JP2003338434A - Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the electrolytic capacitor electrode, and manufacturing method of electrode material for electrolytic capacitor - Google Patents

Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the electrolytic capacitor electrode, and manufacturing method of electrode material for electrolytic capacitor

Info

Publication number
JP2003338434A
JP2003338434A JP2003111757A JP2003111757A JP2003338434A JP 2003338434 A JP2003338434 A JP 2003338434A JP 2003111757 A JP2003111757 A JP 2003111757A JP 2003111757 A JP2003111757 A JP 2003111757A JP 2003338434 A JP2003338434 A JP 2003338434A
Authority
JP
Japan
Prior art keywords
aluminum
aluminum material
electrolytic capacitor
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003111757A
Other languages
Japanese (ja)
Other versions
JP4767480B2 (en
Inventor
Hideki Nishimori
秀樹 西森
Tomonori Yamaguchi
知典 山口
Kazuhiro Kodama
和宏 児玉
Yutaka Kato
豊 加藤
Masashi Sakaguchi
雅司 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2003111757A priority Critical patent/JP4767480B2/en
Publication of JP2003338434A publication Critical patent/JP2003338434A/en
Application granted granted Critical
Publication of JP4767480B2 publication Critical patent/JP4767480B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an aluminum material for an electrolytic capacitor electrode capable of producing crystal oxide or the like which are a nucleus of a sufficient etching pit in a short time without requiring accurate atmosphere control or the like, and obtaining excellent etching characteristics and a large electrostatic capacity. <P>SOLUTION: A hot extrusion and a cold extrusion are successively carried out on an aluminum slab to obtain an aluminum blank, and then, the aluminum blank is heated in contact with a heating element and annealed thereafter. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、電解コンデンサ
用アルミニウム材の製造方法、電解コンデンサ電極用ア
ルミニウム陽極材、電解コンデンサ用電極材の製造方法
及びアルミニウム電解コンデンサに関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing an aluminum material for electrolytic capacitors, an aluminum anode material for electrolytic capacitor electrodes, a method for manufacturing an electrode material for electrolytic capacitors, and an aluminum electrolytic capacitor.

【0002】なお、この明細書において「アルミニウ
ム」の語はその合金を含む意味で用い、アルミニウム材
には箔と板およびこれらを用いた成形体が含まれる。
In this specification, the term "aluminum" is used to include its alloys, and aluminum materials include foils and plates and molded products using these.

【0003】[0003]

【従来の技術及び課題】アルミニウム電解コンデンサ用
電極材として一般に用いられているアルミニウム材は、
大きな表面積を有して単位面積当たりの静電容量の大き
いものであることが要求されるため、電気化学的あるい
は化学的エッチング処理を施して、アルミニウム材の実
効面積を拡大することが行われている。
2. Description of the Related Art Aluminum materials generally used as electrode materials for aluminum electrolytic capacitors are
Since it is required to have a large surface area and a large capacitance per unit area, electrochemical or chemical etching treatment is performed to expand the effective area of the aluminum material. There is.

【0004】さらに、この実効面積の増大を目的とし
て、エッチング孔をより多く、太くすることに関して材
料の組成、製造工程、エッチング方法等種々の面から研
究がなされている。
Further, for the purpose of increasing the effective area, researches have been conducted on various aspects such as material composition, manufacturing process and etching method for increasing the number of etching holes and making them thicker.

【0005】例えば、直流エッチング法でトンネル状ピ
ットを生成させる電解コンデンサ用アルミニウム材の製
造において、通常は、(100)面の結晶方位を発達させ
るために、500℃前後の温度にて不活性雰囲気もしくは
真空中で最終焼鈍することが行われている。なお、最終
焼鈍とは、仕上げ冷間圧延の後もしくは仕上げ冷間圧
延、洗浄の後に実施する工程である。
For example, in the production of an aluminum material for electrolytic capacitors in which tunnel-like pits are formed by a direct current etching method, usually, in order to develop the crystal orientation of the (100) plane, an inert atmosphere at a temperature of about 500 ° C. is used. Alternatively, final annealing is performed in vacuum. The final annealing is a step performed after finish cold rolling or after finish cold rolling and cleaning.

【0006】最終焼鈍時にアルミニウム材の表面に結晶
性酸化物粒子が生成された場合、電解エッチング時に結
晶周辺からエッチピットが生じることが非特許文献1、
非特許文献2で述べられており、その結晶性酸化物粒子
をアルミニウム材の表面に生成させることは静電容量の
向上に寄与すると考えられる。
When crystalline oxide particles are formed on the surface of an aluminum material during the final annealing, etch pits may be generated around the crystal during electrolytic etching.
As described in Non-Patent Document 2, it is considered that generating the crystalline oxide particles on the surface of the aluminum material contributes to the improvement of electrostatic capacity.

【0007】しかしながら、前述したように、最終焼鈍
の一般的雰囲気である不活性ガス雰囲気もしくは真空雰
囲気では、雰囲気中の酸素が極微量であるため、最終焼
鈍を実施しても結晶化しにくい。逆に酸化雰囲気中で高
温焼鈍すると酸化皮膜が厚くなり、エッチピットの均一
性が低下する。
However, as described above, in an inert gas atmosphere or a vacuum atmosphere, which is a general atmosphere for final annealing, the amount of oxygen in the atmosphere is extremely small, so that even if the final annealing is performed, it is difficult to crystallize. On the other hand, when high temperature annealing is performed in an oxidizing atmosphere, the oxide film becomes thick and the uniformity of etch pits deteriorates.

【0008】アルミニウム材の表面に結晶を多く析出さ
せる方法として、最終焼鈍前に蒸気または湿った空気を
アルミニウム材表面に吹き付ける方法、大気中において
200℃程度の温度で加熱する方法、加熱された水または
アミン水溶液中にアルミニウム材を浸漬するいわゆるベ
ーマイト処理方法などにより水和処理皮膜を形成する方
法が知られている(特許文献1)。
As a method for precipitating a large amount of crystals on the surface of the aluminum material, a method of blowing steam or moist air onto the surface of the aluminum material before final annealing, in the atmosphere,
A method of forming a hydration treatment film by a method of heating at a temperature of about 200 ° C., a so-called boehmite treatment method of immersing an aluminum material in heated water or an aqueous amine solution, and the like are known (Patent Document 1).

【0009】水和処理皮膜はその後の最終焼鈍により結
晶性酸化物がアルミニウム材の表面に析出しやすいもの
の、Al-OH基を表面に多く有するため、コイルの状態や
単板を重ねた状態でバッチ焼鈍した場合に密着しやすい
という問題があった。また、大気中において200℃程度
の温度で加熱する方法では、再現性良く目的の酸化膜を
得るためには水蒸気量の制御等精確な雰囲気制御が必要
であり、アルミニウム箔表面が目的の温度に達するのに
時間がかかるという欠点があった。
In the hydrated film, although the crystalline oxide is likely to be deposited on the surface of the aluminum material by the subsequent final annealing, since it has many Al-OH groups on the surface, it is possible to leave it in a coil state or a state in which veneers are stacked. There was a problem that adhesion was easy when batch annealing was performed. Further, in the method of heating at a temperature of about 200 ° C. in the atmosphere, precise atmosphere control such as control of the amount of water vapor is necessary to obtain the target oxide film with good reproducibility, and the aluminum foil surface is kept at the target temperature. It had the drawback of taking a long time to reach.

【0010】また、特許文献2には、酸素または水分を
含む酸化性雰囲気中における連続最終焼鈍によりγ―Al
2O3を析出させる技術が公開されているが、最終焼鈍時
間が短時間であるが故に、γ―Al2O3の析出が不十分な
恐れがあった。
Further, in Patent Document 2, γ-Al is formed by continuous final annealing in an oxidizing atmosphere containing oxygen or water.
Although a technique for precipitating 2 O 3 has been disclosed, the precipitation of γ-Al 2 O 3 may be insufficient because the final annealing time is short.

【0011】[0011]

【非特許文献1】福岡潔、大澤伸夫、本居徹也,軽金属
学会第95回秋季大会講演概要p.2 65(1998)、
[Non-patent Document 1] Kiyoshi Fukuoka, Nobuo Osawa, Tetsuya Motoi, Abstracts of the 95th Autumn Meeting of the Japan Institute of Light Metals p.2 65 (1998),

【0012】[0012]

【非特許文献2】大澤伸夫,福岡潔;表面技術,50
[7],643(1999)
[Non-Patent Document 2] Nobuo Osawa, Kiyoshi Fukuoka; Surface Technology,50
[7], 643 (1999)

【0013】[0013]

【特許文献1】特公昭58-34926号公報[Patent Document 1] Japanese Patent Publication No. 58-34926

【0014】[0014]

【特許文献2】特開昭63-116417号公報 この発明は、このような技術背景に鑑みてなされたもの
であって、精確な雰囲気制御を要することなく、短時間
で処理でき、その後の最終焼鈍により十分なエッチング
ピットの核となる結晶性酸化物等の物質を生成でき、エ
ッチング特性に優れた電解コンデンサ電極用アルミニウ
ム材の製造方法、電解コンデンサ電極用アルミニウム陽
極材、電解コンデンサ用電極材の製造方法及びアルミニ
ウム電解コンデンサを提供することを課題とする。
[Patent Document 2] Japanese Unexamined Patent Publication No. 63-116417 SUMMARY OF THE INVENTION The present invention has been made in view of such a technical background, and can perform processing in a short time without requiring accurate atmosphere control, and then perform the final processing. A method for producing an aluminum material for electrolytic capacitor electrodes, which is capable of producing a substance such as a crystalline oxide that becomes a nucleus of sufficient etching pits by annealing and has excellent etching characteristics, an aluminum anode material for electrolytic capacitor electrodes, and an electrode material for electrolytic capacitors An object is to provide a manufacturing method and an aluminum electrolytic capacitor.

