JP4708808B2 - Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor - Google Patents

Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor Download PDF

Info

Publication number
JP4708808B2
JP4708808B2 JP2005041045A JP2005041045A JP4708808B2 JP 4708808 B2 JP4708808 B2 JP 4708808B2 JP 2005041045 A JP2005041045 A JP 2005041045A JP 2005041045 A JP2005041045 A JP 2005041045A JP 4708808 B2 JP4708808 B2 JP 4708808B2
Authority
JP
Japan
Prior art keywords
aluminum material
electrolytic capacitor
aluminum
capacitor electrodes
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005041045A
Other languages
Japanese (ja)
Other versions
JP2005268773A (en
Inventor
秀樹 西森
敏 穂積
豊 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005041045A priority Critical patent/JP4708808B2/en
Publication of JP2005268773A publication Critical patent/JP2005268773A/en
Application granted granted Critical
Publication of JP4708808B2 publication Critical patent/JP4708808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

この発明は、電解コンデンサ電極用アルミニウム材の製造方法、電解コンデンサ電極用アルミニウム材、アルミニウム電解コンデンサ用陽極材およびアルミニウム電解コンデンサに関する。   The present invention relates to a method for producing an aluminum material for electrolytic capacitor electrodes, an aluminum material for electrolytic capacitor electrodes, an anode material for aluminum electrolytic capacitors, and an aluminum electrolytic capacitor.

なお、この明細書において「アルミニウム」の語はその合金を含む意味で用い、アルミニウム材には箔と板およびこれらを用いた成形体が含まれる。   In this specification, the term “aluminum” is used to include alloys thereof, and aluminum materials include foils and plates and molded bodies using these.

アルミニウム電解コンデンサ用電極材料として一般に用いられるアルミニウム材は、静電容量を大きくする目的で、電気化学的あるいは化学的エッチング処理を施して、アルミニウム材の実効面積を拡大することが行われている。   An aluminum material generally used as an electrode material for an aluminum electrolytic capacitor is subjected to electrochemical or chemical etching treatment to increase the effective area of the aluminum material for the purpose of increasing the capacitance.

直流エッチング法でトンネル状ピットを生成させる電解コンデンサ陽極用アルミニウム材の製造においては、アルミニウムの立方体集合組織を発達させるために500℃前後の温度で不活性雰囲気もしくは真空中で最終焼鈍するのが一般的である。最終焼鈍は、冷間圧延より後の工程で行われる。また、冷間圧延工程の途中において、最終焼鈍後の立方体方位占有率を高めるために必要に応じて焼鈍を実施しても良い。上記冷間圧延工程途中の焼鈍を中間焼鈍と称し、一般には窒素やアルゴン等の不活性雰囲気中で実施される。   In the manufacture of aluminum materials for electrolytic capacitor anodes that generate tunnel-like pits by direct current etching, it is common to perform final annealing in an inert atmosphere or vacuum at a temperature of around 500 ° C in order to develop a cubic texture of aluminum. Is. The final annealing is performed in a process after the cold rolling. Moreover, you may implement annealing as needed in order to raise the cube orientation occupation rate after the last annealing in the middle of a cold rolling process. The annealing in the middle of the cold rolling process is referred to as intermediate annealing, and is generally performed in an inert atmosphere such as nitrogen or argon.

最終焼鈍後のアルミニウム材のエッチング特性は、焼鈍前のアルミニウム材の特性に大きく依存することから、アルミニウム材表面層の特性を均一化するために、冷間圧延の途中や冷間圧延終了後にアルミニウムを溶解する液で洗浄することが検討されている。   Since the etching characteristics of the aluminum material after the final annealing largely depend on the characteristics of the aluminum material before the annealing, in order to make the characteristics of the surface layer of the aluminum material uniform, the aluminum material is in the middle of cold rolling or after the end of the cold rolling. It has been studied to wash with a solution that dissolves.

特許文献1には、アルミニウム板の厚さ(t)が式3.3to≦t≦20to(toは最終箔厚)を満足する厚みに冷間圧延された後に、アルカリ性水溶液又は酸性水溶液を用いてアルミニウム板の表面を溶解洗浄し、その後更に冷間圧延を施すことを特徴とする電解コンデンサ用アルミニウム箔の製造方法により、厚い酸化皮膜の形成が防止されることが記載されている。 Patent Document 1 discloses that an alkaline aqueous solution or an acidic aqueous solution is used after cold-rolling the aluminum plate to a thickness satisfying the formula 3.3 t o ≦ t ≦ 20 t o (t o is the final foil thickness). It is described that the formation of a thick oxide film is prevented by the method for producing an aluminum foil for electrolytic capacitors, characterized in that the surface of the aluminum plate is dissolved and washed, and then cold rolled.

また、特許文献2には、アルミニウム箔の表面層を除去する工程と、除去後、温度40〜350℃、露点:0〜80℃、時間:30〜1800秒の条件で加熱酸化する工程と、加熱酸化後、非酸化性雰囲気で焼鈍する工程を実施することにより、焼鈍後のアルミニウム箔表面層の酸化膜を薄くでき、かつエッチング液中で速やかに溶解除去することが開示され、また、アルミニウム箔の表面層を除去する手段として水酸化ナトリウム等のアルカリ溶液、酸溶液を用いた洗浄が例示されている。   Patent Document 2 includes a step of removing a surface layer of an aluminum foil, a step of heat oxidation under conditions of a temperature of 40 to 350 ° C., a dew point of 0 to 80 ° C., and a time of 30 to 1800 seconds after the removal, It is disclosed that by performing a step of annealing in a non-oxidizing atmosphere after heat oxidation, the oxide film on the surface layer of the aluminum foil after annealing can be thinned and quickly dissolved and removed in an etching solution. As a means for removing the surface layer of the foil, cleaning using an alkali solution such as sodium hydroxide or an acid solution is exemplified.

また、特許文献3には、純度99.99%以上で粗面化率向上不純物を含む原箔を250℃〜530℃で一次焼鈍した後、アルミニウム箔の表面層を除去し、その後、500℃以上で最終焼鈍を行う電解コンデンサ電極用アルミニウム箔の製造方法が開示されている。この特許文献3の方法によれば、アルミニウム箔表面層のFe平均濃度が内部の2.0比以下とすることにより静電容量の高いコンデンサを得ることができる電解コンデンサ電極用アルミニウム箔を提供できるとされている。
特開平3−257137号公報 特開平7−201673号公報 特開2001−210561号公報
Patent Document 3 discloses that a primary foil having a purity of 99.99% or more and containing a roughening rate improving impurity is subjected to primary annealing at 250 ° C. to 530 ° C., then the surface layer of the aluminum foil is removed, and then at 500 ° C. or more. A method of manufacturing an aluminum foil for electrolytic capacitor electrodes that performs final annealing is disclosed. According to the method of Patent Document 3, an aluminum foil for an electrolytic capacitor electrode can be provided that can provide a capacitor with a high electrostatic capacity when the average Fe concentration of the aluminum foil surface layer is 2.0 or less. ing.
JP-A-3-257137 JP-A-7-201673 JP 2001-210561 A

しかしながら、特許文献1に記載された技術では、洗浄する前のアルミニウム材表面層は不均質であるため、洗浄時のアルミニウム材の表面層の溶け方は不均質となり、このため最終焼鈍後のアルミニウム材のエッチング特性の向上は不十分であった。   However, in the technique described in Patent Document 1, since the surface layer of the aluminum material before cleaning is inhomogeneous, the melting method of the surface layer of the aluminum material at the time of cleaning becomes inhomogeneous, and thus the aluminum after the final annealing is performed. The improvement of the etching characteristics of the material was insufficient.

また、特許文献2に記載された技術では、焼鈍前の加熱酸化はアルミニウム材表層酸化膜の均質化に寄与するものの、除去前のアルミニウム材表面層の特性が不均質であるため、アルカリ溶液あるいは酸溶液を用いて洗浄した後の酸化膜は不均質となり、その後の加熱酸化によるエッチング特性の向上には限界があった。   Moreover, in the technique described in Patent Document 2, although the heating oxidation before annealing contributes to the homogenization of the surface oxide film of the aluminum material, the characteristics of the surface layer of the aluminum material before removal are inhomogeneous, so The oxide film after washing with an acid solution becomes inhomogeneous, and there is a limit to the improvement of etching characteristics by subsequent thermal oxidation.

また、特許文献3では、表面層除去前の一次焼鈍中の雰囲気が記載されておらず、本願記載の酸化性雰囲気中で加熱した後表面層を均一に除去する方法が検討されていない。   Moreover, in patent document 3, the atmosphere in the primary annealing before surface layer removal is not described, but the method of removing a surface layer uniformly after heating in the oxidizing atmosphere described in this application is not examined.

この発明は、このような技術的背景に鑑みてなされたものであって、従来の電解コンデンサ用アルミニウム材の製造法において、アルミニウム材表面層を洗浄により溶解させる際に、アルミニウム材表面層の溶け方が不均質であるため最終焼鈍後のアルミニウム材のエッチング特性が不十分であるという問題点を解決し、エッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法、電解コンデンサ電極用アルミニウム材、電解コンデンサ用電極材の製造方法及びアルミニウム電解コンデンサを提供することを課題とする。   The present invention has been made in view of such a technical background. In the conventional method for producing an aluminum material for electrolytic capacitors, the aluminum material surface layer is dissolved when the aluminum material surface layer is dissolved by washing. Solved the problem that the etching characteristics of the aluminum material after the final annealing is insufficient because the method is inhomogeneous, the manufacturing method of the aluminum material for electrolytic capacitor electrodes excellent in etching characteristics, the aluminum material for electrolytic capacitor electrodes, It is an object of the present invention to provide an electrolytic capacitor electrode material manufacturing method and an aluminum electrolytic capacitor.

