JP2004088069A - Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the same, and manufacturing method of electrode material for electrolytic capacitor - Google Patents

Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the same, and manufacturing method of electrode material for electrolytic capacitor Download PDF

Info

Publication number
JP2004088069A
JP2004088069A JP2003111747A JP2003111747A JP2004088069A JP 2004088069 A JP2004088069 A JP 2004088069A JP 2003111747 A JP2003111747 A JP 2003111747A JP 2003111747 A JP2003111747 A JP 2003111747A JP 2004088069 A JP2004088069 A JP 2004088069A
Authority
JP
Japan
Prior art keywords
aluminum material
aluminum
electrolytic capacitor
producing
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003111747A
Other languages
Japanese (ja)
Other versions
JP2004088069A5 (en
Inventor
Hideki Nishimori
西森 秀樹
Tomonori Yamaguchi
山口 知典
Kazuhiro Kodama
児玉 和宏
Yutaka Kato
加藤 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2003111747A priority Critical patent/JP2004088069A/en
Priority to AT03719219T priority patent/ATE497630T1/en
Priority to DE60335943T priority patent/DE60335943D1/en
Priority to EP03719219A priority patent/EP1498513B9/en
Priority to AU2003235941A priority patent/AU2003235941A1/en
Priority to CN03809123.2A priority patent/CN1646731A/en
Priority to PCT/JP2003/005384 priority patent/WO2003091482A1/en
Publication of JP2004088069A publication Critical patent/JP2004088069A/en
Publication of JP2004088069A5 publication Critical patent/JP2004088069A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an aluminum material for an electrolytic capacitor electrode excellent in etching characteristics capable of processing in a short time without requiring accurate atmosphere control, generating crystalline oxide or the like which are a nucleus of a sufficient etching pit by a final annealing. <P>SOLUTION: A hot rolling and a cold rolling are successively carried out on an aluminum slab to obtain an aluminum material, and then, the aluminum material is heated in contact with a heating body and annealed thereafter. It is preferred that the surface temperature of the heating body is 80-400 °C, and the contact time of the aluminum body and the heating body is 0.001 to 30 sec. It is also preferred to wash the aluminum material at least either before or after contacting the heating body. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、電解コンデンサ用アルミニウム材の製造方法、電解コンデンサ電極用アルミニウム陽極材、電解コンデンサ用電極材の製造方法及びアルミニウム電解コンデンサに関する。
【0002】
なお、この明細書において「アルミニウム」の語はその合金を含む意味で用い、アルミニウム材には箔と板およびこれらを用いた成形体が含まれる。
【0003】
【従来の技術及び課題】
アルミニウム電解コンデンサ用電極材として一般に用いられているアルミニウム材は、大きな表面積を有して単位面積当たりの静電容量の大きいものであることが要求されるため、電気化学的あるいは化学的エッチング処理を施して、アルミニウム材の実効面積を拡大することが行われている。
【0004】
さらに、この実効面積の増大を目的として、エッチング孔をより多く、太くすることに関して材料の組成、製造工程、エッチング方法等種々の面から研究がなされている。
【0005】
例えば、直流エッチング法でトンネル状ピットを生成させる電解コンデンサ用アルミニウム材の製造において、通常は、(100)面の結晶方位を発達させるために、500℃前後の温度にて不活性雰囲気もしくは真空中で最終焼鈍することが行われている。なお、最終焼鈍とは、仕上げ冷間圧延の後もしくは仕上げ冷間圧延、洗浄の後に実施する工程である。
【0006】
最終焼鈍時にアルミニウム材の表面に結晶性酸化物粒子が生成された場合、電解エッチング時に結晶周辺からエッチピットが生じることが非特許文献1、非特許文献2で述べられており、その結晶性酸化物粒子をアルミニウム材の表面に生成させることは静電容量の向上に寄与すると考えられる。
【0007】
しかしながら、前述したように、最終焼鈍の一般的雰囲気である不活性ガス雰囲気もしくは真空雰囲気では、雰囲気中の酸素が極微量であるため、最終焼鈍を実施しても結晶化しにくい。逆に酸化雰囲気中で高温焼鈍すると酸化皮膜が厚くなり、エッチピットの均一性が低下する。
【0008】
アルミニウム材の表面に結晶を多く析出させる方法として、最終焼鈍前に蒸気または湿った空気をアルミニウム材表面に吹き付ける方法、大気中において200℃程度の温度で加熱する方法、加熱された水またはアミン水溶液中にアルミニウム材を浸漬するいわゆるベーマイト処理方法などにより水和処理皮膜を形成する方法が知られている(特許文献1)。
【0009】
水和処理皮膜はその後の最終焼鈍により結晶性酸化物がアルミニウム材の表面に析出しやすいものの、Al−OH基を表面に多く有するため、コイルの状態や単板を重ねた状態でバッチ焼鈍した場合に密着しやすいという問題があった。また、大気中において200℃程度の温度で加熱する方法では、再現性良く目的の酸化膜を得るためには水蒸気量の制御等精確な雰囲気制御が必要であり、アルミニウム箔表面が目的の温度に達するのに時間がかかるという欠点があった。
【0010】
また、特許文献2には、酸素または水分を含む酸化性雰囲気中における連続最終焼鈍によりγ―Alを析出させる技術が公開されているが、最終焼鈍時間が短時間であるが故に、γ―Alの析出が不十分な恐れがあった。
【0011】
【非特許文献1】
福岡潔、大澤伸夫、本居徹也,軽金属学会第95回秋季大会講演概要p.2          65(1998)、
【0012】
【非特許文献2】
大澤伸夫,福岡潔;表面技術,50[7],643(1999)
【0013】
【特許文献1】
特公昭58−34926号公報
【0014】
【特許文献2】
特開昭63−116417号公報
この発明は、このような技術背景に鑑みてなされたものであって、精確な雰囲気制御を要することなく、短時間で処理でき、その後の最終焼鈍により十分なエッチングピットの核となる結晶性酸化物等の物質を生成でき、エッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法、電解コンデンサ電極用アルミニウム陽極材、電解コンデンサ用電極材の製造方法及びアルミニウム電解コンデンサを提供することを課題とする。
【0015】
【課題を解決するための手段】
本発明は以下の手段を提供する。
(1)アルミニウムスラブに熱間圧延及び冷間圧延を順次実施してアルミニウム材とした後、このアルミニウム材を加熱体との接触により加熱し、その後焼鈍する事を特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
(2)さらに加熱体との接触前あるいは接触後の少なくともどちらかにおいて、アルミニウム材を洗浄する工程を含むことを特徴とする前項1に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(3)アルミニウムスラブに熱間圧延及び冷間圧延を順次実施してアルミニウム材とした後、このアルミニウム材を洗浄し、次いで乾燥しあるいは乾燥することなく、アルミニウム材を加熱体との接触により加熱し、その後焼鈍することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
(4)アルミニウムスラブに熱間圧延及び冷間圧延を順次実施してアルミニウム材とした後、このアルミニウム材を加熱体との接触により加熱し、さらに洗浄し、次いで乾燥しあるいは乾燥することなく、その後焼鈍することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
(5)加熱体の表面温度が80〜400℃、アルミニウム材と加熱体との接触時間が0.001〜30秒である請求項1ないし前項4のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(6)焼鈍がアルミニウム実体温度460〜600℃にて不活性ガス雰囲気中で行われる前項1ないし前項4のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(7)アルミニウム実体温度が500〜580℃である請求項6に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(8)加熱体が熱ロールである前項1ないし前項4のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(9)加熱体との接触後、アルミニウム材を冷却する前項1ないし前項4のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(10)アルミニウム材の冷却を冷却ロールとの接触により行う前項9に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(11)洗浄に用いる洗浄液が有機溶剤である前項2ないし前項10のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(12)有機溶剤がC2n+1OH(n=1〜10の自然数)で表されるアルコール、シクロヘキサノール(C110H)、1,2−エタンジオール(HOCHCHOH)、1,2−プロパンジオール(CHCH(OH)CHOH)、1,3−プロパンジオール(HOCHCHCHOH)、C2n+2(n=5〜15の自然数)で表されるアルカン系炭化水素、シクロヘキサン、RCOR(RおよびR:脂肪族炭化水素基であり、R1とR2の炭素数の合計が8以下)で表されるケトン、シクロヘシサノン(C10O)、R−O−R(RおよびR:脂肪族炭化水素基であり、RとRの炭素数の合計が8以下)で表されるエーテル、2−メトキシエタノール(CHOCHCHOH)、2−エトキシエタノール(CHCHOCHCHOH)、2−ブトキシエタノール(CHCHCHCHOCHCHOH) 2−(2−エトキシ)エトキシエタノール(CHCHOCHCHOCHCHOH)、CHCOOR(R:炭素数1〜5である脂肪族炭化水素基)で表される酢酸エステル、トルエンキシレンから選ばれた1種または2種以上の混合物である前項11に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(13)洗浄に用いる洗浄液が水に界面活性剤を添加したものである前項2ないし前項10のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(14)界面活性剤が、R−OSONa(R=炭素数8〜18の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基)で表されるアニオン界面活性剤(硫酸エステル塩)、R−SONa(R=炭素数8〜18の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基)もしくはR−SONa(R:アルキル基が炭素数8〜14の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基であるアルキルベンジル基)で表されるアニオン界面活性剤(スルホン酸塩)、R−N(CH・Cl− (R=炭素数8〜16の飽和炭化水素基)で表されるカチオン界面活性剤(第4級アンモニウム塩)、R−O−(−CHCHO)H(R=炭素数8〜16の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基、n=6〜14)またはR−O−(−CHCHO)H(R=アルキル基が炭素数8〜12の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基であるアルキルフェニル基、n=6〜14)で表されるポリエチレングリコール型非イオン界面活性剤のうちから選ばれた1種または複数のアニオン界面活性剤の混合物、複数のカチオン界面活性剤の混合物、複数の非イオン界面活性剤の混合物、1種以上のアニオン界面活性剤と1種以上の非イオン界面活性剤の混合物、1種以上のカチオン界面活性剤と1種以上の非イオン界面活性剤の混合物である前項13に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(15)洗浄後の乾燥温度が200℃以下である前項3または前項4に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(16)洗浄後の乾燥温度が90℃以下である前項15に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(17)アルミニウム純度99.9%以上である前項1ないし前項16のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。
(18)前項1ないし前項17のいずれかに記載の製造方法によって製造された電解コンデンサ用アルミニウム陽極材。
(19)中圧用または高圧用である前項18に記載の電解コンデンサ用アルミニウム陽極材。
(20)前項1ないし前項17のいずれかに記載の製造方法によって製造されたアルミニウム材に、焼鈍後、エッチングを実施することを特徴とする電解コンデンサ用電極材の製造方法。
(21)エッチングが直流エッチングである前項20に記載の電解コンデンサ用電極材の製造方法。
(21)電極材として、前項20または前項21に記載の製造方法によって製造されたアルミニウム電極材が用いられていることを特徴とするアルミニウム電解コンデンサ。
【0016】
上述のように、この発明は、アルミニウムスラブに熱間圧延及び冷間圧延を順次実施してアルミニウム材としたのち、このアルミニウム材を加熱体との接触により加熱し、その後焼鈍することを特徴とする。
【0017】
即ち、冷間圧延以降の工程において、加熱体との接触によりアルミニウム材を加熱することによりその後の焼鈍によりエッチピット核となり得る物質をアルミニウム材表面に析出させる。加熱方法として接触加熱を用いるのは、加熱体表面により、均一に短時間でアルミニウム材表面を目的の温度に到達させることが出来るため制御が比較的容易で、しかも急速且つ短時間で加熱できるため雰囲気の影響を少なくできるからである。
【0018】
電解コンデンサ用アルミニウム材の製造において、従来一般に(100)面の結晶方位を発達させるために、450〜600℃の温度範囲で不活性雰囲気もしくは真空中で最終焼鈍を実施しているが、結晶性酸化物等エッチピットの核となりうる物質が十分生成しない。そこで、最終焼鈍前に接触加熱により急速加熱することによって、最終焼鈍時に結晶性酸化物微粒子等エッチピットの核となり得る物質の生成を促進させる。
【0019】
ここでエッチピットの核となり得る物質は、結晶性酸化物のみならず、非晶質でも密度の高いものあるいは厚いもの、非晶質の中に結晶性酸化物や金属アルミニウムが含まれるものが含まれる。また、結晶性酸化物の種類としてはγ−AlをはじめとするAl、ベーマイトをはじめとするAlOOH、アルミニウム以外の含有金属(例えばMg、Pb、Cu等)との複合酸化物などがあるが、金属酸化物あるいは金属水酸化物等に特に限定されるものではない。
【0020】
このようなアルミニウム材表面の酸化皮膜の中で他の場所と特性が異なるものが生成されれば、エッチング時にエッチピットの核となりうると考えられ、最終焼鈍前に急速加熱することにより、焼鈍時に結晶や結晶に転移する前の状態の非晶質、非晶質の中に結晶や金属アルミニウムが含まれる物質が生成し、これらがエッチピット核となると推定される。
【0021】
急速加熱の方法として加熱体との接触加熱を用いるのは、前述したように、極短時間でアルミニウム材表面を目的の温度に到達させることができ生産性に優れる、短時間に加熱できるため雰囲気の影響を受けにくい、アルミニウム材表面に接触する加熱体表面の温度が均一であればアルミニウムコイルの幅方向・長手方向に均一な酸化膜が形成できるというような利点を有するためである。
【0022】
以下に、電解コンデンサ用アルミニウム材の製造方法を説明する。