【0015】[0015]

【課題を解決するための手段】本発明は以下の手段を提
供する。 (1)アルミニウムスラブに熱間圧延及び冷間圧延を順
次実施してアルミニウム材としたのち、このアルミニウ
ム材を加熱体との接触により加熱し、その後焼鈍するこ
とを特徴とする電解コンデンサ電極用アルミニウム材の
製造方法。 (2)加熱体の表面温度が80〜400℃、アルミニウ
ム材と加熱体との接触時間が0.001〜30秒である
前項1に記載の電解コンデンサ電極用アルミニウム材の
製造方法。 (3)焼鈍がアルミニウム実体温度460〜600℃に
て不活性ガス雰囲気中で行われる前項1に記載の電解コ
ンデンサ電極用アルミニウム材の製造方法。 (4)アルミニウム実体温度が500〜580℃である
前項3に記載の電解コンデンサ電極用アルミニウム材の
製造方法。 (5)加熱体が熱ロールである前項1に記載の電解コン
デンサ電極用アルミニウム材の製造方法。 (6)加熱体との接触後、アルミニウム材を冷却する前
項1に記載の電解コンデンサ電極用アルミニウム材の製
造方法。 (7)アルミニウム材の冷却を冷却ロールとの接触によ
り行う前項5に記載の電解コンデンサ電極用アルミニウ
ム材の製造方法。 (8)アルミニウムの純度が99.9%以上である前項
1に記載の電解コンデンサ電極用アルミニウム材の製造
方法。 (9)前項1ないし8のいずれかに記載の製造方法によ
って製造された電解コンデンサ用アルミニウム陽極材。 (10)中圧用または高圧用である前項9に記載の電解
コンデンサ用アルミニウム陽極材。 (11)前項1ないし8のいずれかに記載の製造方法に
よって製造されたアルミニウム材に、焼鈍後、エッチン
グを実施することを特徴とする電解コンデンサ用電極材
の製造方法。 (12)エッチングが直流エッチングである前項11に
記載の電解コンデンサ用電極材の製造方法。
The present invention provides the following means. (1) Aluminum for electrolytic capacitor electrodes, characterized in that an aluminum slab is subjected to hot rolling and cold rolling in order to obtain an aluminum material, which is heated by contact with a heating body and then annealed. Method of manufacturing wood. (2) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 1, wherein the surface temperature of the heating element is 80 to 400 ° C., and the contact time between the aluminum material and the heating element is 0.001 to 30 seconds. (3) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 1, wherein the annealing is performed in an inert gas atmosphere at an aluminum body temperature of 460 to 600 ° C. (4) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 3, wherein the aluminum body temperature is 500 to 580 ° C. (5) The method for producing an aluminum material for electrolytic capacitor electrodes as described in 1 above, wherein the heating element is a hot roll. (6) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 1, wherein the aluminum material is cooled after contact with the heating body. (7) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 5, wherein the aluminum material is cooled by contact with a cooling roll. (8) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 1, wherein the purity of aluminum is 99.9% or more. (9) An aluminum anode material for electrolytic capacitors manufactured by the manufacturing method according to any one of items 1 to 8 above. (10) The aluminum anode material for electrolytic capacitors as described in 9 above, which is for medium pressure or high pressure. (11) A method for producing an electrode material for an electrolytic capacitor, which comprises etching the aluminum material produced by the production method according to any one of items 1 to 8 after annealing. (12) The method for producing an electrode material for an electrolytic capacitor as described in 11 above, wherein the etching is direct current etching.

【0016】上述のように、この発明は、アルミニウム
スラブに熱間圧延及び冷間圧延を順次実施してアルミニ
ウム材としたのち、このアルミニウム材を加熱体との接
触により加熱し、その後焼鈍することを特徴とする。
As described above, according to the present invention, the aluminum slab is hot-rolled and cold-rolled sequentially to form an aluminum material, which is then heated by contact with a heating body and then annealed. Is characterized by.

【0017】即ち、冷間圧延以降の工程において、加熱
体との接触によりアルミニウム材を加熱することにより
その後の焼鈍によりエッチピット核となり得る物質をア
ルミニウム材表面に析出させる。加熱方法として接触加
熱を用いるのは、加熱体表面により、均一に短時間でア
ルミニウム材表面を目的の温度に到達させることが出来
るため制御が比較的容易で、しかも急速且つ短時間で加
熱できるため雰囲気の影響を少なくできるからである。
That is, in the steps after the cold rolling, the aluminum material is heated by contact with the heating body to deposit a substance that can become an etch pit nucleus on the surface of the aluminum material by subsequent annealing. The contact heating is used as the heating method because the surface of the heating body can uniformly reach the target temperature in a short time because the surface of the heating material is relatively easy to control and can be heated rapidly and in a short time. This is because the influence of the atmosphere can be reduced.

【0018】電解コンデンサ用アルミニウム材の製造に
おいて、従来一般に(100)面の結晶方位を発達させる
ために、450〜600℃の温度範囲で不活性雰囲気もしくは
真空中で最終焼鈍を実施しているが、結晶性酸化物等エ
ッチピットの核となりうる物質が十分生成しない。そこ
で、最終焼鈍前に接触加熱により急速加熱することによ
って、最終焼鈍時に結晶性酸化物微粒子等エッチピット
の核となり得る物質の生成を促進させる。
In the production of aluminum materials for electrolytic capacitors, in order to develop the crystal orientation of the (100) plane, the final annealing is generally carried out in the temperature range of 450 to 600 ° C. in an inert atmosphere or vacuum. , A substance that can be a nucleus of an etch pit such as a crystalline oxide is not sufficiently generated. Therefore, by rapidly heating by contact heating before the final annealing, generation of a substance that can be a nucleus of an etch pit such as crystalline oxide fine particles during the final annealing is promoted.

【0019】ここでエッチピットの核となり得る物質
は、結晶性酸化物のみならず、非晶質でも密度の高いも
のあるいは厚いもの、非晶質の中に結晶性酸化物や金属
アルミニウムが含まれるものが含まれる。また、結晶性
酸化物の種類としてはγ-Al2O3をはじめとするAl2O3
ベーマイトをはじめとするAlOOH、アルミニウム以外の
含有金属(例えばMg、Pb、Cu等)との複合酸化物などが
あるが、金属酸化物あるいは金属水酸化物等に特に限定
されるものではない。
Here, the substance that can be the nucleus of the etch pit is not only a crystalline oxide, but also an amorphous substance having a high density or a thick one, and the amorphous oxide includes a crystalline oxide and metallic aluminum. Things are included. In addition, as the type of crystalline oxide, γ-Al 2 O 3 and other Al 2 O 3 ,
Examples thereof include AlOOH including boehmite, and complex oxides with a contained metal other than aluminum (for example, Mg, Pb, Cu, etc.), but are not particularly limited to metal oxides or metal hydroxides.

【0020】このようなアルミニウム材表面の酸化皮膜
の中で他の場所と特性が異なるものが生成されれば、エ
ッチング時にエッチピットの核となりうると考えられ、
最終焼鈍前に急速加熱することにより、焼鈍時に結晶や
結晶に転移する前の状態の非晶質、非晶質の中に結晶や
金属アルミニウムが含まれる物質が生成し、これらがエ
ッチピット核となると推定される。
It is considered that if such an oxide film on the surface of the aluminum material, which has characteristics different from those of other places, is generated, it may become a nucleus of an etch pit at the time of etching.
By rapid heating before final annealing, crystals and amorphous state before being transformed into crystals, substances containing crystals and metallic aluminum in the amorphous are generated, and these form etch pit nuclei. It is estimated that

【0021】急速加熱の方法として加熱体との接触加熱
を用いるのは、前述したように、極短時間でアルミニウ
ム材表面を目的の温度に到達させることができ生産性に
優れる、短時間に加熱できるため雰囲気の影響を受けに
くい、アルミニウム材表面に接触する加熱体表面の温度
が均一であればアルミニウムコイルの幅方向・長手方向
に均一な酸化膜が形成できるというような利点を有する
ためである。
The contact heating with the heating body is used as the rapid heating method, as described above, because the surface of the aluminum material can reach the target temperature in an extremely short time and the productivity is excellent. This is because it is possible to form a uniform oxide film in the width direction and the longitudinal direction of the aluminum coil if the temperature of the surface of the heating body that is in contact with the surface of the aluminum material is uniform because it is not easily affected by the atmosphere. .

【0022】以下に、電解コンデンサ用アルミニウム材
の製造方法を説明する。
A method of manufacturing an aluminum material for electrolytic capacitors will be described below.

【0023】アルミニウム材の純度は電解コンデンサ用
に使用される範囲であれば特に限定されないが、純度9
9.9%以上のものが好ましく、特に99.95%以上が好まし
い。なお、本発明においてアルミニウム材の純度は10
0%からFe,Si, Cu, Mn, Cr, Zn, TiおよびGaの合計濃
度(%)を差し引いた値とする。
The purity of the aluminum material is not particularly limited as long as it is within the range used for electrolytic capacitors.
It is preferably 9.9% or more, particularly preferably 99.95% or more. In the present invention, the purity of the aluminum material is 10
The value is obtained by subtracting the total concentration (%) of Fe, Si, Cu, Mn, Cr, Zn, Ti and Ga from 0%.

【0024】アルミニウム材の製造は、限定はされない
が、アルミニウム材料の溶解成分調整・スラブ鋳造、均
熱処理、熱間圧延、冷間圧延、仕上冷間圧延(低圧下圧
延)、接触加熱の順に実施される。アルミニウム材の
(100)面積率が90%以上であることが好ましく、アル
ミニウム材のエッチング条件との関係で、アルミニウム
材の製造工程条件は適宜変更される。なお、圧延工程の
途中において、前工程の圧延により生じたアルミニウム
材の結晶組織の歪みを解消する目的で焼鈍(中間焼鈍と
称す)を実施しても良い。また、中間焼鈍以前の工程で
アルミニウム表面の不純物や油分を除去する目的で洗浄
を行ってもよい。
The production of the aluminum material is not limited, but is carried out in the order of adjusting the melting components of the aluminum material, slab casting, soaking, hot rolling, cold rolling, finish cold rolling (low pressure rolling), and contact heating. To be done. The (100) area ratio of the aluminum material is preferably 90% or more, and the manufacturing process conditions of the aluminum material are appropriately changed depending on the etching conditions of the aluminum material. In the middle of the rolling process, annealing (referred to as intermediate annealing) may be performed for the purpose of eliminating the distortion of the crystal structure of the aluminum material caused by the rolling in the previous process. Further, cleaning may be performed for the purpose of removing impurities and oil components on the aluminum surface in the step before the intermediate annealing.

【0025】中間焼鈍以前の工程で用いる洗浄液は特に
限定されないが、アルカリ水溶液、酸水溶液、有機溶剤
等が用いられる。
The cleaning liquid used in the step before the intermediate annealing is not particularly limited, but an alkali aqueous solution, an acid aqueous solution, an organic solvent or the like is used.