上記課題を解決するために、この発明は、以下の手段を提供する。
(1)アルミニウム材を酸化性雰囲気中で加熱した後、アルミニウム材表面層を洗浄により除去し、その後最終焼鈍することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
(2)冷間圧延終了後にアルミニウム材を酸化性雰囲気中で加熱した後、アルミニウム材表面層を洗浄により除去し、その後最終焼鈍することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
(3)洗浄に用いる洗浄液がアルカリ性水溶液である前項1または前項2に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(4)洗浄に用いる洗浄液が酸性水溶液である前項1または前項2に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(5)洗浄は、アルカリ性水溶液による洗浄と酸性水溶液による洗浄の順次的実施により行われる前項1または前項2に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(6)アルカリが水酸化ナトリウム、水酸化カルシウム、水酸化カリウム、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、リン酸三ナトリウム、炭酸ナトリウムの中から選ばれた1種または2種以上である前項3または請求項5に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(7)酸性水溶液中の酸が塩酸、硫酸、硝酸、リン元素を含む酸の中から選ばれた1種または2種以上である前項4または前項5に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(8)酸化性雰囲気中での加熱後の洗浄によるアルミニウム材の表面層平均除去量が、以下に規定する除去量D(nm)においてアルミニウム材片面あたり1nm以上500nm以下である前項1ないし前項7の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
In order to solve the above problems, the present invention provides the following means.
(1) A method for producing an aluminum material for electrolytic capacitor electrodes, wherein the aluminum material is heated in an oxidizing atmosphere, and then the surface layer of the aluminum material is removed by washing, followed by final annealing.
(2) A method for producing an aluminum material for electrolytic capacitor electrodes, comprising heating the aluminum material in an oxidizing atmosphere after the end of cold rolling, removing the surface layer of the aluminum material by washing, and then performing final annealing.
(3) The method for producing an aluminum material for electrolytic capacitor electrodes as described in (1) or (2) above, wherein the cleaning liquid used for cleaning is an alkaline aqueous solution.
(4) The method for producing an aluminum material for electrolytic capacitor electrodes as described in (1) or (2) above, wherein the cleaning solution used for cleaning is an acidic aqueous solution.
(5) The method for producing an aluminum material for electrolytic capacitor electrodes as described in (1) or (2) above, wherein the washing is performed by sequential execution of washing with an alkaline aqueous solution and washing with an acidic aqueous solution.
(6) The preceding item 3 or claim, wherein the alkali is one or more selected from sodium hydroxide, calcium hydroxide, potassium hydroxide, sodium orthosilicate, sodium metasilicate, trisodium phosphate, and sodium carbonate. Item 6. A method for producing an aluminum material for electrolytic capacitor electrodes according to Item 5.
(7) Production of an aluminum material for electrolytic capacitor electrodes as described in (4) or (5) above, wherein the acid in the acidic aqueous solution is one or more selected from acids containing hydrochloric acid, sulfuric acid, nitric acid and phosphorus element Method.
(8) In the preceding items 1 to 7, the average removal amount of the surface layer of the aluminum material by cleaning after heating in an oxidizing atmosphere is 1 nm to 500 nm per one side of the aluminum material at a removal amount D (nm) specified below. The manufacturing method of the aluminum material for electrolytic capacitor electrodes of any one of these.

除去量D(nm)=E(g/cm2)×107/2.7(g/cm3
ただし、Eは洗浄による単位表面積当たりの質量減
2.7g/cm3はアルミニウムの密度
(9)酸化性雰囲気中での加熱温度が50〜400℃である前項1ないし前項8の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(10)酸化性雰囲気中での加熱時間が3秒以上72時間以下である前項9に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(11) 酸化雰囲気中での加熱における雰囲気中の酸素濃度が0.1体積%以上である前項1ないし前項10の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(12)酸化性雰囲気中での加熱前、もしくは酸化性雰囲気中での加熱後アルミニウム材表面層の洗浄前に、脱脂を行う前項1ないし前項11の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(13)有機溶剤を用いて脱脂を行う前項12に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(14)界面活性剤が添加された水を用いて脱脂を行う前項12に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(15)最終焼鈍が不活性ガス雰囲気中で行われる前項1ないし前項14の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(16)最終焼鈍が450℃以上600℃以下の温度で行われる前項1ないし前項15の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(17)アルミニウム材のアルミニウム純度が99.9質量%以上である前項1ないし前項16の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(18)前項1ないし前項17の何れか1項に記載の製造方法によって製造された電解コンデンサ電極用アルミニウム材。
(19)中圧用または高圧用陽極材である前項18に記載の電解コンデンサ電極用アルミニウム材。
(20) 前項1ないし前項17の何れか1項に記載の製造方法によって製造されたアルミニウム材に、エッチングを実施することを特徴とする電解コンデンサ用電極材の製造方法。
(21)エッチング後、化成処理を実施する前項20に記載の電解コンデンサ用電極材の製造方法。
(22)エッチングの少なくとも一部が直流電解エッチングである前項20または21に記載の電解コンデンサ用電極材の製造方法。
(23)前項20ないし前項22の何れか1項に記載の製造方法によって製造されたアルミニウム電解コンデンサ用陽極材。
(24)電極材として前項20ないし前項22の何れか1項に記載の製造方法によって製造されたアルミニウム電極材が用いられていることを特徴とするアルミニウム電解コンデンサ。
Removal amount D (nm) = E (g / cm 2 ) x 10 7 /2.7 (g / cm 3 )
Where E is the weight loss per unit surface area due to cleaning
2.7 g / cm 3 is the density of aluminum (9) The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of the preceding items 1 to 8, wherein the heating temperature in an oxidizing atmosphere is 50 to 400 ° C.
(10) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 9, wherein the heating time in an oxidizing atmosphere is 3 seconds to 72 hours.
(11) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 1 to 10, wherein the oxygen concentration in the atmosphere in heating in an oxidizing atmosphere is 0.1% by volume or more.
(12) The electrolytic capacitor electrode according to any one of the preceding items 1 to 11, wherein the degreasing is performed before heating in an oxidizing atmosphere or after heating in an oxidizing atmosphere and before cleaning the surface layer of the aluminum material. Manufacturing method of aluminum material.
(13) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 12, wherein degreasing is performed using an organic solvent.
(14) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 12, wherein degreasing is performed using water to which a surfactant is added.
(15) The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of items 1 to 14, wherein the final annealing is performed in an inert gas atmosphere.
(16) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 1 to 15, wherein the final annealing is performed at a temperature of 450 ° C. or more and 600 ° C. or less.
(17) The method for producing an aluminum material for electrolytic capacitor electrodes as described in any one of 1 to 16 above, wherein the aluminum purity of the aluminum material is 99.9% by mass or more.
(18) An aluminum material for electrolytic capacitor electrodes produced by the production method according to any one of items 1 to 17 above.
(19) The aluminum material for electrolytic capacitor electrodes as described in 18 above, which is an anode material for medium pressure or high pressure.
(20) A method for producing an electrode material for an electrolytic capacitor, wherein the aluminum material produced by the production method according to any one of items 1 to 17 is etched.
(21) The method for producing an electrode material for an electrolytic capacitor as described in 20 above, wherein the chemical conversion treatment is performed after the etching.
(22) The method for producing an electrode material for electrolytic capacitors as described in 20 or 21 above, wherein at least a part of the etching is direct current electrolytic etching.
(23) An anode material for an aluminum electrolytic capacitor produced by the production method according to any one of items 20 to 22 above.
(24) An aluminum electrolytic capacitor characterized in that an aluminum electrode material produced by the production method according to any one of items 20 to 22 is used as an electrode material.

前項(1)に係る発明によれば、アルミニウム材を酸化性雰囲気中で加熱した後、アルミニウム材表面層を洗浄により除去するから、洗浄時にアルミニウム材を均一に溶解することができ、その後最終焼鈍により、エッチング特性に優れた電解コンデンサ電極用アルミニウム材を得ることができる。   According to the invention according to the preceding item (1), since the aluminum material surface layer is removed by cleaning after the aluminum material is heated in an oxidizing atmosphere, the aluminum material can be uniformly dissolved during cleaning, and then the final annealing is performed. Thus, an aluminum material for electrolytic capacitor electrodes excellent in etching characteristics can be obtained.

前項(2)に係る発明によれば、冷間圧延終了後にアルミニウム材を酸化性雰囲気中で加熱した後、アルミニウム材表面層を洗浄により除去するから、洗浄時にアルミニウム材を均一に溶解することができ、その後最終焼鈍により、エッチング特性に優れた電解コンデンサ電極用アルミニウム材を得ることができる。   According to the invention according to item (2) above, after the aluminum material is heated in an oxidizing atmosphere after the end of cold rolling, the aluminum material surface layer is removed by washing, so that the aluminum material can be uniformly dissolved during washing. The aluminum material for electrolytic capacitor electrodes excellent in etching characteristics can be obtained by final annealing thereafter.

前項(3)に係る発明によれば、洗浄に用いる洗浄液がアルカリ性水溶液であるから、アルミニウム材表面層を洗浄により確実に除去することができる。   According to the invention according to item (3), since the cleaning liquid used for cleaning is an alkaline aqueous solution, the aluminum material surface layer can be reliably removed by cleaning.

前項(4)に係る発明によれば、洗浄に用いる洗浄液が酸性水溶液であるからアルミニウム材表面層を洗浄により確実に除去することができる。
前項(5)にかかる発明によれば、洗浄は、アルカリ性水溶液による洗浄と酸性水溶液による洗浄の順次的実施により行われるためアルミニウム材表面層を洗浄により確実に除去することができる。
According to the invention according to item (4) above, since the cleaning liquid used for cleaning is an acidic aqueous solution, the aluminum material surface layer can be reliably removed by cleaning.
According to the invention of the preceding item (5), the cleaning is performed by sequential execution of cleaning with an alkaline aqueous solution and cleaning with an acidic aqueous solution, so that the aluminum material surface layer can be reliably removed by cleaning.

前項(6)に係る発明によれば、アルカリが水酸化ナトリウム、水酸化カルシウム、水酸化カリウム、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、リン酸三ナトリウム、炭酸ナトリウムの中から選ばれた1種または2種以上であるから、より効果的な表面層の除去を行うことができる。   According to the invention according to item (6), the alkali is one or two selected from sodium hydroxide, calcium hydroxide, potassium hydroxide, sodium orthosilicate, sodium metasilicate, trisodium phosphate, and sodium carbonate. Since it is a seed or more, the surface layer can be more effectively removed.

前項(7)に係る発明によれば、酸性水溶液中の酸が塩酸、硫酸、硝酸、リン元素を含む酸の中から選ばれた1種または2種以上であるから、より効果的な表面層の除去を行うことができる。   According to the invention according to item (7) above, the acid in the acidic aqueous solution is one or more selected from acids containing hydrochloric acid, sulfuric acid, nitric acid, and phosphorus element, so that a more effective surface layer Can be removed.