【0023】
アルミニウム材の純度は電解コンデンサ用に使用される範囲であれば特に限定されないが、純度99.9%以上のものが好ましく、特に99.95%以上が好ましい。なお、本発明においてアルミニウム材の純度は100%からFe,Si, Cu, Mn, Cr, Zn, TiおよびGaの合計濃度(%)を差し引いた値とする。
【0024】
アルミニウム材の製造は、限定はされないが、アルミニウム材料の溶解成分調整・スラブ鋳造、均熱処理、熱間圧延、冷間圧延、仕上冷間圧延(低圧下圧延)、接触加熱の順に実施される。アルミニウム材の(100)面積率が90%以上であることが好ましく、アルミニウム材のエッチング条件との関係で、アルミニウム材の製造工程条件は適宜変更される。なお、圧延工程の途中において、前工程の圧延により生じたアルミニウム材の結晶組織の歪みを解消する目的で焼鈍(中間焼鈍と称す)を実施しても良い。また、中間焼鈍以前の工程でアルミニウム表面の不純物や油分を除去する目的で洗浄を行ってもよい。
【0025】
中間焼鈍以前の工程で用いる洗浄液は特に限定されないが、アルカリ水溶液、酸水溶液、有機溶剤等が用いられる。
【0026】
圧延工程を終了したアルミニウム材は、表面に油分が存在するため、必要に応じ、最終焼鈍前であって後述する接触加熱前あるいは接触加熱後の少なくともどちらかで洗浄を行うことが好ましい。このような洗浄を行うことで、接触加熱の効果がより発揮され、大きな静電容量が得られる。
【0027】
圧延終了後洗浄を行うことなく接触加熱を行い大きい摩耗粉などがアルミニウム材表面に付着している場合には、洗浄により除去することが好ましい。
【0028】
前記接触加熱前あるいは接触加熱後の洗浄に用いられる洗浄液は、脱脂を目的とすることから、有機溶剤や水に界面活性剤を添加したものを用いることができる。
【0029】
有機溶剤としては、アルミニウムを溶解しない物質を用いることができ、例として、アルコール、ジオール、トルエン・キシレン等の芳香族炭化水素、アルカン系炭化水素、シクロヘキサン、ケトン、エーテル、エステル、石油製品等があげられるが、特に限定されるものではない。
【0030】
上記アルコールの例としては、メタノール(CHOH)、エタノール(COH)、1−プロパノール(CHCHCHOH)、2−プロパノール(CHCH2(OH)CH)、1−ブタノール(CHCHCHCHOH)、2−ブタノール(CHCHCH(OH)CH)、1−ペンタノール(CHCHCHCHCHOH)、2−ペンタノール(CHCHCHCH(OH)CH)等が挙げられ、C2n+1OH(n=1〜10の自然数)で表されるものが好ましい。また、シクロヘキサノール等の脂乾炭化水素類も用いることが出来る。
【0031】
上記ジオールの例としては1,2−エタンジオール(HOCHCHOH)、1,2−プロパンジオール(CHCH(OH)CHOH)、1,3−プロパンジオール(HOCHCHCHOH)等が例示できる。
【0032】
上記アルカン系炭化水素の例としては、ペンタン(C12)、ヘキサン(C14)、ヘプタン(C16)、オクタン(C18)、ノナン(C20)、デカン(C1022)等が挙げられC2n+2(n=5〜15の自然数)で表されるものが好ましい。またシクロヘキサン等脂乾式炭化水素の適用も可能である。
【0033】
上記ケトンの例としてはアセトン(CHCOCH)、2−ブタノン(CHCOC)、3−ペンタノン(CHCHCOCHCH)、3−メチル−2−ブタノン(CHCOCH(CH)等が例示でき、RCOR(RおよびR:脂肪族炭化水素基であり、R1とR2の炭素数の合計が8以下)で表されるものが好ましい。また、シクロヘキサノン(C10O)等環状ケトンを用いても良い。
【0034】
上記エーテルの例としては、R−O−R(RおよびR:脂肪族炭化水素基であり、RとRの炭素数の合計が8以下)で表される物質、2−メトキシエタノール(CHOCHCHOH)、2−エトキシエタノール(CHCHOCHCHOH)、2−ブトキシエタノール(CHCHCHCHOCHCHOH) 2−(2−エトキシ)エトキシエタノール(CHCHOCHCHOCHCHOH)、等のグリコールエーテルも含まれる。
【0035】
上記エステルの例としては、CHCOOR(R:炭素数1〜5である脂肪族炭化水素基)で表される酢酸エステルが例示できる。
【0036】
上記石油製品の例としては、工業ガソリン(JIS K 2201)、自動車ガソリン(JIS K 2202)、航空ガソリン(JIS K 2206)、灯油(JIS K 2203)、軽油(JIS K2204)、航空ガソリン(JIS K 2206)、石油エーテル(JIS K 8593)、石油ベンジン(JIS K 8594)、リグロイン(JIS K 8937)、ケロシン等が挙げられる。
【0037】
上記有機溶剤としては、複数の有機溶剤を混合して用いても良く、水と混合し得る有機溶剤の場合は必要に応じて水と混合して用いても良い。
【0038】
一方、上記洗浄に用いる、水に界面活性剤を添加した洗浄液中に含まれる界面活性剤としては、アニオン界面活性剤、カチオン界面活性剤、非イオン性界面活性剤を用いることが出来る。
【0039】
アニオン界面活性剤としては、硫酸エステル塩、スルホン酸塩を用いることができる。
【0040】
上記硫酸エステル塩としては、R−OSONa(R=炭素数8〜18のの飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基)を利用でき、具体的にはドデシル硫酸ナトリウム(C1225OSONa)、ヘキサデシル硫酸ナトリウム(C1633OSONa)、ステアリル硫酸ナトリウム(C1837OSONa)、オレイル硫酸ナトリウム(C1835OSONa)等が例示できる。
【0041】
上記スルホン酸塩はR−SONa(R=炭素数8〜18の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基)もしくはドデシルベンゼンスルホン酸ナトリウム(C1225−C−SONa)等のR−SONa(R:アルキル基が炭素数8〜14の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基であるアルキルベンジル基)で表されるものを用いることができる。
【0042】
カチオン界面活性剤としては、R−N(CH・Cl− (R=炭素数8〜16の飽和炭化水素基)で表される第4級アンモニウム塩を用いることができる。
【0043】
非イオン性界面活性剤としては、R−O−(−CHCHO)H(R=炭素数8〜16の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基、n=6〜14)またはR−O−(−CHCHO)H(R=アルキル基が炭素数8〜12の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基であるアルキルフェニル基、n=6〜14)で表されるポリエチレングリコール型非イオン界面活性剤を例示できる。なおnが上記範囲より多いものが非イオン性界面活性剤中に50%以下のモル比で含まれていても良い。
【0044】
また、上記界面活性剤の少なくとも1種類以上を水に添加し洗浄液として用いることができる。界面活性剤の炭素数が上記範囲より少ない界面活性剤が50%以下のモル比で添加されていても良い。なお、アニオン界面活性剤とカチオン界面活性剤を水中で混合させると沈殿が生成するため、混合はさけることが好ましい。
【0045】
界面活性剤の添加濃度は特に規定されないが、洗浄効果を発揮させるために臨界ミセル濃度以上であることが好ましい。
【0046】
上記洗浄工程において、洗浄液として用いる有機溶剤もしくは界面活性剤水溶液とアルミニウム材の接触方法としては特に限定されないが、浸漬、洗浄液表面へのアルミニウム材の接触、スプレー等が挙げられる。
【0047】
また、アルミニウム材表面の油分や摩耗粉をより除去する目的で、洗浄液とアルミニウム材との接触中にアルミニウム材をブラシもしくはスポンジと接触させさらにこすっても良い。
【0048】
洗浄工程において、洗浄液とアルミニウム材との接触時間は特に限定されるものではないが、0.5秒以上10分以下であることが好ましい。洗浄液とアルミニウム材の接触時間が0.5秒未満では洗浄が不十分であり、10分より長く接触させても洗浄効果が飽和に達する。洗浄液の液温は有機溶剤の場合は5〜60℃、水に界面活性剤を添加した洗浄液の場合は5〜80℃であることが好ましい。洗浄液の液温が下限未満の場合には洗浄力が不十分であり、上限より高い温度で洗浄しても洗浄力は飽和に達する。
【0049】
アルミニウム材の洗浄後、必要に応じて乾燥しても良い。乾燥方法として、例えば、空気中加熱、不活性雰囲気加熱、真空加熱を用いることができる。空気中で乾燥する場合の雰囲気温度は200℃以下、乾燥時間は10分以下であることが好ましい。乾燥温度が200℃より高くなるかもしくは加熱時間が10分より長くなると、酸化膜が成長しすぎてエッチング特性が低下する恐れがあるからである。
【0050】
圧延終了後のアルミニウム材または圧延終了後さらに洗浄を施したアルミニウム材は、その後の焼鈍によりエッチピットの核を多く生成させるために接触加熱される。加熱手段は、熱ロール、加熱ベルト、加熱板など接触加熱が可能なものであれば良いが、簡便で連続的に接触加熱を行いうる点で熱ロールが望ましい。
また、片面ずつ加熱しても良く、表裏面の一方のみを加熱してもよい。加熱体の加熱表面の材質としては、ステンレス、メッキ、セラミックス、テフロン樹脂(登録商標)、シリコーン樹脂等自由に選択できるが、アルミニウム材の表面酸化膜が加熱体の表面に凝着しない物質が好ましい。
【0051】
アルミニウム材に接触させる加熱体の表面温度は80〜400℃が好ましい。加熱体の表面温度が80℃未満では、加熱が不十分となり、接触加熱後に行う焼鈍時の結晶性酸化物微粒子等エッチピットの核となり得る物質の生成が不十分となる恐れがある。一方、400℃より高くなると、酸化膜が厚くなりすぎ、冷却時に皺が発生し、操業上の問題が生じる恐れがある。特に好ましい加熱体表面温度は100〜350℃である。さらに好ましい加熱体表面温度は160〜290℃である。
【0052】
アルミニウム材表面と加熱体表面との接触時間は0.001〜30秒とするのが好ましい。接触時間が0.001秒未満では、アルミニウム材表面を充分加熱することができず、やはりエッチピット核となり得る物質の生成が不十分になる恐れがある。一方、30秒より長くすると、酸化膜が厚くなりすぎエッチピットが発生しにくくなる恐れがある。特に好ましい接触時間は、0.01〜10秒である。さらに好ましい接触時間は0.1〜7秒である。
【0053】
加熱体の表面温度及び接触時間は、接触前のアルミニウム材表面の酸化膜の特性を考慮して適宜選択すればよい。接触加熱雰囲気は特に限定されず、特別な雰囲気制御も必要なく空気中で実施できる。
【0054】
加熱体として熱ロールを用いた加熱装置の一例としては、アルミニウム材の表裏面を目的の温度で接触加熱するために、少なくとも2個の熱ロールを配置した装置が挙げられる。アルミニウム材を熱ロール等で接触加熱した後のアルミニウム材の巻き取り時に皺が生じる場合には、熱ロールなどによる加熱後1個もしくは複数個の冷却ロール等の冷却体を通過させ、アルミニウム材を冷却させてから巻き取る構成としても良い。特に、冷却体として冷却ロールを用いることで、簡便にかつ連続的に冷却を行うことができる。また、熱ロールなどによりアルミニウム材を目的の接触加熱温度に加熱する前に、別の熱ロールを用いて、目的の接触加熱温度より低い温度にアルミニウム材の温度を予備的に上げておいてもよい。
【0055】
接触加熱後、要すれば前述した洗浄を行った後、エッチピットの核となり得る物質の生成を促進させるとともに、アルミニウム材の結晶組織の方位を(100)方位に整えてエッチング特性を向上させることを主目的として最終焼鈍がなされる。
【0056】
なお、最終圧延後最終焼鈍前に、上述した工程以外の他の工程例えばアルミニウム材コイルを分割するためのスリット工程等を実施しても良いことは勿論である。
【0057】
最終焼鈍においては、前工程である接触加熱工程でアルミニウム材に形成された酸化膜の厚さを最終焼鈍工程で増大させ過ぎて、エッチング核となり得る可能性を消去させないように、最終焼鈍後の酸化皮膜の合計厚さがハンターホール法(M.S.Hunter and  P. Fowle, J. Electrochem. Soc., 101[9], 483(1954)参照)による厚さで2.5〜5.0nmとなるように最終焼鈍を実施するのが好ましい。また、最終焼鈍後のアルミニウム材の(100)面積率は90%以上が好ましい。
【0058】
この最終焼鈍における処理雰囲気は特に限定されるものではないが、酸化皮膜の厚さを増大させすぎないように、水分および酸素の少ない雰囲気中で加熱するのが好ましい。具体的には、アルゴン、窒素などの不活性ガス中あるいは0.1Pa以下の真空中で加熱することが好ましい。
【0059】
最終焼鈍の方法は特に限定されるものではなく、コイルに巻き取った状態でバッチ焼鈍しても良く、コイルを巻き戻し連続焼鈍した後コイルに巻き取っても良く、バッチ焼鈍と連続焼鈍の少なくともどちらかを複数回行っても良い。
【0060】
最終焼鈍時の温度、時間は特に限定されるものではないが、例えばコイルの状態でバッチ焼鈍を行う場合は、アルミニウム実体温度460〜600℃にて、10分〜50時間焼鈍するのが好ましい。アルミニウム実体温度が460℃未満、時間が10分未満では、酸化皮膜中のエッチピットの核と成り得る物質の生成が十分ではなく、その分散状態が疎となりすぎて、結晶をエッチング核とするエッチング時の拡面効果が期待できない恐れがあり、(100)面の結晶方位の発達も不十分となる恐れがあるからである。逆に600℃を越えて焼鈍すると、コイルでバッチ焼鈍する場合はアルミニウム材が密着を起こし易くなり、また50時間を超えて焼鈍してもエッチングによる面積拡大効果は飽和し、却って熱エネルギーコストの増大を招く。特に好ましい温度は、アルミニウム実体温度で500〜580℃、時間は20分〜40時間である。
【0061】
また、最終焼鈍の昇温速度・パターンは特に限定されず、一定速度で昇温させても良く、昇温、温度保持を繰り返しながらステップ昇温・冷却させても良く、焼鈍工程にてアルミニウム実体温度460〜600℃の温度域で合計10分〜50時間焼鈍されれば良い。なお、最終焼鈍後に得られる電解コンデンサ電極用アルミニウム材の厚さは特に規定されることはない。
【0062】
最終焼鈍を終了したアルミニウム材には、拡面積率向上のためエッチング処理を実施する。エッチング処理条件は特に限定されないが、好ましくは直流エッチング法を採用するのが良い。直流エッチング法によって、前記最終焼鈍において生成が促進されたエッチピットの核となる部分において、深く太くエッチングされ、多数のトンネル状ピットが生成され、高静電容量が実現される。
【0063】
エッチング処理後、望ましくは化成処理を行って陽極材とするのが良く、特に、中圧用および高圧用の電解コンデンサ電極材として用いるのが良い。もとより、陰極材として用いることを妨げるものではない。
【0064】
上記のような陽極材及び/または陰極材を電極材として用いることにより、アルミニウム電解コンデンサが構成される。この電解コンデンサでは、電極材の拡面率が増大しているため、大きな静電容量を有するものとなる。
【0065】
なお、静電容量の測定は、化成処理されたエッチド箔について、例えば80g/Lのホウ酸アンモニウム、30℃中で、白金板を対極として120Hzにて測定する等、常法に従って行えばよい。
【0066】
この発明のコンデンサは、実施例のものに限定されることはない。
【0067】
【実施例】
以下に本発明の実施例および比較例を示す。
[実施例1〜12及び比較例1〜3]
(実施例1)
厚さ110μmに圧延された純度99.99%のアルミニウム材を用意した。得られたアルミニウム材をアルカン系炭化水素に2秒間浸漬し、90℃にて1分間空気中で乾燥させた後、表面温度が200℃のステンレス製加熱板2枚の間にアルミニウム材を挟み、2秒間空気中で接触加熱させた。接触加熱後のアルミニウム材を重ねた状態で、アルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて24時間保持させ、次いで冷却したのち炉出しし、電解コンデンサ用高純度アルミニウム材を得た。
(実施例2)
実施例1と同じく、厚さ110μmに圧延された純度99.99%のアルミニウム材を作製した。得られたアルミニウム材をアルカン系炭化水素に2秒間浸漬し、90℃にて1分間空気中で乾燥させた後、表面温度が250℃のステンレス製加熱板2枚の間にアルミニウム材を挟み、2秒間空気中で接触加熱させた。接触加熱後のアルミニウム材を重ねた状態で、アルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて24時間保持させ、次いで冷却したのち炉出しし、電解コンデンサ用高純度アルミニウム材を得た。
(実施例3)
実施例1と同じく、厚さ110μmに圧延された純度99.99%のアルミニウム材を作製した。得られたアルミニウム材をアルカン系炭化水素に2秒間浸漬し、90℃にて1分間空気中で乾燥させた後、表面温度が200℃のステンレス製加熱板2枚の間にアルミニウム材を挟み、2秒間空気中で接触加熱させた。接触加熱後のアルミニウム材を重ねた状態で、アルゴン雰囲気下でアルミニウム材の実体温度を室温から560℃まで50℃/hで昇温させた後、560℃にて24時間保持させ、次いで冷却したのち炉出しし、電解コンデンサ用高純度アルミニウム材を得た。
(実施例4)
実施例1と同じく、厚さ110μmに圧延された純度99.99%のアルミニウム材を作製した。得られたアルミニウム材をアルカン系炭化水素に2秒間浸漬し、90℃にて1分間空気中で乾燥させた後、表面温度が200℃のステンレス製加熱板2枚の間にアルミニウム材を挟み、1秒間空気中で接触加熱させた。接触加熱後のアルミニウム材を重ねた状態で、アルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて24時間保持させ、次いで冷却したのち炉出しし、電解コンデンサ用高純度アルミニウム材を得た。
(実施例5)
実施例1と同じく、厚さ110μmに圧延された純度99.99%のアルミニウム材を作製した。得られたアルミニウム材をアルカン系炭化水素に2秒間浸漬し、90℃にて1分間空気中で乾燥させた。次に、表面温度200℃に設定した熱ロール(表面に硬質クロムメッキを施したもの)2本を用意し、1本目の熱ロールにアルミニウム材表面を1秒間接触させた後、続けて2本目の熱ロールにアルミニウム材裏面を1秒間接触させることにより接触加熱を行った。接触加熱後のアルミニウム材を重ねた状態で、アルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後540℃にて24時間保持させ、次いで冷却したのち炉出しし、電解コンデンサ用高純度アルミニウム材を得た。
(実施例6)