【0026】圧延工程を終了したアルミニウム材は、表
面に油分が存在するため、必要に応じ、最終焼鈍前であ
って後述する接触加熱前あるいは接触加熱後の少なくと
もどちらかで洗浄を行うことが好ましい。このような洗
浄を行うことで、接触加熱の効果がより発揮され、大き
な静電容量が得られる。
Since the aluminum material that has undergone the rolling step has oil on its surface, it is preferable to perform cleaning before the final annealing and at least either before or after the contact heating described later, if necessary. . By carrying out such washing, the effect of contact heating is further exerted, and a large electrostatic capacitance is obtained.

【0027】圧延終了後洗浄を行うことなく接触加熱を
行い大きい摩耗粉などがアルミニウム材表面に付着して
いる場合には、洗浄により除去することが好ましい。
After completion of rolling, contact heating is carried out without cleaning, and if large abrasion powder or the like adheres to the surface of the aluminum material, it is preferable to remove it by cleaning.

【0028】前記接触加熱前あるいは接触加熱後の洗浄
に用いられる洗浄液は、脱脂を目的とすることから、有
機溶剤や水に界面活性剤を添加したものを用いることが
できる。
The cleaning liquid used for cleaning before or after the contact heating has a purpose of degreasing, so that a surfactant added to an organic solvent or water can be used.

【0029】有機溶剤としては、アルミニウムを溶解し
ない物質を用いることができ、例として、アルコール、
ジオール、トルエン・キシレン等の芳香族炭化水素、ア
ルカン系炭化水素、シクロヘキサン、ケトン、エーテ
ル、エステル、石油製品等があげられるが、特に限定さ
れるものではない。
As the organic solvent, a substance which does not dissolve aluminum can be used. Examples thereof include alcohol,
Examples thereof include, but are not limited to, diols, aromatic hydrocarbons such as toluene and xylene, alkane hydrocarbons, cyclohexane, ketones, ethers, esters, and petroleum products.

【0030】上記アルコールの例としては、メタノール
(CH3OH)、エタノール(C2H5OH)、1-プロパノール(CH3CH2
CH2OH)、2-プロパノール(CH3CH2(OH)CH3)、1-ブタノー
ル(CH3CH2CH2CH2OH)、2-ブタノール(CH3CH2CH2(OH)C
H3)、1-ペンタノール(CH3CH2CH2CH2CH2OH)、2-ペンタノ
ール(CH3CH2CH2CH2(OH)CH3)等が挙げられ、CnH2n+1OH(n
=1〜10の自然数)で表されるものが好ましい。また、シ
クロヘキサノール等の脂乾炭化水素類も用いることが出
来る。
Examples of the above alcohol include methanol
(CH 3 OH), ethanol (C 2 H 5 OH), 1-propanol (CH 3 CH 2
CH 2 OH), 2-propanol (CH 3 CH 2 (OH) CH 3 ), 1-butanol (CH 3 CH 2 CH 2 CH 2 OH), 2-butanol (CH 3 CH 2 CH 2 (OH) C
H 3 ), 1-pentanol (CH 3 CH 2 CH 2 CH 2 CH 2 OH), 2-pentanol (CH 3 CH 2 CH 2 CH 2 (OH) CH 3 ), and the like, and C n H 2n +1 OH (n
The natural number of 1 to 10) is preferable. Also, fat-free hydrocarbons such as cyclohexanol can be used.

【0031】上記ジオールの例としては1,2-エタンジオ
ール(HOCH2CH2OH)、1,2-プロパンジオール(CH3CH(O
H)CH2OH)、1,3-プロパンジオール(HOCH2CH2CH2OH)等
が例示できる。
Examples of the above diols are 1,2-ethanediol (HOCH 2 CH 2 OH) and 1,2-propanediol (CH 3 CH (O
H) CH 2 OH) and 1,3-propanediol (HOCH 2 CH 2 CH 2 OH).

【0032】上記アルカン系炭化水素の例としては、ペ
ンタン(C5H12)、ヘキサン(C6H14)、ヘプタン(C7H16)、
オクタン(C8H18)、ノナン(C9H20)、デカン(C10H22)等が
挙げられCnH2n+2(n=5〜15の自然数)で表されるものが
好ましい。またシクロヘキサン等脂乾式炭化水素の適用
も可能である。
Examples of the alkane hydrocarbon include pentane (C 5 H 12 ), hexane (C 6 H 14 ), heptane (C 7 H 16 ),
Octane (C 8 H 18 ), nonane (C 9 H 20 ), decane (C 10 H 22 ) and the like are mentioned, and those represented by C n H 2n + 2 (n = natural number of 5 to 15) are preferable. It is also possible to apply a dry hydrocarbon such as cyclohexane.

【0033】上記ケトンの例としてはアセトン(CH3COCH
3)、2-ブタノン(CH3COC2H5)、3-ペンタノン(CH3CH2COC
H2CH3)、3-メチル-2-ブタノン(CH3COCH(CH3)2)等が
例示でき、R1COR2(R1およびR2:脂肪族炭化水素基であ
り、R1とR2の炭素数の合計が8以下)で表されるものが好
ましい。また、シクロヘキサノン(C6H10O)等環状ケトン
を用いても良い。
As an example of the above-mentioned ketone, acetone (CH 3 COCH
3 ), 2-butanone (CH 3 COC 2 H 5 ), 3-pentanone (CH 3 CH 2 COC
H 2 CH 3 ), 3-methyl-2-butanone (CH 3 COCH (CH 3 ) 2 ) and the like can be exemplified, and R 1 COR 2 (R 1 and R 2 are aliphatic hydrocarbon groups, R 1 and R 2 Those having a total carbon number of 8 or less) are preferred. Alternatively, a cyclic ketone such as cyclohexanone (C 6 H 10 O) may be used.

【0034】上記エーテルの例としては、R1-O-R2(R1
よびR2:脂肪族炭化水素基であり、R 1とR2の炭素数の合
計が8以下)で表される物質、2-メトキシエタノール(CH
3OCH2CH2OH)、2-エトキシエタノール(CH3CH2OCH2CH2O
H)、2-ブトキシエタノール(CH 3CH2CH2CH2OCH2CH2OH)
2-(2-エトキシ)エトキシエタノール(CH3CH2OCH2CH2OCH
2CH2OH)、等のグリコールエーテルも含まれる。
Examples of the above ether include R1-O-R2(R1Oh
And R2: Aliphatic hydrocarbon group, R 1And R2Carbon number of
2-methoxyethanol (CH
3OCH2CH2OH), 2-ethoxyethanol (CH3CH2OCH2CH2O
H), 2-butoxyethanol (CH 3CH2CH2CH2OCH2CH2OH)
2- (2-ethoxy) ethoxyethanol (CH3CH2OCH2CH2OCH
2CH2OH), and other glycol ethers are also included.

【0035】上記エステルの例としては、CH3COOR(R:炭
素数1〜5である脂肪族炭化水素基)で表される酢酸エス
テルが例示できる。
Examples of the above ester include acetic acid ester represented by CH 3 COOR (R: an aliphatic hydrocarbon group having 1 to 5 carbon atoms).

【0036】上記石油製品の例としては、工業ガソリン
(JIS K 2201)、自動車ガソリン(JIS K 2202)、航空
ガソリン(JIS K 2206)、灯油(JIS K 2203)、軽油(J
IS K2204)、航空ガソリン(JIS K 2206)、石油エーテル
(JIS K 8593)、石油ベンジン(JIS K 8594)、リグロイン
(JIS K 8937)、ケロシン等が挙げられる。
Examples of the above petroleum products include industrial gasoline (JIS K 2201), automobile gasoline (JIS K 2202), aviation gasoline (JIS K 2206), kerosene (JIS K 2203), light oil (J
IS K2204), Aviation gasoline (JIS K 2206), Petroleum ether
(JIS K 8593), petroleum benzine (JIS K 8594), ligroin
(JIS K 8937), kerosene and the like.

【0037】上記有機溶剤としては、複数の有機溶剤を
混合して用いても良く、水と混合し得る有機溶剤の場合
は必要に応じて水と混合して用いても良い。
As the above-mentioned organic solvent, a plurality of organic solvents may be mixed and used, and in the case of an organic solvent which can be mixed with water, it may be mixed with water as needed.

【0038】一方、上記洗浄に用いる、水に界面活性剤
を添加した洗浄液中に含まれる界面活性剤としては、ア
ニオン界面活性剤、カチオン界面活性剤、非イオン性界
面活性剤を用いることが出来る。
On the other hand, an anionic surfactant, a cationic surfactant, or a nonionic surfactant can be used as the surfactant contained in the cleaning liquid prepared by adding the surfactant to water used for the above-mentioned washing. .

【0039】アニオン界面活性剤としては、硫酸エステ
ル塩、スルホン酸塩を用いることができる。
As the anionic surfactant, a sulfate ester salt or a sulfonate salt can be used.

【0040】上記硫酸エステル塩としては、R-OSO3Na(R
=炭素数8〜18のの飽和炭化水素基もしくは二重結合を一
つ有する不飽和炭化水素基)を利用でき、具体的にはド
デシル硫酸ナトリウム(C12H25OSO3Na)、ヘキサデシル硫
酸ナトリウム(C16H33OSO3Na)、ステアリル硫酸ナトリウ
ム(C18H37OSO3Na)、オレイル硫酸ナトリウム(C18H35OSO
3Na)等が例示できる。
As the above-mentioned sulfate ester salt, R-OSO 3 Na (R
= Saturated hydrocarbon group having 8 to 18 carbon atoms or unsaturated hydrocarbon group having one double bond), specifically sodium dodecyl sulfate (C 12 H 25 OSO 3 Na), sodium hexadecyl sulfate (C 16 H 33 OSO 3 Na), sodium stearyl sulfate (C 18 H 37 OSO 3 Na), sodium oleyl sulfate (C 18 H 35 OSO 3 Na)
3 Na) and the like.

【0041】上記スルホン酸塩はR-SO3Na(R=炭素数8〜1
8の飽和炭化水素基もしくは二重結合を一つ有する不飽
和炭化水素基)もしくはドデシルベンゼンスルホン酸ナ
トリウム(C12H25-C6H4-SO3Na)等のR-SO3Na(R:アルキル
基が炭素数8〜14の飽和炭化水素基もしくは二重結合を
一つ有する不飽和炭化水素基であるアルキルベンジル
基)で表されるものを用いることができる。
The above sulfonate is R-SO 3 Na (R = carbon number 8 to 1)
8 saturated hydrocarbon group or unsaturated hydrocarbon group having one double bond) or R-SO 3 Na (R such as sodium dodecylbenzenesulfonate (C 12 H 25 -C 6 H 4 -SO 3 Na)) A compound represented by an alkylbenzyl group whose alkyl group is a saturated hydrocarbon group having 8 to 14 carbon atoms or an unsaturated hydrocarbon group having one double bond) can be used.