前項(8)に係る発明によれば、洗浄によるアルミニウム材表面層平均除去量が、以下に規定する除去量D(nm)においてアルミニウム材片面あたり1nm以上500nm以下であるから、アルミニウム材の均一溶解による静電容量の増大効果を確実に得ることができる。   According to the invention according to the preceding item (8), since the average removal amount of the aluminum material surface layer by cleaning is 1 nm to 500 nm per side of the aluminum material at the removal amount D (nm) specified below, the aluminum material is uniformly dissolved The effect of increasing the electrostatic capacity can be obtained with certainty.

除去量D(nm)=E(g/cm2)×107/2.7(g/cm3
ただし、Eは洗浄による単位表面積当たりの質量減
2.7g/cm3はアルミニウムの密度
前項(9)に係る発明によれば、酸化性雰囲気中での加熱温度が50〜400℃であるから、アルミニウム材表面層の過度の厚さの酸化膜の生成を抑制しながら十分に酸化させることができ、その後の洗浄による表面層の除去時に表面層を均一に溶解することができる。
Removal amount D (nm) = E (g / cm 2 ) x 10 7 /2.7 (g / cm 3 )
Where E is the weight loss per unit surface area due to cleaning
2.7 g / cm 3 is the density of aluminum According to the invention according to item (9) above, the heating temperature in the oxidizing atmosphere is 50 to 400 ° C. Oxidation can be sufficiently performed while suppressing generation, and the surface layer can be uniformly dissolved when the surface layer is removed by subsequent washing.

前項(10)に係る発明によれば、酸化性雰囲気中での加熱時間が3秒以上72時間以下であるから、アルミニウム材の表面層を過度の厚さの酸化膜の生成を抑制しながら十分に酸化させることができ、その後の洗浄による表面層の除去時に表面層を均一に溶解することができる。   According to the invention according to item (10) above, since the heating time in the oxidizing atmosphere is 3 seconds or more and 72 hours or less, the surface layer of the aluminum material is sufficient while suppressing the formation of an excessively thick oxide film. The surface layer can be uniformly dissolved when the surface layer is removed by subsequent washing.

前項(11)に係る発明によれば、 酸化雰囲気中での加熱における雰囲気中の酸素濃度が0.1体積%以上であるから、アルミニウム材表面層を均一に溶解することができる。   According to the invention according to item (11) above, since the oxygen concentration in the atmosphere in the heating in the oxidizing atmosphere is 0.1% by volume or more, the aluminum material surface layer can be uniformly dissolved.

前項(12)に係る発明によれば、酸化性雰囲気中での加熱前、もしくは酸化性雰囲気中での加熱後アルミニウム材表面層の洗浄前に、脱脂を行うから、アルミニウム材の表面に付着している油分を除去することができ、より性能の良い電解コンデンサ電極用アルミニウム材を製造することができる。   According to the invention according to the preceding item (12), degreasing is performed before heating in an oxidizing atmosphere or after heating in an oxidizing atmosphere and before cleaning the surface layer of the aluminum material. Therefore, the aluminum material for electrolytic capacitor electrodes with better performance can be produced.

前項(13)に係る発明によれば、有機溶剤を用いて脱脂を行うから、確実に脱脂を行うことができる。   According to the invention relating to item (13) above, degreasing is performed using an organic solvent, and therefore degreasing can be reliably performed.

前項(14)に係る発明によれば、界面活性剤が添加された水を用いて脱脂を行うから、確実に脱脂を行うことができる。   According to the invention according to item (14) above, degreasing is performed using water to which a surfactant has been added, and therefore degreasing can be reliably performed.

前項(15)に係る発明によれば、最終焼鈍が不活性ガス雰囲気中で行われるから、酸化皮膜の厚さの増大化を抑制することができ、アルミニウム材の酸化雰囲気中での加熱及び洗浄による表面層の除去の効果を有効に発揮させることができる。   According to the invention of the preceding item (15), since the final annealing is performed in an inert gas atmosphere, an increase in the thickness of the oxide film can be suppressed, and heating and cleaning in an oxidizing atmosphere of the aluminum material The effect of removing the surface layer can be effectively exhibited.

前項(16)に係る発明によれば、最終焼鈍が450℃以上600℃以下の温度で行われるから、エッチピットが均一に生成するアルミニウム材表面を得ることができる。   According to the invention according to item (16) above, since the final annealing is performed at a temperature of 450 ° C. or higher and 600 ° C. or lower, an aluminum material surface on which etch pits are uniformly generated can be obtained.

前項(17)に係る発明によれば、アルミニウム材のアルミニウム純度が99.9質量%以上であるから不純物が多すぎることによるエッチング特性の劣化を防止することができる。   According to the invention relating to item (17) above, since the aluminum purity of the aluminum material is 99.9% by mass or more, it is possible to prevent the etching characteristics from being deteriorated due to excessive impurities.

前項(18)に係る発明によれば、エッチング特性に優れた電解コンデンサ電極用アルミニウム材となし得る。   According to the invention according to item (18) above, the aluminum material for electrolytic capacitor electrodes having excellent etching characteristics can be obtained.

前項(19)に係る発明によれば、エッチング特性に優れた中圧用または高圧用陽極材となし得る。   According to the invention of the previous item (19), it can be an anode material for medium pressure or high pressure excellent in etching characteristics.

前項(20)に係る発明によれば、エッチングにより大きな静電容量を有する電解コンデンサ用電極材を製造することができる。   According to the invention of the preceding item (20), an electrode material for an electrolytic capacitor having a large capacitance can be manufactured by etching.

前項(21)に係る発明によれば、エッチング後に化成処理を実施するから、陽極材として好適な電解コンデンサ用電極材を製造することができる。   According to the invention of the preceding item (21), since the chemical conversion treatment is performed after the etching, an electrode material for an electrolytic capacitor suitable as an anode material can be produced.

前項(22)に係る発明によれば、 エッチングの少なくとも一部を直流電解エッチングで行うことにより、深くて太い多数のトンネル状ピットを生成することができ、前記酸化性雰囲気中での加熱及び洗浄による表面層除去による前記効果を効率的に発揮させることができる。   According to the invention of the preceding item (22), a large number of deep and thick tunnel-like pits can be generated by performing at least a part of etching by DC electrolytic etching, and heating and cleaning in the oxidizing atmosphere. The above-described effect due to the removal of the surface layer can be efficiently exhibited.

前項(23)に係る発明によれば、高静電容量のアルミニウム電解コンデンサ用陽極材となし得る。   According to the invention which concerns on previous term (23), it can be set as the anode material for aluminum electrolytic capacitors with a high electrostatic capacity.

前項(24)に係る発明によれば、高静電容量のアルミニウム電解コンデンサとなし得る。   According to the invention of the previous item (24), an aluminum electrolytic capacitor having a high capacitance can be obtained.

本願発明者は、アルミニウム材表面層を洗浄により除去する前にアルミニウム材を酸化性雰囲気で加熱することにより、洗浄時にアルミニウム材表面層が均一に溶解し、その後の最終焼鈍後により得られるアルミニウム材に電解エッチングを施したときに生成するエッチピットが均一になり、エッチング特性が顕著に向上することを見出した。   The inventor of the present application heated the aluminum material in an oxidizing atmosphere before removing the aluminum material surface layer by cleaning, so that the aluminum material surface layer was uniformly dissolved during cleaning, and the aluminum material obtained after the subsequent final annealing. It has been found that etch pits generated when electrolytic etching is performed become uniform and etching characteristics are remarkably improved.

以下に、電解コンデンサ用アルミニウム材の製造方法を詳細に説明する。
アルミニウム材の純度は電解コンデンサ用に使用される範囲であれば特に限定されないが、純度99.9質量%以上のものが好ましく、特に99.95質量%以上が好ましい。なお、本発明においてアルミニウム材の純度は100質量%からFe, SiおよびCuの合計濃度(質量%)を差し引いた値とする。
Below, the manufacturing method of the aluminum material for electrolytic capacitors is demonstrated in detail.
The purity of the aluminum material is not particularly limited as long as it is within the range used for electrolytic capacitors, but it is preferably 99.9% by mass or more, particularly preferably 99.95% by mass or more. In the present invention, the purity of the aluminum material is a value obtained by subtracting the total concentration (mass%) of Fe, Si and Cu from 100 mass%.

Pbは最終焼鈍時にアルミニウム材表層に濃化し、エッチピット生成に大きく影響を及ぼす。直流エッチング法によりトンネル状エッチピットを生成させる際に、Pbが少なすぎるとエッチング法によってはエッチピット分散性が悪く、多すぎるとアルミニウム材の表面溶解が多くなることから、必要に応じて適量のPbがアルミニウム材中に含まれていてもよい。例えば、アルミニウム材中に0.00002〜0.0002質量%のPbが含まれるようアルミニウム材溶解時に調整することが推奨できる。   Pb is concentrated on the surface of the aluminum material at the time of final annealing and greatly affects the formation of etch pits. When generating tunnel-like etch pits by the direct current etching method, if Pb is too small, etch pit dispersibility is poor depending on the etching method, and if it is too much, the surface dissolution of the aluminum material will increase. Pb may be contained in the aluminum material. For example, it can be recommended to adjust at the time of melting aluminum material so that 0.00002 to 0.0002 mass% of Pb is contained in the aluminum material.

アルミニウム材の製造は、限定されないが、アルミニウム材の溶解成分調整・スラブ鋳造、熱間圧延、冷間圧延、中間焼鈍、仕上げ冷間圧延(低圧下圧延)を含む冷間圧延、最終焼鈍の順に実施され、最終焼鈍前に酸化性雰囲気中で加熱した後、アルミニウム材表面層を洗浄により除去させる。好ましくは、冷間圧延後に酸化性雰囲気中での加熱及び表面層の洗浄除去を行うのがよい。また、冷間圧延工程の途中において、最終焼鈍後の立方体方位占有率を高めるために必要に応じて中間焼鈍を実施する。   The production of the aluminum material is not limited, but includes the adjustment of the melting component of the aluminum material, slab casting, hot rolling, cold rolling, intermediate annealing, cold rolling including finish cold rolling (low pressure rolling), and final annealing in this order. After being heated and heated in an oxidizing atmosphere before final annealing, the aluminum material surface layer is removed by washing. Preferably, after cold rolling, heating in an oxidizing atmosphere and cleaning removal of the surface layer are performed. Moreover, in the middle of a cold rolling process, in order to raise the cube orientation occupation rate after final annealing, intermediate annealing is implemented as needed.

前記酸化性雰囲気中での加熱とアルミニウム材表面層の洗浄除去は、それぞれ1回ずつ行っても良く、また加熱と洗浄除去を交互に複数回行っても良い。   The heating in the oxidizing atmosphere and the cleaning and removal of the aluminum material surface layer may be performed once each, or the heating and the cleaning removal may be alternately performed a plurality of times.