実施例1と同じく、厚さ110μmに圧延された純度99.99%のアルミニウム材を作製した。得られたアルミニウム材をアルカン系炭化水素に2秒間浸漬し、90℃にて1分間空気中で乾燥させた。次に、表面温度が90℃のステンレス製加熱板2枚の間にアルミニウム材を挟み、1秒間空気中で接触加熱させた。接触加熱後のアルミニウム材を重ねた状態で、アルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて24時間保持させ、次いで冷却したのち炉出しし、電解コンデンサ用高純度アルミニウム材を得た。
(実施例7)
実施例1と同じく、厚さ110μmに圧延された純度99.99%のアルミニウム材を作製した。得られたアルミニウム材をアルカン系炭化水素に2秒間浸漬し、90℃にて1分間空気中で乾燥させた。次に、表面温度380℃に設定した熱ロール(表面に硬質クロムメッキを施したもの)2本を用意し、1本目の熱ロールにアルミニウム材表面を0.1秒間接触させた後、続けて2本目の熱ロールにアルミニウム材裏面を0.1秒間接触加熱させることにより接触加熱を行った。接触加熱後のアルミニウム材を重ねた状態で、アルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて24時間保持させ、次いで冷却したのち炉出しし、電解コンデンサ用高純度アルミニウム材を得た。
(実施例8)
実施例1と同じく、厚さ110μmに圧延された純度99.99%のアルミニウム材を作製した。得られたアルミニウム材をアルカン系炭化水素に2秒間浸漬し、90℃にて1分間空気中で乾燥させた。次に、表面温度250℃に設定した熱ロール(表面に硬質クロムメッキを施したもの)2本を用意し、1本目の熱ロールにアルミニウム材表面を0.005秒間接触させた後、続けて2本目の熱ロールにアルミニウム材裏面を0.005秒間接触させることにより接触加熱を行った。接触加熱後のアルミニウム材を重ねた状態で、アルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて24時間保持させ、次いで冷却したのち炉出しし、電解コンデンサ用高純度アルミニウム材を得た。
(実施例9)
実施例1と同じく、厚さ110μmに圧延された純度99.99%のアルミニウム材を作製した。得られたアルミニウム材をアルカン系炭化水素に2秒間浸漬し、90℃にて1分間空気中で乾燥させた後、表面温度が150℃のステンレス製加熱板2枚の間にアルミニウム材を挟み、30秒間空気中で接触加熱させた。接触加熱後のアルミニウム材を重ねた状態で、アルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて24時間保持させ、次いで冷却したのち炉出しし、電解コンデンサ用高純度アルミニウム材を得た。
(実施例10)
実施例1と同じく、厚さ110μmに圧延された純度99.99%のアルミニウム材を作製した。得られたアルミニウム材をアルカン系炭化水素に2秒間浸漬し、90℃にて1分間空気中で乾燥させた後、表面温度が200℃のステンレス製加熱板2枚の間にアルミニウム材を挟み、2秒間空気中で接触加熱させた。接触加熱後のアルミニウム材を重ねた状態で、アルゴン雰囲気下でアルミニウム材の実体温度を室温から480℃まで50℃/hで昇温させた後、480℃にて24時間保持させ、次いで冷却したのち炉出しし、電解コンデンサ用高純度アルミニウム材を得た。
(実施例11)
実施例1と同じく、厚さ110μmに圧延された純度99.99%のアルミニウム材を作製した。得られたアルミニウム材をアルカン系炭化水素に2秒間浸漬し、90℃にて1分間空気中で乾燥させた後、表面温度が200℃のステンレス製加熱板2枚の間にアルミニウム材を挟み、2秒間空気中で接触加熱させた。接触加熱後のアルミニウム材を重ねた状態で、アルゴン雰囲気下でアルミニウム材の実体温度を室温から580℃まで50℃/hで昇温させた後、580℃にて24時間保持させ、次いで冷却させたのち炉出しし、電解コンデンサ用高純度アルミニウム材を得た。
(実施例12)
接触加熱後に、表面温度が10℃のステンレス板の間にアルミニウム材を10秒間挟み冷却させる工程を含むこと以外は、実施例1と同様にして電解コンデンサ用高純度アルミニウム材を得た。
(比較例1)
実施例1と同じく、厚さ110μmに圧延された純度99.99%のアルミニウム材を作製した。得られたアルミニウム材をアルカン系炭化水素に2秒間浸漬し、90℃にて1分間空気中で乾燥させた後、重ねた状態でアルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて24時間保持させ、次いで冷却したのち炉出しし、電解コンデンサ用高純度アルミニウム材を得た。
(比較例2)
実施例1と同じく、厚さ110μmに圧延された純度99.99%のアルミニウム材を作製した。得られたアルミニウム材をアルカン系炭化水素に2秒間浸漬し、90℃にて1分間空気中で乾燥させた後、重ねた状態でアルゴン雰囲気下でアルミニウム材の実体温度を室温から480℃まで50℃/hで昇温させた後、480℃にて24時間保持させ、次いで冷却したのち炉出しし、電解コンデンサ用高純度アルミニウム材を得た。
(比較例3)
実施例1と同じく、厚さ110μmに圧延された純度99.99%のアルミニウム材を作製した。得られたアルミニウム材をアルカン系炭化水素に2秒間浸漬し、90℃にて1分間空気中で乾燥させた後、重ねた状態でアルゴン雰囲気下でアルミニウム材の実体温度を室温から580℃まで50℃/hで昇温させた後、580℃にて24時間保持させ、次いで冷却したのち炉出しし、電解コンデンサ用高純度アルミニウム材を得た。
上記実施例および比較例で得られたアルミニウム材を酸に浸漬した後、塩酸−硫酸水溶液で電解エッチングしたのち、さらに酸溶液に浸漬することによりピット径を太くしエッチド箔を得た。得られたエッチド箔を、化成電圧270VにてEIAJ規格に従い化成処理し、静電容量測定用サンプルとした。
【0068】
実施例および比較例の接触加熱条件、焼鈍時のアルミニウム材の実態温度、静電容量評価を表1に示す。静電容量評価は、比較例1を100とした時の値を示す。
【0069】
【表1】

Figure 2004088069
【0070】
上記表1からわかるように、実施例では、焼鈍前に加熱板または熱ロールを用いて接触加熱を行うことにより、接触加熱を行わない比較例1〜3と較べて静電容量の向上が見られる。
[実施例13〜130及び比較例4]
表2及び表3に示す有機溶剤および表4に示す水に界面活性剤を添加したものを洗浄液として用意した。
【0071】
【表2】
Figure 2004088069
【0072】
【表3】
Figure 2004088069
【0073】
【表4】
Figure 2004088069
【0074】
(実施例13)
厚さ110μmに圧延された純度99.99%のアルミニウム材に対し、表2のA1液に2秒間浸漬した後、空気中で90℃にて60秒間乾燥した。次に、アルミニウム材を表面温度が200℃のステンレス製加熱板2枚の間に挟み、2秒間接触加熱を行った。
【0075】
次いで、接触加熱後のアルミニウム材を重ねた状態でアルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて24時間保持させ、次いで冷却した後炉出しし、電解コンデンサ電極用アルミニウム材を得た。
(実施例14〜88)
実施例13と同じ厚さ110μmに圧延された純度99.99%のアルミニウム材を、表5〜表8の工程の条件で洗浄・乾燥した後、アルミニウム材を表面温度が200℃のステンレス製加熱板2枚の間に挟み、2秒間接触加熱を行った。なお実施例53〜82では、アルミニウム材が洗浄液に浸漬されている間ブラシをアルミニウム材表面に接触させ摺動した。
【0076】
接触加熱後のアルミニウム材を重ねた状態でアルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて24時間保持させ、次いで冷却した後炉出しし、電解コンデンサ電極用アルミニウム材を得た。
(実施例89〜96)
実施例13と同じ厚さ110μmに圧延された純度99.99%のアルミニウム材を200℃のステンレス製加熱板2枚の間に挟み、2秒間接触加熱を行った。
【0077】
次に、表8の工程3の条件にて洗浄・乾燥した。なお、アルミニウム材が洗浄液に浸漬されている間ブラシをアルミニウム材表面に接触させ摺動した。
【0078】
洗浄・乾燥後のアルミニウム材を重ねた状態でアルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて24時間保持させ、次いで冷却した後炉出しし、電解コンデンサ電極用アルミニウム材を得た。
(実施例97〜102)
実施例13と同じ厚さ110μmに圧延された純度99.99%のアルミニウム材を、表8の工程1の条件にて洗浄・乾燥した後、アルミニウム材を表面温度が200℃のステンレス製加熱板2枚の間に挟み、2秒間接触加熱を行った。次に、接触加熱後のアルミニウム材を表8の工程3の条件で洗浄・乾燥した。
【0079】
工程3の条件で洗浄・乾燥したアルミニウム材を重ねた状態でアルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて24時間保持させ、次いで冷却した後炉出しし、電解コンデンサ電極用アルミニウム材を得た。
(実施例103〜107)
実施例13と同じ厚さ110μmに圧延された純度99.99%のアルミニウム材を、表8の工程の条件で洗浄・乾燥した後、アルミニウム材を表面温度が200℃のステンレス製加熱板2枚の間に挟み、2秒間接触加熱を行った。
【0080】
接触加熱後のアルミニウム材を重ねた状態でアルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて24時間保持させ、次いで冷却した後炉出しし、電解コンデンサ電極用アルミニウム材を得た。
(実施例108〜111)
実施例13と同じ厚さ110μmに圧延された純度99.99%のアルミニウム材を200℃のステンレス製加熱板2枚の間に挟み、2秒間接触加熱を行った。次に、表8及び表9の工程3の条件にて洗浄・乾燥した。なお、アルミニウム材が洗浄液に浸漬されている間ブラシをアルミニウム材表面に接触させ摺動した。
【0081】
洗浄・乾燥後のアルミニウム材を重ねた状態でアルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて24時間保持させ、次いで冷却した後炉出しし、電解コンデンサ電極用アルミニウム材を得た。
(実施例112〜128)
実施例13と同じ厚さ110μmに圧延された純度99.99%のアルミニウム材に対し、表9の工程1の条件での洗浄・乾燥、表9の工程2の条件での接触加熱を施した。
【0082】
接触加熱後のアルミニウム材を重ねた状態でアルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて24時間保持させ、次いで冷却した後炉出しし、電解コンデンサ電極用アルミニウム材を得た。
(実施例129)
実施例13と同じ厚さ110μmに圧延された純度99.99%のアルミニウム材を200℃のステンレス製加熱板2枚の間に挟み、2秒間接触加熱を行った。接触加熱後のアルミニウム材を重ねた状態でアルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて24時間保持させ、次いで冷却した後炉出しし、電解コンデンサ電極用アルミニウム材を得た。
(実施例130)
熱ロールでの接触加熱後に表面温度25℃の冷却ロールにアルミニウム材を接触させる工程を含む事以外は、実施例124と同様にして電解コンデンサ電極用アルミニウム材を得た。
(比較例4)
実施例13と同じ厚さ110μmに圧延された純度99.99%のアルミニウム材をアルゴン雰囲気下でアルミニウム材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて24時間保持させ、次いで冷却した後炉出しし、電解コンデンサ電極用アルミニウム材を得た。
上記実施例13〜130および比較例4で得られたアルミニウム材をHCl 1.0mol・dm−3とHSO 3.5mol・dm−3を含む液温75℃の水溶液に浸漬した後、電流密度0.2A/cmで電解処理を施した。電解処理後の箔をさらに前記組成の塩酸―硫酸混合水溶液に90℃にて360秒浸漬し、ピット径を太くしエッチド箔を得た。得られたエッチド箔を化成電圧270VにてEIAJ規格に従い化成処理した静電容量測定用サンプルとした。各サンプルについて測定した静電容量を、比較例4を100とした場合の相対値にて表5〜表9に示す。
【0083】
【表5】
Figure 2004088069
【0084】
【表6】
Figure 2004088069
【0085】
【表7】
Figure 2004088069
【0086】
【表8】
Figure 2004088069
【0087】
【表9】
Figure 2004088069
【0088】
上記表9の実施例129と比較例4との比較により、最終焼鈍を行う前に接触加熱を行うことにより静電容量が向上する。また、実施例13〜111と実施例129の比較により接触加熱前後の少なくともどちらかで洗浄を行うことによりさらに静電容量が向上することが分かる。
【0089】
また、実施例103〜111により、洗浄後の乾燥温度が200℃以下であると静電容量が向上し、90℃以下ではさらに静電容量が高い。
【0090】
【発明の効果】
この発明は、上述の次第で、冷間圧延後に加熱体との接触によりアルミニウム材を加熱した後焼鈍することにより、箔表面にエッチピット核となりうる物質が多く析出したエッチング特性に優れた電解コンデンサ用アルミニウム材を製造することができる。特に、加熱方法として接触加熱を用いるから、均一に短時間でアルミニウム材表面を目的の温度に到達させることができるため、温度制御が比較的容易で、しかも急速かつ短時間で加熱できるため雰囲気の影響を少なくできる。従って、この電解コンデンサ用アルミニウム材をエッチングすることにより、前記エッチピットの核となりうる物質の存在位置において、効果的にエッチングが行われ、その結果拡面率を向上でき、ひいては静電容量の増大した電解コンデンサ電極材となし得、結果として大きな静電容量を有するアルミニウム電解コンデンサを得ることができる。
【0091】
また、加熱体との接触前あるいは接触後の少なくともどちらかにおいて、アルミニウム材を洗浄することにより、さらに静電容量の増大効果が得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an aluminum material for an electrolytic capacitor, an aluminum anode material for an electrolytic capacitor electrode, a method for producing an electrode material for an electrolytic capacitor, and an aluminum electrolytic capacitor.
[0002]
In this specification, the term "aluminum" is used to include its alloy, and the aluminum material includes a foil, a plate, and a molded article using these.
[0003]
[Prior art and problems]
Aluminum materials generally used as electrode materials for aluminum electrolytic capacitors are required to have a large surface area and a large capacitance per unit area. In this case, the effective area of the aluminum material is increased.
[0004]
Further, for the purpose of increasing the effective area, studies have been made on various aspects such as a material composition, a manufacturing process, an etching method, and the like, in order to increase and increase the size of an etching hole.
[0005]
For example, in the production of an aluminum material for an electrolytic capacitor in which tunnel-like pits are generated by a DC etching method, usually, in order to develop the crystal orientation of the (100) plane, an inert atmosphere or a vacuum is used at a temperature of about 500 ° C. The final annealing is performed. The final annealing is a step performed after finish cold rolling or after finish cold rolling and washing.
[0006]
It is described in Non-Patent Documents 1 and 2 that when crystalline oxide particles are generated on the surface of an aluminum material during final annealing, etch pits are formed from the periphery of the crystal during electrolytic etching. It is considered that the generation of the material particles on the surface of the aluminum material contributes to the improvement of the capacitance.
[0007]
However, as described above, in an inert gas atmosphere or a vacuum atmosphere, which is a general atmosphere for final annealing, since the amount of oxygen in the atmosphere is extremely small, it is difficult to crystallize even if the final annealing is performed. Conversely, when annealing at a high temperature in an oxidizing atmosphere, the oxide film becomes thicker, and the uniformity of the etch pits is reduced.