【0042】カチオン界面活性剤としては、R-N+(CH3)3
・Cl- (R=炭素数8〜16の飽和炭化水素基)で表される第
4級アンモニウム塩を用いることができる。
As the cationic surfactant, RN + (CH 3 ) 3
A quaternary ammonium salt represented by Cl (R = saturated hydrocarbon group having 8 to 16 carbon atoms) can be used.

【0043】非イオン性界面活性剤としては、R-O-(-CH
2CH2O)nH(R=炭素数8〜16の飽和炭化水素基もしくは二重
結合を一つ有する不飽和炭化水素基、n=6〜14)またはR-
O-(-CH2CH2O)nH(R=アルキル基が炭素数8〜12の飽和炭化
水素基もしくは二重結合を一つ有する不飽和炭化水素基
であるアルキルフェニル基、n=6〜14)で表されるポリエ
チレングリコール型非イオン界面活性剤を例示できる。
なおnが上記範囲より多いものが非イオン性界面活性剤
中に50%以下のモル比で含まれていても良い。
As the nonionic surfactant, RO-(-CH
2 CH 2 O) n H (R = saturated hydrocarbon group having 8 to 16 carbon atoms or unsaturated hydrocarbon group having one double bond, n = 6 to 14) or R-
O-(-CH 2 CH 2 O) n H (R = alkylphenyl group, where the alkyl group is a saturated hydrocarbon group having 8 to 12 carbon atoms or an unsaturated hydrocarbon group having one double bond, n = 6 The polyethylene glycol type nonionic surfactants represented by (14) to (14) can be exemplified.
The nonionic surfactant having n larger than the above range may be contained in a molar ratio of 50% or less.

【0044】また、上記界面活性剤の少なくとも1種類
以上を水に添加し洗浄液として用いることができる。界
面活性剤の炭素数が上記範囲より少ない界面活性剤が50
%以下のモル比で添加されていても良い。なお、アニオ
ン界面活性剤とカチオン界面活性剤を水中で混合させる
と沈殿が生成するため、混合はさけることが好ましい。
Further, at least one or more of the above-mentioned surfactants can be added to water and used as a cleaning liquid. If the number of carbon atoms in the surfactant is less than the above range, 50
It may be added in a molar ratio of not more than%. Note that it is preferable to avoid mixing because an anionic surfactant and a cationic surfactant are mixed in water to form a precipitate.

【0045】界面活性剤の添加濃度は特に規定されない
が、洗浄効果を発揮させるために臨界ミセル濃度以上で
あることが好ましい。
The concentration of the surfactant added is not particularly limited, but it is preferably at least the critical micelle concentration in order to exert the cleaning effect.

【0046】上記洗浄工程において、洗浄液として用い
る有機溶剤もしくは界面活性剤水溶液とアルミニウム材
の接触方法としては特に限定されないが、浸漬、洗浄液
表面へのアルミニウム材の接触、スプレー等が挙げられ
る。
In the above cleaning step, the method of contacting the aluminum material with the organic solvent or the aqueous surfactant solution used as the cleaning solution is not particularly limited, but examples include immersion, contact of the aluminum material with the surface of the cleaning solution, and spraying.

【0047】また、アルミニウム材表面の油分や摩耗粉
をより除去する目的で、洗浄液とアルミニウム材との接
触中にアルミニウム材をブラシもしくはスポンジと接触
させさらにこすっても良い。
Further, for the purpose of further removing oil content and abrasion powder on the surface of the aluminum material, the aluminum material may be brought into contact with the brush or sponge during the contact between the cleaning liquid and the aluminum material and further rubbed.

【0048】洗浄工程において、洗浄液とアルミニウム
材との接触時間は特に限定されるものではないが、0.5
秒以上10分以下であることが好ましい。洗浄液とアルミ
ニウム材の接触時間が0.5秒未満では洗浄が不十分であ
り、10分より長く接触させても洗浄効果が飽和に達す
る。洗浄液の液温は有機溶剤の場合は5〜60℃、水に界
面活性剤を添加した洗浄液の場合は5〜80℃であること
が好ましい。洗浄液の液温が下限未満の場合には洗浄力
が不十分であり、上限より高い温度で洗浄しても洗浄力
は飽和に達する。
In the cleaning step, the contact time between the cleaning liquid and the aluminum material is not particularly limited, but is 0.5
It is preferably not less than 2 seconds and not more than 10 minutes. If the contact time between the cleaning liquid and the aluminum material is less than 0.5 seconds, the cleaning is insufficient, and the cleaning effect reaches saturation even if the cleaning liquid is contacted for more than 10 minutes. The temperature of the cleaning liquid is preferably 5 to 60 ° C in the case of an organic solvent, and 5 to 80 ° C in the case of a cleaning liquid prepared by adding a surfactant to water. When the temperature of the cleaning liquid is below the lower limit, the cleaning power is insufficient, and the cleaning power reaches saturation even when cleaning is performed at a temperature higher than the upper limit.

【0049】アルミニウム材の洗浄後、必要に応じて乾
燥しても良い。乾燥方法として、例えば、空気中加熱、
不活性雰囲気加熱、真空加熱を用いることができる。空
気中で乾燥する場合の雰囲気温度は200℃以下、乾燥時
間は10分以下であることが好ましい。乾燥温度が200℃
より高くなるかもしくは加熱時間が10分より長くなる
と、酸化膜が成長しすぎてエッチング特性が低下する恐
れがあるからである。
After washing the aluminum material, it may be dried if necessary. As a drying method, for example, heating in air,
Inert atmosphere heating and vacuum heating can be used. When drying in air, the atmospheric temperature is preferably 200 ° C. or lower, and the drying time is preferably 10 minutes or less. Drying temperature is 200 ℃
This is because if the temperature is higher or the heating time is longer than 10 minutes, the oxide film may grow too much and the etching characteristics may deteriorate.

【0050】圧延終了後のアルミニウム材または圧延終
了後さらに洗浄を施したアルミニウム材は、その後の焼
鈍によりエッチピットの核を多く生成させるために接触
加熱される。加熱手段は、熱ロール、加熱ベルト、加熱
板など接触加熱が可能なものであれば良いが、簡便で連
続的に接触加熱を行いうる点で熱ロールが望ましい。ま
た、片面ずつ加熱しても良く、表裏面の一方のみを加熱
してもよい。加熱体の加熱表面の材質としては、ステン
レス、メッキ、セラミックス、テフロン樹脂(登録商
標)、シリコーン樹脂等自由に選択できるが、アルミニ
ウム材の表面酸化膜が加熱体の表面に凝着しない物質が
好ましい。
The aluminum material after completion of rolling or the aluminum material further cleaned after completion of rolling is contact-heated in order to generate a large number of nuclei of etch pits by subsequent annealing. The heating means may be any one capable of contact heating such as a heat roll, a heating belt, and a heating plate, but a heat roll is preferable because it is simple and can continuously perform contact heating. Also, heating may be performed on each side, or only one of the front and back sides may be heated. As the material of the heating surface of the heating element, stainless steel, plating, ceramics, Teflon resin (registered trademark), silicone resin, or the like can be freely selected, but a substance whose surface oxide film of aluminum material does not adhere to the surface of the heating element is preferable. .

【0051】アルミニウム材に接触させる加熱体の表面
温度は80〜400℃が好ましい。加熱体の表面温度が80℃
未満では、加熱が不十分となり、接触加熱後に行う焼鈍
時の結晶性酸化物微粒子等エッチピットの核となり得る
物質の生成が不十分となる恐れがある。一方、400℃よ
り高くなると、酸化膜が厚くなりすぎ、冷却時に皺が発
生し、操業上の問題が生じる恐れがある。特に好ましい
加熱体表面温度は100〜350℃である。さらに好ましい加
熱体表面温度は160〜290℃である。
The surface temperature of the heating element brought into contact with the aluminum material is preferably 80 to 400 ° C. Surface temperature of heating element is 80 ℃
If it is less than the above range, heating is insufficient, and there is a possibility that substances such as crystalline oxide fine particles that may become nuclei of etch pits during annealing performed after contact heating may be insufficiently generated. On the other hand, if the temperature is higher than 400 ° C., the oxide film becomes too thick and wrinkles may occur during cooling, which may cause operational problems. Particularly preferable heating body surface temperature is 100 to 350 ° C. A more preferable heating body surface temperature is 160 to 290 ° C.

【0052】アルミニウム材表面と加熱体表面との接触
時間は0.001〜30秒とするのが好ましい。接触時間が0.0
01秒未満では、アルミニウム材表面を充分加熱すること
ができず、やはりエッチピット核となり得る物質の生成
が不十分になる恐れがある。一方、30秒より長くする
と、酸化膜が厚くなりすぎエッチピットが発生しにくく
なる恐れがある。特に好ましい接触時間は、0.01〜10秒
である。さらに好ましい接触時間は0.1〜7秒である。
The contact time between the surface of the aluminum material and the surface of the heating body is preferably 0.001 to 30 seconds. Contact time 0.0
If it is less than 01 seconds, the surface of the aluminum material cannot be sufficiently heated, and there is a possibility that the generation of a substance that can become an etch pit nucleus is insufficient. On the other hand, if it is longer than 30 seconds, the oxide film may become too thick and etch pits may be less likely to occur. A particularly preferred contact time is 0.01 to 10 seconds. A more preferable contact time is 0.1 to 7 seconds.

【0053】加熱体の表面温度及び接触時間は、接触前
のアルミニウム材表面の酸化膜の特性を考慮して適宜選
択すればよい。接触加熱雰囲気は特に限定されず、特別
な雰囲気制御も必要なく空気中で実施できる。
The surface temperature and contact time of the heating body may be appropriately selected in consideration of the characteristics of the oxide film on the surface of the aluminum material before contact. The contact heating atmosphere is not particularly limited, and it can be carried out in the air without special atmosphere control.