前記酸化性雰囲気中での加熱は、加熱体との接触によるものではなく、雰囲気加熱により行われる。雰囲気加熱は、アルミニウム材と加熱体が接触しないため、加熱体との接触加熱のように加熱時に皺や疵が発生する恐れがないため、本発明では雰囲気加熱が行われる。   The heating in the oxidizing atmosphere is not performed by contact with a heating body, but is performed by atmospheric heating. In the atmosphere heating, since the aluminum material and the heating body do not come into contact with each other, there is no fear that wrinkles and wrinkles are generated during heating unlike the contact heating with the heating body. Therefore, the atmosphere heating is performed in the present invention.

酸化性雰囲気中での加熱方法としては、送風加熱、輻射加熱などを例示できる。また、加熱されるアルミニウム材の形態は特に限定されるものではなく、コイルに巻き取った状態でバッチ加熱しても良いし、コイルを巻き戻し連続加熱したのちコイルに巻き取っても良い。   Examples of the heating method in the oxidizing atmosphere include blast heating and radiation heating. Moreover, the form of the aluminum material to be heated is not particularly limited, and batch heating may be performed while being wound around the coil, or winding may be performed after the coil is rewound and continuously heated.

酸化性雰囲気中でのアルミニウム材の加熱温度は50〜400℃であることが好ましい。加熱温度が50℃未満では、アルミニウム材表層の酸化が不十分でアルミニウム材表面層除去時にアルミニウム材が均一に溶解しない恐れがある。加熱温度が400℃を越えるとアルミニウム材表層酸化膜が厚くなりアルミニウム材の溶解性が低下し、アルミニウム材を均一に溶解させることが困難になる。特に好ましいアルミニウム材の加熱温度は70〜350℃であり、とりわけ70〜240℃が好ましい。   The heating temperature of the aluminum material in the oxidizing atmosphere is preferably 50 to 400 ° C. If the heating temperature is less than 50 ° C., the surface layer of the aluminum material is not sufficiently oxidized, and the aluminum material may not be uniformly dissolved when the surface layer of the aluminum material is removed. When the heating temperature exceeds 400 ° C., the surface oxide film of the aluminum material becomes thick, so that the solubility of the aluminum material is lowered and it becomes difficult to uniformly dissolve the aluminum material. The heating temperature of the particularly preferable aluminum material is 70 to 350 ° C, and 70 to 240 ° C is particularly preferable.

加熱時間は3秒以上72時間以下であることが好ましい。加熱時間が3秒未満ではアルミニウム材表面層の酸化が不十分であるため、表面層除去時にアルミニウム材が均一に溶解せず、加熱時間が72時間を超えるとアルミニウム材表面層除去時の溶解均一性は殆ど変わらなくなるため、加熱時のエネルギー消費によりコスト高となる。特に好ましい加熱時間は10秒以上48時間以下であり、とりわけ70秒以上48時間以下が良い。   The heating time is preferably 3 seconds or more and 72 hours or less. If the heating time is less than 3 seconds, oxidation of the aluminum material surface layer is insufficient, so the aluminum material does not dissolve uniformly when the surface layer is removed, and if the heating time exceeds 72 hours, the aluminum material surface layer is uniformly dissolved Since the property hardly changes, the energy consumption during heating increases the cost. A particularly preferable heating time is 10 seconds to 48 hours, particularly 70 seconds to 48 hours.

酸化雰囲気中での加熱温度と時間は、加熱方法により適正な条件が選択される。例えば、コイルとして巻き取った状態でアルミニウム材を加熱する場合には、50℃〜240℃にて30分から72時間加熱されることが好ましく、さらに70℃〜240℃にて1時間から48時間加熱されることが好ましい。また、コイルを巻き解いた状態のアルミニウム材あるいはシート状にカットしたアルミニウム材を加熱する場合の加熱時間t(時間)は加熱温度をx(℃)とすると、10/(1.44×x1.5)≦t≦72であることが好ましくさらに、10/(1.44×x1.5)≦t≦48であることが好ましい。 Appropriate conditions for the heating temperature and time in the oxidizing atmosphere are selected depending on the heating method. For example, when an aluminum material is heated in a state of being wound as a coil, it is preferably heated at 50 ° C. to 240 ° C. for 30 minutes to 72 hours, and further heated at 70 ° C. to 240 ° C. for 1 hour to 48 hours. It is preferred that In addition, the heating time t (hour) when heating the aluminum material with the coil unwound or cut into a sheet shape is 10 / (1.44 × x 1.5 ) ≦ when the heating temperature is x (° C.). It is preferable that t ≦ 72, and more preferably 10 / (1.44 × x 1.5 ) ≦ t ≦ 48.

酸化性雰囲気中でのアルミニウム材の加熱における酸化性雰囲気中の酸素濃度は0.1体積%以上であることが好ましい。酸素濃度が0.1体積%未満では加熱時にアルミニウム材表面が十分酸化されない恐れがある。酸素濃度は特に1体積%以上であることが好ましく、とりわけ5体積%以上であることが好ましく、空気を酸化性雰囲気として好適に利用できる。   The oxygen concentration in the oxidizing atmosphere in heating the aluminum material in the oxidizing atmosphere is preferably 0.1% by volume or more. If the oxygen concentration is less than 0.1% by volume, the surface of the aluminum material may not be sufficiently oxidized during heating. The oxygen concentration is particularly preferably 1% by volume or more, particularly preferably 5% by volume or more, and air can be suitably used as the oxidizing atmosphere.

洗浄によるアルミニウム材表面層の除去に用いる洗浄液は特に限定されないが、アルカリ性水溶液、酸水溶液を用いることができる。表面層の除去は、アルカリ性水溶液あるいは酸水溶液のどちらかを用いて行ってもよく、アルカリ水溶液を用いて実施した後酸水溶液を用いて洗浄しても良い。   The cleaning liquid used for removing the aluminum material surface layer by cleaning is not particularly limited, but an alkaline aqueous solution or an acid aqueous solution can be used. The removal of the surface layer may be performed using either an alkaline aqueous solution or an aqueous acid solution, and may be performed using an aqueous alkaline solution and then washed using an aqueous acid solution.

アルカリとしては、水酸化ナトリウム、水酸化カルシウム、水酸化カリウム、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、リン酸三ナトリウム、炭酸ナトリウムが例示でき、これらアルカリの中から選ばれた1種あるいは2種以上を水に溶解させ洗浄液として用いることができる。   Examples of the alkali include sodium hydroxide, calcium hydroxide, potassium hydroxide, sodium orthosilicate, sodium metasilicate, trisodium phosphate, and sodium carbonate. One or more selected from these alkalis can be used. It can be dissolved in water and used as a cleaning solution.

酸としては、塩酸、硫酸、硝酸、リン元素を含む酸の中から選ばれる1種または2種以上を用いる。リン元素を含む酸としてはオルトリン酸(以後リン酸と称す。)、ピロリン酸、メタリン酸、ポリリン酸を例示できる。また、アルミニウム材表面層除去に用いる酸として、過塩素酸及び次亜塩素酸を利用しても良い。   As the acid, one or more selected from acids containing hydrochloric acid, sulfuric acid, nitric acid, and phosphorus elements are used. Examples of the acid containing phosphorus element include orthophosphoric acid (hereinafter referred to as phosphoric acid), pyrophosphoric acid, metaphosphoric acid, and polyphosphoric acid. Moreover, you may utilize perchloric acid and hypochlorous acid as an acid used for aluminum material surface layer removal.

アルミニウム材の表面層除去量は、アルカリまたは酸の濃度、アルカリまたは酸水溶液の温度およびアルミニウム材とアルカリまたは酸水溶液との接触時間を適正なものにすることにより調節される。また、アルミニウム材表面層の洗浄効果を高める目的で洗浄液に界面活性剤やキレート剤を添加しても良い。   The surface layer removal amount of the aluminum material is adjusted by adjusting the alkali or acid concentration, the temperature of the alkali or acid aqueous solution, and the contact time between the aluminum material and the alkali or acid aqueous solution. Further, a surfactant or chelating agent may be added to the cleaning liquid for the purpose of enhancing the cleaning effect of the aluminum material surface layer.

前記洗浄によるアルミニウム材表面層の除去量は平均値で、アルミニウム材片面あたり1nm以上500nm以下であることが好ましい。表面層除去量が1nm未満の場合アルミニウム材表面層の酸化膜の除去が不十分な恐があり、500nmより多く表層を除去するとアルミニウム材表面層のエッチピット核の生成が抑制されるため却ってエッチング特性が悪く静電容量が低下する恐れがある。洗浄による特に好ましい表面層除去量は1.5nm以上200nm以下であり、さらに5nm以上200nm以下が好ましく、10nm以上150nm以下がより好ましい。   The removal amount of the aluminum material surface layer by the cleaning is an average value, and is preferably 1 nm or more and 500 nm or less per one side of the aluminum material. If the removal amount of the surface layer is less than 1 nm, there is a fear that the removal of the oxide film on the aluminum material surface layer is insufficient, and if the surface layer is removed more than 500 nm, the formation of etch pit nuclei on the aluminum material surface layer is suppressed, so etching The characteristics are poor and the capacitance may decrease. A particularly preferable surface layer removal amount by washing is 1.5 nm or more and 200 nm or less, further preferably 5 nm or more and 200 nm or less, and more preferably 10 nm or more and 150 nm or less.

なお、アルミニウム材表面層酸化膜と金属のアルミニウムは密度が異なるが、本願においてアルミニウム材の表面層除去量D(nm)は洗浄による単位表面積当たりの質量減E(g/cm2)とアルミニウムの密度2.7g/cm3を用いて、D(nm)=E×107/2.7と規定する。 The density of the aluminum surface layer oxide film and the metallic aluminum is different, but in this application the surface layer removal amount D (nm) of the aluminum material is the mass loss E (g / cm 2 ) per unit surface area due to cleaning and the aluminum Using a density of 2.7 g / cm 3 , D (nm) = E × 10 7 /2.7 is specified.

洗浄液とアルミニウム材との接触方法としては、特に限定されないが、浸漬、洗浄液表面へのアルミニウム材の接触、スプレー等があげられる。   A method for contacting the cleaning liquid with the aluminum material is not particularly limited, and examples include immersion, contact of the aluminum material with the surface of the cleaning liquid, and spraying.