[0008]
As a method of precipitating a lot of crystals on the surface of the aluminum material, a method of blowing steam or moist air to the surface of the aluminum material before final annealing, a method of heating at a temperature of about 200 ° C. in the atmosphere, a heated water or amine aqueous solution A method of forming a hydration treatment film by a so-called boehmite treatment method in which an aluminum material is immersed therein is known (Patent Document 1).
[0009]
The hydrated coating film was subjected to batch annealing in a coil state or in a state where veneers were stacked, although the crystalline oxide was likely to precipitate on the surface of the aluminum material by the subsequent final annealing, but had many Al-OH groups on the surface. In such a case, there is a problem that it is easy to adhere. In addition, in the method of heating at a temperature of about 200 ° C. in the air, accurate atmosphere control such as control of the amount of water vapor is required in order to obtain a target oxide film with good reproducibility. There was the disadvantage that it took time to reach.
[0010]
Patent Document 2 discloses that γ-Al is obtained by continuous final annealing in an oxidizing atmosphere containing oxygen or moisture. 2 O 3 Although a technique for precipitating γ-Al has been disclosed, since the final annealing time is short, γ-Al 2 O 3 There was a risk that the precipitation of insufficiency was insufficient.
[0011]
[Non-patent document 1]
Kiyoshi Fukuoka, Nobuo Osawa, Tetsuya Motoi, Outline of the 95th Autumn Meeting of the Japan Institute of Light Metals p. 265 (1998),
[0012]
[Non-patent document 2]
Nobuo Osawa, Kiyoshi Fukuoka; Surface Technology, 50 [7], 643 (1999)
[0013]
[Patent Document 1]
JP-B-58-34926
[0014]
[Patent Document 2]
JP-A-63-116417
The present invention has been made in view of such technical background, and can be performed in a short time without requiring precise atmosphere control, and can be sufficiently crystallized by the final annealing to be a core of etching pits. And a method for producing an aluminum material for an electrolytic capacitor electrode, an aluminum anode material for an electrolytic capacitor electrode, a method for producing an electrode material for an electrolytic capacitor, and an aluminum electrolytic capacitor. I do.
[0015]
[Means for Solving the Problems]
The present invention provides the following means.
(1) Aluminum for an electrolytic capacitor electrode characterized in that hot rolling and cold rolling are sequentially performed on an aluminum slab to form an aluminum material, and this aluminum material is heated by contact with a heating body and then annealed. The method of manufacturing the material.
(2) The method for producing an aluminum material for an electrolytic capacitor electrode according to the above item 1, further comprising a step of cleaning the aluminum material before or after contact with the heating element.
(3) After hot rolling and cold rolling are sequentially performed on the aluminum slab to form an aluminum material, the aluminum material is washed, and then dried or heated without being dried, by contact with a heating body. And then annealing. A method for producing an aluminum material for an electrolytic capacitor electrode.
(4) After hot rolling and cold rolling are sequentially performed on an aluminum slab to form an aluminum material, the aluminum material is heated by contact with a heating body, further washed, and then dried or without drying. A method for producing an aluminum material for an electrode of an electrolytic capacitor, which is followed by annealing.
(5) The aluminum material for an electrolytic capacitor electrode according to any one of (1) to (4), wherein the surface temperature of the heating element is 80 to 400 ° C., and the contact time between the aluminum material and the heating element is 0.001 to 30 seconds. Manufacturing method.
(6) The method for producing an aluminum material for an electrolytic capacitor electrode according to any one of the above (1) to (4), wherein the annealing is performed in an inert gas atmosphere at a substantial aluminum temperature of 460 to 600 ° C.
(7) The method for producing an aluminum material for an electrolytic capacitor electrode according to claim 6, wherein the actual aluminum temperature is 500 to 580 ° C.
(8) The method for producing an aluminum material for an electrolytic capacitor electrode according to any one of the above items 1 to 4, wherein the heating body is a heat roll.
(9) The method for producing an aluminum material for an electrolytic capacitor electrode according to any one of the above (1) to (4), wherein the aluminum material is cooled after contact with the heating element.
(10) The method for producing an aluminum material for an electrolytic capacitor electrode according to the above (9), wherein the aluminum material is cooled by contact with a cooling roll.
(11) The method for producing an aluminum material for an electrolytic capacitor electrode according to any one of (2) to (10) above, wherein the cleaning liquid used for cleaning is an organic solvent.
(12) The organic solvent is C n H 2n + 1 An alcohol represented by OH (n is a natural number of 1 to 10), cyclohexanol (C 6 H 11 0H), 1,2-ethanediol (HOCH 2 CH 2 OH), 1,2-propanediol (CH 3 CH (OH) CH 2 OH), 1,3-propanediol (HOCH) 2 CH 2 CH 2 OH), C n H 2n + 2 Alkane hydrocarbon represented by (n = natural number of 5 to 15), cyclohexane, R 1 COR 2 (R 1 And R 2 : An aliphatic hydrocarbon group, wherein the total number of carbon atoms of R1 and R2 is 8 or less); 6 H 10 O), R 1 -OR 2 (R 1 And R 2 : An aliphatic hydrocarbon group, R 1 And R 2 An ether represented by the formula: 2-methoxyethanol (CH 3 OCH 2 CH 2 OH), 2-ethoxyethanol (CH 3 CH 2 OCH 2 CH 2 OH), 2-butoxyethanol (CH 3 CH 2 CH 2 CH 2 OCH 2 CH 2 OH) 2- (2-ethoxy) ethoxyethanol (CH 3 CH 2 OCH 2 CH 2 OCH 2 CH 2 OH), CH 3 12. The aluminum for an electrolytic capacitor electrode according to the above item 11, which is one or a mixture of two or more selected from an acetate ester represented by COOR (R: an aliphatic hydrocarbon group having 1 to 5 carbon atoms) and toluene xylene. The method of manufacturing the material.
(13) The method for producing an aluminum material for an electrode of an electrolytic capacitor according to any one of (2) to (10) above, wherein the cleaning liquid used for cleaning is obtained by adding a surfactant to water.
(14) The surfactant is R-OSO 3 Anionic surfactant (sulfate ester) represented by Na (R = saturated hydrocarbon group having 8 to 18 carbon atoms or unsaturated hydrocarbon group having one double bond), R-SO 3 Na (R = a saturated hydrocarbon group having 8 to 18 carbon atoms or an unsaturated hydrocarbon group having one double bond) or R-SO 3 An anionic surfactant (sulfonate) represented by Na (R: an alkyl group wherein the alkyl group is a saturated hydrocarbon group having 8 to 14 carbon atoms or an unsaturated hydrocarbon group having one double bond); RN + (CH 3 ) 3 ・ Cl (R = saturated hydrocarbon group having 8 to 16 carbon atoms), a cationic surfactant (quaternary ammonium salt), R—O — (— CH 2 CH 2 O) n H (R = a saturated hydrocarbon group having 8 to 16 carbon atoms or an unsaturated hydrocarbon group having one double bond, n = 6 to 14) or R—O — (— CH 2 CH 2 O) n H (R = alkylphenyl group wherein the alkyl group is a saturated hydrocarbon group having 8 to 12 carbon atoms or an unsaturated hydrocarbon group having one double bond, n = 6 to 14) A mixture of one or more anionic surfactants selected from ionic surfactants, a mixture of a plurality of cationic surfactants, a mixture of a plurality of nonionic surfactants, one or more anionic surfactants, 14. The method for producing an aluminum material for an electrolytic capacitor electrode according to the above item 13, wherein the mixture is a mixture of one or more nonionic surfactants, a mixture of one or more cationic surfactants and one or more nonionic surfactants.
(15) The method for producing an aluminum material for an electrolytic capacitor electrode according to the above (3) or (4), wherein the drying temperature after the washing is 200 ° C. or lower.