【0054】加熱体として熱ロールを用いた加熱装置の
一例としては、アルミニウム材の表裏面を目的の温度で
接触加熱するために、少なくとも2個の熱ロールを配置
した装置が挙げられる。アルミニウム材を熱ロール等で
接触加熱した後のアルミニウム材の巻き取り時に皺が生
じる場合には、熱ロールなどによる加熱後1個もしくは
複数個の冷却ロール等の冷却体を通過させ、アルミニウ
ム材を冷却させてから巻き取る構成としても良い。特
に、冷却体として冷却ロールを用いることで、簡便にか
つ連続的に冷却を行うことができる。また、熱ロールな
どによりアルミニウム材を目的の接触加熱温度に加熱す
る前に、別の熱ロールを用いて、目的の接触加熱温度よ
り低い温度にアルミニウム材の温度を予備的に上げてお
いてもよい。
An example of a heating device using a heating roll as a heating body is a device in which at least two heating rolls are arranged in order to contact-heat the front and back surfaces of an aluminum material at a target temperature. If wrinkles occur during winding of the aluminum material after contact heating the aluminum material with a heating roll or the like, after heating with the heating roll or the like, the aluminum material is passed through a cooling body such as one or more cooling rolls. It may be configured to be cooled and then wound up. In particular, by using a cooling roll as the cooling body, it is possible to perform cooling simply and continuously. In addition, before heating the aluminum material to the target contact heating temperature with a heat roll or the like, it is possible to preliminarily raise the temperature of the aluminum material to a temperature lower than the target contact heating temperature by using another heat roll. Good.

【0055】接触加熱後、要すれば前述した洗浄を行っ
た後、エッチピットの核となり得る物質の生成を促進さ
せるとともに、アルミニウム材の結晶組織の方位を(10
0)方位に整えてエッチング特性を向上させることを主
目的として最終焼鈍がなされる。
After the contact heating, if necessary, after performing the above-mentioned cleaning, generation of a substance that can be a nucleus of an etch pit is promoted and the orientation of the crystal structure of the aluminum material is (10
Final annealing is performed mainly for the purpose of improving the etching characteristics by adjusting the orientation to 0).

【0056】なお、最終圧延後最終焼鈍前に、上述した
工程以外の他の工程例えばアルミニウム材コイルを分割
するためのスリット工程等を実施しても良いことは勿論
である。
Of course, after the final rolling and before the final annealing, a step other than the steps described above, such as a slit step for dividing the aluminum material coil, may be performed.

【0057】最終焼鈍においては、前工程である接触加
熱工程でアルミニウム材に形成された酸化膜の厚さを最
終焼鈍工程で増大させ過ぎて、エッチング核となり得る
可能性を消去させないように、最終焼鈍後の酸化皮膜の
合計厚さがハンターホール法(M.S.Hunter and P. Fow
le, J. Electrochem. Soc., 101[9], 483(1954)参照)
による厚さで2.5〜5.0nmとなるように最終焼鈍を実施す
るのが好ましい。また、最終焼鈍後のアルミニウム材の
(100)面積率は90%以上が好ましい。
In the final annealing, the thickness of the oxide film formed on the aluminum material in the contact heating step, which is the previous step, is not excessively increased in the final annealing step so that the possibility of becoming an etching nucleus is not erased. The total thickness of the oxide film after annealing is determined by the hunter hole method (MSHunter and P. Fow
le, J. Electrochem. Soc., 101 [9], 483 (1954))
It is preferable to carry out the final annealing so that the thickness is 2.5 to 5.0 nm. Further, the (100) area ratio of the aluminum material after the final annealing is preferably 90% or more.

【0058】この最終焼鈍における処理雰囲気は特に限
定されるものではないが、酸化皮膜の厚さを増大させす
ぎないように、水分および酸素の少ない雰囲気中で加熱
するのが好ましい。具体的には、アルゴン、窒素などの
不活性ガス中あるいは0.1Pa以下の真空中で加熱するこ
とが好ましい。
The treatment atmosphere in this final annealing is not particularly limited, but it is preferable to heat in an atmosphere containing less water and oxygen so as not to increase the thickness of the oxide film too much. Specifically, it is preferable to heat in an inert gas such as argon or nitrogen or in a vacuum of 0.1 Pa or less.

【0059】最終焼鈍の方法は特に限定されるものでは
なく、コイルに巻き取った状態でバッチ焼鈍しても良
く、コイルを巻き戻し連続焼鈍した後コイルに巻き取っ
ても良く、バッチ焼鈍と連続焼鈍の少なくともどちらか
を複数回行っても良い。
The method of the final annealing is not particularly limited, and may be batch annealed in a state of being wound on the coil, or may be rewound and continuously annealed and then wound on a coil. At least one of the annealing may be performed multiple times.

【0060】最終焼鈍時の温度、時間は特に限定される
ものではないが、例えばコイルの状態でバッチ焼鈍を行
う場合は、アルミニウム実体温度460〜600℃にて、10分
〜50時間焼鈍するのが好ましい。アルミニウム実体温度
が460℃未満、時間が10分未満では、酸化皮膜中のエッ
チピットの核と成り得る物質の生成が十分ではなく、そ
の分散状態が疎となりすぎて、結晶をエッチング核とす
るエッチング時の拡面効果が期待できない恐れがあり、
(100)面の結晶方位の発達も不十分となる恐れがある
からである。逆に600℃を越えて焼鈍すると、コイルで
バッチ焼鈍する場合はアルミニウム材が密着を起こし易
くなり、また50時間を超えて焼鈍してもエッチングによ
る面積拡大効果は飽和し、却って熱エネルギーコストの
増大を招く。特に好ましい温度は、アルミニウム実体温
度で500〜580℃、時間は20分〜40時間である。
The temperature and time of the final annealing are not particularly limited, but for example, when performing batch annealing in the state of a coil, it is annealed at an aluminum body temperature of 460 to 600 ° C. for 10 minutes to 50 hours. Is preferred. If the aluminum body temperature is less than 460 ° C and the time is less than 10 minutes, the substance that can be the nucleus of the etch pit in the oxide film is not sufficiently generated, and the dispersed state becomes too sparse, and the etching using the crystal as the etching nucleus is performed. There is a possibility that the surface expansion effect at time cannot be expected,
This is because the crystal orientation of the (100) plane may be insufficiently developed. On the contrary, if annealing is performed at over 600 ° C, the aluminum material is likely to adhere to each other when batch annealing is performed with a coil, and even if annealing is performed for over 50 hours, the area expansion effect due to etching is saturated and conversely the heat energy cost is reduced. Cause an increase. A particularly preferred temperature is 500 to 580 ° C. for the aluminum body temperature, and the time is 20 minutes to 40 hours.

【0061】また、最終焼鈍の昇温速度・パターンは特
に限定されず、一定速度で昇温させても良く、昇温、温
度保持を繰り返しながらステップ昇温・冷却させても良
く、焼鈍工程にてアルミニウム実体温度460〜600℃の温
度域で合計10分〜50時間焼鈍されれば良い。なお、最終
焼鈍後に得られる電解コンデンサ電極用アルミニウム材
の厚さは特に規定されることはない。
Further, the temperature rising rate / pattern of the final annealing is not particularly limited, and the temperature may be raised at a constant rate, or stepwise temperature rising / cooling may be carried out while repeating temperature rising / holding. The aluminum body temperature may be annealed in the temperature range of 460 to 600 ° C for a total of 10 minutes to 50 hours. The thickness of the aluminum material for electrolytic capacitor electrodes obtained after the final annealing is not particularly specified.

【0062】最終焼鈍を終了したアルミニウム材には、
拡面積率向上のためエッチング処理を実施する。エッチ
ング処理条件は特に限定されないが、好ましくは直流エ
ッチング法を採用するのが良い。直流エッチング法によ
って、前記最終焼鈍において生成が促進されたエッチピ
ットの核となる部分において、深く太くエッチングさ
れ、多数のトンネル状ピットが生成され、高静電容量が
実現される。
The aluminum material that has been subjected to the final annealing is
Etching is performed to improve the area expansion rate. The etching conditions are not particularly limited, but it is preferable to use the DC etching method. By the direct-current etching method, deep tunnel thick pits are formed in a portion serving as a core of the etch pits whose formation is promoted in the final annealing, a large number of tunnel pits are formed, and high capacitance is realized.

【0063】エッチング処理後、望ましくは化成処理を
行って陽極材とするのが良く、特に、中圧用および高圧
用の電解コンデンサ電極材として用いるのが良い。もと
より、陰極材として用いることを妨げるものではない。
After the etching treatment, it is preferable to carry out a chemical conversion treatment to obtain an anode material, and it is particularly preferable to use it as an electrolytic capacitor electrode material for medium pressure and high voltage. Of course, it does not prevent its use as a cathode material.

【0064】上記のような陽極材及び/または陰極材を
電極材として用いることにより、アルミニウム電解コン
デンサが構成される。この電解コンデンサでは、電極材
の拡面率が増大しているため、大きな静電容量を有する
ものとなる。
An aluminum electrolytic capacitor is constructed by using the above anode material and / or cathode material as an electrode material. In this electrolytic capacitor, since the surface expansion ratio of the electrode material is increased, the electrolytic capacitor has a large capacitance.

【0065】[0065]