洗浄液とアルミニウム材との接触方法としては、特に限定されないが、浸漬、洗浄液表面へのアルミニウム材の接触、スプレー等が挙げられる。   The method for contacting the cleaning liquid with the aluminum material is not particularly limited, and examples include immersion, contact of the aluminum material with the surface of the cleaning liquid, and spraying.

本発明で規定した以外の工程および工程条件については、特に限定されることはなく、常法に従って行えば良い。また、アルミニウム材のエッチング条件との関係で、アルミニウム材の製造方法は適宜変更される。   Processes and process conditions other than those specified in the present invention are not particularly limited, and may be performed according to a conventional method. Moreover, the manufacturing method of an aluminum material is changed suitably according to the relationship with the etching conditions of an aluminum material.

また冷間圧延後であって洗浄によるアルミニウム材の表面層除去前に、脱脂を行ってもよい。脱脂方法は特に限定されないが、有機溶剤もしくは水に界面活性剤を添加した液とアルミニウム材を接触させる事により行うことができる。有機溶剤もしくは水に界面活性剤を添加した液とアルミニウム材との接触方法としては、特に限定されないが、浸漬、洗浄液表面へのアルミニウム材の接触、スプレー等があげられる。   Further, degreasing may be performed after cold rolling and before removing the surface layer of the aluminum material by washing. Although the degreasing method is not particularly limited, the degreasing method can be performed by bringing an aluminum material into contact with an organic solvent or a solution obtained by adding a surfactant to water. The method for contacting the aluminum material with a solution obtained by adding a surfactant to an organic solvent or water is not particularly limited, and examples include immersion, contact of the aluminum material with the surface of the cleaning liquid, and spraying.

有機溶剤は特に限定されるものではないが、例として、アルコール、ジオール、トルエン・キシレン等の芳香族炭化水素、アルカン系炭化水素、シクロヘキサン、ケトン、エーテル、エステル、石油製品等があげられる。   The organic solvent is not particularly limited, and examples include aromatic hydrocarbons such as alcohols, diols, toluene and xylene, alkane hydrocarbons, cyclohexane, ketones, ethers, esters, petroleum products, and the like.

上記アルコールの例としては、メタノール(CH3OH)、エタノール(C2H5OH)、1-プロパノール(CH3CH2CH2OH)、2-プロパノール(CH3CH2(OH)CH3)、1-ブタノール(CH3CH2CH2CH2OH)、2-ブタノール(CH3CH2CH2(OH)CH3)、1-ペンタノール(CH3CH2CH2CH2CH2OH)、2-ペンタノール(CH3CH2CH2CH2(OH)CH3)等が挙げられ、CnH2n+1OH(n=1〜10の自然数)で表されるものが好ましい。また、シクロヘキサノール等の脂環炭化水素類も用いることが出来る。 Examples of the alcohol include methanol (CH 3 OH), ethanol (C 2 H 5 OH), 1-propanol (CH 3 CH 2 CH 2 OH), 2-propanol (CH 3 CH 2 (OH) CH 3 ) 1-butanol (CH 3 CH 2 CH 2 CH 2 OH), 2-butanol (CH 3 CH 2 CH 2 (OH) CH 3 ), 1-pentanol (CH 3 CH 2 CH 2 CH 2 CH 2 OH) 2-pentanol (CH 3 CH 2 CH 2 CH 2 (OH) CH 3 ) and the like, and those represented by C n H 2n + 1 OH (n = 1 to 10 natural number) are preferred. Moreover, alicyclic hydrocarbons, such as cyclohexanol, can also be used.

上記ジオールの例としては1,2-エタンジオール(HOCH2CH2OH)、1,2-プロパンジオール(CH3CH(OH)CH2OH)、1,3-プロパンジオール(HOCH2CH2CH2OH)等が例示できる。 Examples of the diol include 1,2-ethanediol (HOCH 2 CH 2 OH), 1,2-propanediol (CH 3 CH (OH) CH 2 OH), 1,3-propanediol (HOCH 2 CH 2 CH 2 OH).

上記アルカン系炭化水素の例としては、ペンタン(C5H12)、ヘキサン(C6H14)、ヘプタン(C7H16)、オクタン(C8H18)、ノナン(C9H20)、デカン(C10H22)等が挙げられCnH2n+2(n=5〜15の自然数)で表されるものが好ましい。またシクロヘキサン等脂環式炭化水素の適用も可能である。 Examples of the alkane hydrocarbons include pentane (C 5 H 12 ), hexane (C 6 H 14 ), heptane (C 7 H 16 ), octane (C 8 H 18 ), nonane (C 9 H 20 ), decane (C 10 H 22) which like is represented by C n H 2n + 2 include (a natural number of n = 5 to 15) are preferred. Moreover, application of alicyclic hydrocarbons such as cyclohexane is also possible.

上記ケトンの例としてはアセトン(CH3COCH3)、2-ブタノン(CH3COC2H5)、3-ペンタノン(CH3CH2COCH2CH3)、3-メチル-2-ブタノン(CH3COCH(CH3)2)等が例示でき、R1COR2(R1およびR2:脂肪族炭化水素基であり、R1とR2の炭素数の合計が8以下)で表されるものが好ましい。また、シクロヘシサノン(C6H10O)等環状ケトンを用いても良い。 Examples of the ketone include acetone (CH 3 COCH 3 ), 2-butanone (CH 3 COC 2 H 5 ), 3-pentanone (CH 3 CH 2 COCH 2 CH 3 ), 3-methyl-2-butanone (CH 3 COCH (CH 3 ) 2 ) and the like can be exemplified, and those represented by R1COR2 (R1 and R2: aliphatic hydrocarbon groups, and the total number of carbon atoms of R1 and R2 is 8 or less) are preferable. In addition, cyclic ketones such as cycloheticanone (C 6 H 10 O) may be used.

上記エーテルの例としては、R1-O-R2(R1およびR2:脂肪族炭化水素基であり、R1とR2の炭素数の合計が8以下)で表される物質、2-メトキシエタノール(CH3OCH2CH2OH)、2-エトキシエタノール(CH3CH2OCH2CH2OH)、2-ブトキシエタノール(CH3CH2CH2CH2OCH2CH2OH)、2-(2-エトキシ)エトキシエタノール(CH3CH2OCH2CH2OCH2CH2OH)、等のグリコールエーテルも含まれる。 Examples of the ether include a substance represented by R1-O—R2 (R1 and R2: aliphatic hydrocarbon groups, and the total number of carbon atoms of R1 and R2 is 8 or less), 2-methoxyethanol (CH 3 OCH 2 CH 2 OH), 2-ethoxyethanol (CH 3 CH 2 OCH 2 CH 2 OH), 2-butoxyethanol (CH 3 CH 2 CH 2 CH 2 OCH 2 CH 2 OH), 2- (2-ethoxy) Also included are glycol ethers such as ethoxyethanol (CH 3 CH 2 OCH 2 CH 2 OCH 2 CH 2 OH).

上記エステルの例としては、CH3COOR(R:炭素数1〜5である脂肪族炭化水素基)で表される酢酸エステルが例示できる。 Examples of the ester include acetate represented by CH 3 COOR (R: an aliphatic hydrocarbon group having 1 to 5 carbon atoms).

上記石油製品の例としては、工業ガソリン(JIS K 2201)、自動車ガソリン(JIS K 2202)、航空ガソリン(JIS K 2206)、灯油(JIS K 2203)、軽油(JIS K 2204)、航空ガソリン(JIS K 2206)、石油エーテル(JIS K 8593)、石油ベンジン(JIS K 8594)、リグロイン(JIS K 8937)、ケロシン等が挙げられる。   Examples of petroleum products include industrial gasoline (JIS K 2201), automotive gasoline (JIS K 2202), aviation gasoline (JIS K 2206), kerosene (JIS K 2203), light oil (JIS K 2204), aviation gasoline (JIS K 2206), petroleum ether (JIS K 8593), petroleum benzine (JIS K 8594), ligroin (JIS K 8937), kerosene and the like.

上記脱脂に用いる水に界面活性剤を添加した液に含まれる界面活性剤は特に限定されるものではないが、アニオン界面活性剤、カチオン界面活性剤、非イオン性界面活性剤を用いることが出来る。   The surfactant contained in the solution obtained by adding a surfactant to the water used for degreasing is not particularly limited, but anionic surfactants, cationic surfactants, and nonionic surfactants can be used. .

アニオン界面活性剤として硫酸エステル塩、スルホン酸塩を用いることができる。   As the anionic surfactant, sulfate ester salts and sulfonate salts can be used.

上記硫酸エステル塩としては、R-OSO3Na(R=炭素数8〜18の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基)が利用でき、具体的にはドデシル硫酸ナトリウム(C12H25OSO3Na)、ヘキサデシル硫酸ナトリウム(C16H33OSO3Na)、ステアリル硫酸ナトリウム(C18H37OSO3Na)、オレイル硫酸ナトリウム(C18H35OSO3Na)等が例示できる。 As the sulfate ester salt, R-OSO 3 Na (R = saturated hydrocarbon group having 8 to 18 carbon atoms or unsaturated hydrocarbon group having one double bond) can be used, specifically sodium dodecyl sulfate. (C 12 H 25 OSO 3 Na), sodium hexadecyl sulfate (C 16 H 33 OSO 3 Na), sodium stearyl sulfate (C 18 H 37 OSO 3 Na), sodium oleyl sulfate (C 18 H 35 OSO 3 Na), etc. It can be illustrated.

上記スルホン酸塩はR-SO3Na(R=炭素数8〜18の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基)もしくはドデシルベンゼンスルホン酸ナトリウム(C12H25-C6H4-SO3Na)等のR-SO3Na(R:アルキル基が炭素数8〜14の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基であるアルキルベンジル基)で表されるものを用いることができる。 The sulfonate is R-SO 3 Na (R = saturated hydrocarbon group having 8 to 18 carbon atoms or unsaturated hydrocarbon group having one double bond) or sodium dodecylbenzenesulfonate (C 12 H 25 -C 6 H 4 -SO 3 Na) and other R-SO 3 Na (R: an alkylbenzyl group in which the alkyl group is a saturated hydrocarbon group having 8 to 14 carbon atoms or an unsaturated hydrocarbon group having one double bond) Can be used.

カチオン界面活性剤としてR-N(CH3)3・Cl (R=炭素数8〜16の飽和炭化水素基)で表される第4級アンモニウム塩を用いることができる。 As the cationic surfactant, a quaternary ammonium salt represented by RN (CH 3 ) 3 · Cl (R = saturated hydrocarbon group having 8 to 16 carbon atoms) can be used.