(16) The method for producing an aluminum material for an electrolytic capacitor electrode according to the above (15), wherein the drying temperature after the washing is 90 ° C. or less.
(17) The method for producing an aluminum material for an electrolytic capacitor electrode according to any one of the above (1) to (16), which has an aluminum purity of 99.9% or more.
(18) An aluminum anode material for an electrolytic capacitor manufactured by the manufacturing method according to any one of the above items 1 to 17.
(19) The aluminum anode material for electrolytic capacitors according to the above item 18, which is for medium pressure or high pressure.
(20) A method for producing an electrode material for an electrolytic capacitor, characterized in that the aluminum material produced by the production method according to any one of (1) to (17) is annealed and then etched.
(21) The method for producing an electrode material for an electrolytic capacitor according to the above item 20, wherein the etching is a DC etching.
(21) An aluminum electrolytic capacitor, wherein an aluminum electrode material manufactured by the manufacturing method described in the above item 20 or 21 is used as the electrode material.
[0016]
As described above, the present invention is characterized in that after hot rolling and cold rolling are sequentially performed on an aluminum slab to form an aluminum material, the aluminum material is heated by contact with a heating body, and then annealed. I do.
[0017]
That is, in a step after the cold rolling, the aluminum material is heated by contact with a heating body, and a substance that can become an etch pit nucleus is precipitated on the aluminum material surface by subsequent annealing. The contact heating is used as the heating method because the surface of the aluminum material can reach the target temperature uniformly and in a short time by the surface of the heating element, so that the control is relatively easy, and the heating can be performed quickly and in a short time. This is because the influence of the atmosphere can be reduced.
[0018]
In the production of aluminum materials for electrolytic capacitors, final annealing is conventionally performed in an inert atmosphere or in a vacuum in a temperature range of 450 to 600 ° C. in order to develop a crystal orientation of the (100) plane. A substance that can serve as a nucleus of an etch pit such as an oxide is not sufficiently generated. Therefore, by performing rapid heating by contact heating before final annealing, the generation of a substance that can be a nucleus of etch pits such as crystalline oxide fine particles during final annealing is promoted.
[0019]
Here, the substance which can be a core of the etch pit includes not only a crystalline oxide but also an amorphous substance having a high density or a thick substance, and an amorphous substance containing a crystalline oxide or metallic aluminum. It is. Further, as the kind of the crystalline oxide, γ-Al 2 O 3 And other Al 2 O 3 And a composite oxide with a metal other than aluminum, such as boehmite and AlOOH, and aluminum (eg, Mg, Pb, Cu, etc.), but is not particularly limited to a metal oxide or a metal hydroxide.
[0020]
If such an oxide film on the surface of the aluminum material has a characteristic different from that of other places, it may be considered as a nucleus of an etch pit at the time of etching. It is presumed that a crystal or a non-crystalline amorphous state before the transition to the crystal is generated, and a substance containing the crystal or the metal aluminum in the amorphous is generated, and these become the etch pit nuclei.
[0021]
As described above, contact heating with a heating element is used as a rapid heating method because, as described above, the aluminum material surface can reach the target temperature in a very short time and is excellent in productivity. This is because if the temperature of the surface of the heating element in contact with the surface of the aluminum material is uniform and the temperature of the surface of the heating member is uniform, it is possible to form a uniform oxide film in the width and length directions of the aluminum coil.
[0022]
Hereinafter, a method for producing an aluminum material for an electrolytic capacitor will be described.
[0023]
The purity of the aluminum material is not particularly limited as long as it is in a range used for an electrolytic capacitor, but the purity is preferably 99.9% or more, particularly preferably 99.95% or more. In the present invention, the purity of the aluminum material is a value obtained by subtracting the total concentration (%) of Fe, Si, Cu, Mn, Cr, Zn, Ti and Ga from 100%.
[0024]
The production of the aluminum material is not limited, but is carried out in the order of adjustment of the melting component of the aluminum material, slab casting, soaking, hot rolling, cold rolling, finishing cold rolling (low-reduction rolling), and contact heating. The (100) area ratio of the aluminum material is preferably 90% or more, and the manufacturing process conditions of the aluminum material are appropriately changed depending on the etching conditions of the aluminum material. In the middle of the rolling process, annealing (referred to as intermediate annealing) may be performed in order to eliminate the distortion of the crystal structure of the aluminum material caused by the rolling in the preceding process. Cleaning may be performed in a step before the intermediate annealing in order to remove impurities and oil on the aluminum surface.
[0025]
The cleaning liquid used in the step before the intermediate annealing is not particularly limited, but an aqueous alkali solution, an aqueous acid solution, an organic solvent, or the like is used.
[0026]
Since the aluminum material after the rolling step has an oily component on its surface, it is preferable to wash the aluminum material before final annealing and at least before or after contact heating as described below, if necessary. By performing such cleaning, the effect of contact heating is more exerted, and a large capacitance can be obtained.
[0027]
After the completion of rolling, contact heating is performed without performing washing, and when large wear powder or the like is attached to the surface of the aluminum material, it is preferable to remove the aluminum powder by washing.
[0028]
As the cleaning liquid used for cleaning before or after the contact heating, for the purpose of degreasing, a cleaning liquid obtained by adding a surfactant to an organic solvent or water can be used.
[0029]
As the organic solvent, a substance that does not dissolve aluminum can be used.Examples include alcohols, diols, aromatic hydrocarbons such as toluene and xylene, alkane hydrocarbons, cyclohexane, ketones, ethers, esters, and petroleum products. Although it is mentioned, it is not particularly limited.
[0030]
Examples of the alcohol include methanol (CH 3 OH), ethanol (C 2 H 5 OH), 1-propanol (CH 3 CH 2 CH 2 OH), 2-propanol (CH 3 CH2 (OH) CH 3 ), 1-butanol (CH 3 CH 2 CH 2 CH 2 OH), 2-butanol (CH 3 CH 2 CH 2 (OH) CH 3 ), 1-pentanol (CH 3 CH 2 CH 2 CH 2 CH 2 OH), 2-pentanol (CH 3 CH 2 CH 2 CH 2 (OH) CH 3 ) And the like; n H 2n + 1 Those represented by OH (n is a natural number of 1 to 10) are preferred. Also, fat-dried hydrocarbons such as cyclohexanol can be used.
[0031]
Examples of the above diol include 1,2-ethanediol (HOCH 2 CH 2 OH), 1,2-propanediol (CH 3 CH (OH) CH 2 OH), 1,3-propanediol (HOCH) 2 CH 2 CH 2 OH) and the like.
[0032]
Examples of the alkane hydrocarbon include pentane (C 5 H 12 ), Hexane (C 6 H 14 ), Heptane (C 7 H 16 ), Octane (C 8 H 18 ), Nonane (C 9 H 20 ), Decane (C 10 H 22 ) Etc. and C n H 2n + 2 (N = natural number of 5 to 15) is preferable. It is also possible to use a fat-based hydrocarbon such as cyclohexane.
[0033]
Acetone (CH 3 COCH 3 ), 2-butanone (CH 3 COC 2 H 5 ), 3-pentanone (CH 3 CH 2 COCH 2 CH 3 ), 3-methyl-2-butanone (CH 3 COCH (CH 3 ) 2 ) Can be exemplified. 1 COR 2 (R 1 And R 2 : An aliphatic hydrocarbon group, wherein the total number of carbon atoms of R1 and R2 is 8 or less). In addition, cyclohexanone (C 6 H 10 O) You may use cyclic ketones, such as.
[0034]
Examples of the above ethers include R 1 -OR 2 (R 1 And R 2 : An aliphatic hydrocarbon group, R 1 And R 2 A total of 8 or less), 2-methoxyethanol (CH 3 OCH 2 CH 2 OH), 2-ethoxyethanol (CH 3 CH 2 OCH 2 CH 2 OH), 2-butoxyethanol (CH 3 CH 2 CH 2 CH 2 OCH 2 CH 2 OH) 2- (2-ethoxy) ethoxyethanol (CH 3 CH 2 OCH 2 CH 2 OCH 2 CH 2 OH), etc. are also included.
[0035]
Examples of the above ester include CH 3 An acetate ester represented by COOR (R: an aliphatic hydrocarbon group having 1 to 5 carbon atoms) can be exemplified.
[0036]
Examples of the petroleum products include industrial gasoline (JIS K 2201), automobile gasoline (JIS K 2202), aviation gasoline (JIS K 2206), kerosene (JIS K 2203), light oil (JIS K 2204), and aviation gasoline (JIS K 2204). 2206), petroleum ether (JIS K 8593), petroleum benzine (JIS K 8594), ligroin (JIS K 8937), kerosene and the like.
[0037]
As the organic solvent, a plurality of organic solvents may be mixed and used, and in the case of an organic solvent that can be mixed with water, the organic solvent may be mixed with water as necessary.
[0038]
On the other hand, as the surfactant contained in the cleaning liquid obtained by adding a surfactant to water used for the above-mentioned cleaning, an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be used.
[0039]
Sulfate and sulfonate can be used as the anionic surfactant.
[0040]
Examples of the sulfate ester salt include R-OSO 3 Na (R = a saturated hydrocarbon group having 8 to 18 carbon atoms or an unsaturated hydrocarbon group having one double bond) can be used. Specifically, sodium dodecyl sulfate (C 12 H 25 OSO 3 Na), sodium hexadecyl sulfate (C 16 H 33 OSO 3 Na), sodium stearyl sulfate (C 18 H 37 OSO 3 Na), sodium oleyl sulfate (C 18 H 35 OSO 3 Na) and the like.
[0041]
The sulfonate is R-SO 3 Na (R = a saturated hydrocarbon group having 8 to 18 carbon atoms or an unsaturated hydrocarbon group having one double bond) or sodium dodecylbenzenesulfonate (C 12 H 25 -C 6 H 4 -SO 3 R-SO such as Na) 3 Na (R: an alkyl benzyl group in which the alkyl group is a saturated hydrocarbon group having 8 to 14 carbon atoms or an unsaturated hydrocarbon group having one double bond) can be used.
[0042]
As the cationic surfactant, RN + (CH 3 ) 3 ・ Cl A quaternary ammonium salt represented by (R = saturated hydrocarbon group having 8 to 16 carbon atoms) can be used.
[0043]
Non-ionic surfactants include RO-(-CH 2 CH 2 O) n H (R = a saturated hydrocarbon group having 8 to 16 carbon atoms or an unsaturated hydrocarbon group having one double bond, n = 6 to 14) or R—O — (— CH 2 CH 2 O) n H (R = alkylphenyl group wherein the alkyl group is a saturated hydrocarbon group having 8 to 12 carbon atoms or an unsaturated hydrocarbon group having one double bond, n = 6 to 14) An ionic surfactant can be exemplified. A compound in which n is larger than the above range may be contained in the nonionic surfactant in a molar ratio of 50% or less.
[0044]
Further, at least one of the above surfactants can be added to water and used as a cleaning liquid. A surfactant in which the number of carbon atoms of the surfactant is smaller than the above range may be added in a molar ratio of 50% or less. In addition, when an anionic surfactant and a cationic surfactant are mixed in water, a precipitate is formed. Therefore, it is preferable to avoid mixing.
[0045]
The concentration of the surfactant to be added is not particularly limited, but is preferably equal to or higher than the critical micelle concentration in order to exert a cleaning effect.
[0046]
In the above-mentioned washing step, the method of contacting the aluminum material with the organic solvent or the aqueous surfactant solution used as the washing liquid is not particularly limited, and examples include immersion, contact of the aluminum material with the surface of the washing liquid, and spraying.
[0047]
Further, for the purpose of further removing oil and abrasion powder on the surface of the aluminum material, the aluminum material may be brought into contact with a brush or a sponge during the contact between the cleaning liquid and the aluminum material, and further rubbed.
[0048]
In the cleaning step, the contact time between the cleaning liquid and the aluminum material is not particularly limited, but is preferably 0.5 seconds or more and 10 minutes or less. If the contact time between the cleaning liquid and the aluminum material is less than 0.5 seconds, the cleaning is insufficient, and even if the cleaning liquid is contacted for more than 10 minutes, the cleaning effect reaches saturation. The temperature of the cleaning solution is preferably 5 to 60 ° C. for an organic solvent, and 5 to 80 ° C. for a cleaning solution obtained by adding a surfactant to water. When the temperature of the cleaning liquid is lower than the lower limit, the cleaning power is insufficient, and the cleaning power reaches saturation even when the temperature is higher than the upper limit.
[0049]
After washing the aluminum material, it may be dried if necessary. As a drying method, for example, heating in air, heating in an inert atmosphere, and vacuum heating can be used. When drying in the air, the ambient temperature is preferably 200 ° C. or less, and the drying time is preferably 10 minutes or less. If the drying temperature is higher than 200 ° C. or the heating time is longer than 10 minutes, the oxide film may grow too much and the etching characteristics may be deteriorated.
[0050]
The aluminum material after the completion of the rolling or the aluminum material further cleaned after the completion of the rolling is contact-heated in order to generate a large number of etch pit nuclei by subsequent annealing. The heating means may be a heating roll, a heating belt, a heating plate or any other means capable of contact heating, but a heating roll is desirable in that simple and continuous contact heating can be performed.
In addition, heating may be performed on one surface at a time, or only one of the front and back surfaces may be heated. The material of the heating surface of the heating element can be freely selected from stainless steel, plating, ceramics, Teflon resin (registered trademark), silicone resin, and the like, but a substance that does not cause the surface oxide film of the aluminum material to adhere to the surface of the heating element is preferable. .
[0051]
The surface temperature of the heating element brought into contact with the aluminum material is preferably from 80 to 400C. If the surface temperature of the heating body is less than 80 ° C., the heating becomes insufficient, and there is a possibility that the generation of a substance that can be a nucleus of an etch pit, such as crystalline oxide fine particles, during annealing performed after the contact heating becomes insufficient. On the other hand, when the temperature is higher than 400 ° C., the oxide film becomes too thick, and wrinkles occur during cooling, which may cause operational problems. A particularly preferred heating element surface temperature is 100 to 350 ° C. A more preferred heating element surface temperature is 160 to 290 ° C.
[0052]
The contact time between the surface of the aluminum material and the surface of the heating element is preferably 0.001 to 30 seconds. If the contact time is less than 0.001 second, the surface of the aluminum material cannot be sufficiently heated, and there is a possibility that the generation of a substance that may become an etch pit nucleus may become insufficient. On the other hand, if the time is longer than 30 seconds, the oxide film may be too thick, and it may be difficult to generate etch pits. Particularly preferred contact times are from 0.01 to 10 seconds. A more preferred contact time is 0.1 to 7 seconds.
[0053]
The surface temperature and the contact time of the heating element may be appropriately selected in consideration of the characteristics of the oxide film on the surface of the aluminum material before the contact. The contact heating atmosphere is not particularly limited, and the heating can be performed in the air without any special atmosphere control.
[0054]
As an example of a heating device using a heat roll as a heating element, a device in which at least two heat rolls are arranged in order to contact-heat the front and back surfaces of an aluminum material at a target temperature is exemplified. If wrinkles occur during winding of the aluminum material after the aluminum material has been contact-heated with a hot roll or the like, the aluminum material is heated by a hot roll or the like, and then passed through a cooling body such as one or more cooling rolls to remove the aluminum material. It is good also as a structure wound up after cooling. In particular, by using a cooling roll as a cooling body, cooling can be performed easily and continuously. Also, before heating the aluminum material to the desired contact heating temperature with a heat roll or the like, the temperature of the aluminum material may be preliminarily raised to a temperature lower than the desired contact heating temperature using another heat roll. Good.
[0055]
After the contact heating, if necessary, after the above-described cleaning, the generation of a substance that can be a nucleus of an etch pit is promoted, and the crystal structure of the aluminum material is oriented in the (100) direction to improve etching characteristics. The final annealing is performed for the main purpose.
[0056]
It is needless to say that after the final rolling and before the final annealing, other steps other than the above-described steps, for example, a slit step for dividing the aluminum material coil may be performed.
[0057]
In the final annealing, the thickness of the oxide film formed on the aluminum material in the contact heating step, which is the previous step, is excessively increased in the final annealing step, so that the possibility of becoming an etching nucleus is not erased. The total thickness of the oxide film is determined by the Hunter Hall method (MS Hunter and P. Fowle, J. Electrochem. Soc., 101 [9], 483 (1954)), it is preferable to carry out the final annealing so as to have a thickness of 2.5 to 5.0 nm. The (100) area ratio of the aluminum material after the final annealing is preferably 90% or more.
[0058]
The treatment atmosphere in the final annealing is not particularly limited, but it is preferable to heat in an atmosphere with a small amount of moisture and oxygen so that the thickness of the oxide film is not excessively increased. Specifically, it is preferable to heat in an inert gas such as argon or nitrogen or in a vacuum of 0.1 Pa or less.
[0059]
The method of final annealing is not particularly limited, and may be batch-annealed in a state of being wound on a coil, may be wound on a coil after rewinding and continuously annealing the coil, and at least batch annealing and continuous annealing may be performed. Either one may be performed multiple times.
[0060]
Although the temperature and time during the final annealing are not particularly limited, for example, when performing batch annealing in the state of a coil, it is preferable to perform annealing at an aluminum body temperature of 460 to 600 ° C for 10 minutes to 50 hours. If the aluminum substance temperature is less than 460 ° C. and the time is less than 10 minutes, the generation of a substance that can become a nucleus of an etch pit in the oxide film is not sufficient, and the dispersion state becomes too sparse to perform etching with the crystal as an etching nucleus. This is because there is a possibility that the widening effect at the time cannot be expected, and the development of the crystal orientation of the (100) plane may be insufficient. Conversely, if annealing is performed at a temperature exceeding 600 ° C., when batch annealing is performed with a coil, the aluminum material is likely to adhere to each other. Even when annealing is performed for more than 50 hours, the effect of area expansion by etching is saturated, and the heat energy cost is reduced. Causes an increase. A particularly preferred temperature is 500 to 580 ° C. at a substantial aluminum temperature, and the time is 20 minutes to 40 hours.
[0061]
Further, the heating rate / pattern of the final annealing is not particularly limited, and the temperature may be raised at a constant rate, or the temperature may be raised and cooled while repeating the temperature raising and the temperature holding. The annealing may be performed in a temperature range of 460 to 600 ° C. for a total of 10 minutes to 50 hours. The thickness of the aluminum material for an electrolytic capacitor electrode obtained after the final annealing is not particularly limited.
[0062]
The aluminum material that has been subjected to the final annealing is subjected to an etching process to improve the area expansion ratio. The etching conditions are not particularly limited, but preferably a direct current etching method is used. By the DC etching method, a deep and thick etching is performed in a portion serving as a nucleus of the etch pit whose generation is promoted in the final annealing, a large number of tunnel-like pits are generated, and a high capacitance is realized.
[0063]
After the etching treatment, it is preferable to perform a chemical conversion treatment to obtain an anode material, and it is particularly preferable to use it as an electrode material for medium and high pressure electrolytic capacitors. Of course, this does not preclude the use as a cathode material.
[0064]
By using the anode material and / or the cathode material as described above as an electrode material, an aluminum electrolytic capacitor is formed. This electrolytic capacitor has a large capacitance because the surface area of the electrode material is increased.
[0065]
The capacitance may be measured in accordance with a conventional method with respect to the etched foil subjected to the chemical conversion treatment, for example, by measuring in 80 g / L ammonium borate at 30 ° C. at 120 Hz using a platinum plate as a counter electrode.
[0066]
The capacitor of the present invention is not limited to the embodiment.
[0067]
【Example】
Hereinafter, examples and comparative examples of the present invention will be described.
[Examples 1 to 12 and Comparative Examples 1 to 3]
(Example 1)
An aluminum material having a purity of 99.99% and rolled to a thickness of 110 μm was prepared. The obtained aluminum material was immersed in an alkane-based hydrocarbon for 2 seconds, dried in air at 90 ° C. for 1 minute, and then sandwiched between two stainless steel heating plates having a surface temperature of 200 ° C. Contact heating was performed in air for 2 seconds. In a state where the aluminum materials after the contact heating were stacked, the actual temperature of the aluminum material was increased from room temperature to 540 ° C. at a rate of 50 ° C./h under an argon atmosphere, and then maintained at 540 ° C. for 24 hours, and then cooled. Thereafter, the furnace was taken out of the furnace to obtain a high-purity aluminum material for an electrolytic capacitor.
(Example 2)
As in Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 μm was produced. The obtained aluminum material was immersed in an alkane hydrocarbon for 2 seconds, dried at 90 ° C. for 1 minute in air, and then sandwiched between two stainless steel heating plates having a surface temperature of 250 ° C. Contact heating was performed in air for 2 seconds. In a state where the aluminum materials after the contact heating were stacked, the actual temperature of the aluminum material was increased from room temperature to 540 ° C. at a rate of 50 ° C./h under an argon atmosphere, and then maintained at 540 ° C. for 24 hours, and then cooled. Thereafter, the furnace was taken out of the furnace to obtain a high-purity aluminum material for an electrolytic capacitor.
(Example 3)
As in Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 μm was produced. The obtained aluminum material was immersed in an alkane-based hydrocarbon for 2 seconds, dried in air at 90 ° C. for 1 minute, and then sandwiched between two stainless steel heating plates having a surface temperature of 200 ° C. Contact heating was performed in air for 2 seconds. In a state where the aluminum materials after the contact heating were stacked, the actual temperature of the aluminum material was raised from room temperature to 560 ° C. at a rate of 50 ° C./h under an argon atmosphere, and then maintained at 560 ° C. for 24 hours, and then cooled. Thereafter, the furnace was taken out of the furnace to obtain a high-purity aluminum material for an electrolytic capacitor.
(Example 4)
As in Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 μm was produced. The obtained aluminum material was immersed in an alkane-based hydrocarbon for 2 seconds, dried in air at 90 ° C. for 1 minute, and then sandwiched between two stainless steel heating plates having a surface temperature of 200 ° C. Contact heating was performed in air for 1 second. In a state where the aluminum materials after the contact heating were stacked, the actual temperature of the aluminum material was increased from room temperature to 540 ° C. at a rate of 50 ° C./h under an argon atmosphere, and then maintained at 540 ° C. for 24 hours, and then cooled. Thereafter, the furnace was taken out of the furnace to obtain a high-purity aluminum material for an electrolytic capacitor.
(Example 5)
As in Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 μm was produced. The obtained aluminum material was immersed in an alkane-based hydrocarbon for 2 seconds and dried at 90 ° C. for 1 minute in the air. Next, two hot rolls (hard chrome plated on the surface) set at a surface temperature of 200 ° C. are prepared, and the surface of the aluminum material is brought into contact with the first hot roll for 1 second, and then the second hot roll is formed. The contact heating was performed by bringing the aluminum material back surface into contact with the heat roll for 1 second. In a state where the aluminum materials after the contact heating are stacked, the actual temperature of the aluminum material is increased from room temperature to 540 ° C. at a rate of 50 ° C./h under an argon atmosphere, and then maintained at 540 ° C. for 24 hours, and then cooled. The furnace was taken out to obtain a high-purity aluminum material for an electrolytic capacitor.
(Example 6)
As in Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 μm was produced. The obtained aluminum material was immersed in an alkane-based hydrocarbon for 2 seconds and dried at 90 ° C. for 1 minute in the air. Next, an aluminum material was sandwiched between two stainless steel heating plates having a surface temperature of 90 ° C., and contact heating was performed in air for 1 second. In a state where the aluminum materials after the contact heating were stacked, the actual temperature of the aluminum material was increased from room temperature to 540 ° C. at a rate of 50 ° C./h under an argon atmosphere, and then maintained at 540 ° C. for 24 hours, and then cooled. Thereafter, the furnace was taken out of the furnace to obtain a high-purity aluminum material for an electrolytic capacitor.
(Example 7)
As in Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 μm was produced. The obtained aluminum material was immersed in an alkane-based hydrocarbon for 2 seconds and dried at 90 ° C. for 1 minute in the air. Next, two hot rolls (hard chrome plated on the surface) set at a surface temperature of 380 ° C. were prepared, and the surface of the aluminum material was brought into contact with the first hot roll for 0.1 second. Contact heating was performed by contact heating the back surface of the aluminum material to the second heat roll for 0.1 second. In a state where the aluminum materials after the contact heating were stacked, the actual temperature of the aluminum material was increased from room temperature to 540 ° C. at a rate of 50 ° C./h under an argon atmosphere, and then maintained at 540 ° C. for 24 hours, and then cooled. Thereafter, the furnace was taken out of the furnace to obtain a high-purity aluminum material for an electrolytic capacitor.
(Example 8)
As in Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 μm was produced. The obtained aluminum material was immersed in an alkane-based hydrocarbon for 2 seconds and dried at 90 ° C. for 1 minute in the air. Next, two hot rolls (hard chrome plated on the surface) set at a surface temperature of 250 ° C. were prepared, and the surface of the aluminum material was brought into contact with the first hot roll for 0.005 seconds. Contact heating was performed by bringing the back surface of the aluminum material into contact with the second heat roll for 0.005 seconds. In a state where the aluminum materials after the contact heating were stacked, the actual temperature of the aluminum material was increased from room temperature to 540 ° C. at a rate of 50 ° C./h under an argon atmosphere, and then maintained at 540 ° C. for 24 hours, and then cooled. Thereafter, the furnace was taken out of the furnace to obtain a high-purity aluminum material for an electrolytic capacitor.
(Example 9)
As in Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 μm was produced. The obtained aluminum material was immersed in an alkane hydrocarbon for 2 seconds, dried at 90 ° C. for 1 minute in air, and then sandwiched between two stainless steel heating plates having a surface temperature of 150 ° C. Contact heating was performed in air for 30 seconds. In a state where the aluminum materials after the contact heating were stacked, the actual temperature of the aluminum material was increased from room temperature to 540 ° C. at a rate of 50 ° C./h under an argon atmosphere, and then maintained at 540 ° C. for 24 hours, and then cooled. Thereafter, the furnace was taken out of the furnace to obtain a high-purity aluminum material for an electrolytic capacitor.
(Example 10)
As in Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 μm was produced. The obtained aluminum material was immersed in an alkane-based hydrocarbon for 2 seconds, dried in air at 90 ° C. for 1 minute, and then sandwiched between two stainless steel heating plates having a surface temperature of 200 ° C. Contact heating was performed in air for 2 seconds. In a state where the aluminum materials after the contact heating were stacked, the actual temperature of the aluminum material was raised from room temperature to 480 ° C. at a rate of 50 ° C./h under an argon atmosphere, and then the temperature was maintained at 480 ° C. for 24 hours, and then cooled. Thereafter, the furnace was taken out of the furnace to obtain a high-purity aluminum material for an electrolytic capacitor.
(Example 11)
As in Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 μm was produced. The obtained aluminum material was immersed in an alkane-based hydrocarbon for 2 seconds, dried in air at 90 ° C. for 1 minute, and then sandwiched between two stainless steel heating plates having a surface temperature of 200 ° C. Contact heating was performed in air for 2 seconds. In the state where the aluminum materials after the contact heating are stacked, the actual temperature of the aluminum material is increased from room temperature to 580 ° C. at a rate of 50 ° C./h under an argon atmosphere, and then maintained at 580 ° C. for 24 hours, and then cooled. After that, it was taken out of the furnace to obtain a high-purity aluminum material for an electrolytic capacitor.