【実施例】以下に本発明の実施例および比較例を示す。 (実施例1)厚さ110μmに圧延された純度99.99%のア
ルミニウム材を用意した。得られたアルミニウム材をア
ルカン系炭化水素に2秒間浸漬し、90℃にて1分間空気
中で乾燥させた後、表面温度が200℃のステンレス製加
熱板2枚の間にアルミニウム材を挟み、2秒間空気中で
接触加熱させた。接触加熱後のアルミニウム材を重ねた
状態で、アルゴン雰囲気下でアルミニウム材の実体温度
を室温から540℃まで50℃/hで昇温させた後、540℃に
て24時間保持させ、次いで冷却したのち炉出しし、電解
コンデンサ用高純度アルミニウム材を得た。 (実施例2)実施例1と同じく、厚さ110μmに圧延され
た純度99.99%のアルミニウム材を作製した。得られた
アルミニウム材をアルカン系炭化水素に2秒間浸漬し、
90℃にて1分間空気中で乾燥させた後、表面温度が250
℃のステンレス製加熱板2枚の間にアルミニウム材を挟
み、2秒間空気中で接触加熱させた。接触加熱後のアル
ミニウム材を重ねた状態で、アルゴン雰囲気下でアルミ
ニウム材の実体温度を室温から540℃まで50℃/hで昇
温させた後、540℃にて24時間保持させ、次いで冷却し
たのち炉出しし、電解コンデンサ用高純度アルミニウム
材を得た。 (実施例3)実施例1と同じく、厚さ110μmに圧延され
た純度99.99%のアルミニウム材を作製した。得られた
アルミニウム材をアルカン系炭化水素に2秒間浸漬し、
90℃にて1分間空気中で乾燥させた後、表面温度が200
℃のステンレス製加熱板2枚の間にアルミニウム材を挟
み、2秒間空気中で接触加熱させた。接触加熱後のアル
ミニウム材を重ねた状態で、アルゴン雰囲気下でアルミ
ニウム材の実体温度を室温から560℃まで50℃/hで昇
温させた後、560℃にて24時間保持させ、次いで冷却し
たのち炉出しし、電解コンデンサ用高純度アルミニウム
材を得た。 (実施例4)実施例1と同じく、厚さ110μmに圧延され
た純度99.99%のアルミニウム材を作製した。得られた
アルミニウム材をアルカン系炭化水素に2秒間浸漬し、
90℃にて1分間空気中で乾燥させた後、表面温度が200
℃のステンレス製加熱板2枚の間にアルミニウム材を挟
み、1秒間空気中で接触加熱させた。接触加熱後のアル
ミニウム材を重ねた状態で、アルゴン雰囲気下でアルミ
ニウム材の実体温度を室温から540℃まで50℃/hで昇
温させた後、540℃にて24時間保持させ、次いで冷却し
たのち炉出しし、電解コンデンサ用高純度アルミニウム
材を得た。 (実施例5)実施例1と同じく、厚さ110μmに圧延され
た純度99.99%のアルミニウム材を作製した。得られた
アルミニウム材をアルカン系炭化水素に2秒間浸漬し、
90℃にて1分間空気中で乾燥させた。次に、表面温度20
0℃に設定した熱ロール(表面に硬質クロムメッキを施
したもの)2本を用意し、1本目の熱ロールにアルミニ
ウム材表面を1秒間接触させた後、続けて2本目の熱ロ
ールにアルミニウム材裏面を1秒間接触させることによ
り接触加熱を行った。接触加熱後のアルミニウム材を重
ねた状態で、アルゴン雰囲気下でアルミニウム材の実体
温度を室温から540℃まで50℃/hで昇温させた後540℃
にて24時間保持させ、次いで冷却したのち炉出しし、電
解コンデンサ用高純度アルミニウム材を得た。 (実施例6)実施例1と同じく、厚さ110μmに圧延され
た純度99.99%のアルミニウム材を作製した。得られた
アルミニウム材をアルカン系炭化水素に2秒間浸漬し、
90℃にて1分間空気中で乾燥させた。次に、表面温度が
90℃のステンレス製加熱板2枚の間にアルミニウム材を
挟み、1秒間空気中で接触加熱させた。接触加熱後のア
ルミニウム材を重ねた状態で、アルゴン雰囲気下でアル
ミニウム材の実体温度を室温から540℃まで50℃/hで
昇温させた後、540℃にて24時間保持させ、次いで冷却
したのち炉出しし、電解コンデンサ用高純度アルミニウ
ム材を得た。 (実施例7)実施例1と同じく、厚さ110μmに圧延され
た純度99.99%のアルミニウム材を作製した。得られた
アルミニウム材をアルカン系炭化水素に2秒間浸漬し、
90℃にて1分間空気中で乾燥させた。次に、表面温度38
0℃に設定した熱ロール(表面に硬質クロムメッキを施
したもの)2本を用意し、1本目の熱ロールにアルミニ
ウム材表面を0.1秒間接触させた後、続けて2本目の熱
ロールにアルミニウム材裏面を0.1秒間接触加熱させる
ことにより接触加熱を行った。接触加熱後のアルミニウ
ム材を重ねた状態で、アルゴン雰囲気下でアルミニウム
材の実体温度を室温から540℃まで50℃/hで昇温させ
た後、540℃にて24時間保持させ、次いで冷却したのち
炉出しし、電解コンデンサ用高純度アルミニウム材を得
た。 (実施例8)実施例1と同じく、厚さ110μmに圧延され
た純度99.99%のアルミニウム材を作製した。得られた
アルミニウム材をアルカン系炭化水素に2秒間浸漬し、
90℃にて1分間空気中で乾燥させた。次に、表面温度25
0℃に設定した熱ロール(表面に硬質クロムメッキを施
したもの)2本を用意し、1本目の熱ロールにアルミニ
ウム材表面を0.005秒間接触させた後、続けて2本目の
熱ロールにアルミニウム材裏面を0.005秒間接触させる
ことにより接触加熱を行った。接触加熱後のアルミニウ
ム材を重ねた状態で、アルゴン雰囲気下でアルミニウム
材の実体温度を室温から540℃まで50℃/hで昇温させ
た後、540℃にて24時間保持させ、次いで冷却したのち
炉出しし、電解コンデンサ用高純度アルミニウム材を得
た。 (実施例9)実施例1と同じく、厚さ110μmに圧延され
た純度99.99%のアルミニウム材を作製した。得られた
アルミニウム材をアルカン系炭化水素に2秒間浸漬し、
90℃にて1分間空気中で乾燥させた後、表面温度が150
℃のステンレス製加熱板2枚の間にアルミニウム材を挟
み、30秒間空気中で接触加熱させた。接触加熱後のアル
ミニウム材を重ねた状態で、アルゴン雰囲気下でアルミ
ニウム材の実体温度を室温から540℃まで50℃/hで昇
温させた後、540℃にて24時間保持させ、次いで冷却し
たのち炉出しし、電解コンデンサ用高純度アルミニウム
材を得た。 (実施例10)実施例1と同じく、厚さ110μmに圧延され
た純度99.99%のアルミニウム材を作製した。得られた
アルミニウム材をアルカン系炭化水素に2秒間浸漬し、
90℃にて1分間空気中で乾燥させた後、表面温度が200
℃のステンレス製加熱板2枚の間にアルミニウム材を挟
み、2秒間空気中で接触加熱させた。接触加熱後のアル
ミニウム材を重ねた状態で、アルゴン雰囲気下でアルミ
ニウム材の実体温度を室温から480℃まで50℃/hで昇
温させた後、480℃にて24時間保持させ、次いで冷却し
たのち炉出しし、電解コンデンサ用高純度アルミニウム
材を得た。 (実施例11)実施例1と同じく、厚さ110μmに圧延され
た純度99.99%のアルミニウム材を作製した。得られた
アルミニウム材をアルカン系炭化水素に2秒間浸漬し、
90℃にて1分間空気中で乾燥させた後、表面温度が200
℃のステンレス製加熱板2枚の間にアルミニウム材を挟
み、2秒間空気中で接触加熱させた。接触加熱後のアル
ミニウム材を重ねた状態で、アルゴン雰囲気下でアルミ
ニウム材の実体温度を室温から580℃まで50℃/hで昇
温させた後、580℃にて24時間保持させ、次いで冷却さ
せたのち炉出しし、電解コンデンサ用高純度アルミニウ
ム材を得た。 (実施例12)接触加熱後に、表面温度が10℃のステンレ
ス板の間にアルミニウム材を10秒間挟み冷却させる工程
を含むこと以外は、実施例1と同様にして電解コンデン
サ用高純度アルミニウム材を得た。 (比較例1)実施例1と同じく、厚さ110μmに圧延され
た純度99.99%のアルミニウム材を作製した。得られた
アルミニウム材をアルカン系炭化水素に2秒間浸漬し、
90℃にて1分間空気中で乾燥させた後、重ねた状態でア
ルゴン雰囲気下でアルミニウム材の実体温度を室温から
540℃まで50℃/hで昇温させた後、540℃にて24時間保
持させ、次いで冷却したのち炉出しし、電解コンデンサ
用高純度アルミニウム材を得た。 (比較例2)実施例1と同じく、厚さ110μmに圧延され
た純度99.99%のアルミニウム材を作製した。得られた
アルミニウム材をアルカン系炭化水素に2秒間浸漬し、
90℃にて1分間空気中で乾燥させた後、重ねた状態でア
ルゴン雰囲気下でアルミニウム材の実体温度を室温から
480℃まで50℃/hで昇温させた後、480℃にて24時間保
持させ、次いで冷却したのち炉出しし、電解コンデンサ
用高純度アルミニウム材を得た。 (比較例3)実施例1と同じく、厚さ110μmに圧延され
た純度99.99%のアルミニウム材を作製した。得られた
アルミニウム材をアルカン系炭化水素に2秒間浸漬し、
90℃にて1分間空気中で乾燥させた後、重ねた状態でア
ルゴン雰囲気下でアルミニウム材の実体温度を室温から
580℃まで50℃/hで昇温させた後、580℃にて24時間保
持させ、次いで冷却したのち炉出しし、電解コンデンサ
用高純度アルミニウム材を得た。上記実施例および比較
例で得られたアルミニウム材を酸に浸漬した後、塩酸−
硫酸水溶液で電解エッチングしたのち、さらに酸溶液に
浸漬することによりピット径を太くしエッチド箔を得
た。得られたエッチド箔を、化成電圧270VにてEIAJ規
格に従い化成処理し、静電容量測定用サンプルとした。
EXAMPLES Examples and comparative examples of the present invention will be shown below. Example 1 An aluminum material having a purity of 99.99% rolled to a thickness of 110 μm was prepared. The obtained aluminum material is dipped in an alkane hydrocarbon for 2 seconds and dried in air at 90 ° C. for 1 minute, and then the aluminum material is sandwiched between two stainless steel heating plates having a surface temperature of 200 ° C., Contact heating was performed in air for 2 seconds. In the state where the aluminum materials after contact heating were piled up, the actual temperature of the aluminum materials was raised from room temperature to 540 ° C at 50 ° C / h in an argon atmosphere, then kept at 540 ° C for 24 hours, and then cooled. After that, the furnace was taken out to obtain a high-purity aluminum material for electrolytic capacitors. (Example 2) Similar to Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 µm was produced. The obtained aluminum material is dipped in an alkane hydrocarbon for 2 seconds,
After drying in air at 90 ° C for 1 minute, the surface temperature is 250.
An aluminum material was sandwiched between two heating plates made of stainless steel at 0 ° C., and contact heating was performed in the air for 2 seconds. In the state where the aluminum materials after contact heating were piled up, the actual temperature of the aluminum materials was raised from room temperature to 540 ° C at 50 ° C / h in an argon atmosphere, then kept at 540 ° C for 24 hours, and then cooled. After that, the furnace was taken out to obtain a high-purity aluminum material for electrolytic capacitors. (Example 3) Similar to Example 1, an aluminum material having a purity of 99.99% rolled to a thickness of 110 µm was produced. The obtained aluminum material is dipped in an alkane hydrocarbon for 2 seconds,
After drying in air at 90 ℃ for 1 minute, the surface temperature is 200
An aluminum material was sandwiched between two heating plates made of stainless steel at 0 ° C., and contact heating was performed in the air for 2 seconds. After stacking the aluminum materials after contact heating, the actual temperature of the aluminum materials was raised from room temperature to 560 ° C. at 50 ° C./h in an argon atmosphere, then kept at 560 ° C. for 24 hours, and then cooled. After that, the furnace was taken out to obtain a high-purity aluminum material for electrolytic capacitors. (Example 4) As in Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 µm was produced. The obtained aluminum material is dipped in an alkane hydrocarbon for 2 seconds,
After drying in air at 90 ℃ for 1 minute, the surface temperature is 200
An aluminum material was sandwiched between two heating plates made of stainless steel at 0 ° C., and contact heating was performed in the air for 1 second. In the state where the aluminum materials after contact heating were piled up, the actual temperature of the aluminum materials was raised from room temperature to 540 ° C at 50 ° C / h in an argon atmosphere, then kept at 540 ° C for 24 hours, and then cooled. After that, the furnace was taken out to obtain a high-purity aluminum material for electrolytic capacitors. (Example 5) As in Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 µm was produced. The obtained aluminum material is dipped in an alkane hydrocarbon for 2 seconds,
It was dried in air at 90 ° C. for 1 minute. Then the surface temperature 20
Prepare two heat rolls (hard chrome plating on the surface) set to 0 ° C, contact the surface of the aluminum material with the first heat roll for 1 second, and then continue to the second heat roll with aluminum. Contact heating was performed by contacting the back surface of the material for 1 second. After stacking the aluminum materials after contact heating, raise the actual temperature of the aluminum materials from room temperature to 540 ° C at 50 ° C / h in an argon atmosphere at 540 ° C.
At room temperature for 24 hours, then cooled and taken out of the furnace to obtain a high-purity aluminum material for electrolytic capacitors. (Example 6) As in Example 1, an aluminum material having a purity of 99.99% was manufactured by rolling to a thickness of 110 µm. The obtained aluminum material is dipped in an alkane hydrocarbon for 2 seconds,
It was dried in air at 90 ° C. for 1 minute. Next, the surface temperature
An aluminum material was sandwiched between two 90 ° C. stainless steel heating plates and contact-heated in air for 1 second. In the state where the aluminum materials after contact heating were piled up, the actual temperature of the aluminum materials was raised from room temperature to 540 ° C at 50 ° C / h in an argon atmosphere, then kept at 540 ° C for 24 hours, and then cooled. After that, the furnace was taken out to obtain a high-purity aluminum material for electrolytic capacitors. (Example 7) Similar to Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 µm was produced. The obtained aluminum material is dipped in an alkane hydrocarbon for 2 seconds,
It was dried in air at 90 ° C. for 1 minute. Then the surface temperature 38
Prepare two heat rolls (hard chrome plating on the surface) set to 0 ℃, contact the first heat roll with the aluminum material surface for 0.1 seconds, and then continue to the second heat roll with aluminum. Contact heating was performed by heating the back surface of the material for 0.1 seconds. In the state where the aluminum materials after contact heating were piled up, the actual temperature of the aluminum materials was raised from room temperature to 540 ° C at 50 ° C / h in an argon atmosphere, then kept at 540 ° C for 24 hours, and then cooled. After that, the furnace was taken out to obtain a high-purity aluminum material for electrolytic capacitors. (Example 8) As in Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 µm was produced. The obtained aluminum material is dipped in an alkane hydrocarbon for 2 seconds,
It was dried in air at 90 ° C. for 1 minute. Then the surface temperature 25
Prepare two heat rolls (hard chrome plated on the surface) set to 0 ° C, contact the surface of the aluminum material with the first heat roll for 0.005 seconds, and then continue to the second heat roll with aluminum. Contact heating was performed by contacting the back surface of the material for 0.005 seconds. In the state where the aluminum materials after contact heating were piled up, the actual temperature of the aluminum materials was raised from room temperature to 540 ° C at 50 ° C / h in an argon atmosphere, then kept at 540 ° C for 24 hours, and then cooled. After that, the furnace was taken out to obtain a high-purity aluminum material for electrolytic capacitors. (Example 9) As in Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 µm was produced. The obtained aluminum material is dipped in an alkane hydrocarbon for 2 seconds,
After drying in air at 90 ℃ for 1 minute, the surface temperature is 150
An aluminum material was sandwiched between two heating plates made of stainless steel at 0 ° C., and heated in air for 30 seconds. In the state where the aluminum materials after contact heating were piled up, the actual temperature of the aluminum materials was raised from room temperature to 540 ° C at 50 ° C / h in an argon atmosphere, then kept at 540 ° C for 24 hours, and then cooled. After that, the furnace was taken out to obtain a high-purity aluminum material for electrolytic capacitors. (Example 10) As in Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 µm was produced. The obtained aluminum material is dipped in an alkane hydrocarbon for 2 seconds,
After drying in air at 90 ℃ for 1 minute, the surface temperature is 200
An aluminum material was sandwiched between two heating plates made of stainless steel at 0 ° C., and contact heating was performed in the air for 2 seconds. After stacking the aluminum materials after contact heating, the actual temperature of the aluminum materials was raised from room temperature to 480 ° C. at 50 ° C./h in an argon atmosphere, then kept at 480 ° C. for 24 hours, and then cooled. After that, the furnace was taken out to obtain a high-purity aluminum material for electrolytic capacitors. (Example 11) Similar to Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 µm was produced. The obtained aluminum material is dipped in an alkane hydrocarbon for 2 seconds,
After drying in air at 90 ℃ for 1 minute, the surface temperature is 200
An aluminum material was sandwiched between two heating plates made of stainless steel at 0 ° C., and contact heating was performed in the air for 2 seconds. After stacking the aluminum materials after contact heating, raise the actual temperature of the aluminum materials from room temperature to 580 ° C at 50 ° C / h in an argon atmosphere, hold at 580 ° C for 24 hours, and then cool. After that, the furnace was taken out to obtain a high-purity aluminum material for electrolytic capacitors. (Example 12) A high-purity aluminum material for electrolytic capacitors was obtained in the same manner as in Example 1 except that after the contact heating, the step of cooling the aluminum material by sandwiching it between stainless steel plates having a surface temperature of 10 ° C for 10 seconds was performed. . (Comparative Example 1) As in Example 1, an aluminum material having a purity of 99.99% rolled to a thickness of 110 µm was produced. The obtained aluminum material is dipped in an alkane hydrocarbon for 2 seconds,
After drying in air at 90 ° C for 1 minute, the solid material temperature of the aluminum material is increased from room temperature under an argon atmosphere in a stacked state.
After the temperature was raised to 540 ° C at 50 ° C / h, it was kept at 540 ° C for 24 hours, then cooled and taken out of the furnace to obtain a high-purity aluminum material for electrolytic capacitors. (Comparative Example 2) As in Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 µm was produced. The obtained aluminum material is dipped in an alkane hydrocarbon for 2 seconds,
After drying in air at 90 ° C for 1 minute, the solid material temperature of the aluminum material is increased from room temperature under an argon atmosphere in a stacked state.
After the temperature was raised to 480 ° C at 50 ° C / h, it was kept at 480 ° C for 24 hours, then cooled and taken out of the furnace to obtain a high-purity aluminum material for electrolytic capacitors. (Comparative Example 3) As in Example 1, an aluminum material having a purity of 99.99% rolled to a thickness of 110 µm was produced. The obtained aluminum material is dipped in an alkane hydrocarbon for 2 seconds,
After drying in air at 90 ° C for 1 minute, the solid material temperature of the aluminum material is increased from room temperature under an argon atmosphere in a stacked state.
After heating up to 580 ° C. at 50 ° C./h, it was kept at 580 ° C. for 24 hours, then cooled and taken out from the furnace to obtain a high-purity aluminum material for electrolytic capacitors. After the aluminum materials obtained in the above Examples and Comparative Examples were dipped in an acid, hydrochloric acid-
After electrolytic etching with a sulfuric acid aqueous solution, the pit diameter was enlarged by further immersing in an acid solution to obtain an etched foil. The obtained etched foil was subjected to a chemical conversion treatment at a chemical conversion voltage of 270 V according to the EIAJ standard to obtain a capacitance measurement sample.

【0066】実施例および比較例の接触加熱条件、焼鈍
時のアルミニウム材の実態温度、静電容量評価を表1に
示す。静電容量評価は、比較例1を100とした時の値を
示す。
Table 1 shows the contact heating conditions, the actual temperature of the aluminum material at the time of annealing, and the capacitance evaluation of Examples and Comparative Examples. The capacitance evaluation shows a value when Comparative Example 1 is set to 100.

【0067】[0067]

【表1】 [Table 1]

【0068】上記表1からわかるように、実施例では、
焼鈍前に加熱板または熱ロールを用いて接触加熱を行う
ことにより、接触加熱を行わない比較例1〜3と較べて
静電容量の向上が見られる。
As can be seen from Table 1 above, in the embodiment,
By performing contact heating using a heating plate or a heat roll before annealing, the electrostatic capacity is improved as compared with Comparative Examples 1 to 3 in which contact heating is not performed.

【0069】[0069]

【発明の効果】この発明は、上述の次第で、冷間圧延後
に加熱体との接触によりアルミニウム箔を加熱した後焼
鈍することにより、箔表面にエッチピットの核となりう
る物質が多く析出したエッチング特性に優れた電解コン
デンサ用アルミニウム箔を製造することができる。特
に、加熱方法として接触加熱を用いるから、均―に短時
問でアルミニウム箔表面を目的の温度に到達させること
ができるため、温度制御が比較的容易で、しかも急速か
つ短時間で加熱できるため雰囲気の影響を少なくでき
る。従って、この電解コンデンサ用アルミニウム箔をエ
ッチングすることにより、前記エッチピットの核となり
うる物質の存在位置において、効果的にエッチングが行
われ、その結果拡面率を向上でき、ひいては静電容量の
増大した電解コンデンサ電極材となし得る。
According to the present invention, according to the above, the aluminum foil is heated by contact with a heating body after cold rolling and then annealed, whereby a large amount of a substance that can be a nucleus of an etch pit is deposited on the foil surface. It is possible to manufacture an aluminum foil for electrolytic capacitors having excellent characteristics. In particular, since contact heating is used as the heating method, it is possible to reach the target temperature on the aluminum foil surface evenly in a short time, so temperature control is relatively easy, and heating can be performed quickly and in a short time. The influence of the atmosphere can be reduced. Therefore, by etching this aluminum foil for electrolytic capacitors, the etching is effectively performed at the position where the substance that can be the core of the etch pit exists, and as a result, the surface expansion rate can be improved, which in turn increases the capacitance. The electrolytic capacitor electrode material can be used.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01G 9/04 304 C22F 1/00 606 // C22C 21/00 613 C22F 1/00 606 623 613 661Z 623 682 661 683 682 685Z 683 686B 685 691A 686 691B 691 691C H01G 9/04 346 9/24 B (72)発明者 児玉 和宏 大阪府堺市海山町6丁224番地 昭和電工 株式会社堺事業所内 (72)発明者 加藤 豊 大阪府堺市海山町6丁224番地 昭和電工 株式会社堺事業所内 (72)発明者 坂口 雅司 大阪府堺市海山町6丁224番地 昭和電工 株式会社堺事業所内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01G 9/04 304 C22F 1/00 606 // C22C 21/00 613 C22F 1/00 606 623 613 661Z 623 682 661 683 682 685Z 683 686B 685 691A 686 691B 691 691C H01G 9/04 346 9/24 B (72) Inventor Kazuhiro Kodama 6-224, Kaiyamacho, Sakai City, Osaka Prefecture Showa Denko Co., Ltd. Sakai Office (72) Inventor Yutaka Kato 6-224 Kaiyama-cho, Sakai-shi, Osaka Inside Showa Denko Co., Ltd. Sakai Works (72) Inventor Masashi Sakaguchi 6-224, Kaiyama-cho, Sakai-shi, Osaka Showa Denko Co., Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムスラブに熱間圧延及び冷間
圧延を順次実施してアルミニウム材としたのち、このア
ルミニウム材を加熱体との接触により加熱し、その後焼
鈍することを特徴とする電解コンデンサ電極用アルミニ
ウム材の製造方法。
1. An electrolytic capacitor electrode characterized in that an aluminum slab is subjected to hot rolling and cold rolling in order to obtain an aluminum material, which is then heated by contact with a heating body and then annealed. For manufacturing aluminum materials for automobiles.
【請求項2】 加熱体の表面温度が80〜400℃、ア
ルミニウム材と加熱体との接触時間が0.001〜30
秒である請求項1に記載の電解コンデンサ電極用アルミ
ニウム材の製造方法。
2. The surface temperature of the heating element is 80 to 400 ° C., and the contact time between the aluminum material and the heating element is 0.001 to 30.
The method for producing an aluminum material for an electrolytic capacitor electrode according to claim 1, which is second.
【請求項3】 焼鈍がアルミニウム実体温度460〜6
00℃にて不活性ガス雰囲気中で行われる請求項1に記
載の電解コンデンサ電極用アルミニウム材の製造方法。
3. Annealing is carried out at an aluminum body temperature of 460-6.
The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 1, which is carried out at 00 ° C. in an inert gas atmosphere.
【請求項4】 アルミニウム実体温度が500〜580
℃である請求項3に記載の電解コンデンサ電極用アルミ
ニウム材の製造方法。
4. The aluminum body temperature is 500 to 580.
The method for producing an aluminum material for an electrolytic capacitor electrode according to claim 3, wherein the temperature is at 0 ° C.
【請求項5】 加熱体が熱ロールである請求項1に記載
の電解コンデンサ電極用アルミニウム材の製造方法。
5. The method for producing an aluminum material for an electrolytic capacitor electrode according to claim 1, wherein the heating body is a hot roll.
【請求項6】 加熱体との接触後、アルミニウム材を冷
却する請求項1に記載の電解コンデンサ電極用アルミニ
ウム材の製造方法。
6. The method for producing an aluminum material for an electrolytic capacitor electrode according to claim 1, wherein the aluminum material is cooled after the contact with the heating body.
【請求項7】 アルミニウム材の冷却を冷却ロールとの
接触により行う請求項5に記載の電解コンデンサ電極用
アルミニウム材の製造方法。
7. The method for producing an aluminum material for an electrolytic capacitor electrode according to claim 5, wherein the aluminum material is cooled by contact with a cooling roll.
【請求項8】 アルミニウムの純度が99.9%以上で
ある請求項1に記載の電解コンデンサ電極用アルミニウ
ム材の製造方法。
8. The method for producing an aluminum material for an electrolytic capacitor electrode according to claim 1, wherein the purity of aluminum is 99.9% or more.
【請求項9】 請求項1ないし8のいずれかに記載の製
造方法によって製造された電解コンデンサ用アルミニウ
ム陽極材。
9. An aluminum anode material for an electrolytic capacitor manufactured by the manufacturing method according to claim 1.
【請求項10】 中圧用または高圧用である請求項9に
記載の電解コンデンサ用アルミニウム陽極材。
10. The aluminum anode material for electrolytic capacitors according to claim 9, which is for medium or high pressure.
【請求項11】 請求項1ないし8のいずれかに記載の
製造方法によって製造されたアルミニウム材に、焼鈍
後、エッチングを実施することを特徴とする電解コンデ
ンサ用電極材の製造方法。
11. A method of manufacturing an electrode material for an electrolytic capacitor, which comprises subjecting an aluminum material manufactured by the manufacturing method according to claim 1 to etching after annealing.
【請求項12】 エッチングが直流エッチングである請
求項11に記載の電解コンデンサ用電極材の製造方法。
12. The method for producing an electrode material for an electrolytic capacitor according to claim 11, wherein the etching is direct current etching.
JP2003111757A 2001-08-03 2003-04-16 Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for electrolytic capacitor electrode, and manufacturing method of electrode material for electrolytic capacitor Expired - Fee Related JP4767480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111757A JP4767480B2 (en) 2001-08-03 2003-04-16 Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for electrolytic capacitor electrode, and manufacturing method of electrode material for electrolytic capacitor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-235940 2001-08-03
JP2001235940 2001-08-03
JP2001235940 2001-08-03
JP2003111757A JP4767480B2 (en) 2001-08-03 2003-04-16 Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for electrolytic capacitor electrode, and manufacturing method of electrode material for electrolytic capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002196867 Division 2001-08-03 2002-07-05

Publications (2)

Publication Number Publication Date
JP2003338434A true JP2003338434A (en) 2003-11-28
JP4767480B2 JP4767480B2 (en) 2011-09-07

Family

ID=29713643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111757A Expired - Fee Related JP4767480B2 (en) 2001-08-03 2003-04-16 Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for electrolytic capacitor electrode, and manufacturing method of electrode material for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4767480B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006685A (en) * 2002-04-25 2004-01-08 Showa Denko Kk Method of manufacturing aluminum material for electrode of electrolytic capacitor, method of manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2005268773A (en) * 2004-02-17 2005-09-29 Showa Denko Kk Manufacturing method of aluminum material for electrolytic capacitor electrode, the aluminum material for the electrolytic capacitor electrodes, anode material for aluminum electrolytic capacitors, and the aluminum electrolytic capacitor
JP2006148085A (en) * 2004-10-19 2006-06-08 Showa Denko Kk Method of manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2006210894A (en) * 2004-12-27 2006-08-10 Showa Denko Kk Manufacturing method, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and the aluminum electrolytic capacitor of aluminum material for electrolytic capacitor electrode
JP2008153347A (en) * 2006-12-15 2008-07-03 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor and its manufacturing method
JP2009177175A (en) * 2008-01-22 2009-08-06 Avx Corp Sintered anode pellet treated with surfactant to be used for electrolytic capacitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006685A (en) * 2002-04-25 2004-01-08 Showa Denko Kk Method of manufacturing aluminum material for electrode of electrolytic capacitor, method of manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4498682B2 (en) * 2002-04-25 2010-07-07 昭和電工株式会社 The manufacturing method of the aluminum material for electrolytic capacitor electrodes, the manufacturing method of the electrode material for electrolytic capacitors, and an aluminum electrolytic capacitor.
JP2005268773A (en) * 2004-02-17 2005-09-29 Showa Denko Kk Manufacturing method of aluminum material for electrolytic capacitor electrode, the aluminum material for the electrolytic capacitor electrodes, anode material for aluminum electrolytic capacitors, and the aluminum electrolytic capacitor
JP4708808B2 (en) * 2004-02-17 2011-06-22 昭和電工株式会社 Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2006148085A (en) * 2004-10-19 2006-06-08 Showa Denko Kk Method of manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4652205B2 (en) * 2004-10-19 2011-03-16 昭和電工株式会社 Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2006210894A (en) * 2004-12-27 2006-08-10 Showa Denko Kk Manufacturing method, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and the aluminum electrolytic capacitor of aluminum material for electrolytic capacitor electrode
JP2008153347A (en) * 2006-12-15 2008-07-03 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor and its manufacturing method
JP2009177175A (en) * 2008-01-22 2009-08-06 Avx Corp Sintered anode pellet treated with surfactant to be used for electrolytic capacitor

Also Published As

Publication number Publication date
JP4767480B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP5749586B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, method for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP5501152B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
KR100974372B1 (en) Process for producing aluminum material for electrode of electrolytic capacitor, aluminum material for electrolytic capacitor, method for producing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2003338434A (en) Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the electrolytic capacitor electrode, and manufacturing method of electrode material for electrolytic capacitor
JP5592178B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP5551742B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4708808B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
WO2006098445A1 (en) Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, process for producing electrolytic capacitor electrode material, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4874596B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4498682B2 (en) The manufacturing method of the aluminum material for electrolytic capacitor electrodes, the manufacturing method of the electrode material for electrolytic capacitors, and an aluminum electrolytic capacitor.
JP2004088069A (en) Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the same, and manufacturing method of electrode material for electrolytic capacitor
JP4308552B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JP4652205B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP5123479B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4874589B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4226930B2 (en) Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP4874600B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
KR100935502B1 (en) Process for producing aluminum material for electrode of electrolytic capacitor
JP4170797B2 (en) Method for manufacturing electrolytic capacitor electrode aluminum material, electrolytic capacitor electrode aluminum material, and electrolytic capacitor electrode manufacturing method
JP4105565B2 (en) Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP4105558B2 (en) Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor, and electrolytic capacitor
WO2003091482A1 (en) Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capacitor
JP2004165599A (en) Aluminium material for electrode of electrolytic capacitor, process for producing electrode materialof electrolytic capacitor and electrolytic capacitor
JP2006291354A (en) Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, process for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2009102741A (en) Method of manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, and method of manufacturing electrode material for electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110615

R150 Certificate of patent or registration of utility model

Ref document number: 4767480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees