の製造方法が開示されている。特許文献1に記載された方法によれば、硝酸を主成分とする洗浄剤が、アルミニウム箔地表面に付着する圧延油を容易に分解除去するとともに、安定で経時変化の少ない均一な不働態皮膜を形成させるので次の工程で生成する酸化皮膜の厚みは薄く、エッチング処理効果を大ならしめることが記載されている。   Patent Document 1 discloses a method for producing an aluminum foil for an electrolytic capacitor, wherein the foil is treated with a cleaning agent mainly composed of nitric acid before and / or after a cold foil rolling step. Yes. According to the method described in Patent Document 1, the cleaning agent mainly composed of nitric acid easily decomposes and removes the rolling oil adhering to the surface of the aluminum foil, and is stable and has a uniform passive film with little change with time. Therefore, it is described that the thickness of the oxide film formed in the next step is thin and the etching effect is increased.

一方、アルミニウムはアルカリ水溶液に溶けやすいため、圧延終了後のアルミニウム材表面に存在する油分、不均質な酸化皮膜および汚染層はアルカリ水溶液を用いて除去することができる。しかし、アルカリ洗浄後のアルミニウム材表面は硝酸洗浄後のアルミニウム材表面に比べ不安定で径時変化が大きいという問題がある。このため、他の洗浄方法も提案されている(特許文献2,3)。   On the other hand, since aluminum is easily dissolved in an alkaline aqueous solution, oil, non-homogeneous oxide film, and contaminated layer present on the surface of the aluminum material after rolling can be removed using the alkaline aqueous solution. However, there is a problem that the surface of the aluminum material after the alkali cleaning is unstable and the change with time is larger than the surface of the aluminum material after the nitric acid cleaning. For this reason, other cleaning methods have been proposed (Patent Documents 2 and 3).

特許文献2では、電解コンデンサ陽極用アルミニウム箔表面の酸化皮膜を除去するための洗浄を行い、その後150〜400℃の雰囲気下で加熱することを特徴とする電解コンデンサ陽極用アルミニウム箔の処理方法が開示されており、アルミニウム箔表面の酸化皮膜を除去するための洗浄として水酸化ナトリウム水溶液で洗浄した後、30重量%の硝酸水溶液で中和する方法が実施例に示されている。   In Patent Document 2, there is a method for treating an aluminum foil for electrolytic capacitor anode, characterized in that cleaning is performed to remove an oxide film on the surface of the aluminum foil for electrolytic capacitor anode, followed by heating in an atmosphere of 150 to 400 ° C. As disclosed in the Examples, a method for washing with an aqueous sodium hydroxide solution and then neutralizing with a 30% by weight nitric acid aqueous solution is disclosed as washing for removing the oxide film on the surface of the aluminum foil.

特許文献3では、箔圧延終了後のアルミニウム箔の表面を、アルミニウムに対し吸着性の高い酸またはその化合物に接触させる吸着処理を施した後、焼鈍を行うことを特徴とする電解コンデンサ電極用アルミニウム材の製造方法が記載されている。
特開昭60−92489号公報 特開平5−279815号公報 特開昭63−86878号公報
In Patent Document 3, the surface of the aluminum foil after completion of foil rolling is subjected to an adsorption treatment for bringing the surface into contact with an acid having high adsorptivity to aluminum or a compound thereof, and then annealing is performed. A method for manufacturing the material is described.
JP-A-60-92489 JP-A-5-279815 JP-A-63-86878

しかしながら、特許文献1に記載された硝酸を主成分とする洗浄剤でアルミニウム材表面の汚染層を完全に除去するのは困難であり、静電容量の向上には限界があった。   However, it is difficult to completely remove the contaminated layer on the surface of the aluminum material with the cleaning agent mainly composed of nitric acid described in Patent Document 1, and there is a limit to the improvement of the capacitance.

また、特許文献2,3に記載された方法を用いてもエッチング特性の向上に限界があり、所期する高静電容量が得られない。   Even if the methods described in Patent Documents 2 and 3 are used, there is a limit to the improvement in etching characteristics, and the desired high capacitance cannot be obtained.

本発明は上記のような、従来の電解コンデンサ電極用アルミニウム材の製造における最終焼鈍前の表面処理の問題点を解決し、エッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法、電解コンデンサ電極用アルミニウム材、電解コンデンサ用電極材の製造方法およびアルミニウム電解コンデンサを提供することを課題とする。   The present invention solves the problems of surface treatment before final annealing in the production of the conventional aluminum material for electrolytic capacitor electrodes as described above, and a method for producing an aluminum material for electrolytic capacitor electrodes excellent in etching characteristics. It is an object of the present invention to provide an aluminum material for manufacturing, a method for producing an electrode material for electrolytic capacitor, and an aluminum electrolytic capacitor.

上記課題を解決するために、本発明の電解コンデンサ電極用アルミニウム材の製造方法は下記(1)〜(10)に記載の構成を有する。
(1) 冷間圧延を施したアルミニウム材の表面層を除去した後、硫酸、塩酸、リン元素を含む酸の中から選ばれる1種または2種以上の酸を含む酸水溶液に接触させ、その後焼鈍することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
(2) 表面層除去量がアルミニウム材片面あたり5〜200nmである前項1に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(3) 表面層除去をアルカリ水溶液を用いて行う前項1または前項2に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(4) アルカリ水溶液中に含まれるアルカリが、水酸化ナトリウム、水酸化カルシウム、水酸化カリウム、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、リン酸三ナトリウムから選ばれた1種または2種以上である前項3に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(5) 酸水溶液中の硫酸濃度が0.0005質量%以上60質量%以下である前項1ないし前項4のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(6) 酸水溶液中の塩酸濃度が0.0005質量%以上30質量%以下である前項1ないし前項4のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(7) リン元素を含む酸はオルトリン酸であり、酸水溶液中のオルトリン酸濃度が1.2質量%以上30質量%以下である前項1ないし前項4のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(8) 酸水溶液の温度が10℃以上95℃以下であるとともに、アルミニウム材と酸水溶液との接触時間が0.2秒以上10分以下である前項1ないし前項7のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(9) 焼鈍を450〜600℃にて不活性雰囲気中で行う前項1ないし前項8のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(10) アルミニウム純度が99.9質量%以上である前項1ないし前項9のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
In order to solve the above problems, the method for producing an aluminum material for electrolytic capacitor electrodes according to the present invention has a configuration described in (1) to (10) below.
(1) After removing the surface layer of the cold-rolled aluminum material, it is contacted with an acid aqueous solution containing one or more acids selected from sulfuric acid, hydrochloric acid, and an acid containing phosphorus element, and then A method for producing an aluminum material for electrolytic capacitor electrodes, characterized by annealing.
(2) The manufacturing method of the aluminum material for electrolytic capacitor electrodes of the preceding clause 1 whose surface layer removal amount is 5-200 nm per aluminum material single side | surface.
(3) The method for producing an aluminum material for electrolytic capacitor electrodes as described in (1) or (2) above, wherein the surface layer is removed using an alkaline aqueous solution.
(4) The preceding item 3 wherein the alkali contained in the aqueous alkali solution is one or more selected from sodium hydroxide, calcium hydroxide, potassium hydroxide, sodium orthosilicate, sodium metasilicate, and trisodium phosphate. The manufacturing method of the aluminum material for electrolytic capacitor electrodes as described in any one of.
(5) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 1 to 4, wherein the sulfuric acid concentration in the acid aqueous solution is 0.0005% by mass or more and 60% by mass or less.
(6) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 1 to 4, wherein the concentration of hydrochloric acid in the acid aqueous solution is 0.0005% by mass to 30% by mass.
(7) The electrolytic capacitor electrode according to any one of items 1 to 4 above, wherein the acid containing phosphorus element is orthophosphoric acid, and the concentration of orthophosphoric acid in the acid aqueous solution is 1.2 mass% or more and 30 mass% or less. Method for manufacturing aluminum material.
(8) The temperature of the acid aqueous solution is 10 ° C. or more and 95 ° C. or less, and the contact time between the aluminum material and the acid aqueous solution is 0.2 seconds or more and 10 minutes or less. Manufacturing method of aluminum material for electrolytic capacitor electrodes.
(9) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 1 to 8, wherein the annealing is performed at 450 to 600 ° C. in an inert atmosphere.
(10) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 1 to 9, wherein the aluminum purity is 99.9% by mass or more.