(Example 12)
After the contact heating, a high-purity aluminum material for an electrolytic capacitor was obtained in the same manner as in Example 1, except that a process of sandwiching and cooling the aluminum material between stainless steel plates having a surface temperature of 10 ° C. for 10 seconds was included.
(Comparative Example 1)
As in Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 μm was produced. The obtained aluminum material was immersed in an alkane-based hydrocarbon for 2 seconds, dried at 90 ° C. for 1 minute in the air, and then, in an overlapped state, the actual temperature of the aluminum material was changed from room temperature to 540 ° C. under an argon atmosphere. After the temperature was raised at a rate of ° C./h, the temperature was maintained at 540 ° C. for 24 hours, then cooled and then taken out of the furnace to obtain a high-purity aluminum material for an electrolytic capacitor.
(Comparative Example 2)
As in Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 μm was produced. The obtained aluminum material was immersed in an alkane-based hydrocarbon for 2 seconds, dried at 90 ° C. for 1 minute in the air, and then, in an overlapped state, the actual temperature of the aluminum material was changed from room temperature to 480 ° C. under an argon atmosphere. After the temperature was raised at a rate of ° C./h, the temperature was kept at 480 ° C. for 24 hours, and then cooled, and then the furnace was taken out to obtain a high-purity aluminum material for electrolytic capacitors.
(Comparative Example 3)
As in Example 1, an aluminum material having a purity of 99.99% and rolled to a thickness of 110 μm was produced. The obtained aluminum material was immersed in an alkane-based hydrocarbon for 2 seconds, dried at 90 ° C. for 1 minute in the air, and then, in an overlapping state, the actual temperature of the aluminum material was changed from room temperature to 580 ° C. in an argon atmosphere. After the temperature was raised at a rate of ° C./h, the temperature was maintained at 580 ° C. for 24 hours, then cooled and then taken out of the furnace to obtain a high-purity aluminum material for an electrolytic capacitor.
After immersing the aluminum materials obtained in the above Examples and Comparative Examples in an acid, electrolytic etching with an aqueous hydrochloric acid-sulfuric acid solution, and then further immersing in an acid solution to increase the pit diameter to obtain an etched foil. The obtained etched foil was subjected to a chemical conversion treatment at a chemical conversion voltage of 270 V in accordance with the EIAJ standard to obtain a capacitance measurement sample.
[0068]
Table 1 shows the contact heating conditions, the actual temperature of the aluminum material at the time of annealing, and the capacitance evaluation of the examples and the comparative examples. The capacitance evaluation shows a value when Comparative Example 1 is set to 100.
[0069]
[Table 1]
Figure 2004088069
[0070]
As can be seen from Table 1 above, in the examples, by performing contact heating using a heating plate or a heating roll before annealing, the improvement in capacitance was observed as compared with Comparative Examples 1 to 3 in which contact heating was not performed. Can be
[Examples 13 to 130 and Comparative Example 4]
A cleaning solution was prepared by adding a surfactant to an organic solvent shown in Tables 2 and 3 and water shown in Table 4.
[0071]
[Table 2]
Figure 2004088069
[0072]
[Table 3]
Figure 2004088069
[0073]
[Table 4]
Figure 2004088069
[0074]
(Example 13)
The aluminum material having a purity of 99.99% rolled to a thickness of 110 μm was immersed in the solution A1 in Table 2 for 2 seconds, and then dried in air at 90 ° C. for 60 seconds. Next, the aluminum material was sandwiched between two stainless steel heating plates having a surface temperature of 200 ° C., and contact heating was performed for 2 seconds.
[0075]
Next, the body temperature of the aluminum material is raised from room temperature to 540 ° C. at a rate of 50 ° C./h in an argon atmosphere with the aluminum materials after the contact heating being piled up, and then held at 540 ° C. for 24 hours, and then cooled. Then, it was taken out of the furnace to obtain an aluminum material for an electrolytic capacitor electrode.
(Examples 14 to 88)
After washing and drying the aluminum material having a purity of 99.99% rolled to the same thickness as in Example 13 and having a thickness of 110 μm under the conditions of the steps shown in Tables 5 to 8, the aluminum material was heated with stainless steel having a surface temperature of 200 ° C. Contact heating was performed for 2 seconds between two plates. In Examples 53 to 82, while the aluminum material was immersed in the cleaning liquid, the brush was brought into contact with the surface of the aluminum material and slid.
[0076]
The temperature of the aluminum material is raised from room temperature to 540 ° C. at a rate of 50 ° C./h under an argon atmosphere in a state where the aluminum materials after the contact heating are stacked, and then the temperature is maintained at 540 ° C. for 24 hours, and then cooled. The furnace was taken out to obtain an aluminum material for an electrolytic capacitor electrode.
(Examples 89 to 96)
An aluminum material having a purity of 99.99% and rolled to the same thickness as in Example 13 and having a thickness of 110 μm was sandwiched between two stainless steel heating plates at 200 ° C. and subjected to contact heating for 2 seconds.
[0077]
Next, it was washed and dried under the conditions of step 3 in Table 8. While the aluminum material was immersed in the cleaning liquid, the brush was slid in contact with the surface of the aluminum material.
[0078]
After the washed and dried aluminum materials are stacked, the actual temperature of the aluminum materials is increased from room temperature to 540 ° C. at a rate of 50 ° C./h under an argon atmosphere, and then maintained at 540 ° C. for 24 hours, and then cooled. After the furnace was removed, an aluminum material for an electrolytic capacitor electrode was obtained.
(Examples 97 to 102)
After washing and drying the aluminum material having a purity of 99.99% rolled to the same thickness as in Example 13 and having a thickness of 110 μm under the conditions of Step 1 in Table 8, the aluminum material was heated with a stainless steel heating plate having a surface temperature of 200 ° C. Contact heating was performed for 2 seconds while sandwiching between two sheets. Next, the aluminum material after the contact heating was washed and dried under the conditions of step 3 in Table 8.
[0079]
In a state where the aluminum materials washed and dried under the condition of step 3 are stacked, the actual temperature of the aluminum material is increased from room temperature to 540 ° C. at 50 ° C./h under an argon atmosphere, and then maintained at 540 ° C. for 24 hours. Then, after cooling, the furnace was taken out to obtain an aluminum material for an electrolytic capacitor electrode.
(Examples 103 to 107)
After washing and drying the aluminum material having a purity of 99.99% rolled to the same thickness as in Example 13 and having a thickness of 110 μm under the conditions of the steps shown in Table 8, the aluminum material was heated to two stainless steel heating plates having a surface temperature of 200 ° C. , And contact heating was performed for 2 seconds.
[0080]
The temperature of the aluminum material is raised from room temperature to 540 ° C. at a rate of 50 ° C./h under an argon atmosphere in a state where the aluminum materials after the contact heating are stacked, and then the temperature is maintained at 540 ° C. for 24 hours, and then cooled. The furnace was taken out to obtain an aluminum material for an electrolytic capacitor electrode.
(Examples 108 to 111)
An aluminum material having a purity of 99.99% and rolled to the same thickness as in Example 13 and having a thickness of 110 μm was sandwiched between two stainless steel heating plates at 200 ° C. and subjected to contact heating for 2 seconds. Next, cleaning and drying were performed under the conditions of Step 3 in Tables 8 and 9. While the aluminum material was immersed in the cleaning liquid, the brush was slid in contact with the surface of the aluminum material.
[0081]
After the washed and dried aluminum materials are stacked, the actual temperature of the aluminum materials is increased from room temperature to 540 ° C. at a rate of 50 ° C./h under an argon atmosphere, and then maintained at 540 ° C. for 24 hours, and then cooled. After the furnace was removed, an aluminum material for an electrolytic capacitor electrode was obtained.
(Examples 112 to 128)
The aluminum material having a purity of 99.99% rolled to the same thickness of 110 μm as in Example 13 was subjected to washing and drying under the conditions of step 1 in Table 9 and contact heating under the conditions of step 2 of Table 9. .
[0082]
The temperature of the aluminum material is raised from room temperature to 540 ° C. at a rate of 50 ° C./h under an argon atmosphere in a state where the aluminum materials after the contact heating are overlapped, and then held at 540 ° C. for 24 hours, and then cooled. The furnace was taken out to obtain an aluminum material for an electrolytic capacitor electrode.
(Example 129)
An aluminum material having a purity of 99.99% and rolled to the same thickness as in Example 13 and having a thickness of 110 μm was sandwiched between two stainless steel heating plates at 200 ° C., and contact heating was performed for 2 seconds. The temperature of the aluminum material is raised from room temperature to 540 ° C. at a rate of 50 ° C./h under an argon atmosphere in a state where the aluminum materials after the contact heating are overlapped, and then held at 540 ° C. for 24 hours, and then cooled. The furnace was taken out to obtain an aluminum material for an electrolytic capacitor electrode.
(Example 130)
An aluminum material for an electrode of an electrolytic capacitor was obtained in the same manner as in Example 124 except that a step of contacting the aluminum material with a cooling roll having a surface temperature of 25 ° C. after contact heating with a hot roll was included.
(Comparative Example 4)
An aluminum material having a purity of 99.99%, which was rolled to the same thickness as in Example 13 and having a thickness of 110 μm, was heated from room temperature to 540 ° C. at a rate of 50 ° C./h under an argon atmosphere, and then heated to 540 ° C. For 24 hours, and then cooled and then taken out of the furnace to obtain an aluminum material for an electrolytic capacitor electrode.
The aluminum materials obtained in Examples 13 to 130 and Comparative Example 4 were combined with 1.0 mol · dm of HCl. -3 And H 2 SO 4 3.5mol · dm -3 Immersed in an aqueous solution having a liquid temperature of 75 ° C. containing a current density of 0.2 A / cm 2 Was subjected to electrolytic treatment. The foil after the electrolytic treatment was further immersed in a hydrochloric acid-sulfuric acid mixed aqueous solution of the above composition at 90 ° C. for 360 seconds to increase the pit diameter to obtain an etched foil. The obtained etched foil was used as a sample for capacitance measurement which was subjected to a chemical conversion treatment at a formation voltage of 270 V according to the EIAJ standard. The capacitance measured for each sample is shown in Tables 5 to 9 as relative values when Comparative Example 4 is set to 100.
[0083]
[Table 5]
Figure 2004088069
[0084]
[Table 6]
Figure 2004088069
[0085]
[Table 7]
Figure 2004088069
[0086]
[Table 8]
Figure 2004088069
[0087]
[Table 9]
Figure 2004088069
[0088]
According to the comparison between Example 129 in Table 9 and Comparative Example 4, the capacitance is improved by performing the contact heating before performing the final annealing. Further, a comparison between Examples 13 to 111 and Example 129 reveals that the capacitance is further improved by performing the cleaning before and / or after the contact heating.
[0089]
Further, according to Examples 103 to 111, when the drying temperature after washing is 200 ° C. or less, the capacitance is improved, and when the drying temperature is 90 ° C. or less, the capacitance is even higher.
[0090]
【The invention's effect】
According to the present invention, an electrolytic capacitor having excellent etching characteristics, in which a lot of substances that can become etch pit nuclei are deposited on a foil surface by heating and annealing an aluminum material by contact with a heating body after cold rolling, as described above. For manufacturing aluminum materials. In particular, since contact heating is used as the heating method, the surface of the aluminum material can reach the target temperature uniformly and in a short time, so that the temperature control is relatively easy, and the heating can be performed quickly and in a short time. The effect can be reduced. Therefore, by etching the aluminum material for an electrolytic capacitor, etching is effectively performed at a position where a substance that can be a nucleus of the etch pit is present, and as a result, the area coverage can be improved, and the capacitance can be increased. The electrode material of the present invention can be obtained as a result, and as a result, an aluminum electrolytic capacitor having a large capacitance can be obtained.
[0091]
Further, by washing the aluminum material at least before or after contact with the heating element, an effect of further increasing the capacitance can be obtained.

Claims (22)

アルミニウムスラブに熱間圧延及び冷間圧延を順次実施してアルミニウム材とした後、このアルミニウム材を加熱体との接触により加熱し、その後焼鈍する事を特徴とする電解コンデンサ電極用アルミニウム材の製造方法。Hot rolling and cold rolling are sequentially performed on an aluminum slab to form an aluminum material, and then the aluminum material is heated by contact with a heating element and then annealed, thereby producing an aluminum material for an electrolytic capacitor electrode. Method. さらに加熱体との接触前あるいは接触後の少なくともどちらかにおいて、アルミニウム材を洗浄する工程を含むことを特徴とする請求項1に記載の電解コンデンサ電極用アルミニウム材の製造方法。The method for producing an aluminum material for an electrolytic capacitor electrode according to claim 1, further comprising a step of washing the aluminum material before or after contact with the heating element. アルミニウムスラブに熱間圧延及び冷間圧延を順次実施してアルミニウム材とした後、このアルミニウム材を洗浄し、次いで乾燥しあるいは乾燥することなく、アルミニウム材を加熱体との接触により加熱し、その後焼鈍することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。After hot rolling and cold rolling are sequentially performed on the aluminum slab to form an aluminum material, the aluminum material is washed, and then dried or dried without being dried, the aluminum material is heated by contact with a heating body, and then A method for producing an aluminum material for an electrode of an electrolytic capacitor, characterized by annealing. アルミニウムスラブに熱間圧延及び冷間圧延を順次実施してアルミニウム材とした後、このアルミニウム材を加熱体との接触により加熱し、さらに洗浄し、次いで乾燥しあるいは乾燥することなく、その後焼鈍することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。After hot rolling and cold rolling are sequentially performed on an aluminum slab to form an aluminum material, the aluminum material is heated by contact with a heating body, further washed, and then dried or annealed without drying. A method for producing an aluminum material for an electrode of an electrolytic capacitor, comprising: 加熱体の表面温度が80〜400℃、アルミニウム材と加熱体との接触時間が0.001〜30秒である請求項1ないし請求項4のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。The production of an aluminum material for an electrolytic capacitor electrode according to any one of claims 1 to 4, wherein the surface temperature of the heating body is 80 to 400C, and the contact time between the aluminum material and the heating body is 0.001 to 30 seconds. Method. 焼鈍がアルミニウム実体温度460〜600℃にて不活性ガス雰囲気中で行われる請求項1ないし請求項4のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。The method for producing an aluminum material for an electrode of an electrolytic capacitor according to any one of claims 1 to 4, wherein the annealing is performed in an inert gas atmosphere at a substantial aluminum temperature of 460 to 600 ° C. アルミニウム実体温度が500〜580℃である請求項6に記載の電解コンデンサ電極用アルミニウム材の製造方法。The method for producing an aluminum material for an electrolytic capacitor electrode according to claim 6, wherein the actual aluminum temperature is 500 to 580C. 加熱体が熱ロールである請求項1ないし請求項4のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。The method for producing an aluminum material for an electrolytic capacitor electrode according to any one of claims 1 to 4, wherein the heating body is a heat roll. 加熱体との接触後、アルミニウム材を冷却する請求項1ないし請求項4のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。The method for producing an aluminum material for an electrolytic capacitor electrode according to any one of claims 1 to 4, wherein the aluminum material is cooled after contact with the heating element. アルミニウム材の冷却を冷却ロールとの接触により行う請求項9に記載の電解コンデンサ電極用アルミニウム材の製造方法。The method for producing an aluminum material for an electrolytic capacitor electrode according to claim 9, wherein the cooling of the aluminum material is performed by contact with a cooling roll. 洗浄に用いる洗浄液が有機溶剤である請求項2ないし請求項10のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。The method for producing an aluminum material for an electrolytic capacitor electrode according to any one of claims 2 to 10, wherein the cleaning liquid used for cleaning is an organic solvent. 有機溶剤がC2n+1OH(n=1〜10の自然数)で表されるアルコール、シクロヘキサノール(C110H)、1,2−エタンジオール(HOCHCHOH)、1,2−プロパンジオール(CHCH(OH)CHOH)、1,3−プロパンジオール(HOCHCHCHOH)、C2n+2(n=5〜15の自然数)で表されるアルカン系炭化水素、シクロヘキサン、RCOR(RおよびR:脂肪族炭化水素基であり、R1とR2の炭素数の合計が8以下)で表されるケトン、シクロヘシサノン(C10O)、R−O−R(RおよびR:脂肪族炭化水素基であり、RとRの炭素数の合計が8以下)で表されるエーテル、2−メトキシエタノール(CHOCHCHOH)、2−エトキシエタノール(CHCHOCHCHOH)、2−ブトキシエタノール(CHCHCHCHOCHCHOH) 2−(2−エトキシ)エトキシエタノール(CHCHOCHCHOCHCHOH)、CHCOOR(R:炭素数1〜5である脂肪族炭化水素基)で表される酢酸エステル、トルエンキシレンから選ばれた1種または2種以上の混合物である請求項11に記載の電解コンデンサ電極用アルミニウム材の製造方法。Alcohol organic solvent is represented by C n H 2n + 1 OH ( n = a natural number of 1 to 10), cyclohexanol (C 6 H 11 0H), 1,2- ethanediol (HOCH 2 CH 2 OH), 1,2 - propanediol (CH 3 CH (OH) CH 2 OH), 1,3- propanediol (HOCH 2 CH 2 CH 2 OH ), alkane series represented by C n H 2n + 2 (a natural number of n = 5 to 15) Hydrocarbon, cyclohexane, ketone represented by R 1 COR 2 (R 1 and R 2 are aliphatic hydrocarbon groups, and the total number of carbon atoms of R 1 and R 2 is 8 or less), cyclohesicanone (C 6 H 10 O) , R 1 -OR 2 (R 1 and R 2 are aliphatic hydrocarbon groups, and the total number of carbon atoms in R 1 and R 2 is 8 or less), 2-methoxyethanol (CH 3 OCH 2 CH 2 OH), 2- ethoxyethanol (CH 3 CH 2 OCH 2 CH 2 OH), 2- butoxyethanol (CH 3 CH 2 CH 2 CH 2 OCH 2 CH 2 OH) 2- (2- ethoxy) Selected from acetic acid esters represented by ethoxyethanol (CH 3 CH 2 OCH 2 CH 2 OCH 2 CH 2 OH), CH 3 COOR (R: aliphatic hydrocarbon group having 1 to 5 carbon atoms), and toluene xylene The method for producing an aluminum material for an electrolytic capacitor electrode according to claim 11, wherein the method is one or a mixture of two or more kinds. 洗浄に用いる洗浄液が水に界面活性剤を添加したものである請求項2ないし請求項10のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。The method for producing an aluminum material for an electrolytic capacitor electrode according to any one of claims 2 to 10, wherein the cleaning liquid used for cleaning is obtained by adding a surfactant to water. 界面活性剤が、R−OSONa(R=炭素数8〜18の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基)で表されるアニオン界面活性剤(硫酸エステル塩)、R−SONa(R=炭素数8〜18の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基)もしくはR−SONa(R:アルキル基が炭素数8〜14の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基であるアルキルベンジル基)で表されるアニオン界面活性剤(スルホン酸塩)、R−N(CH・Cl− (R=炭素数8〜16の飽和炭化水素基)で表されるカチオン界面活性剤(第4級アンモニウム塩)、R−O−(−CHCHO)H(R=炭素数8〜16の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基、n=6〜14)またはR−O−(−CHCHO)H(R=アルキル基が炭素数8〜12の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基であるアルキルフェニル基、n=6〜14)で表されるポリエチレングリコール型非イオン界面活性剤のうちから選ばれた1種または複数のアニオン界面活性剤の混合物、複数のカチオン界面活性剤の混合物、複数の非イオン界面活性剤の混合物、1種以上のアニオン界面活性剤と1種以上の非イオン界面活性剤の混合物、1種以上のカチオン界面活性剤と1種以上の非イオン界面活性剤の混合物である請求項13に記載の電解コンデンサ電極用アルミニウム材の製造方法。Surfactants, R-OSO 3 Na anionic surfactant represented by (R = unsaturated hydrocarbon group having one saturated hydrocarbon group or a double bond having 8 to 18 carbon atoms) (sulfate) , R-SO 3 Na (R = unsaturated hydrocarbon group having one saturated hydrocarbon group or a double bond having 8 to 18 carbon atoms) or R-SO 3 Na (R: alkyl group 8 to 14 carbon atoms Anionic surfactant (sulfonate) represented by a saturated hydrocarbon group or an alkylbenzyl group which is an unsaturated hydrocarbon group having one double bond, RN + (CH 3 ) 3 .Cl A cationic surfactant (quaternary ammonium salt) represented by (R = saturated hydrocarbon group having 8 to 16 carbon atoms), R—O — (— CH 2 CH 2 O) n H (R = 8 carbon atoms) One to 16 saturated hydrocarbon groups or double bonds Unsaturated hydrocarbon group, n = 6 to 14) or R—O — (— CH 2 CH 2 O) n H (R = alkyl group is a saturated hydrocarbon group having 8 to 12 carbon atoms or a double bond) A mixture of one or more anionic surfactants selected from among polyethylene glycol-type nonionic surfactants represented by the following formula: A mixture of cationic surfactants, a mixture of a plurality of nonionic surfactants, a mixture of one or more anionic surfactants and one or more nonionic surfactants, a mixture of one or more cationic surfactants and one The method for producing an aluminum material for an electrolytic capacitor electrode according to claim 13, which is a mixture of the above nonionic surfactants. 洗浄後の乾燥温度が200℃以下である請求項3または請求項4に記載の電解コンデンサ電極用アルミニウム材の製造方法。The method for producing an aluminum material for an electrolytic capacitor electrode according to claim 3 or 4, wherein a drying temperature after the washing is 200 ° C or less. 洗浄後の乾燥温度が90℃以下である請求項15に記載の電解コンデンサ電極用アルミニウム材の製造方法。The method for producing an aluminum material for an electrolytic capacitor electrode according to claim 15, wherein the drying temperature after the washing is 90 ° C or less. アルミニウム純度99.9%以上である請求項1ないし請求項16のいずれかに記載の電解コンデンサ電極用アルミニウム材の製造方法。The method for producing an aluminum material for an electrolytic capacitor electrode according to any one of claims 1 to 16, wherein the aluminum material has an aluminum purity of 99.9% or more. 請求項1ないし請求項17のいずれかに記載の製造方法によって製造された電解コンデンサ用アルミニウム陽極材。An aluminum anode material for an electrolytic capacitor manufactured by the method according to any one of claims 1 to 17. 中圧用または高圧用である請求項18に記載の電解コンデンサ用アルミニウム陽極材。The aluminum anode material for an electrolytic capacitor according to claim 18, which is used for medium pressure or high pressure. 請求項1ないし請求項17のいずれかに記載の製造方法によって製造されたアルミニウム材に、焼鈍後、エッチングを実施することを特徴とする電解コンデンサ用電極材の製造方法。A method for manufacturing an electrode material for an electrolytic capacitor, characterized in that etching is performed after annealing on an aluminum material manufactured by the manufacturing method according to any one of claims 1 to 17. エッチングが直流エッチングである請求項20に記載の電解コンデンサ用電極材の製造方法。The method for producing an electrode material for an electrolytic capacitor according to claim 20, wherein the etching is a DC etching. 電極材として、請求項20または請求項21に記載の製造方法によって製造されたアルミニウム電極材が用いられていることを特徴とするアルミニウム電解コンデンサ。22. An aluminum electrolytic capacitor, wherein an aluminum electrode material manufactured by the manufacturing method according to claim 20 or 21 is used as the electrode material.
JP2003111747A 2002-04-25 2003-04-16 Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the same, and manufacturing method of electrode material for electrolytic capacitor Pending JP2004088069A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003111747A JP2004088069A (en) 2002-07-05 2003-04-16 Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the same, and manufacturing method of electrode material for electrolytic capacitor
AT03719219T ATE497630T1 (en) 2002-04-25 2003-04-25 METHOD FOR PRODUCING ALUMINUM MATERIAL FOR AN ELECTRODE OF AN ELECTROLYTIC CAPACITOR, ALUMINUM MATERIAL FOR AN ELECTRODE OF AN ELECTROLYTIC CAPACITOR AND METHOD FOR PRODUCING ELECTRODE MATERIAL FOR AN ELECTROLYTIC CAPACITOR
DE60335943T DE60335943D1 (en) 2002-04-25 2003-04-25 METHOD FOR PRODUCING ALUMINUM MATERIAL FOR AN ELECTRODE OF AN ELECTROLYTIC CONDENSER, ALUMINUM MATERIAL FOR AN ELECTRODE OF AN ELECTROLYTIC CONDENSER AND METHOD FOR PRODUCING ELECTRODE MATERIAL FOR AN ELECTROLYTIC CONDENSER
EP03719219A EP1498513B9 (en) 2002-04-25 2003-04-25 Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capacitor
AU2003235941A AU2003235941A1 (en) 2002-04-25 2003-04-25 Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capacitor
CN03809123.2A CN1646731A (en) 2002-04-25 2003-04-25 Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capac
PCT/JP2003/005384 WO2003091482A1 (en) 2002-04-25 2003-04-25 Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002196867 2002-07-05
JP2003111747A JP2004088069A (en) 2002-07-05 2003-04-16 Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the same, and manufacturing method of electrode material for electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2004088069A true JP2004088069A (en) 2004-03-18
JP2004088069A5 JP2004088069A5 (en) 2006-06-15

Family

ID=32072025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111747A Pending JP2004088069A (en) 2002-04-25 2003-04-16 Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the same, and manufacturing method of electrode material for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2004088069A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006685A (en) * 2002-04-25 2004-01-08 Showa Denko Kk Method of manufacturing aluminum material for electrode of electrolytic capacitor, method of manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2006210894A (en) * 2004-12-27 2006-08-10 Showa Denko Kk Manufacturing method, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and the aluminum electrolytic capacitor of aluminum material for electrolytic capacitor electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006685A (en) * 2002-04-25 2004-01-08 Showa Denko Kk Method of manufacturing aluminum material for electrode of electrolytic capacitor, method of manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4498682B2 (en) * 2002-04-25 2010-07-07 昭和電工株式会社 The manufacturing method of the aluminum material for electrolytic capacitor electrodes, the manufacturing method of the electrode material for electrolytic capacitors, and an aluminum electrolytic capacitor.
JP2006210894A (en) * 2004-12-27 2006-08-10 Showa Denko Kk Manufacturing method, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and the aluminum electrolytic capacitor of aluminum material for electrolytic capacitor electrode

Similar Documents

Publication Publication Date Title
JP5749586B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, method for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor
KR100974372B1 (en) Process for producing aluminum material for electrode of electrolytic capacitor, aluminum material for electrolytic capacitor, method for producing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP5501152B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP5833151B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4767480B2 (en) Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for electrolytic capacitor electrode, and manufacturing method of electrode material for electrolytic capacitor
JP5551742B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2004088069A (en) Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the same, and manufacturing method of electrode material for electrolytic capacitor
JP4708808B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4874596B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
WO2006098445A1 (en) Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, process for producing electrolytic capacitor electrode material, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
KR100935502B1 (en) Process for producing aluminum material for electrode of electrolytic capacitor
JP4652205B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4874589B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4226930B2 (en) Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP4308552B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JP5123479B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4874600B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4105565B2 (en) Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP4170797B2 (en) Method for manufacturing electrolytic capacitor electrode aluminum material, electrolytic capacitor electrode aluminum material, and electrolytic capacitor electrode manufacturing method
WO2003091482A1 (en) Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capacitor
JP4105558B2 (en) Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor, and electrolytic capacitor
JP2006291354A (en) Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, process for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2004100033A (en) Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, and method for manufacturing electrode material for electrolytic capacitor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060417

A131 Notification of reasons for refusal

Effective date: 20081118

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707