非イオン性界面活性剤として、R-O-(-CH2CH2O)nH(R=炭素数8〜16の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基、n=6〜14)またはR-O-(-CH2CH2O)nH(R=アルキル基が炭素数8〜12の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基であるアルキルフェニル基、n=6〜14)で表されるポリエチレングリコール型非イオン界面活性剤を例示できる。なおnが上記範囲より多いものが非イオン性界面活性剤中に50%以下のモル比で含まれていても良い。 As a nonionic surfactant, RO-(-CH 2 CH 2 O) n H (R = saturated hydrocarbon group having 8 to 16 carbon atoms or unsaturated hydrocarbon group having one double bond, n = 6 -14) or RO - (- CH 2 CH 2 O) n H (R = alkyl group is an alkyl phenyl group which is unsaturated hydrocarbon group having one saturated hydrocarbon group or a double bond having 8 to 12 carbon atoms , N = 6 to 14), and a polyethylene glycol type nonionic surfactant can be exemplified. In addition, what has more n than the said range may be contained in the nonionic surfactant by the molar ratio of 50% or less.

上記界面活性剤の少なくとも1種類以上を水に添加し洗浄液として用いる事ができる。界面活性剤の炭素数が上記範囲より少ない界面活性剤が50%以下のモル比で添加されていても良い。なお、アニオン界面活性剤とカチオン界面活性剤を水中で混合させると沈殿が生成するため、混合は避けることが好ましい。   At least one of the above surfactants can be added to water and used as a cleaning liquid. A surfactant having a surfactant whose carbon number is less than the above range may be added in a molar ratio of 50% or less. In addition, when an anionic surfactant and a cationic surfactant are mixed in water, a precipitate is generated. Therefore, it is preferable to avoid mixing.

界面活性剤の添加濃度は特に規定されないが脱脂効果を発揮させるために臨界ミセル濃度以上であることが好ましい。   The addition concentration of the surfactant is not particularly specified, but is preferably not less than the critical micelle concentration in order to exert a degreasing effect.

アルミニウム材の最終焼鈍における処理雰囲気は特に限定されるものではないが、酸化皮膜の厚さを増大させすぎないように、水分および酸素の少ない雰囲気中で加熱するのが好ましい。具体的には、アルゴン、窒素などの不活性ガス中あるいは0.1Pa以下の真空中で加熱することが好ましい。また、最終焼鈍の雰囲気として水素ガスも好適に利用できる。   The treatment atmosphere in the final annealing of the aluminum material is not particularly limited, but it is preferable to heat in an atmosphere with less moisture and oxygen so as not to increase the thickness of the oxide film. Specifically, it is preferable to heat in an inert gas such as argon or nitrogen or in a vacuum of 0.1 Pa or less. Moreover, hydrogen gas can also be suitably used as the atmosphere for final annealing.

最終焼鈍後のアルミニウム材の立方体方位占有率は90%以上が好ましい。   The cubic occupancy ratio of the aluminum material after the final annealing is preferably 90% or more.

最終焼鈍の方法は特に限定されるものではなく、コイルに巻き取った状態でバッチ焼鈍しても良く、コイルを巻き戻し連続焼鈍したのちコイルに巻き取っても良く、バッチ焼鈍と連続焼鈍の少なくともどちらかを複数回行っても良い。   The method of final annealing is not particularly limited, and batch annealing may be performed in a state of being wound around the coil, and the coil may be rewound and continuously annealed, and then wound on the coil, and at least batch annealing and continuous annealing may be performed. Either one may be performed multiple times.

焼鈍時の温度、時間は特に限定されるものではないが、例えばコイルの状態でバッチ焼鈍を行う場合には、450〜600℃にて10分〜50時間焼鈍するのが好ましい。温度が450℃未満、時間が10分未満では、エッチピットが均一に生成する表面が得られない恐れがあるからである。逆に600℃を越えて焼鈍すると、コイルでバッチ焼鈍する場合はアルミニウム材が密着を起こし易くなり、また50時間を超えて焼鈍してもエッチングによる拡面効果は飽和し、却って熱エネルギーコストの増大を招く。特に好ましい焼鈍
温度は450〜590℃、さらに好ましくは460〜580℃である。特に好ましい焼鈍時間は20分〜40時間である。
Although the temperature and time during annealing are not particularly limited, for example, when batch annealing is performed in a coil state, it is preferable to perform annealing at 450 to 600 ° C. for 10 minutes to 50 hours. This is because if the temperature is less than 450 ° C. and the time is less than 10 minutes, a surface on which etch pits are uniformly generated may not be obtained. Conversely, when annealing is performed at temperatures exceeding 600 ° C., the aluminum material is likely to adhere when batch annealing is performed with a coil, and even if annealing is performed for more than 50 hours, the surface expansion effect by etching is saturated, and the heat energy cost is reduced. Incurs an increase. An especially preferable annealing temperature is 450-590 degreeC, More preferably, it is 460-580 degreeC. A particularly preferable annealing time is 20 minutes to 40 hours.

また、昇温速度・パターンは特に限定されず、一定速度で昇温させても良く、昇温、温度保持を繰り返しながらステップ昇温・冷却させても良く、焼鈍工程にて450〜600℃の温度域で合計10分〜50時間焼鈍されれば良い。   Further, the rate of temperature rise / pattern is not particularly limited, and the temperature may be raised at a constant rate, or may be stepped up / cooled while repeating the temperature rise and temperature holding, and the temperature is 450 to 600 ° C. in the annealing process. What is necessary is just to anneal for a total of 10 minutes-50 hours in a temperature range.

最終焼鈍後に得られる電解コンデンサ電極用アルミニウム材の厚さは特に規定されない。箔と称される200μm以下のものも、それ以上の厚いものも本発明に含まれる。   The thickness of the aluminum material for electrolytic capacitor electrodes obtained after the final annealing is not particularly defined. Those having a thickness of 200 μm or less, referred to as foil, and those having a thickness larger than that are included in the present invention.

最終焼鈍を経たアルミニウム材には、拡面積率向上のためエッチング処理を実施する。エッチング処理条件は特に限定されないが、好ましくは直流エッチング法を採用するのが良い。直流エッチング法によって、前記焼鈍において生成が促進されたエッチピットの核となる部分において、深く太くエッチングされ、多数のトンネル状ピットが生成され、高静電容量が実現される。   The aluminum material that has undergone final annealing is subjected to an etching process in order to improve the area expansion rate. Etching conditions are not particularly limited, but preferably a direct current etching method is employed. By the direct current etching method, the portion that becomes the nucleus of the etch pit promoted in the annealing is deeply and thickly etched to generate a large number of tunnel-like pits, thereby realizing a high capacitance.

エッチング処理後、望ましくは化成処理を行って陽極材とするのが良く、特に、中圧用および高圧用の電解コンデンサ電極材として用いるのが良いが、陰極材として用いることを妨げるものではない。また、この電極材を用いた電解コンデンサは大きな静電容量を実現できる。   After the etching treatment, a chemical conversion treatment is preferably performed to obtain an anode material. In particular, it is preferably used as an electrolytic capacitor electrode material for medium pressure and high pressure, but it does not preclude use as a cathode material. Moreover, the electrolytic capacitor using this electrode material can realize a large capacitance.

本発明で規定した工程以外の工程および工程条件は限定されず、常法に従って行われる。また、アルミニウム材のエッチング条件との関係で、アルミニウム材の製造工程は適宜変更される。   Processes and process conditions other than those specified in the present invention are not limited, and are performed according to a conventional method. Moreover, the manufacturing process of an aluminum material is changed suitably according to the relationship with the etching conditions of an aluminum material.

なお、静電容量の測定は常法に従えば良く、化成処理されたエッチド箔について、例えば30℃の80g/Lのホウ酸アンモニウム水溶液中で、ステンレス板を対極として120Hzにて測定する方法を例示できる。   The capacitance may be measured in accordance with a conventional method. For example, a method of measuring a chemically treated etched foil at 120 Hz in an 80 g / L ammonium borate aqueous solution at 30 ° C. using a stainless steel plate as a counter electrode. It can be illustrated.

以下に本発明の実施例および比較例を示す。
[シート状アルミニウム材を用いた実施例]
アルミニウムスラブを熱間圧延して得られた板を冷間圧延し、中間焼鈍した後、さらに仕上げ冷間圧延し、厚さ110μm、純度99.99質量%のアルミニウム材とした。そして、このアルミニウム材を切断しシート状にした。表1に冷間圧延の後に実施した工程の種類(工程1〜工程5)、表2に表1中の酸化性雰囲気中での加熱(工程2)の条件、表3及び表4に表1中の洗浄によるアルミニウム材表面層除去(工程4)の条件を示す。なお、アルミニウム材の表面層除去量は洗浄液への浸漬時間により制御した。
Examples of the present invention and comparative examples are shown below.
[Example using sheet-like aluminum material]
A plate obtained by hot rolling an aluminum slab was cold-rolled, subjected to intermediate annealing, and then finish cold-rolled to obtain an aluminum material having a thickness of 110 μm and a purity of 99.99% by mass. The aluminum material was cut into a sheet. Table 1 shows the types of steps carried out after cold rolling (Step 1 to Step 5), Table 2 shows the conditions for heating in the oxidizing atmosphere in Table 1 (Step 2), Tables 3 and 4 show Table 1 The conditions for removing the aluminum material surface layer (step 4) by washing inside are shown. The removal amount of the surface layer of the aluminum material was controlled by the immersion time in the cleaning liquid.

なお、アルミニウム材表面層除去量は洗浄液への浸漬時間により制御し、アルカリ洗浄の後に酸洗浄を実施する場合にはアルカリ洗浄液への浸漬時間を調節することにより除去量を制御した。
実施例1
アルミニウムスラブに熱間圧延、冷間圧延、中間焼鈍及び仕上げ冷間圧延を順次施して得られた厚さ110μm、純度99.99%のシート状アルミニウム材を、表5に記載のように、n-ヘキサンにより脱脂し(工程1)、空気中で150℃にて24時間加熱後(工程2)、80℃20質量%硫酸水溶液に浸漬することにより、アルミニウム材表面層を平均で10nm除去させた(工程4)。その後、アルゴン雰囲気中で540℃にて4時間最終焼鈍し(工程5)、電解コンデンサ電極用アルミニウム材を得た。
実施例2〜実施例49、比較例1〜比較例3
表5〜表7に示す条件にて電解コンデンサ電極用アルミニウム材を得た。
In addition, the removal amount of the aluminum material surface layer was controlled by the immersion time in the cleaning liquid, and when the acid cleaning was performed after the alkali cleaning, the removal amount was controlled by adjusting the immersion time in the alkaline cleaning liquid.
Example 1
As shown in Table 5, a sheet-like aluminum material having a thickness of 110 μm and a purity of 99.99% obtained by sequentially subjecting an aluminum slab to hot rolling, cold rolling, intermediate annealing, and finish cold rolling is used as n-hexane. (Step 1), heated in air at 150 ° C. for 24 hours (step 2), and immersed in a 20% by mass sulfuric acid aqueous solution at 80 ° C. to remove the surface layer of the aluminum material by 10 nm on average (step) 4). Thereafter, final annealing was performed at 540 ° C. for 4 hours in an argon atmosphere (step 5) to obtain an aluminum material for electrolytic capacitor electrodes.
Examples 2 to 49, Comparative Examples 1 to 3
Aluminum materials for electrolytic capacitor electrodes were obtained under the conditions shown in Tables 5 to 7.

上記の各実施例および比較例で得られたアルミニウム材を、HCl 1.0mol/LとH2SO4 3.5mol/Lを含む液温75℃の水溶液に一定時間浸漬した後、同組成、同温度の水溶液で電流密度0.2A/cm2で直流電解エッチングを施した。 The aluminum material obtained in each of the above Examples and Comparative Examples was immersed in an aqueous solution having a liquid temperature of 75 ° C. containing HCl 1.0 mol / L and H 2 SO 4 3.5 mol / L for a predetermined time, and then the same composition and the same temperature. The direct current electrolytic etching was performed with an aqueous solution at a current density of 0.2 A / cm 2 .

電解処理後のアルミニウム材をさらに前記組成の塩酸―硫酸混合水溶液に90℃にて360秒浸漬し、ピット径を太くしエッチド箔を得た。得られたエッチド箔を化成電圧270VにてEIAJ規格に従い化成処理し、静電容量測定用サンプルとした。  The aluminum material after the electrolytic treatment was further immersed in a hydrochloric acid-sulfuric acid mixed aqueous solution having the above composition at 90 ° C. for 360 seconds to increase the pit diameter and obtain an etched foil. The obtained etched foil was subjected to chemical conversion treatment according to the EIAJ standard at a chemical conversion voltage of 270 V to obtain a sample for measuring capacitance.

表5〜表7に比較例3の静電容量を100としたときの相対静電容量を示す。   Tables 5 to 7 show the relative capacitances when the capacitance of Comparative Example 3 is 100.

Figure 0004708808
Figure 0004708808

Figure 0004708808
Figure 0004708808

Figure 0004708808
Figure 0004708808

Figure 0004708808
Figure 0004708808

Figure 0004708808
Figure 0004708808

Figure 0004708808
Figure 0004708808

Figure 0004708808
Figure 0004708808

上記表の結果から理解されるように、冷間圧延終了後であって最終焼鈍前に酸化性雰囲気中で加熱した後、アルミニウム材表面層を洗浄により除去させることにより、エッチング特性に優れた電解コンデンサ電極用アルミニウム材を得ることができる。   As understood from the results in the above table, after heating in an oxidizing atmosphere after the end of cold rolling and before the final annealing, the aluminum material surface layer is removed by washing, so that electrolysis with excellent etching characteristics can be achieved. An aluminum material for capacitor electrodes can be obtained.

一方、酸化雰囲気中での加熱を行うことなく洗浄によりアルミニウム材表面層を除去した後焼鈍した比較例1では、洗浄時のアルミニウム材の溶解性が不均一であるために、また酸化性雰囲気中での加熱後に洗浄によるアルミニウム材表面層の除去を行うことなく焼鈍した比較例2では、圧延時のロールコーティングによる汚染層や油分が多く残留するために、何れも静電容量が低いものであった。   On the other hand, in Comparative Example 1 in which the aluminum material surface layer was removed by cleaning without heating in an oxidizing atmosphere, the solubility of the aluminum material at the time of cleaning was non-uniform, and therefore in the oxidizing atmosphere In Comparative Example 2, which was annealed without removing the surface layer of the aluminum material by washing after heating, a large amount of contaminated layers and oil remained due to roll coating during rolling, and both had low capacitance. It was.

また、アルミニウム材表面層を洗浄により除去した後、酸化性雰囲気で加熱した比較例3では、比較例1および比較例2に比べ静電容量が高いが、洗浄時に不均質に溶解したアルミニウム材表面層を、酸化性雰囲気中での加熱により十分均質化できないため、静電容量が実施例に及ばないものであった。
[コイル状アルミニウム材を用いた実施例]
Fe:0.0015質量%、Si:0.0022質量%、Cu:0.0055質量%、Pb:0.00006質量%を含有するアルミニウムスラブに熱間圧延、冷間圧延を施し、幅500mmのアルミニウム材コイルを得た。
In Comparative Example 3 where the aluminum material surface layer was removed by cleaning and then heated in an oxidizing atmosphere, the capacitance was higher than Comparative Example 1 and Comparative Example 2, but the surface of the aluminum material that was dissolved inhomogeneously during cleaning. Since the layer could not be sufficiently homogenized by heating in an oxidizing atmosphere, the capacitance did not reach that of the examples.
[Example using coiled aluminum material]
An aluminum slab containing Fe: 0.0015% by mass, Si: 0.0022% by mass, Cu: 0.0055% by mass, Pb: 0.00006% by mass is subjected to hot rolling and cold rolling, and has a width of 500 mm. An aluminum coil was obtained.

そして、このアルミニウム材コイルに、中間焼鈍を実施した後、圧下率20%で仕上げ冷間圧延を施し、アルミニウム材の厚さ110μm、長さ2000mとした。   And after performing the intermediate annealing to this aluminum material coil, finish cold rolling was performed with a reduction rate of 20%, and the thickness of the aluminum material was 110 μm and the length was 2000 m.

次いで、実施例201〜204については、表10に示す条件にて酸化性雰囲気中で加熱したのち、洗浄により表面層を除去した。比較例201については、酸化性雰囲気中の加熱を行うことなく、洗浄により表面層を除去した。   Next, in Examples 201 to 204, after heating in an oxidizing atmosphere under the conditions shown in Table 10, the surface layer was removed by washing. For Comparative Example 201, the surface layer was removed by washing without heating in an oxidizing atmosphere.

その後、アルゴン雰囲気中で540℃で4時間の最終焼鈍を実施して、電解コンデンサ電極用アルミニウム材を得た。   Then, the final annealing for 4 hours was implemented at 540 degreeC in argon atmosphere, and the aluminum material for electrolytic capacitor electrodes was obtained.

表8に酸化性雰囲気中での加熱の具体的な条件、表9に洗浄によるアルミニウム材表面層除去の具体的な条件を示す。なお、アルミニウム材表面層除去量は洗浄液への浸漬時間により制御し、アルカリ洗浄の後に酸洗浄を実施する場合にはアルカリ洗浄液への浸漬時間を調節することにより除去量を制御した。   Table 8 shows specific conditions for heating in an oxidizing atmosphere, and Table 9 shows specific conditions for removing the aluminum material surface layer by cleaning. In addition, the removal amount of the aluminum material surface layer was controlled by the immersion time in the cleaning liquid, and when the acid cleaning was performed after the alkali cleaning, the removal amount was controlled by adjusting the immersion time in the alkaline cleaning liquid.

上記の各実施例および比較例で得られたアルミニウム材コイルを巻きほどいて、HCl 1.0mol/LとH2SO4 3.5mol/Lを含む液温75℃の水溶液に一定時間浸漬した後、同組成、同温度の水溶液で電流密度0.2A/cm2で直流電解エッチングを施した。 The aluminum coil obtained in each of the above Examples and Comparative Examples was unwound and immersed in an aqueous solution containing HCl 1.0 mol / L and H 2 SO 4 3.5 mol / L at a liquid temperature of 75 ° C. for a certain period of time. DC electrolytic etching was performed with an aqueous solution having the same composition and temperature at a current density of 0.2 A / cm 2 .

電解処理後のアルミニウム材をさらに前記組成の塩酸―硫酸混合水溶液に90℃にて360秒浸漬し、ピット径を太くしエッチド箔を得た。得られたエッチド箔を化成電圧270VにてEIAJ規格に従い化成処理し、静電容量測定用サンプルとした。  The aluminum material after the electrolytic treatment was further immersed in a hydrochloric acid-sulfuric acid mixed aqueous solution having the above composition at 90 ° C. for 360 seconds to increase the pit diameter and obtain an etched foil. The obtained etched foil was subjected to chemical conversion treatment according to the EIAJ standard at a chemical conversion voltage of 270 V to obtain a sample for measuring capacitance.

表10に比較例201の静電容量を100としたときの相対静電容量を示す。   Table 10 shows the relative capacitance when the capacitance of the comparative example 201 is 100.

Figure 0004708808
Figure 0004708808

Figure 0004708808
Figure 0004708808

Figure 0004708808
Figure 0004708808

上記表の結果から理解されるように、実施例201〜204は、冷間圧延終了後最終焼鈍前に、酸化性雰囲気中の加熱を行った後、洗浄によりアルミニウム材表面層を除去することにより、表面層除去時のアルミニウム材の溶解性が均一になり、エッチング特性に優れ静電容量が高い。   As understood from the results of the above table, Examples 201 to 204 were obtained by removing the aluminum material surface layer by washing after heating in an oxidizing atmosphere after the end of cold rolling and before final annealing. The solubility of the aluminum material at the time of removing the surface layer is uniform, the etching characteristics are excellent, and the capacitance is high.

これに対して、比較例201は、酸化性雰囲気中の加熱を行わなかったため、洗浄によるアルミニウム材表面層除去時のアルミニウム材の溶解性が不均一であり静電容量が低い。   On the other hand, since the comparative example 201 did not perform heating in an oxidizing atmosphere, the solubility of the aluminum material at the time of removing the aluminum material surface layer by cleaning is non-uniform and the capacitance is low.

Claims (24)

アルミニウム材を酸化性雰囲気中で加熱した後、アルミニウム材表面層を洗浄により除去し、その後立方体集合組織を発達させるため最終焼鈍することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。 A method for producing an aluminum material for electrolytic capacitor electrodes, comprising heating an aluminum material in an oxidizing atmosphere, removing the surface layer of the aluminum material by washing, and then subjecting the aluminum material to final annealing to develop a cubic texture . 冷間圧延終了後にアルミニウム材を酸化性雰囲気中で加熱した後、アルミニウム材表面層を洗浄により除去し、その後立方体集合組織を発達させるため最終焼鈍することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。 The aluminum material for electrolytic capacitor electrodes is characterized in that after the cold rolling is finished, the aluminum material is heated in an oxidizing atmosphere, and then the surface layer of the aluminum material is removed by washing, followed by final annealing to develop a cubic texture . Production method. 洗浄に用いる洗浄液がアルカリ性水溶液である請求項1または請求項2に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 1 or 2, wherein the cleaning liquid used for cleaning is an alkaline aqueous solution. 洗浄に用いる洗浄液が酸性水溶液である請求項1または請求項2に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 1 or 2, wherein the cleaning liquid used for cleaning is an acidic aqueous solution. 洗浄は、アルカリ性水溶液による洗浄と酸性水溶液による洗浄の順次的実施により行われる請求項1または請求項2に記載の電解コンデンサ電極用アルミニウム材の製造方法。   3. The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 1, wherein the cleaning is performed by sequential execution of cleaning with an alkaline aqueous solution and cleaning with an acidic aqueous solution. アルカリが水酸化ナトリウム、水酸化カルシウム、水酸化カリウム、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、リン酸三ナトリウム、炭酸ナトリウムの中から選ばれた1種または2種以上である請求項3または請求項5に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The alkali is at least one selected from sodium hydroxide, calcium hydroxide, potassium hydroxide, sodium orthosilicate, sodium metasilicate, trisodium phosphate, and sodium carbonate. The manufacturing method of the aluminum material for electrolytic capacitor electrodes as described in 2. 酸性水溶液中の酸が塩酸、硫酸、硝酸、リン元素を含む酸の中から選ばれた1種または2種以上である請求項4または請求項5に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 4 or 5, wherein the acid in the acidic aqueous solution is one or more selected from hydrochloric acid, sulfuric acid, nitric acid, and an acid containing phosphorus element. . 酸化性雰囲気中での加熱後の洗浄によるアルミニウム材の表面層平均除去量が、以下に規定する除去量D(nm)においてアルミニウム材片面あたり1nm以上500nm以下である請求項1ないし請求項7の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
除去量D(nm)=E(g/cm2)×107/2.7(g/cm3
ただし、Eは洗浄による単位表面積当たりの質量減
2.7g/cm3はアルミニウムの密度
The average removal amount of the surface layer of the aluminum material by cleaning after heating in an oxidizing atmosphere is 1 nm to 500 nm per side of the aluminum material at a removal amount D (nm) specified below. The manufacturing method of the aluminum material for electrolytic capacitor electrodes of any one of Claims 1.
Removal amount D (nm) = E (g / cm 2 ) x 107 / 2.7 (g / cm 3 )
Where E is the weight loss per unit surface area due to cleaning
2.7 g / cm 3 is the density of aluminum
酸化性雰囲気中での加熱温度が50〜400℃である請求項1ないし請求項8の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for an electrolytic capacitor electrode according to any one of claims 1 to 8, wherein a heating temperature in an oxidizing atmosphere is 50 to 400 ° C. 酸化性雰囲気中での加熱時間が3秒以上72時間以下である請求項9に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 9, wherein the heating time in an oxidizing atmosphere is 3 seconds or more and 72 hours or less. 酸化雰囲気中での加熱における雰囲気中の酸素濃度が0.1体積%以上である請求項1ないし請求項10の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 10, wherein an oxygen concentration in the atmosphere in heating in an oxidizing atmosphere is 0.1 vol% or more. 酸化性雰囲気中での加熱前、もしくは酸化性雰囲気中での加熱後アルミニウム材表面層の洗浄前に、脱脂を行う請求項1ないし請求項11の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The aluminum for electrolytic capacitor electrodes according to any one of claims 1 to 11, wherein degreasing is performed before heating in an oxidizing atmosphere or after cleaning in an oxidizing atmosphere and before cleaning the surface layer of the aluminum material. A method of manufacturing the material. 有機溶剤を用いて脱脂を行う請求項12に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The manufacturing method of the aluminum material for electrolytic capacitor electrodes of Claim 12 which degreases using an organic solvent. 界面活性剤が添加された水を用いて脱脂を行う請求項12に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The manufacturing method of the aluminum material for electrolytic capacitor electrodes of Claim 12 which degreases using the water to which surfactant was added. 最終焼鈍が不活性ガス雰囲気中で行われる請求項1ないし請求項14の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 14, wherein the final annealing is performed in an inert gas atmosphere. 最終焼鈍が450℃以上600℃以下の温度で行われる請求項1ないし請求項15の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 15, wherein the final annealing is performed at a temperature of 450 ° C or higher and 600 ° C or lower. アルミニウム材のアルミニウム純度が99.9質量%以上である請求項1ないし請求項16の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 16, wherein the aluminum material has an aluminum purity of 99.9% by mass or more. 請求項1ないし請求項17の何れか1項に記載の製造方法によって製造された電解コンデンサ電極用アルミニウム材。   The aluminum material for electrolytic capacitor electrodes manufactured by the manufacturing method of any one of Claims 1 thru | or 17. 中圧用または高圧用陽極材である請求項18に記載の電解コンデンサ電極用アルミニウム材。   The aluminum material for electrolytic capacitor electrodes according to claim 18, which is an anode material for medium pressure or high pressure. 請求項1ないし請求項17の何れか1項に記載の製造方法によって製造されたアルミニウム材に、エッチングを実施することを特徴とする電解コンデンサ用電極材の製造方法。   The manufacturing method of the electrode material for electrolytic capacitors characterized by etching to the aluminum material manufactured by the manufacturing method of any one of Claim 1 thru | or 17. エッチング後、化成処理を実施する請求項20に記載の電解コンデンサ用電極材の製造方法。   The manufacturing method of the electrode material for electrolytic capacitors of Claim 20 which implements a chemical conversion treatment after an etching. エッチングの少なくとも一部が直流電解エッチングである請求項20または21に記載の電解コンデンサ用電極材の製造方法。   The method for producing an electrolytic capacitor electrode material according to claim 20 or 21, wherein at least a part of the etching is direct current electrolytic etching. 請求項20ないし請求項22の何れか1項に記載の製造方法によって製造されたアルミニウム電解コンデンサ用陽極材。   The anode material for aluminum electrolytic capacitors manufactured by the manufacturing method of any one of Claim 20 thru | or 22. 電極材として請求項20ないし請求項22の何れか1項に記載の製造方法によって製造されたアルミニウム電極材が用いられていることを特徴とするアルミニウム電解コンデンサ。   An aluminum electrolytic capacitor characterized in that an aluminum electrode material manufactured by the manufacturing method according to any one of claims 20 to 22 is used as an electrode material.
JP2005041045A 2004-02-17 2005-02-17 Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor Active JP4708808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005041045A JP4708808B2 (en) 2004-02-17 2005-02-17 Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004040328 2004-02-17
JP2004040328 2004-02-17
JP2005041045A JP4708808B2 (en) 2004-02-17 2005-02-17 Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2005268773A JP2005268773A (en) 2005-09-29
JP4708808B2 true JP4708808B2 (en) 2011-06-22

Family

ID=35092939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005041045A Active JP4708808B2 (en) 2004-02-17 2005-02-17 Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4708808B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247023A (en) * 2006-03-17 2007-09-27 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP5955679B2 (en) * 2012-07-25 2016-07-20 昭和電工株式会社 Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor and aluminum electrolytic capacitor
JP6166410B2 (en) * 2016-03-22 2017-07-19 昭和電工株式会社 Method for producing electrode material for electrolytic capacitor and method for producing aluminum electrolytic capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210561A (en) * 2000-01-24 2001-08-03 Mitsubishi Alum Co Ltd Aluminium foil for electrolytic capacitor and production method for alminium foil
JP2003338434A (en) * 2001-08-03 2003-11-28 Showa Denko Kk Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the electrolytic capacitor electrode, and manufacturing method of electrode material for electrolytic capacitor
JP2004006685A (en) * 2002-04-25 2004-01-08 Showa Denko Kk Method of manufacturing aluminum material for electrode of electrolytic capacitor, method of manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834926Y2 (en) * 1979-01-13 1983-08-05 松下電工株式会社 surrounding edge device
JPH07180006A (en) * 1993-12-24 1995-07-18 Kobe Steel Ltd Production of aluminum foil for electrolytic capacitor electrode
JP3308456B2 (en) * 1996-09-05 2002-07-29 住友軽金属工業株式会社 Manufacturing method of aluminum foil for electrode of electrolytic capacitor
JP3370246B2 (en) * 1996-11-11 2003-01-27 東洋アルミニウム株式会社 Aluminum alloy and foil for high pressure anode of electrolytic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210561A (en) * 2000-01-24 2001-08-03 Mitsubishi Alum Co Ltd Aluminium foil for electrolytic capacitor and production method for alminium foil
JP2003338434A (en) * 2001-08-03 2003-11-28 Showa Denko Kk Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the electrolytic capacitor electrode, and manufacturing method of electrode material for electrolytic capacitor
JP2004006685A (en) * 2002-04-25 2004-01-08 Showa Denko Kk Method of manufacturing aluminum material for electrode of electrolytic capacitor, method of manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor

Also Published As

Publication number Publication date
JP2005268773A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP5749586B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, method for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP5501152B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP5833151B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP5551742B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4708808B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4652205B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4874596B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4938226B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4874589B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP5123479B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4767480B2 (en) Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for electrolytic capacitor electrode, and manufacturing method of electrode material for electrolytic capacitor
JP4732892B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4874600B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4308552B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JP2006291354A (en) Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, process for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP6166410B2 (en) Method for producing electrode material for electrolytic capacitor and method for producing aluminum electrolytic capacitor
JP4981932B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4690182B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP5955679B2 (en) Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor and aluminum electrolytic capacitor
JP5950959B2 (en) Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor and aluminum electrolytic capacitor
JP2004165599A (en) Aluminium material for electrode of electrolytic capacitor, process for producing electrode materialof electrolytic capacitor and electrolytic capacitor
WO2003091482A1 (en) Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capacitor
WO2005078751A1 (en) Method of manufacturing aluminum material for electrolytic capacitor electrodes, aluminum material for electrolytic capacitor electrodes, anode material for aluminum electrolytic capacitors, and aluminum electrolytic capacitors
JP2007247023A (en) Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110317

R150 Certificate of patent or registration of utility model

Ref document number: 4708808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250