また、本発明の電解コンデンサ電極用アルミニウム材は下記(11)(12)に記載の構成を有する。
(11) 前項1ないし前項10のいずれか1項に記載の製造方法によって製造された電解コンデンサ電極用アルミニウム材。
(12) 中圧用または高圧用陽極材である前項11に記載の電解コンデンサ電極用アルミニウム材。
Moreover, the aluminum material for electrolytic capacitor electrodes of this invention has the structure as described in the following (11) (12).
(11) An aluminum material for electrolytic capacitor electrodes manufactured by the manufacturing method according to any one of items 1 to 10 above.
(12) The aluminum material for electrolytic capacitor electrodes as described in 11 above, which is an anode material for medium pressure or high pressure.

また、本発明の電解コンデンサ用電極材の製造方法は下記(13)(14)に記載の構成を有する。
(13) 前項1ないし前項10のいずれか1項に記載の製造方法によって製造されたアルミニウム材に、エッチングを実施することを特徴とする電解コンデンサ用電極材の製造方法。
(14) エッチングの少なくとも一部が直流エッチングである前項13に記載の電解コンデンサ用電極材の製造方法。
Moreover, the manufacturing method of the electrode material for electrolytic capacitors of this invention has the structure as described in following (13) (14).
(13) A method for producing an electrode material for an electrolytic capacitor, wherein the aluminum material produced by the production method according to any one of items 1 to 10 is etched.
(14) The method for producing an electrode material for electrolytic capacitors as described in 13 above, wherein at least a part of the etching is direct current etching.

また、本発明の電解コンデンサは下記(15)に記載の構成を有する。
(15) 電極材として、前項13または前項14に記載の製造方法によって製造されたアルミニウム電極材が用いられていることを特徴とするアルミニウム電解コンデンサ。
Moreover, the electrolytic capacitor of this invention has the structure as described in following (15).
(15) An aluminum electrolytic capacitor, wherein an aluminum electrode material produced by the production method according to item 13 or 14 is used as an electrode material.

本発明の電解コンデンサ電極用アルミニウム材の製造方法によれば、冷間圧延を施したアルミニウム材の表面層を除去した後、硫酸、塩酸、リン元素を含む酸の中から選ばれる1種または2種以上の酸を含む酸水溶液に接触させ、その後焼鈍することにより、冷間圧延後の汚染層や不均質な酸化膜が除去され、安定して均質な表層酸化膜を形成してエッチング特性に優れたアルミニウム材を得ることができる。従って、このアルミニウム材をエッチングすることにより、エッチピットの分散性が向上し、実効面積を拡大させ、ひいては静電容量を増大させることができる。   According to the method for producing an aluminum material for electrolytic capacitor electrodes of the present invention, after removing the surface layer of the cold-rolled aluminum material, one or two selected from sulfuric acid, hydrochloric acid, and an acid containing phosphorus element By contacting with an acid aqueous solution containing more than one kind of acid, and then annealing, the contaminated layer and heterogeneous oxide film after cold rolling are removed, and a stable and homogeneous surface oxide film is formed to improve etching characteristics. An excellent aluminum material can be obtained. Therefore, by etching this aluminum material, the dispersibility of the etch pits can be improved, the effective area can be expanded, and the capacitance can be increased.

表面層除去量がアルミニウム材片面あたり5〜200nmである場合には、エッチピット核を十分に生成させつつ、汚染層や不均質酸化膜を除去することができる。   When the removal amount of the surface layer is 5 to 200 nm per one side of the aluminum material, the contaminated layer and the heterogeneous oxide film can be removed while sufficiently generating etch pit nuclei.

また、表面層除去はアルカリ水溶液を用いて行うことができる。   The surface layer can be removed using an alkaline aqueous solution.

特に、アルカリ水溶液中に含まれるアルカリが、水酸化ナトリウム、水酸化カルシウム、水酸化カリウム、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、リン酸三ナトリウムから選ばれた1種または2種以上である場合には、表面層除去が確実に行われる。   In particular, when the alkali contained in the alkaline aqueous solution is one or more selected from sodium hydroxide, calcium hydroxide, potassium hydroxide, sodium orthosilicate, sodium metasilicate, and trisodium phosphate. The surface layer is reliably removed.

また、酸水溶液中の硫酸濃度が0.0005質量%以上60質量%以下である場合には、特に安定した表層酸化膜が形成されてエッチピットを均一に分散させることができる。   When the sulfuric acid concentration in the acid aqueous solution is 0.0005 mass% or more and 60 mass% or less, a particularly stable surface oxide film can be formed and etch pits can be uniformly dispersed.

また、酸水溶液中の塩酸濃度が0.0005質量%以上30質量%以下である場合には、特にエッチピットの生成が促進されて分散性を向上させることができる。   Moreover, when the hydrochloric acid concentration in the acid aqueous solution is 0.0005 mass% or more and 30 mass% or less, the formation of etch pits is particularly promoted and the dispersibility can be improved.

また、リン元素を含む酸がリン酸であり、酸水溶液中のリン酸濃度が1.2質量%以上30質量%以下である場合には、特に安定した表層酸化膜が形成されてエッチピットを均一に分散させることができる。   In addition, when the acid containing phosphorus element is phosphoric acid and the phosphoric acid concentration in the acid aqueous solution is 1.2% by mass or more and 30% by mass or less, a particularly stable surface layer oxide film is formed and etch pits are formed. It can be uniformly dispersed.

また、酸水溶液の温度が10℃以上95℃以下であるとともに、アルミニウム材と酸水溶液との接触時間が0.2秒以上10分以下である場合には、酸水溶液との接触による表層酸化膜安定効果およびエッチピットの分散性向上効果を確実に得ることができる。   When the temperature of the acid aqueous solution is 10 ° C. or more and 95 ° C. or less and the contact time between the aluminum material and the acid aqueous solution is 0.2 seconds or more and 10 minutes or less, the surface oxide film by contact with the acid aqueous solution The stability effect and the effect of improving the dispersibility of etch pits can be obtained with certainty.

また、焼鈍を450〜600℃にて不活性雰囲気中で行う場合には、エッチピットを均一に分散させ得る安定した表層酸化膜を確実に形成することができる。   Further, when annealing is performed at 450 to 600 ° C. in an inert atmosphere, a stable surface oxide film that can uniformly disperse etch pits can be reliably formed.

アルミニウム純度が99.9質量%以上である場合には、電解コンデンサ用電極材としての特性を十分に発揮させることができる。   When the aluminum purity is 99.9% by mass or more, the characteristics as an electrode material for electrolytic capacitors can be sufficiently exhibited.

本発明の電解コンデンサ電極用アルミニウム材は、冷間圧延を施したアルミニウム材の表面を、硫酸、塩酸、リン元素を含む酸の中から選ばれる1種または2種以上の酸を含む酸水溶液に接触させ、その後に焼鈍することにより製造されるものであるから、表層酸化膜が安定したものとなされてエッチング特性に優れたものとなし得る。   In the aluminum material for electrolytic capacitor electrodes of the present invention, the surface of the cold-rolled aluminum material is converted into an acid aqueous solution containing one or more acids selected from acids containing sulfuric acid, hydrochloric acid, and phosphorus elements. Since it is manufactured by bringing it into contact and then annealing, the surface oxide film can be made stable and excellent in etching characteristics.

また、アルミニウム材が中圧用または高圧用陽極材である場合には、静電容量の高い中高圧用電解コンデンサを得ることができる。   Further, when the aluminum material is an anode material for medium pressure or high pressure, an electrolytic capacitor for medium to high pressure having a high capacitance can be obtained.

本発明にかかる製造方法によって製造された電解コンデンサ電極用アルミニウム材に、エッチングを実施して電解コンデンサ用電極材を製造する場合には、エッチピットが均一に分散した静電容量の高い電極材を提供することができる。   When an electrolytic capacitor electrode material is manufactured by performing etching on an electrolytic capacitor electrode aluminum material manufactured by the manufacturing method according to the present invention, an electrode material having a high capacitance in which etch pits are uniformly dispersed is used. Can be provided.

また、前記エッチングが直流エッチングである場合には、トンネル状のエッチピットの形成による静電容量の高い電極材を提供することができる。   Further, when the etching is direct current etching, an electrode material having a high capacitance can be provided by forming tunnel-like etch pits.

また、前記電極材の製造方法によって製造されたアルミニウム電極材が用いられているアルミニウム電解コンデンサでは、エッチピットが均一に分散された電極材を有して静電容量の高いものとなし得る。   In addition, an aluminum electrolytic capacitor in which an aluminum electrode material manufactured by the method for manufacturing an electrode material is used can have an electrode material in which etch pits are uniformly dispersed to have a high capacitance.

本発明の電解コンデンサ電極用アルミニウム材の製造方法は、冷間圧延を施したアルミニウム材の表面層を除去した後、酸水溶液に接触させ、その後に焼鈍することにより、その後のエッチングにおいてエッチピットを均一に分散させ得る表層酸化膜を形成するものである。そして、このアルミニウム材にエッチングを施すことにより、エッチピットを均一に分散させて実効面積を拡大し、ひいては静電容量の増大を図るものである。   In the method for producing an aluminum material for electrolytic capacitor electrodes according to the present invention, after removing the surface layer of the aluminum material that has been cold-rolled, it is brought into contact with an acid aqueous solution, and then annealed to form etch pits in the subsequent etching. A surface oxide film that can be uniformly dispersed is formed. Then, by etching the aluminum material, the etch pits are uniformly dispersed to increase the effective area, thereby increasing the capacitance.

以下に、電解コンデンサ電極用アルミニウム材の製造工程に沿って、本発明について詳述する。   Below, this invention is explained in full detail along the manufacturing process of the aluminum material for electrolytic capacitor electrodes.

アルミニウム材の純度は電解コンデンサ用に使用される範囲であれば特に限定されないが、純度99.9質量%以上のものが好ましく、特に99.95質量%以上が好ましい。なお、本発明においてアルミニウム材の純度は100質量%からFe,Si,Cu,Mn,Cr,Zn,TiおよびGaの合計濃度(質量%)を差し引いた値とする。   The purity of the aluminum material is not particularly limited as long as it is within the range used for an electrolytic capacitor, but it is preferably 99.9% by mass or more, particularly preferably 99.95% by mass or more. In the present invention, the purity of the aluminum material is a value obtained by subtracting the total concentration (mass%) of Fe, Si, Cu, Mn, Cr, Zn, Ti and Ga from 100 mass%.

一般的なアルミニウム材の製造は、アルミニウム材料の溶解成分調整・スラブ鋳造、均熱処理、熱間圧延、冷間圧延、中間焼鈍、仕上冷間圧延(低圧下圧延)、最終焼鈍の順に実施される。本発明で規定するアルミニウム材の表面層の除去とその後の酸水溶液への接触は、冷間圧延(仕上冷間圧延を含む)を施したアルミニウム材に対して行い、その後に焼鈍を行うものである。前記アルミニウム材の表面層の除去とその後の酸水溶液への接触は冷間圧延終了後に行うことが推奨され、従ってその後に行う焼鈍は最終焼鈍であることが推奨されるが、本発明は最終焼鈍以外の焼鈍の前に、アルミニウム材の表面層の除去とその後の酸水溶液への接触を行うことを排除するものではない。   Production of general aluminum materials is performed in the order of adjustment of dissolved components of aluminum material, slab casting, soaking, hot rolling, cold rolling, intermediate annealing, finish cold rolling (low pressure rolling), and final annealing. . The removal of the surface layer of the aluminum material specified in the present invention and the subsequent contact with the acid aqueous solution are performed on the aluminum material subjected to cold rolling (including finish cold rolling), and then annealed. is there. It is recommended that the removal of the surface layer of the aluminum material and the subsequent contact with the acid aqueous solution be performed after the end of cold rolling, and therefore the subsequent annealing is recommended to be final annealing. It does not exclude performing the removal of the surface layer of the aluminum material and the subsequent contact with the aqueous acid solution before annealing other than the above.

なお、本発明で規定した以外の工程および工程条件は限定されず、常法に従って行う。また、アルミニウム材のエッチング条件との関係で、アルミニウム材の製造工程条件は適宜変更される。ここで、中間焼鈍は冷間圧延工程の途中において、最終焼鈍後の(100)面の結晶方位をさらに発達させる目的で実施する工程である。また、中間焼鈍以前の工程でアルミニウム表面の不純物や油分を除去する目的で洗浄を行ってもよい。中間焼鈍以前の工程で用いる洗浄液は特に限定されないが、アルカリ水溶液、酸水溶液、有機溶剤等が用いられる。
〔表面層除去〕
冷間圧延工程を経たアルミニウム材は、酸水溶液への接触前に表面層除去を行って表面状態を整える。アルミニウム材の表面層を除去することによって冷間圧延後の汚染層や不均質な酸化膜が除去され、その後に行う酸水溶液への接触および焼鈍によって安定して均質な表層酸化膜が確実に形成され、ひいてはエッチピットの分散性を向上させることができる。
In addition, processes and process conditions other than those defined in the present invention are not limited, and are performed according to a conventional method. Moreover, the manufacturing process conditions for the aluminum material are appropriately changed in relation to the etching conditions for the aluminum material. Here, the intermediate annealing is a process performed for the purpose of further developing the crystal orientation of the (100) plane after the final annealing in the middle of the cold rolling process. Further, cleaning may be performed for the purpose of removing impurities and oil on the aluminum surface in the process before the intermediate annealing. The cleaning liquid used in the step before the intermediate annealing is not particularly limited, and an alkaline aqueous solution, an acid aqueous solution, an organic solvent, or the like is used.
(Surface layer removal)
The aluminum material that has undergone the cold rolling process is subjected to surface layer removal before contact with the acid aqueous solution to adjust the surface state. By removing the surface layer of the aluminum material, the contaminated layer and heterogeneous oxide film after cold rolling are removed, and a stable and uniform surface oxide film is reliably formed by subsequent contact with the acid aqueous solution and annealing. As a result, the dispersibility of etch pits can be improved.

冷間圧延後の汚染層および不均質酸化膜を除去するために、表面層の除去量、即ち除去深さはアルミニウム材片面あたり5〜200nmであることが好ましい。表層除去量が5nm未満の場合には、冷間圧延後のアルミニウム材表面に存在する汚染物や不均質な酸化膜を除去する効果が不十分となる恐れがある。一方、表面層除去量が200nmを越えると、表面層によるエッチピット核の生成が抑制されるため却ってエッチピット分散性が悪く静電容量が低下する恐れがある。   In order to remove the contaminated layer and the heterogeneous oxide film after cold rolling, the removal amount of the surface layer, that is, the removal depth, is preferably 5 to 200 nm per side of the aluminum material. If the surface layer removal amount is less than 5 nm, the effect of removing contaminants and heterogeneous oxide films present on the surface of the aluminum material after cold rolling may be insufficient. On the other hand, when the removal amount of the surface layer exceeds 200 nm, the formation of etch pit nuclei by the surface layer is suppressed, so that the etch pit dispersibility is poor and the capacitance may be lowered.

本発明において、アルミニウム材表面層除去量D(nm)を、洗浄による単位面積当たりの重量減E(g/cm2)とアルミニウムの密度2.7g/cm3を用いて、D(nm)=E×107/2.7と規定する。 In the present invention, the removal amount D (nm) of the aluminum material surface layer is determined by using a weight loss E (g / cm 2 ) per unit area by washing and an aluminum density of 2.7 g / cm 3 , D (nm) = It is defined as E × 10 7 /2.7.

アルミニウム材の表面層除去量はさらに5〜150nmであることが好ましい。   The surface layer removal amount of the aluminum material is further preferably 5 to 150 nm.

表面層の除去方法は特に限定されないが、アルカリ水溶液によりアルミニウム材の表面層を溶解させる方法を例示できる。   Although the removal method of a surface layer is not specifically limited, The method of dissolving the surface layer of an aluminum material with alkaline aqueous solution can be illustrated.

上記アルミニウム材の表面層除去に用いるアルカリ水溶液において、液中に含まれるアルカリとしては、水酸化ナトリウム、水酸化カルシウム、水酸化カリウム、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、リン酸三ナトリウムを例示でき、上記アルカリのうちの1種または2種以上を水に溶解させてアルカリ水溶液が調製される。アルミニウム材の表面層除去量は、アルカリの濃度、アルカリ水溶液の温度およびアルミニウム材とアルカリ水溶液との接触時間を適正なものにすることにより調節される。   In the alkaline aqueous solution used for removing the surface layer of the aluminum material, examples of the alkali contained in the liquid include sodium hydroxide, calcium hydroxide, potassium hydroxide, sodium orthosilicate, sodium metasilicate, and trisodium phosphate. An aqueous alkali solution is prepared by dissolving one or more of the alkalis in water. The surface layer removal amount of the aluminum material is adjusted by adjusting the alkali concentration, the temperature of the alkaline aqueous solution, and the contact time between the aluminum material and the alkaline aqueous solution.

アルカリ水溶液とアルミニウム材との接触方法としては、特に限定されないが、浸漬、洗浄液面ヘのアルミニウム材の接触、スプレー等があげられる。   The method for contacting the alkaline aqueous solution with the aluminum material is not particularly limited, and examples include immersion, contact of the aluminum material with the cleaning liquid surface, and spraying.

なお、冷間圧延後で上述した表面層除去前に脱脂処理を施してアルミニウム材表面に付着している油分を除去しても良い。脱脂の方法としては、有機溶剤または界面活性剤が添加された水を用いてアルミニウム材を洗浄するか、もしくは圧延終了後のアルミニウム材を熱ロール等の加熱体に接触させる方法を適用できる。
〔酸水溶液への接触〕
アルミニウム材の表面に接触させる酸水溶液に含まれる酸として、硫酸、塩酸、リン元素を含む酸の中から選ばれる1種または2種以上を用いる。
In addition, you may perform the degreasing process after the cold rolling before the surface layer removal mentioned above, and may remove the oil component adhering to the aluminum material surface. As a degreasing method, a method of washing the aluminum material with water to which an organic solvent or a surfactant is added, or a method of bringing the aluminum material after rolling into contact with a heating body such as a hot roll can be applied.
[Contact with acid aqueous solution]
As the acid contained in the acid aqueous solution brought into contact with the surface of the aluminum material, one or more selected from acids containing sulfuric acid, hydrochloric acid, and phosphorus element are used.

リン元素を含む酸としては、オルトリン酸(以下、オルトリン酸をリン酸と称す)、ピロリン酸、メタリン酸、ポリリン酸を使用できる。   As the acid containing phosphorus element, orthophosphoric acid (hereinafter referred to as orthophosphoric acid), pyrophosphoric acid, metaphosphoric acid, and polyphosphoric acid can be used.

硫酸およびリン元素を含む酸は、アルミニウム表層酸化膜をより安定なものとし、焼鈍後のエッチングにおいてエッチピットを均一に分散させる効果がある。また、塩酸は、焼鈍後のエッチングにおいてエッチピットの生成を促進し、アルミニウム材表面全体から多くのピットを生成させて分散性を向上させる効果がある。   The acid containing sulfuric acid and phosphorus elements makes the aluminum surface oxide film more stable, and has the effect of uniformly dispersing etch pits in the etching after annealing. Further, hydrochloric acid has an effect of promoting the generation of etch pits in the etching after annealing and generating many pits from the entire surface of the aluminum material to improve dispersibility.

本発明は、酸水溶液中のこれらの酸濃度を限定するものではないが、以下の濃度が推奨される。   The present invention does not limit the concentration of these acids in the acid aqueous solution, but the following concentrations are recommended.

硫酸またはリン酸は、濃度が低すぎるとアルミニウム表層酸化膜の安定性が不十分であって静電容量向上効果が小さく、濃度が高すぎると、酸水溶液へと接触後に水洗を行ってもアルミニウム表面に硫酸イオンまたはリン酸イオンが多く残留する恐れがあるため、その後焼鈍することにより得られる表層酸化膜が不均質なものとなりやすい。これらの理由により、硫酸濃度の好ましい範囲は0.0005質量%以上60質量%以下、さらに好ましい範囲は1.2質量%以上30質量%以下、特に好ましい範囲は1.2質量%以上9.5質量%以下である。また、リン酸濃度の好ましい範囲は1.2質量%以上30質量%以下、さらに好ましい範囲は1.2質量%以上9.5質量%以下である。   If the concentration of sulfuric acid or phosphoric acid is too low, the stability of the aluminum surface oxide film is insufficient and the effect of improving the capacitance is small. Since a large amount of sulfate ions or phosphate ions may remain on the surface, the surface oxide film obtained by subsequent annealing tends to be inhomogeneous. For these reasons, a preferable range of the sulfuric acid concentration is 0.0005% by mass to 60% by mass, a more preferable range is 1.2% by mass to 30% by mass, and a particularly preferable range is 1.2% by mass to 9.5%. It is below mass%. Moreover, the preferable range of phosphoric acid concentration is 1.2 mass% or more and 30 mass% or less, and a more preferable range is 1.2 mass% or more and 9.5 mass% or less.

塩酸は、濃度が低すぎるとその後の焼鈍により得られるアルミニウム材の電解エッチングにおけるピット生成促進効果が小さく、濃度が高すぎるとアルミニウム材が不均質に溶解し、その後焼鈍により得られるアルミニウム材の電解エッチングにおけるピット分散性が低下する。塩酸濃度の好ましい範囲は0.0005質量%以上30質量%以下、さらに好ましい範囲は0.05質量%以上30質量%以下、特に好ましい範囲は1.2質量%以上9.5質量%以下である。   If the concentration of hydrochloric acid is too low, the effect of promoting pit formation in the electrolytic etching of the aluminum material obtained by subsequent annealing is small, and if the concentration is too high, the aluminum material is dissolved inhomogeneously, and then the electrolytic treatment of the aluminum material obtained by annealing is performed. Pit dispersibility in etching decreases. A preferable range of the hydrochloric acid concentration is 0.0005% by mass to 30% by mass, a further preferable range is 0.05% by mass to 30% by mass, and a particularly preferable range is 1.2% by mass to 9.5% by mass. .

前記酸水溶液の液温は、特に限定されるものではないが、10℃以上95℃以下であることが好ましい。液温が10℃未満の場合にはピット分散性による静電容量向上効果が不十分であり、95℃より高い温度の液を用いても10℃以上95℃以下に比べて静電容量がさらに向上することはなくエネルギー消費によるコスト高を招く。さらに好ましい液温は10〜85℃であり特に20〜70℃が好ましい。また、酸水溶液へのアルミニウム材の接触時間も特に限定されるものではないが、0.2秒以上10分以下であることが好ましく、さらに0.5秒以上5分以下が好ましい。接触時間が0.2秒未満では静電容量向上効果が小さく、10分より長く接触させても0.2秒以上10分以下の接触に比べ静電容量向上効果が向上することはなく長時間処理のため生産性が低下する。   Although the liquid temperature of the said acid aqueous solution is not specifically limited, It is preferable that they are 10 degreeC or more and 95 degrees C or less. When the liquid temperature is less than 10 ° C., the effect of improving the electrostatic capacity due to the pit dispersibility is insufficient, and even when a liquid having a temperature higher than 95 ° C. is used, the electrostatic capacity is further increased from 10 ° C. It does not improve, resulting in high costs due to energy consumption. A more preferable liquid temperature is 10 to 85 ° C, and 20 to 70 ° C is particularly preferable. Further, the contact time of the aluminum material with the acid aqueous solution is not particularly limited, but is preferably 0.2 seconds or longer and 10 minutes or shorter, and more preferably 0.5 seconds or longer and 5 minutes or shorter. If the contact time is less than 0.2 seconds, the capacitance improvement effect is small, and even if the contact time is longer than 10 minutes, the capacitance improvement effect is not improved compared to the contact time of 0.2 seconds or more and 10 minutes or less. Productivity decreases due to processing.

また、アルミニウム材の表面に接触させる酸水溶液に含まれる酸として、有機カルボン酸や有機スルホン酸を用いることもできる。   Moreover, organic carboxylic acid and organic sulfonic acid can also be used as an acid contained in the acid aqueous solution brought into contact with the surface of the aluminum material.

なお、酸水溶液とアルミニウム材の接触方法としては特に限定されないが、浸漬、水溶液面へのアルミニウム材の接触、スプレー等があげられる。
〔焼鈍〕
酸水溶液に接触させた後のアルミニウム材は、水洗、乾燥された後焼鈍される。この焼鈍により、エッチピットを均一に分散させ得る安定した表層酸化膜が形成される。
The method for contacting the acid aqueous solution with the aluminum material is not particularly limited, and examples include immersion, contact of the aluminum material with the aqueous solution surface, and spraying.
[Annealing]
The aluminum material after being brought into contact with the acid aqueous solution is washed with water, dried and then annealed. By this annealing, a stable surface oxide film that can uniformly disperse etch pits is formed.

乾燥の方法は特に限定されないが、空気中加熱、不活性雰囲気加熱、真空加熱あるいは加熱体とアルミニウム材の接触加熱を用いることができる。   The drying method is not particularly limited, and heating in air, inert atmosphere heating, vacuum heating, or contact heating between a heating body and an aluminum material can be used.

焼鈍においては、前工程である酸接触工程でアルミニウム材に形成された酸化膜の厚さを焼鈍工程で増大させ過ぎて、エッチング特性を劣化させないようにすることが好ましい。焼鈍が最終焼鈍である場合、焼鈍後の酸化皮膜の合計厚さがハンターホール法(M.S.Hunter and P.Fowle J.Electrochem.Soc.,101[9],483(1954)参照)による厚さで2.5〜5nmとなるように最終焼鈍を実施するのが好ましい。また、最終焼鈍後のアルミニウム材の(100)面積率は90%以上が好ましい。 In the annealing, it is preferable that the thickness of the oxide film formed on the aluminum material in the acid contact process, which is the previous process, is excessively increased in the annealing process so that the etching characteristics are not deteriorated. When annealing is final annealing, the total thickness of the oxide film after annealing is 2 by the thickness by the Hunter Hall method (see MSHunter and P. Fowle J. Electrochem. Soc., 101 [9], 483 (1954)). It is preferable to perform final annealing so that it may become 5-5 nm. The (100) area ratio of the aluminum material after the final annealing is preferably 90% or more.

この焼鈍における処理雰囲気は特に限定されるものではないが、酸化皮膜の厚さを増大させすぎないように、水分および酸素の少ない雰囲気中で加熱するのが好ましい。具体的には、アルゴン、窒素などの不活性ガス中あるいは0.1Pa以下の真空中で加熱することが好ましい。特に好ましい焼鈍雰囲気は不活性ガス中である。   The treatment atmosphere in this annealing is not particularly limited, but it is preferable to heat in an atmosphere with less moisture and oxygen so as not to increase the thickness of the oxide film. Specifically, it is preferable to heat in an inert gas such as argon or nitrogen or in a vacuum of 0.1 Pa or less. A particularly preferred annealing atmosphere is in an inert gas.

焼鈍の方法は特に限定されるものではなく、コイルに巻き取った状態でバッチ焼鈍しても良く、コイルを巻き戻し連続焼鈍した後コイルに巻き取っても良く、バッチ焼鈍と連続焼鈍の少なくともどちらかを複数回行っても良い。   The annealing method is not particularly limited, and may be batch-annealed while being wound around the coil, or may be wound around the coil after being rewound and continuously annealed, and at least either batch annealing or continuous annealing. You may do this several times.

焼鈍時の温度、時間は特に限定されるものではないが、例えばコイルの状態でバッチ焼鈍を行う場合は、450〜600℃にて、10分〜50時間焼鈍するのが好ましい。温度が450℃未満、時間が10分未満では、エッチピットが均一に生成する表面が得られず、(100)面の結晶方位の発達も不十分となる恐れがあるからである。逆に600℃を越えて焼鈍すると、コイルでバッチ焼鈍する場合はアルミニウム材が密着を起こし易くなり、また50時間を超えて焼鈍してもエッチングによる拡面効果は飽和し、却って熱エネルギーコストの増大を招く。特に好ましい焼鈍時の温度は450〜580℃、さらに好ましくは、460〜560℃である。特に好ましい焼鈍時間は20分〜40時間である。   Although the temperature and time during annealing are not particularly limited, for example, when batch annealing is performed in a coil state, it is preferable to perform annealing at 450 to 600 ° C. for 10 minutes to 50 hours. This is because if the temperature is less than 450 ° C. and the time is less than 10 minutes, a surface on which etch pits are uniformly generated cannot be obtained, and the crystal orientation of the (100) plane may be insufficiently developed. Conversely, when annealing is performed at temperatures exceeding 600 ° C., the aluminum material is likely to adhere when batch annealing is performed with a coil, and even if annealing is performed for more than 50 hours, the surface expansion effect by etching is saturated, and the heat energy cost is reduced. Incurs an increase. The temperature at the time of especially preferable annealing is 450-580 degreeC, More preferably, it is 460-560 degreeC. A particularly preferable annealing time is 20 minutes to 40 hours.

また、昇温速度・パターンは特に限定されず、一定速度で昇温させても良く、昇温、温度保持を繰り返しながらステップ昇温・冷却させても良く、焼鈍工程にて450〜600℃の温度域で合計10分〜50時間焼鈍されれば良い。   Further, the rate of temperature rise / pattern is not particularly limited, and the temperature may be raised at a constant rate, or may be stepped up / cooled while repeating the temperature rise and temperature holding, and the temperature is 450 to 600 ° C. in the annealing process. What is necessary is just to anneal for a total of 10 minutes-50 hours in a temperature range.

最終焼鈍後に得られる電解コンデンサ電極用アルミニウム材の厚さは特に規定されない。箔と称される200μm以下のものも、それ以上の厚いものも本発明に含まれる。   The thickness of the aluminum material for electrolytic capacitor electrodes obtained after the final annealing is not particularly defined. Those having a thickness of 200 μm or less, referred to as foil, and those having a thickness larger than that are included in the present invention.

最終焼鈍を終了したアルミニウム材には、拡面積率向上のためエッチング処理を実施し、電解コンデンサ用電極材とする。エッチング処理条件は特に限定されないが、好ましくは少なくとも一部に直流エッチング法を採用するのが良い。直流エッチング法によって、前記焼鈍において生成が促進されたエッチピットの核となる部分において、深く太くエッチングされ、多数のトンネル状ピットが生成され、高静電容量が実現される。   The aluminum material that has been subjected to the final annealing is subjected to an etching process to improve the area expansion ratio, and an electrode material for an electrolytic capacitor is obtained. Etching conditions are not particularly limited, but preferably a direct current etching method is preferably used at least partially. By the direct current etching method, the portion that becomes the nucleus of the etch pit promoted in the annealing is deeply and thickly etched to generate a large number of tunnel-like pits, thereby realizing a high capacitance.

エッチング処理後、望ましくは化成処理を行って陽極材とするのが良く、特に、中圧用および高圧用の電解コンデンサ電極材として使用されるのが良いが、陰極材として用いることを妨げるものではない。また、この電極材を用いた電解コンデンサは大きな静電容量を実現できる。   After the etching treatment, it is desirable to carry out a chemical conversion treatment to make an anode material, and in particular, it may be used as an electrolytic capacitor electrode material for medium pressure and high pressure, but it does not preclude use as a cathode material. . Moreover, the electrolytic capacitor using this electrode material can realize a large capacitance.

なお、静電容量の測定は常法に従って行えば良く、化成処理されたエッチド箔について、例えば30℃の80g/Lのホウ酸アンモニウム水溶液中で、ステンレス板を対極として120Hzにて測定する方法を例示できる。   The capacitance may be measured in accordance with a conventional method. For example, a method of measuring a chemically treated etched foil at 120 Hz using a stainless steel plate as a counter electrode in an aqueous solution of 80 g / L ammonium borate at 30 ° C. It can be illustrated.

アルミニウム材の表面層を除去するために、表1に示すアルカリ水溶液を調製した。   In order to remove the surface layer of the aluminum material, alkaline aqueous solutions shown in Table 1 were prepared.

Figure 0004938226
Figure 0004938226

(実施例1)
厚さ110μmに圧延された純度99.99質量%のアルミニウム箔をアルカリ水溶液A液に浸漬しアルミニウム箔表層を片面当たり80nm除去した後水洗した。次に、アルミニウム箔を30℃の3質量%硫酸水溶液に60秒間浸漬し、さらに水洗、乾燥を順次実施した。乾燥後のアルミニウム箔をアルゴン雰囲気下で室温から500℃まで50℃/hで昇温させた後、500℃にて24時間保持する最終焼鈍を施し、次いで冷却し、電解コンデンサ電極用アルミニウム箔を得た。
(実施例2〜43)
厚さ110μmに圧延された純度99.99質量%のアルミニウム箔を、表2または表3に記載の条件でアルカリ水溶液による表面層除去を行った後水洗した。次に、表2または表3に示す条件にて酸水溶液ヘ浸漬し、さらに水洗、乾燥を順次実施した。乾燥後のアルミニウム箔をアルゴン雰囲気下で室温から表2または表3に記載の焼鈍保持温度まで50℃/hで昇温させた後、表2または表3に記載の焼鈍保持温度にて保持する最終焼鈍を施し、次いで冷却し、電解コンデンサ電極用アルミニウム箔を得た。なお、表2および表3において「リン酸」は「オルトリン酸」である。
(比較例1)
厚さ110μmに圧延された純度99.99質量%のアルミニウム箔をアルカリ水溶液A液に浸漬しアルミニウム箔表面層を片面当たり40nm除去し、その後水洗、乾燥を順次実施した。乾燥後のアルミニウム箔をアルゴン雰囲気下で室温から500℃まで50℃/hで昇温させた後、500℃にて24時間保持する最終焼鈍を施し、次いで冷却し、電解コンデンサ電極用アルミニウム箔を得た。
(比較例2)
厚さ110μmに圧延された純度99.99質量%のアルミニウム箔をアルカリ水溶液A液に浸漬しアルミニウム箔表層を片面当たり40nm除去した後水洗した。次に、アルミニウム箔を30℃30質量%硝酸水溶液に60秒間浸漬しさらに水洗、乾燥を順次実施した。乾燥後のアルミニウム箔をアルゴン雰囲気下で室温から500℃まで50℃/hで昇温させた後、500℃にて24時間保持する最終焼鈍を施し、次いで冷却し、電解コンデンサ電極用アルミニウム箔を得た。
(比較例3)
硝酸水溶液の濃度が0.5質量%であること以外は比較例2と同様の方法にて電解コンデンサ電極用アルミニウム箔を得た。
Example 1
An aluminum foil having a purity of 99.99% by mass, rolled to a thickness of 110 μm, was immersed in an alkaline aqueous solution A to remove the aluminum foil surface layer by 80 nm per side and then washed with water. Next, the aluminum foil was immersed in a 3% by mass sulfuric acid aqueous solution at 30 ° C. for 60 seconds, and further washed with water and dried. The aluminum foil after drying was heated from room temperature to 500 ° C. at 50 ° C./h in an argon atmosphere, and then subjected to final annealing that was held at 500 ° C. for 24 hours, and then cooled to obtain an aluminum foil for electrolytic capacitor electrodes. Obtained.
(Examples 2 to 43)
An aluminum foil having a purity of 99.99% by mass rolled to a thickness of 110 μm was subjected to surface layer removal with an alkaline aqueous solution under the conditions described in Table 2 or Table 3, and then washed with water. Next, it was immersed in an acid aqueous solution under the conditions shown in Table 2 or Table 3, and further washed with water and dried. The aluminum foil after drying is heated at 50 ° C./h from room temperature to the annealing holding temperature shown in Table 2 or 3 under an argon atmosphere, and then held at the annealing holding temperature shown in Table 2 or Table 3. Final annealing was performed, followed by cooling to obtain an aluminum foil for electrolytic capacitor electrodes. In Tables 2 and 3, “phosphoric acid” is “orthophosphoric acid”.
(Comparative Example 1)
An aluminum foil with a purity of 99.99% by mass rolled to a thickness of 110 μm was immersed in an aqueous alkaline solution A to remove the surface layer of the aluminum foil by 40 nm per side, and then washed with water and dried successively. The aluminum foil after drying was heated from room temperature to 500 ° C. at 50 ° C./h in an argon atmosphere, and then subjected to final annealing that was held at 500 ° C. for 24 hours, and then cooled to obtain an aluminum foil for electrolytic capacitor electrodes. Obtained.
(Comparative Example 2)
An aluminum foil having a purity of 99.99% by mass rolled to a thickness of 110 μm was immersed in an alkaline aqueous solution A to remove the aluminum foil surface layer by 40 nm per side, and then washed with water. Next, the aluminum foil was immersed in an aqueous 30% by mass nitric acid solution at 30 ° C. for 60 seconds, further washed with water and dried. The aluminum foil after drying was heated from room temperature to 500 ° C. at 50 ° C./h in an argon atmosphere, and then subjected to final annealing that was held at 500 ° C. for 24 hours, and then cooled to obtain an aluminum foil for electrolytic capacitor electrodes. Obtained.
(Comparative Example 3)
An aluminum foil for electrolytic capacitor electrodes was obtained in the same manner as in Comparative Example 2 except that the concentration of the aqueous nitric acid solution was 0.5% by mass.

実施例および比較例で得られた電解コンデンサ電極用アルミニウム箔をHCl:1.0mol/lとH2SO4:3.5mol/lを含む液温75℃の水溶液に浸漬した後、電流密度0.2A/cm2で電解エッチング処理を施した。電解エッチング処理後の箔をさらに前記組成の塩酸−硫酸混合水溶液に90℃にて360秒浸漬し、ピット径を太くしエッチド箔を得た。 After immersing the aluminum foil for electrolytic capacitor electrodes obtained in Examples and Comparative Examples in an aqueous solution containing HCl: 1.0 mol / l and H 2 SO 4 : 3.5 mol / l and having a liquid temperature of 75 ° C., the current density was 0. Electrolytic etching was performed at 2 A / cm 2 . The foil after the electrolytic etching treatment was further immersed in a hydrochloric acid-sulfuric acid mixed aqueous solution having the above composition at 90 ° C. for 360 seconds to increase the pit diameter and obtain an etched foil.

得られたエッチド箔を化成電圧270VにてEIAJ規格に従い化成処理し静電容量測定用サンプルとし、静電容量を測定した。表2および表3に、電解コンデンサ電極用アルミニウム箔作製条件、および比較例3の静電容量を100%としたときの相対静電容量を示す。   The obtained etched foil was subjected to chemical conversion treatment at a chemical conversion voltage of 270 V in accordance with the EIAJ standard to obtain a capacitance measurement sample, and the capacitance was measured. Tables 2 and 3 show the conditions for producing the aluminum foil for electrolytic capacitor electrodes and the relative capacitance when the capacitance of Comparative Example 3 is 100%.

Figure 0004938226
Figure 0004938226

Figure 0004938226
Figure 0004938226

上記のように、アルミニウム箔の表面層を除去した後、硫酸、塩酸、リン元素を含む酸の中から選ばれる1種もしくは2種以上の酸を含む酸水溶液に接触させた後焼鈍した実施例は静電容量が高い。一方、比較例1はアルミニウム材と酸水溶液の接触がなく静電容量が低い。比較例2および比較例3はアルミニウム材を硝酸を含む水溶液に接触させない比較例1よりも静電容量が高いが、どちらも実施例より静電容量が低い。   As described above, after removing the surface layer of the aluminum foil, it was annealed after being brought into contact with an acid aqueous solution containing one or more acids selected from acids containing sulfuric acid, hydrochloric acid, and phosphorus elements. Has a high capacitance. On the other hand, Comparative Example 1 has no contact between the aluminum material and the aqueous acid solution and has a low capacitance. Although the comparative example 2 and the comparative example 3 have a higher electrostatic capacity than the comparative example 1 which does not make an aluminum material contact the aqueous solution containing nitric acid, both have a lower electrostatic capacity than an Example.

Claims (14)

冷間圧延を施したアルミニウム材の表面層を除去した後、硫酸及び/または塩酸を含む酸水溶液に接触させ、その後焼鈍することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。 A method for producing an aluminum material for electrolytic capacitor electrodes, comprising : removing a surface layer of an aluminum material that has been cold-rolled, contacting with an acid aqueous solution containing sulfuric acid and / or hydrochloric acid, and thereafter annealing. 表面層除去量がアルミニウム材片面あたり5〜200nmである請求項1に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 1, wherein the surface layer removal amount is 5 to 200 nm per one surface of the aluminum material. 表面層除去をアルカリ水溶液を用いて行う請求項1または請求項2に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 1 or 2, wherein the surface layer is removed using an alkaline aqueous solution. アルカリ水溶液中に含まれるアルカリが、水酸化ナトリウム、水酸化カルシウム、水酸化カリウム、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、リン酸三ナトリウムから選ばれた1種または2種以上である請求項3に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The alkali contained in the aqueous alkali solution is one or more selected from sodium hydroxide, calcium hydroxide, potassium hydroxide, sodium orthosilicate, sodium metasilicate, and trisodium phosphate. Manufacturing method of aluminum material for electrolytic capacitor electrodes. 酸水溶液中の硫酸濃度が0.0005質量%以上60質量%以下である請求項1ないし請求項4のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 4, wherein the sulfuric acid concentration in the acid aqueous solution is 0.0005 mass% or more and 60 mass% or less. 酸水溶液中の塩酸濃度が0.0005質量%以上30質量%以下である請求項1ないし請求項4のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 4, wherein the hydrochloric acid concentration in the acid aqueous solution is 0.0005 mass% or more and 30 mass% or less. 酸水溶液の温度が10℃以上95℃以下であるとともに、アルミニウム材と酸水溶液との接触時間が0.2秒以上10分以下である請求項1ないし請求項6のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。The temperature of the acid aqueous solution is 10 ° C or more and 95 ° C or less, and the contact time between the aluminum material and the acid aqueous solution is 0.2 seconds or more and 10 minutes or less, 7. The method according to any one of claims 1 to 6. Manufacturing method of aluminum material for electrolytic capacitor electrodes. 焼鈍を450〜600℃にて不活性雰囲気中で行う請求項1ないし請求項7のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。The manufacturing method of the aluminum material for electrolytic capacitor electrodes of any one of Claim 1 thru | or 7 which anneals in 450-600 degreeC in inert atmosphere. アルミニウム純度が99.9質量%以上である請求項1ないし請求項8のいずれか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 8, wherein the aluminum purity is 99.9% by mass or more. 請求項1ないし請求項9のいずれか1項に記載の製造方法によって製造された電解コンデンサ電極用アルミニウム材。The aluminum material for electrolytic capacitor electrodes manufactured by the manufacturing method according to any one of claims 1 to 9. 中圧用または高圧用陽極材である請求項10に記載の電解コンデンサ電極用アルミニウム材。The aluminum material for electrolytic capacitor electrodes according to claim 10, which is an anode material for medium pressure or high pressure. 請求項1ないし請求項9のいずれか1項に記載の製造方法によって製造されたアルミニウム材に、エッチングを実施することを特徴とする電解コンデンサ用電極材の製造方法。The manufacturing method of the electrode material for electrolytic capacitors characterized by etching to the aluminum material manufactured by the manufacturing method of any one of Claim 1 thru | or 9. エッチングの少なくとも一部が直流エッチングである請求項12に記載の電解コンデンサ用電極材の製造方法。The method for producing an electrode material for an electrolytic capacitor according to claim 12, wherein at least a part of the etching is direct current etching. 電極材として、請求項12または請求項13に記載の製造方法によって製造されたアルミニウム電極材が用いられていることを特徴とするアルミニウム電解コンデンサ。The aluminum electrolytic capacitor manufactured by the manufacturing method of Claim 12 or Claim 13 as an electrode material is used, The aluminum electrolytic capacitor characterized by the above-mentioned.
JP2004165819A 2003-06-03 2004-06-03 Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor Expired - Fee Related JP4938226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004165819A JP4938226B2 (en) 2003-06-03 2004-06-03 Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003157887 2003-06-03
JP2003157887 2003-06-03
JP2004165819A JP4938226B2 (en) 2003-06-03 2004-06-03 Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010006634A Division JP4981932B2 (en) 2003-06-03 2010-01-15 Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2005015916A JP2005015916A (en) 2005-01-20
JP4938226B2 true JP4938226B2 (en) 2012-05-23

Family

ID=34196679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004165819A Expired - Fee Related JP4938226B2 (en) 2003-06-03 2004-06-03 Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4938226B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332157A (en) * 2005-05-24 2006-12-07 Sumitomo Light Metal Ind Ltd Aluminum foil for electrolytic capacitor electrode and method for manufacturing same
JP4002291B2 (en) * 2005-08-29 2007-10-31 三菱アルミニウム株式会社 Pit generation etching method
JP5004844B2 (en) * 2007-05-25 2012-08-22 ニチコン株式会社 Method for producing anode foil for aluminum electrolytic capacitor
JP6353109B1 (en) * 2017-03-30 2018-07-04 住友化学株式会社 Method for cleaning target material, method for producing target material, method for producing recycle ingot, and recycle ingot
JP6420393B2 (en) * 2017-03-30 2018-11-07 住友化学株式会社 Method for recycling target material, method for producing recycled ingot, and recycled ingot
JP6872514B2 (en) * 2018-06-07 2021-05-19 住友化学株式会社 Methods for cleaning the target material, manufacturing methods for the target material, manufacturing methods for recycled ingots and recycled ingots.

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6092489A (en) * 1983-10-26 1985-05-24 Sumitomo Light Metal Ind Ltd Production of aluminum foil for electropolytic capacitor
JPH07113155B2 (en) * 1986-09-30 1995-12-06 昭和アルミニウム株式会社 Method for manufacturing aluminum foil for electrolytic capacitor electrode
JPH028354A (en) * 1988-05-06 1990-01-11 Kobe Steel Ltd Manufacture of aluminum foil for electrolytic capacitor anode
JP2644311B2 (en) * 1988-11-29 1997-08-25 古河電気工業株式会社 Manufacturing method of aluminum foil for electrolytic capacitor electrode
JP3002233B2 (en) * 1990-05-31 2000-01-24 昭和アルミニウム株式会社 Method for producing aluminum foil for electrolytic capacitor electrode
JP2735970B2 (en) * 1992-01-27 1998-04-02 昭和アルミニウム株式会社 Manufacturing method of aluminum foil for electrolytic capacitor
JPH05200405A (en) * 1992-01-27 1993-08-10 Showa Alum Corp Production of aluminum foil for electrolytic capacitor
JP3186160B2 (en) * 1992-01-27 2001-07-11 昭和アルミニウム株式会社 Manufacturing method of aluminum foil for electrolytic capacitor
JPH05279815A (en) * 1992-03-30 1993-10-26 Nippon Foil Mfg Co Ltd Production of aluminum foil for electrolytic capacitor anode
JPH07180006A (en) * 1993-12-24 1995-07-18 Kobe Steel Ltd Production of aluminum foil for electrolytic capacitor electrode
JPH083700A (en) * 1994-06-21 1996-01-09 Furukawa Electric Co Ltd:The Production of aluminum or aluminum alloy foil for cathode of electrolytic capacitor
JPH09167721A (en) * 1995-12-15 1997-06-24 Matsushita Electric Ind Co Ltd Manufacture of electrode foil for aluminum electrolytic capacitor
JP3308456B2 (en) * 1996-09-05 2002-07-29 住友軽金属工業株式会社 Manufacturing method of aluminum foil for electrode of electrolytic capacitor
JP3495265B2 (en) * 1998-11-12 2004-02-09 昭和電工株式会社 Method for producing aluminum foil for electrolytic capacitor electrode
JP2000228333A (en) * 1998-12-04 2000-08-15 Showa Alum Corp Manufacture of aluminum foil for electrolytic capacitor electrode
JP4421701B2 (en) * 1999-07-07 2010-02-24 昭和電工株式会社 Aluminum foil for electrolytic capacitor electrode
JP3582451B2 (en) * 2000-04-17 2004-10-27 松下電器産業株式会社 Manufacturing method of anode foil for aluminum electrolytic capacitor
JP4498682B2 (en) * 2002-04-25 2010-07-07 昭和電工株式会社 The manufacturing method of the aluminum material for electrolytic capacitor electrodes, the manufacturing method of the electrode material for electrolytic capacitors, and an aluminum electrolytic capacitor.

Also Published As

Publication number Publication date
JP2005015916A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP5749586B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, method for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP5501152B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP5833151B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4938226B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP5551743B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4498682B2 (en) The manufacturing method of the aluminum material for electrolytic capacitor electrodes, the manufacturing method of the electrode material for electrolytic capacitors, and an aluminum electrolytic capacitor.
JP4708808B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4981932B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4308556B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JP4732892B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4652205B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4874596B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4226930B2 (en) Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP4170797B2 (en) Method for manufacturing electrolytic capacitor electrode aluminum material, electrolytic capacitor electrode aluminum material, and electrolytic capacitor electrode manufacturing method
JP4629312B2 (en) Method for producing aluminum material for electrolytic capacitor electrode and method for producing electrode material for electrolytic capacitor
JP4690182B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP5123479B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4874589B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4308552B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JP4105565B2 (en) Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP4874600B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2009102741A (en) Method of manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, and method of manufacturing electrode material for electrolytic capacitor
JPH04311550A (en) Production of aluminum foil for electrode of electrolytic capacitor
JP2006291354A (en) Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, process for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4938226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees