JP2004006683A - Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor - Google Patents

Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor Download PDF

Info

Publication number
JP2004006683A
JP2004006683A JP2003057692A JP2003057692A JP2004006683A JP 2004006683 A JP2004006683 A JP 2004006683A JP 2003057692 A JP2003057692 A JP 2003057692A JP 2003057692 A JP2003057692 A JP 2003057692A JP 2004006683 A JP2004006683 A JP 2004006683A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
aluminum material
aluminum
capacitor electrode
crystalline oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003057692A
Other languages
Japanese (ja)
Other versions
JP4226930B2 (en
Inventor
Hideki Nishimori
西森 秀樹
Kiyoshi Fukui
福井 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2003057692A priority Critical patent/JP4226930B2/en
Publication of JP2004006683A publication Critical patent/JP2004006683A/en
Application granted granted Critical
Publication of JP4226930B2 publication Critical patent/JP4226930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum material for the electrodes of an electrolytic capacitor, which can increase its effective area by etching. <P>SOLUTION: In the aluminum material used for the electrodes of the electrolytic capacitor, the existing crystalline oxide particles on a surface oxide film are optimized. That is, the degree of crystallization of the surface oxide film is made larger than 1% but smaller than 3%, and the crystalline oxide particles on the surface oxide film are made at 1×10<SP>4</SP>to 10<SP>7</SP>/mm<SP>2</SP>in density. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電解コンデンサ電極用アルミニウム材、エッチングされた電解コンデンサ電極用アルミニウム材、ならびに電解コンデンサに関する。
【0002】
なお、この明細書において「アルミニウム」の語はその合金を含む意味で用いられる。
【0003】
【従来の技術】
電解コンデンサ用電極材料として用いられるアルミニウム箔は、静電容量を増大させるために、電気化学的あるいは化学的エッチング処理により表面積を拡大し、実効面積が拡大される。
【0004】
一般的に、直流エッチング法でトンネル状ピットを生成させる電解コンデンサ用高純度アルミニウム箔は、表層部における(100)面の結晶方位を発達させる目的で500℃前後の温度で不活性雰囲気もしくは真空中で最終焼鈍される。ここで最終焼鈍とは、仕上冷間圧延の後もしくは仕上冷間圧延後の洗浄の後に実施する工程である。
【0005】
また、アルミニウム箔表面に生成した結晶性酸化物はエッチピットの核となることが知られており、結晶性酸化物の密度や結晶の粒子径を制御することは静電容量向上につながると考えられている(例えば、非特許文献1)。
【0006】
アルミニウム箔表面における結晶性酸化物粒子に関し、次のような先行技術がある(例えば、特許文献1、2、3)。
【0007】
特許文献1では、アルミニウム箔表面にγ−アルミナ結晶を生成させた電解コンデンサ用アルミニウム材料が提案されている。
【0008】
特許文献2では、非晶質の酸化膜の表面電位は場所的に均一なため、電解条件に対応したエッチングピットが形成されることが記載されている。そして、均一で深いピットを高密度で形成するために、酸化膜の結晶化率を1%以下に制御することが記載されている。
【0009】
特許文献3では、平均粒子径0.05〜0.5μm結晶が面積比率で3〜50%占めている電解コンデンサ用アルミニウム箔が提案されており、結晶粒子の密度は1×10〜2×10個/cmと規定されている。
恐れがある。
【0010】
【非特許文献1】
大澤伸夫、福岡潔、「電解コンデンサ用アルミニウム箔の直流エッチング挙動に及ぼす結晶性酸化物の影響」、表面技術、1999年、第50巻、第7号、p.643−647
【0011】
【特許文献1】
特開昭63−116417号公報
【0012】
【特許文献2】
特開平8−222488号公報
【0013】
【特許文献3】
特開平8−222487号公報
【0014】
【発明が解決しようとする課題】
しかしながら、上述の先行技術では、満足できる静電容量を得るに至っていない。
【0015】
例えば、特許文献1に記載された技術では、表層酸化膜に存在するγ−アルミナ結晶の面積比率やγ−アルミナ粒子の密度に関する言及がなく、これらがエッチング特性に及ぼす影響について解明されていない。
【0016】
特許文献2に記載された技術では、結晶化率を1%以下に抑制するものであり、結晶性酸化物粒子をエッチピット核として有効に利用していない。
【0017】
特許文献3に記載された技術では、結晶性酸化物が面積比率で3〜50%も存在するため、隣接する結晶性酸化物を核として生成するエッチピットが結合しやすく、却って実効面積が低下するおそれがある。
【0018】
本発明は、上記のような従来技術の問題点を解決し、エッチングによって実効面積を増大させることが出来る電解コンデンサ用電極用アルミニウム材、エッチングされた電解コンデンサ電極用アルミニウム材、ならびに電解コンデンサを提供することを目的とする。
【0019】
【課題を解決するための手段】
発明者らは、電解コンデンサ電極用アルミニウム材、特に該陽極用アルミニウム材の表層の酸化膜における結晶性酸化物粒子の存在状態を適正化することにより、本発明の完成に至った。
【0020】
即ち、本発明の電解コンデンサ電極用アルミニウム材は下記の構成を有する。
(1) 表層の酸化膜の結晶化率が1%より大きく3%より小さく、該酸化膜における結晶性酸化物粒子の存在密度が1×10〜10個/mmとなされていることを特徴とする電解コンデンサ電極用アルミニウム材。
(2) 結晶性酸化物粒子の平均粒子径が0.05〜1.2μmである前項1に記載の電解コンデンサ電極用アルミニウム材。
(3) 結晶性酸化物粒子は、(F1)式で計算される幾何平均粒子径Mを用いて(F2)式で計算される粒子径の幾何標準偏差σが、1.5以下となされている前項1または前項2に記載の電解コンデンサ電極用アルミニウム材。
【0021】
【数3】

Figure 2004006683
【0022】
【数4】
Figure 2004006683
【0023】
(4) 酸化膜の厚さが、ハンターホール法による測定値で2.5〜5nmである前項1ないし前項3の何れかに記載の電解コンデンサ電極用アルミニウム材。
(5) アルミニウム材におけるアルミニウム純度が99.9質量%以上である前項1ないし前項4の何れかに記載の電解コンデンサ電極用アルミニウム材。
(6) 前記電解コンデンサ電極用アルミニウム材は陽極材である前項1ないし前項5の何れかに記載の電解コンデンサ電極用アルミニウム材。
【0024】
本発明のエッチングされた電解コンデンサ電極用アルミニウム材は下記の構成を有する。
(7) 前項1ないし前項6の何れかに記載された電解コンデンサ電極用アルミニウム材において、エッチングピットが形成されてなることを特徴とするエッチングされた電解コンデンサ電極用アルミニウム材。
【0025】
本発明の電解コンデンサは下記の構成を有する。
(8) 電極材料として、前項7に記載されたエッチングされた電解コンデンサ電極用アルミニウム材が用いられてなることを特徴とする電解コンデンサ。
【0026】
本発明の電解コンデンサ電極用アルミニウム材において、結晶化率とは、表層の酸化膜に存在する結晶性酸化物部の面積比率を示し、結晶化率を1%より大きく3%より小さい範囲に規定する。結晶化率が1%以下の場合、結晶をエッチピット核として有効に利用できないおそれがあり、結晶化率が3%以上になると結晶から生じた初期ピットが近隣のピットと結合しやすくなって、却って実効面積が減少するおそれがある。好ましい結晶化率は1.1〜2.9%である。
【0027】
また、結晶性酸化物粒子の存在密度は1×10〜1×10個/mmに規定する。結晶性酸化物粒子の存在密度が1×10個/mm未満では、結晶が少なすぎるため生成するエッチピットも少なく、1×10個/mmより多い場合には、エッチング初期において多く生成したエッチピット同士が結合するため大きい実効面積を得ることができない。好ましい存在密度は1×10〜5×10個/mmである。
【0028】
また、本発明において、電解コンデンサ電極用アルミニウム材の厚さは特に規定されない。箔と称される200μm以下のものはもとより、それ以上の厚さの板、これらを用いた成形体も本発明に含まれる。
【0029】
本発明の電解コンデンサ電極用アルミニウム材は、結晶化率および結晶性酸化物粒子の密度が上記範囲に制御されているため、エッチングによって結晶性酸化物粒子を核とするエッチングピットが多数かつ均一に生成される。このため、実効面積が拡大されて、静電容量が増大される。
【0030】
前記結晶性酸化物粒子の平均粒子径は0.05〜1.2μmあることが好ましい。なお、結晶性酸化物粒子の形状は特に限定されず、本発明における結晶性酸化物粒子径は投影円相当径即ち粒子の投影面積に等しい円の直径で表す。
【0031】
前記結晶性酸化物平均粒子径が0.05μm未満の場合、結晶がエッチピット核となりにくく、1.2μmを越えると隣接する結晶から生じたエッチピット同士が結合しやすくなって実効面積が十分に拡大されない。特に好ましい粒子径は0.06〜0.8μmである。
【0032】
前記結晶性酸化物粒子の種類としてはγ−AlをはじめとするAl、ベーマイトをはじめとするAlO(OH)、アルミニウム以外の含有金属(例えばMg,Pb,Cu等)の酸化物および水酸化物、アルミニウムとアルミニウム以外の含有金属(例えばMg,Pb,Cu等)との複合金属酸化物あるいは水酸化物であれば特に限定されず、単結晶、多結晶のどちらでも良い。また、単一もしくは複数の結晶が無定形物質に覆われて一つの粒子を形成するものでも良く、凝集した酸化物結晶の間に無定形酸化物が存在していても良い。電解コンデンサ電極用アルミニウム材表面に存在する結晶性酸化物は、アルミニウム材の片面に支持膜としてカーボン等の蒸着膜を形成させた後、例えば臭素−メタノール液に浸漬させることによりアルミニウムを溶解させたサンプルを透過型電子顕微鏡で観察することにより確認できる。上記透過型電子顕微鏡観察サンプル作製時のアルミニウム溶解液の調製に用いる液としては臭素−メタノール液の他に、塩化第二水銀水溶液、ヨウ素−メタノール液等の適用も可能である。
【0033】
前記透過型電子顕微鏡観察領域に存在する結晶性酸化物粒子は各々適切な倍率で観察され、結晶性酸化物であるか否かの区別や結晶性酸化物の同定は、電子線回折およびエネルギー分散型エックス線分析を用いることにより行うことができる。
【0034】
なお、本発明における結晶化率は、アルミニウム材表層の酸化膜に存在する結晶性酸化物部の占める面積比率であるため、結晶性酸化物部と無定形酸化物部が混在する結晶性酸化物粒子が存在する場合の結晶化率は、結晶性酸化物粒子がアルミニウム表層酸化膜において占有する面積比率より小さくなる。
【0035】
前記結晶性酸化物粒子径の均一性は幾何標準偏差σで表される。幾何標準偏差σの求め方を下記に示す。
【0036】
まず、(F1)式によりn個の粒子の幾何平均径Mを求める。
【0037】
【数5】
Figure 2004006683
【0038】
さらに、幾何平均径Mに基づき、(F2)式より幾何標準偏差σを求める。なお、幾何標準偏差σの信頼性を得るために、n≧50であることが好ましい。
【0039】
【数6】
Figure 2004006683
【0040】
結晶性酸化物粒子の粒子径が全て同一の場合、幾何標準偏差σは1であり、粒径分布が広くなるのに伴って、幾何標準偏差σが大きくなる。従って、幾何標準偏差σが小さく1に近いほど粒子径が均一で粒径分布が狭いことを示す。粒子径が均一なほどエッチピットが均一に生成するため、結晶性酸化物粒子径の幾何標準偏差σは1.5以下であることが好ましい。
【0041】
前記酸化膜の厚さは、、ハンターホール法による測定値で2.5〜5nmが好ましい。2.5nm未満ではエッチング初期にアルミニウム材の表面溶解が多く発生し、5nmを越えると結晶性酸化物粒子がエッチングピット核として作用しないおそれがある。前記ハンターホール法とは、M.S.Hunter and P. Fowle, J. Electrochem. Soc., 101[9], 483 (1954)に記載された方法である。
【0042】
前記アルミニウム材は、その組成を限定するものではなく、電解コンデンサ電極材料として使用されているものを適宜使用することができる。具体的には、不純物量を規制して過溶解によるエッチング特性の低下を防ぐために、アルミニウム純度を99.9質量%以上であることが好ましく、特に99.95質量%以上が好ましい。また、エッチング特性や強度を向上させるために、種々の微量元素が添加されているアルミニウム材も好適に用いることができる。なお、本発明においてアルミニウム材のアルミニウム純度は100質量%からFe,Si,Cu,Mn,Cr,Zn,TiおよびGaの合計濃度(質量%)を差し引いた値とする。
【0043】
本発明のアルミニウム材は、エッチング後の化成処理によって耐電圧性皮膜を形成させても大きい実効面積を有する点で陽極材に適している。さらに、陽極材のうちでも、中圧用および高圧用電解コンデンサ電極材に適している。
【0044】
この発明のアルミニウム材の製造に際し、アルミニウム材料の溶解・成分調整・スラブ鋳造、均熱処理、熱間圧延、冷間圧延、中間焼鈍、仕上冷間圧延(低圧下圧延)、最終焼鈍は一般法に従えばよく、特に限定すべき工程の指定はない。アルミニウム材の(100)面積率は90%以上であることが好ましく、アルミニウム材のエッチング条件との関係で、アルミニウム材の製造工程条件は適宜変更される。なお、圧延工程の途中において前工程の圧延により生じたアルミニウム材の結晶組織の歪みを解消する目的で焼鈍(以後中間焼鈍と称す。)されたものであっても良い。また、中間焼鈍以前の工程で表面の不純物や油分を除去する目的で洗浄を実施しても良い。
【0045】
また、圧延工程を終了したアルミニウム基材表面には油分や不純物が存在するため、接触加熱前に洗浄を実施してこれらを除去することが好ましい。アルミニウム基材表面にこれらが付着していると、その後の最終焼鈍において結晶性酸化物粒子の均一生成が阻害されるためである。洗浄方法および洗浄液は特に限定されるものではなく、酸洗浄液またはアルカリ洗浄液による浸漬洗浄、スプレー洗浄、ドライエッチング等が利用できる。酸洗浄液の種類としては、塩酸、硫酸、リン酸、硝酸等の無機酸、シュウ酸、酢酸等の有機酸が例示でき、これら酸を少なくとも1種類以上含む水溶液を洗浄液として用いることができる。また、脱脂力を高めるために酸水溶液に界面活性剤を添加しても良い。アルカリ洗浄液の種類としては水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、ケイ酸ナトリウム等が例示でき少なくとも1種類以上のアルカリを含む水溶液を洗浄液として用いることができる。アルカリ洗浄後に酸洗浄を行うといったように複数回の洗浄を実施しても良い。また、圧延工程後の表面が均一な結晶生成に耐える得るものであれば有機溶剤で洗浄しても良い。有機溶剤の例としてはアルコール、トルエンやキシレン等の芳香族炭化水素、ペンタンやヘキサン等の脂肪族炭化水素、アセトン、ケトン、エステル等があげられるが特に限定されるものではなく複数の有機溶剤を混合して用いても良い。また、有機溶剤による洗浄と、上述の酸、アルカリによる洗浄を組み合わせても良い。何れの場合も、洗浄後にアルミニウム表面に付着した洗浄液成分の残留物を除去する目的で水洗を行うことが好ましい。また、また、洗浄は仕上圧延後に限らず、圧延前や圧延パス間に実施しても良い。
最終焼鈍後のアルミニウム表層酸化膜の結晶化率、結晶性酸化物粒子の密度および結晶性酸化物粒子の粒子径を制御する方法の一つとして、接触加熱を用いることができる。
【0046】
接触加熱の手段は、熱ロール、加熱ベルト、加熱板など接触加熱であれば限定されるものではなく、複数の接触加熱手段を組み合わせても良い。また、アルミニウム材の裏表同時に加熱しても良く、片面ずつ加熱しても良い。加熱体の表面は、アルミニウム材の酸化膜が凝着しない物質で形成されていることが好ましく、ステンレス、メッキ、セラミックス、四フッ化エチレン樹脂、シリコーン樹脂等を例示できる。
【0047】
前記加熱体の表面温度は80〜400℃が好ましい。加熱体の表面温度が80℃未満であれば、最終焼鈍後の酸化膜の結晶化率や結晶性酸化物粒子を所定範囲内に制御することが困難であり、400℃を越えて高くなると酸化膜が厚くなりすぎ、加熱冷却時に皺が発生する等操業上の問題が生じるおそれがあるからである。アルミニウム材に加熱体を接触させる時間は0.001〜30秒が好ましい。接触時間が0.001秒未満であるとアルミニウム表面を十分に加熱することが出来ないために、結晶化率や結晶性酸化物粒子を制御するに至らず、30秒を越えて長く加熱すると酸化膜が厚くなりすぎてエッチピットが発生しにくくなる可能性がある。加熱体表面温度および接触時間は接触加熱前のアルミニウム酸化膜の特性を考慮して適宜選択されるものとする。接触加熱雰囲気は特に限定されず、特別な雰囲気制御も必要なく空気中でも十分である。
【0048】
洗浄または洗浄後の接触加熱後、アルミニウム材の結晶組織の方位を(100)方位に整えてエッチング特性を向上させること、および結晶性酸化物粒子を生成させることを主目的とし最終焼鈍がなされる。
【0049】
最終焼鈍後のアルミニウム材は、前工程で形成された酸化皮膜の厚さをこの工程で増大させ過ぎて結晶性酸化物がエッチング核となり得る可能性を消去させないように、酸化皮膜の合計厚さが上述したハンターホール法による厚さで2.5〜5nmとすることが好ましい。また、(100)面積率は90%以上が好ましい。
【0050】
最終焼鈍の処理雰囲気は特に限定されるものではないが、酸化膜の厚さを増大させすぎないように、水分および酸素の少ない雰囲気中で加熱するのが好ましい。具体的には、アルゴン、窒素等の不活性ガス中あるいは0.1Pa以下の真空の非酸化性雰囲気中で加熱することが好ましい。
【0051】
最終焼鈍を行う際のアルミニウム材の状態も限定されず、コイルに巻き取った状態でバッチ焼鈍しても良く、コイルを巻き戻し連続焼鈍した後コイルに巻き取っても良く、バッチ焼鈍と連続焼鈍の少なくともどちらかを複数回行っても良い。
【0052】
さらに、最終焼鈍の保持温度および時間も限定されない。例えばコイルの状態でバッチ焼鈍を行う場合、アルミニウム基材の実体温度を450〜600℃に10分〜50時間保持することにより行う。アルミニウム実体温度が400℃未満、保持時間が10分未満では酸化皮膜中のエッチピットの核と成り得る結晶性酸化物粒子の生成が十分ではなく、その分散状態が疎となりすぎて、結晶をエッチング核とするエッチング時の拡面効果が期待できない恐れがあり、(100)面の結晶方位の発達も不十分であるからである。逆に600℃を越えて焼鈍すると、コイルでバッチ焼鈍する場合にアルミニウム基材が密着を起こし易くなり、また酸化膜が厚くなりすぎるためエッチング特性が低下して実効面積を十分に拡大できないおそれがある。また、50時間を越えて焼鈍しても実効面積拡大効果は飽和し、却って熱エネルギーコストの増大を招く。
【0053】
本発明のエッチングされた電解コンデンサ電極用アルミニウム材は、上述した電解コンデンサ電極用アルミニウム材にエッチング処理を施して実効面積を拡大させたものである。エッチング処理によって、表層の酸化膜に存在する結晶性酸化物粒子がエッチピット核となり、多数の深いトンネル状ピットが生成され、表面積が拡大される。エッチング処理条件は特に限定されることはないが、直流エッチング法を採用するのが良い。
【0054】
エッチングされたアルミニウム材は、さらに化成処理を行って陽極材とすることができ、特に中圧および高圧用電解コンデンサ陽極材に適している。
【0055】
本発明の電解コンデンサは、電極材料として上述のエッチングされた電解コンデンサ電極用アルミニウム材が用いられたものである。電極材料の実効面積の拡大により高い静電容量が得られる。
【0056】
【実施例】
以下に、本発明の実施例および比較例を示す。なお、本発明は実施例に限定されない。
【0057】
アルミニウム基材として、アルミニウム純度99.99質量%のアルミニウム材料を常法により110μmに圧延したアルミニウム箔を使用した。このアルミニウム箔は、電解コンデンサ陽極材料として好適に使用できるものである。
(実施例1)
アルミニウム基材を有機溶剤:n−ヘキサンにて脱脂した後、50℃、0.2質量%オルトケイ酸ナトリウム水溶液に40秒間浸漬した後水洗した。水洗後のアルミニウム基材を25℃、3質量%硫酸水溶液へ60秒間浸漬し、水洗、乾燥を行った。次に、乾燥後のアルミニウム基材を、表面温度を200℃に設定した2枚のステンレス製加熱板の間に挟んで大気中で2秒間接触加熱を行った。接触加熱後のアルミニウム基材を重ねた状態で、アルゴン雰囲気中においてアルミニウム基材の実体温度を室温から500℃まで50℃/hで昇温させた後、500℃にて24時間保持させて最終焼鈍を施し、次いで冷却した後炉出しした。これにより、電解コンデンサ電極用アルミニウム材を得た。
(実施例2)
アルミニウム基材を有機溶剤:n−ヘキサンにて脱脂した後、50℃、0.2質量%オルトケイ酸ナトリウム水溶液に40秒間浸漬した後水洗した。水洗後のアルミニウム基材を25℃、3質量%塩酸水溶液へ60秒間浸漬し、水洗、乾燥を行った。次に、実施例1と同様の条件で接触加熱および最終焼鈍を行い、電解コンデンサ電極用アルミニウム材を得た。
(実施例3)
アルミニウム基材を有機溶剤:n−ヘキサンにて脱脂した後、50℃、0.2質量%オルトケイ酸ナトリウム水溶液に40秒間浸漬した後水洗し、乾燥させた。乾燥後のアルミニウム基材を、表面温度を250℃に設定した2枚のステンレス製加熱板の間に挟み2秒間接触加熱を行った。接触加熱後のアルミニウム基材を重ねた状態で、アルゴン雰囲気中においてアルミニウム基材の実体温度を室温から540℃まで50℃/hで昇温させた後、540℃にて24時間保持させて最終焼鈍を施し、次いで冷却した後炉出しした。これにより、電解コンデンサ電極用アルミニウム材を得た。
(実施例4〜30)
塩酸、硫酸、硝酸およびリン酸のうち少なくとも一種類以上を含む水溶液を酸洗浄液として調製した。水酸化ナトリウム、水酸化カリウムおよびオルトケイ酸ナトリウムのうち少なくとも一種類以上含む水溶液をアルカリ洗浄液として調製した。そして、アルミニウム基材を、前記アルカリおよび酸洗浄における洗浄液の種類、浸漬時間を変えて洗浄した後純水に浸漬し空気中で乾燥を行った。次に加熱時間および温度を変化させて接触加熱を行った。接触加熱後のアルミニウム基材を重ねた状態で不活性ガス雰囲気下もしくは真空中で焼鈍温度と時間を変化させ焼鈍し電解コンデンサ電極用アルミニウム材を得た。
(比較例1〜4)
塩酸、硫酸、硝酸およびリン酸のうち少なくとも一種類以上を含む水溶液を酸洗浄液として調製した。水酸化ナトリウム、水酸化カリウムおよびオルトケイ酸ナトリウムのうち少なくとも一種類以上含む水溶液をアルカリ洗浄液として調製した。そして、アルミニウム基材を、前記アルカリ洗浄液および前記酸洗浄液の種類、濃度および浸漬時間を変えて洗浄した後純水に浸漬し空気中で乾燥を行った。次に、接触加熱を行うことなく、アルミニウム基材を重ねた状態で不活性ガス雰囲気中もしくは真空中で昇温させたのち450〜580℃にて保持させ、次いで冷却した後炉出しし、電解コンデンサ電極用アルミニウム材を得た。
【0058】
各実施例および比較例で得られた電解コンデンサ電極用アルミニウム材の表層酸化膜について、膜厚さ、結晶化率、結晶性酸化物粒子の粒子密度、平均粒子径、幾何標準偏差を求めた。ここで、結晶性酸化物粒子径は投影円相当径とする。
【0059】
膜厚さはハンターホール法により測定した。
【0060】
結晶性酸化物粒子の粒子密度、平均粒子径および結晶化率は、合計で少なくとも50個以上の結晶性酸化物粒子が存在する単一もしくは複数の視野を観察する(3000〜3万倍で観察)ことにより求めた。なお、各々の粒子が結晶し酸化物であるか否かの確認や結晶性酸化物粒子中の結晶部面積の算出は、各視野を拡大して適切な倍率(3万〜20万倍)で観察、電子線回折、エネルギー分散型エックス線分析を行う方法で行った。
【0061】
幾何標準偏差は、透過型電子顕微鏡で結晶性酸化物粒子を観察して測定し、あるいは測定した粒子径から(F1)(F2)式に基づいて計算した。各電解コンデンサ電極用アルミニウム材の表面に存在する結晶性酸化物粒子の粒径の幾何標準偏差は、50個以上の粒子の直径より求めた。なお、透過型電子顕微鏡観察用サンプルは、電解コンデンサ電極用アルミニウム材の片面にカーボン蒸着膜を形成し、臭素−メタノール液に浸漬しアルミニウムを溶解させたものを用いた。これらの結果を表1、2、3に示す。
【0062】
一方で、各実施例および各比較例で得られた電解コンデンサ電極用アルミニウム材をHCl:1.0mol・dm−3とHSO:3.5mol・dm−3とを含む液温75℃の混合水溶液に浸漬した後、電流密度0.2A/cmで電解処理を施して電解エッチングを行った。さらに前記組成の塩酸−硫酸混合水溶液に90℃にて360秒浸漬しケミカルエッチングを施してピット径を太くし、エッチングされたアルミニウム材を得た。得られたエッチングされたアルミニウム材を、化成電圧270VにてEIAJ規格に従い化成処理し、EIAJ法で静電容量を測定した。測定した静電容量を、比較例1を100とした時の相対値として表1、2、3に示す。
【0063】
【表1】
Figure 2004006683
【0064】
【表2】
Figure 2004006683
【0065】
【表3】
Figure 2004006683
【0066】
表1、2、3より、表層の酸化膜の膜厚さ、結晶性酸化物粒子を制御することにより、エッチング特性を高めて静電容量を増大させ得ることを確認した。
【0067】
【発明の効果】
以上の次第で、本発明の電解コンデンサ電極用アルミニウム材は、表層の酸化膜の結晶化率が1%より大きく3%より小さく、該酸化膜における結晶性酸化物粒子の存在密度が1×10〜10個/mmとなされているから、エッチングによって、結晶性酸化物粒子を核とする深いトンネル状のエッチングピットが多数かつ均一に生成される。このため、実効面積が拡大され、ひいては静電容量を増大できる。
【0068】
前記電解コンデンサ電極用アルミニウム材において、結晶性酸化物粒子の平均粒子径が0.05〜1.2μmである場合は、多数のエッチングピットが隣接ピットと結合することなく形成される。
【0069】
また、結晶性酸化物粒子の粒子径の幾何標準偏差σが、1.5以下となされている場合は、特にエッチングピットが均一に形成される。
【0070】
また、酸化膜の厚さが、ハンターホール法による測定値で2.5〜5nmである場合は、特に深いトンネル状のエッチングピットが十分に形成される。
【0071】
さらに、アルミニウム材におけるアルミニウム純度が99.9質量%以上である場合は、過溶解を抑制してエッチング特性の低下を防止することができる。
【0072】
、前記電解コンデンサ電極用アルミニウム材が陽極材として用いられる場合は、実効面積の拡大により高い静電容量を得ることができる。
【0073】
本発明のエッチングされた電解コンデンサ電極用アルミニウム材は、前記電解コンデンサ電極用アルミニウム材において、エッチングピットが形成されてなるものであるから、多数の深いトンネル状ピットが形成されて、静電容量の増大をなし得るものである。
【0074】
本発明の電解コンデンサは、電極材料として、上記エッチングされた電解コンデンサ電極用アルミニウム材が用いられてなるものであるから、電極材料の実効面積の拡大により高い静電容量が得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an aluminum material for an electrolytic capacitor electrode, an etched aluminum material for an electrolytic capacitor electrode, and an electrolytic capacitor.
[0002]
In this specification, the term "aluminum" is used to include its alloy.
[0003]
[Prior art]
The aluminum foil used as an electrode material for an electrolytic capacitor has an increased surface area by an electrochemical or chemical etching treatment to increase the capacitance, thereby increasing the effective area.
[0004]
Generally, a high-purity aluminum foil for an electrolytic capacitor, which generates tunnel-like pits by a DC etching method, is heated at about 500 ° C. in an inert atmosphere or in a vacuum at a temperature of about 500 ° C. for the purpose of developing the crystal orientation of the (100) plane in the surface layer. Is finally annealed. Here, the final annealing is a step performed after the finish cold rolling or after the washing after the finish cold rolling.
[0005]
In addition, it is known that the crystalline oxide generated on the aluminum foil surface becomes the nucleus of the etch pit, and it is thought that controlling the density of the crystalline oxide and the particle diameter of the crystal leads to the improvement of the capacitance. (For example, Non-Patent Document 1).
[0006]
The following prior arts relate to crystalline oxide particles on the surface of an aluminum foil (for example, Patent Documents 1, 2, and 3).
[0007]
Patent Literature 1 proposes an aluminum material for an electrolytic capacitor in which γ-alumina crystals are formed on an aluminum foil surface.
[0008]
Patent Document 2 describes that since the surface potential of an amorphous oxide film is locally uniform, etching pits corresponding to electrolysis conditions are formed. It is described that the crystallization ratio of the oxide film is controlled to 1% or less in order to form uniform and deep pits at high density.
[0009]
Patent Document 3 proposes an aluminum foil for an electrolytic capacitor in which crystals having an average particle size of 0.05 to 0.5 μm occupy 3 to 50% in area ratio, and the density of crystal particles is 1 × 10 5. 4 ~ 2 × 10 9 Pieces / cm 2 It is prescribed.
There is fear.
[0010]
[Non-patent document 1]
Nobuo Osawa and Kiyoshi Fukuoka, "Effect of Crystalline Oxide on DC Etching Behavior of Aluminum Foil for Electrolytic Capacitor", Surface Technology, 1999, Vol. 50, No. 7, p. 643-647
[0011]
[Patent Document 1]
JP-A-63-116417
[0012]
[Patent Document 2]
JP-A-8-222488
[0013]
[Patent Document 3]
JP-A-8-222487
[0014]
[Problems to be solved by the invention]
However, the above-described prior art does not provide a satisfactory capacitance.
[0015]
For example, in the technique described in Patent Document 1, there is no mention of the area ratio of γ-alumina crystals present in the surface oxide film or the density of γ-alumina particles, and the effects of these on the etching characteristics are not clarified.
[0016]
In the technique described in Patent Document 2, the crystallization ratio is suppressed to 1% or less, and the crystalline oxide particles are not effectively used as etch pit nuclei.
[0017]
In the technology described in Patent Document 3, since the crystalline oxide exists in an area ratio of 3 to 50%, the etch pits generated by using the adjacent crystalline oxide as a nucleus are easily bonded, and the effective area is rather reduced. There is a possibility that.
[0018]
The present invention solves the above-mentioned problems of the prior art, and provides an aluminum material for an electrode for an electrolytic capacitor, an etched aluminum material for an electrode for an electrolytic capacitor, and an electrolytic capacitor that can increase the effective area by etching. The purpose is to do.
[0019]
[Means for Solving the Problems]
The inventors of the present invention have completed the present invention by optimizing the state of the crystalline oxide particles in the aluminum material for the electrolytic capacitor electrode, particularly the surface oxide film of the aluminum material for the anode.
[0020]
That is, the aluminum material for an electrolytic capacitor electrode of the present invention has the following configuration.
(1) The crystallization ratio of the surface oxide film is larger than 1% and smaller than 3%, and the density of crystalline oxide particles in the oxide film is 1 × 10 4 -10 7 Pieces / mm 2 An aluminum material for an electrode of an electrolytic capacitor, characterized in that:
(2) The aluminum material for an electrolytic capacitor electrode according to the above (1), wherein the crystalline oxide particles have an average particle diameter of 0.05 to 1.2 μm.
(3) The crystalline oxide particles have a geometric average particle diameter M calculated by the formula (F1). g Is the geometric standard deviation σ of the particle diameter calculated by equation (F2) using g 3. The aluminum material for an electrolytic capacitor electrode according to the above item 1 or 2, wherein the aluminum material is 1.5 or less.
[0021]
[Equation 3]
Figure 2004006683
[0022]
(Equation 4)
Figure 2004006683
[0023]
(4) The aluminum material for an electrolytic capacitor electrode according to any one of (1) to (3) above, wherein the oxide film has a thickness of 2.5 to 5 nm as measured by a Hunter Hall method.
(5) The aluminum material for an electrode of an electrolytic capacitor according to any one of the above (1) to (4), wherein the aluminum material has an aluminum purity of 99.9% by mass or more.
(6) The aluminum material for an electrolytic capacitor electrode according to any one of (1) to (5) above, wherein the aluminum material for an electrolytic capacitor electrode is an anode material.
[0024]
The etched aluminum material for an electrolytic capacitor electrode of the present invention has the following configuration.
(7) The aluminum material for an electrolytic capacitor electrode according to any one of the preceding items 1 to 6, wherein an etched pit is formed in the aluminum material for an electrolytic capacitor electrode.
[0025]
The electrolytic capacitor of the present invention has the following configuration.
(8) An electrolytic capacitor, characterized in that the electrode material is the etched aluminum material for an electrolytic capacitor electrode described in the item (7).
[0026]
In the aluminum material for an electrode of an electrolytic capacitor according to the present invention, the crystallization ratio indicates an area ratio of a crystalline oxide portion present in a surface oxide film, and the crystallization ratio is defined in a range of more than 1% and less than 3%. I do. When the crystallization rate is 1% or less, the crystal may not be effectively used as an etch pit nucleus, and when the crystallization rate is 3% or more, initial pits generated from the crystal may be easily combined with neighboring pits. Rather, the effective area may be reduced. The preferred crystallization rate is 1.1 to 2.9%.
[0027]
The density of the crystalline oxide particles is 1 × 10 4 ~ 1 × 10 7 Pieces / mm 2 Stipulated. The density of the crystalline oxide particles is 1 × 10 4 Pieces / mm 2 If it is less than 1 × 10, the number of generated etch pits is also small because the number of crystals is too small. 7 Pieces / mm 2 If the number is larger, a large effective area cannot be obtained because many etch pits generated in the initial stage of the etching are connected to each other. The preferred density is 1 × 10 5 ~ 5 × 10 6 Pieces / mm 2 It is.
[0028]
In the present invention, the thickness of the aluminum material for an electrolytic capacitor electrode is not particularly limited. The present invention includes a plate having a thickness of 200 μm or less, called a foil, and a plate having a greater thickness, and a molded product using these plates.
[0029]
In the aluminum material for an electrolytic capacitor electrode of the present invention, since the crystallization rate and the density of the crystalline oxide particles are controlled in the above range, a large number of etching pits having the crystalline oxide particles as nuclei are uniformly formed by etching. Generated. For this reason, the effective area is enlarged, and the capacitance is increased.
[0030]
The average particle diameter of the crystalline oxide particles is preferably 0.05 to 1.2 μm. The shape of the crystalline oxide particles is not particularly limited, and the crystalline oxide particle diameter in the present invention is represented by a projected circle equivalent diameter, that is, a diameter of a circle equal to the projected area of the particles.
[0031]
When the crystalline oxide average particle diameter is less than 0.05 μm, the crystal is unlikely to become an etch pit nucleus, and when it exceeds 1.2 μm, the etch pits generated from adjacent crystals are easily bonded to each other and the effective area is sufficiently large. Not expanded. A particularly preferred particle size is from 0.06 to 0.8 μm.
[0032]
The type of the crystalline oxide particles is γ-Al 2 O 3 And other Al 2 O 3 And oxides and hydroxides of AlO (OH), including boehmite, and other metals (eg, Mg, Pb, Cu, etc.) other than aluminum, and aluminum and other metals (eg, Mg, Pb, Cu, etc.) other than aluminum. The composite metal oxide or hydroxide is not particularly limited, and may be a single crystal or a polycrystal. Further, one or a plurality of crystals may be covered with an amorphous substance to form one particle, or an amorphous oxide may be present between aggregated oxide crystals. The crystalline oxide present on the surface of the aluminum material for the electrolytic capacitor electrode was formed by depositing a deposited film of carbon or the like as a support film on one surface of the aluminum material and then dissolving the aluminum by immersion in, for example, a bromine-methanol solution. It can be confirmed by observing the sample with a transmission electron microscope. As the solution used for preparing the aluminum solution at the time of preparing the above-mentioned transmission electron microscope observation sample, an aqueous mercuric chloride solution, an iodine-methanol solution, etc. can be applied in addition to the bromine-methanol solution.
[0033]
The crystalline oxide particles present in the transmission electron microscope observation region are each observed at an appropriate magnification, and whether or not the crystalline oxide is a crystalline oxide or the crystalline oxide is identified by electron diffraction and energy dispersion. It can be performed by using a type X-ray analysis.
[0034]
Note that the crystallization ratio in the present invention is an area ratio of a crystalline oxide portion present in an oxide film on a surface layer of an aluminum material, and therefore, a crystalline oxide portion in which a crystalline oxide portion and an amorphous oxide portion are mixed exists. The crystallization ratio when the particles are present is smaller than the area ratio occupied by the crystalline oxide particles in the aluminum surface oxide film.
[0035]
The uniformity of the crystalline oxide particle diameter is determined by a geometric standard deviation σ. g Is represented by Geometric standard deviation σ g Is shown below.
[0036]
First, the geometric mean diameter M of n particles is calculated by equation (F1). g Ask for.
[0037]
(Equation 5)
Figure 2004006683
[0038]
Furthermore, the geometric mean diameter M g From formula (F2), the geometric standard deviation σ g Ask for. Note that the geometric standard deviation σ g In order to obtain the reliability, it is preferable that n ≧ 50.
[0039]
(Equation 6)
Figure 2004006683
[0040]
When the diameters of the crystalline oxide particles are all the same, the geometric standard deviation σ g Is 1 and the geometric standard deviation σ g Becomes larger. Therefore, the geometric standard deviation σ g Is smaller and closer to 1, indicating that the particle size is uniform and the particle size distribution is narrower. Since the etch pits are generated more uniformly as the particle diameter becomes more uniform, the geometric standard deviation σ of the crystalline oxide particle diameter becomes larger. g Is preferably 1.5 or less.
[0041]
The thickness of the oxide film is preferably 2.5 to 5 nm as measured by the Hunter Hall method. If it is less than 2.5 nm, the surface of the aluminum material is largely dissolved in the initial stage of etching, and if it exceeds 5 nm, the crystalline oxide particles may not act as etching pit nuclei. The Hunter Hall method is described in M.E. S. Hunter and P.M. Fowl, J .; Electrochem. Soc. , 101 [9], 483 (1954).
[0042]
The aluminum material is not limited in its composition, and any material used as an electrode material for an electrolytic capacitor can be appropriately used. Specifically, the aluminum purity is preferably 99.9% by mass or more, and particularly preferably 99.95% by mass or more, in order to control the amount of impurities and prevent deterioration of the etching characteristics due to excessive melting. Further, an aluminum material to which various trace elements are added in order to improve etching characteristics and strength can be suitably used. In the present invention, the aluminum purity of the aluminum material is a value obtained by subtracting the total concentration (% by mass) of Fe, Si, Cu, Mn, Cr, Zn, Ti and Ga from 100% by mass.
[0043]
The aluminum material of the present invention is suitable as an anode material in that it has a large effective area even if a withstand voltage film is formed by a chemical conversion treatment after etching. Further, among the anode materials, it is suitable for electrode materials for medium and high pressure electrolytic capacitors.
[0044]
In the production of the aluminum material of the present invention, the melting, composition adjustment, slab casting, soaking, hot rolling, cold rolling, intermediate annealing, finish cold rolling (low reduction rolling), and final annealing of the aluminum material are generally performed by a general method. The process may be followed, and there is no particular process to be specified. The (100) area ratio of the aluminum material is preferably 90% or more, and the manufacturing process conditions of the aluminum material are appropriately changed depending on the etching conditions of the aluminum material. In addition, in the middle of the rolling process, the aluminum material may be annealed (hereinafter referred to as intermediate annealing) for the purpose of eliminating the distortion of the crystal structure of the aluminum material caused by the rolling in the preceding process. In addition, cleaning may be performed in order to remove impurities and oil on the surface in a step before the intermediate annealing.
[0045]
Further, since oil and impurities are present on the surface of the aluminum base material after the rolling step, it is preferable to remove these by performing cleaning before contact heating. This is because, when these are adhered to the aluminum base material surface, uniform formation of crystalline oxide particles is hindered in the subsequent final annealing. The cleaning method and the cleaning liquid are not particularly limited, and immersion cleaning, spray cleaning, dry etching, or the like using an acid cleaning liquid or an alkaline cleaning liquid can be used. Examples of the type of the acid cleaning liquid include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, and nitric acid, and organic acids such as oxalic acid and acetic acid. An aqueous solution containing at least one of these acids can be used as the cleaning liquid. Further, a surfactant may be added to the aqueous acid solution to enhance the degreasing power. Examples of the type of the alkaline cleaning liquid include sodium hydroxide, potassium hydroxide, calcium hydroxide, and sodium silicate, and an aqueous solution containing at least one or more alkalis can be used as the cleaning liquid. A plurality of cleanings may be performed, such as performing acid cleaning after alkali cleaning. Further, if the surface after the rolling step can withstand uniform crystal formation, the surface may be washed with an organic solvent. Examples of organic solvents include alcohols, aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as pentane and hexane, acetone, ketones, esters, and the like, but are not particularly limited, and include a plurality of organic solvents. You may mix and use. Further, washing with an organic solvent and washing with an acid or alkali described above may be combined. In any case, it is preferable to perform water washing for the purpose of removing the residue of the washing liquid component attached to the aluminum surface after washing. Further, the cleaning is not limited to after finishing rolling, but may be performed before rolling or between rolling passes.
Contact heating can be used as one of the methods for controlling the crystallization rate of the aluminum oxide layer after final annealing, the density of the crystalline oxide particles, and the particle size of the crystalline oxide particles.
[0046]
The contact heating means is not limited as long as it is contact heating such as a heat roll, a heating belt, and a heating plate, and a plurality of contact heating means may be combined. In addition, heating may be performed simultaneously on the front and back of the aluminum material, or one surface at a time. The surface of the heating element is preferably formed of a substance to which an oxide film of an aluminum material does not adhere, and examples thereof include stainless steel, plating, ceramics, ethylene tetrafluoride resin, and silicone resin.
[0047]
The surface temperature of the heating body is preferably from 80 to 400C. If the surface temperature of the heating element is lower than 80 ° C., it is difficult to control the crystallization ratio and crystalline oxide particles of the oxide film after the final annealing within a predetermined range. This is because the film may be too thick, causing operational problems such as generation of wrinkles during heating and cooling. The time for bringing the heating body into contact with the aluminum material is preferably 0.001 to 30 seconds. If the contact time is less than 0.001 second, the aluminum surface cannot be sufficiently heated, so that the crystallization rate and the crystalline oxide particles cannot be controlled. There is a possibility that the film becomes too thick and etch pits hardly occur. The surface temperature of the heater and the contact time are appropriately selected in consideration of the characteristics of the aluminum oxide film before the contact heating. The contact heating atmosphere is not particularly limited, and it is sufficient even in air without any special atmosphere control.
[0048]
After the cleaning or contact heating after the cleaning, final annealing is performed mainly for the purpose of improving the etching characteristics by adjusting the orientation of the crystal structure of the aluminum material to the (100) orientation and generating crystalline oxide particles. .
[0049]
The aluminum material after the final annealing has a total thickness of the oxide film so that the thickness of the oxide film formed in the previous step is not excessively increased in this step so as to eliminate the possibility that the crystalline oxide may become an etching nucleus. However, it is preferable to set the thickness by the above-mentioned Hunter Hall method to 2.5 to 5 nm. Further, the (100) area ratio is preferably 90% or more.
[0050]
Although the treatment atmosphere for the final annealing is not particularly limited, it is preferable to heat in an atmosphere with a small amount of moisture and oxygen so that the thickness of the oxide film is not excessively increased. Specifically, it is preferable to heat in an inert gas such as argon or nitrogen or in a vacuum non-oxidizing atmosphere of 0.1 Pa or less.
[0051]
The state of the aluminum material at the time of final annealing is not limited, and may be batch-annealed in a state of being wound on a coil, or may be wound on a coil after rewinding and annealing continuously, and batch annealing and continuous annealing. May be performed a plurality of times.
[0052]
Further, the holding temperature and time of the final annealing are not limited. For example, when performing batch annealing in the state of a coil, it is performed by maintaining the substantial temperature of the aluminum base material at 450 to 600 ° C. for 10 minutes to 50 hours. If the temperature of the aluminum body is less than 400 ° C. and the holding time is less than 10 minutes, the generation of crystalline oxide particles that may become nuclei of etch pits in the oxide film is not sufficient, and the dispersed state is too sparse to etch the crystals. This is because there is a possibility that a surface enlargement effect at the time of etching, which is a nucleus, cannot be expected, and the crystal orientation of the (100) plane is insufficiently developed. Conversely, if the annealing is performed at a temperature higher than 600 ° C., the aluminum base material is likely to adhere when batch annealing is performed with a coil, and the oxide film becomes too thick, so that the etching characteristics deteriorate and the effective area may not be sufficiently enlarged. is there. Further, even if annealing is performed for more than 50 hours, the effect of enlarging the effective area is saturated, which in turn causes an increase in thermal energy cost.
[0053]
The etched aluminum material for an electrolytic capacitor electrode of the present invention is obtained by expanding the effective area by subjecting the above-mentioned aluminum material for an electrolytic capacitor electrode to an etching treatment. By the etching treatment, crystalline oxide particles present in the surface oxide film serve as etch pit nuclei, generating a large number of deep tunnel-like pits and increasing the surface area. Although the etching conditions are not particularly limited, a direct current etching method is preferably used.
[0054]
The etched aluminum material can be further subjected to a chemical conversion treatment to form an anode material, and is particularly suitable as an anode material for medium- and high-pressure electrolytic capacitors.
[0055]
The electrolytic capacitor of the present invention uses the above-described etched aluminum material for an electrolytic capacitor electrode as an electrode material. High capacitance can be obtained by increasing the effective area of the electrode material.
[0056]
【Example】
Hereinafter, Examples and Comparative Examples of the present invention will be described. Note that the present invention is not limited to the embodiments.
[0057]
As the aluminum base material, an aluminum foil obtained by rolling an aluminum material having an aluminum purity of 99.99% by mass to 110 μm by an ordinary method was used. This aluminum foil can be suitably used as an anode material of an electrolytic capacitor.
(Example 1)
The aluminum substrate was degreased with an organic solvent: n-hexane, immersed in a 0.2% by mass aqueous sodium orthosilicate solution at 50 ° C. for 40 seconds, and then washed with water. The washed aluminum substrate was immersed in a 3% by mass aqueous sulfuric acid solution at 25 ° C. for 60 seconds, washed with water and dried. Next, the dried aluminum substrate was sandwiched between two stainless steel heating plates whose surface temperature was set to 200 ° C., and contact heating was performed in the atmosphere for 2 seconds. In a state where the aluminum substrates after the contact heating are stacked, the actual temperature of the aluminum substrate is increased from room temperature to 500 ° C. at a rate of 50 ° C./h in an argon atmosphere, and then maintained at 500 ° C. for 24 hours. After annealing and then cooling, the furnace was taken out. Thus, an aluminum material for an electrolytic capacitor electrode was obtained.
(Example 2)
The aluminum substrate was degreased with an organic solvent: n-hexane, immersed in a 0.2% by mass aqueous sodium orthosilicate solution at 50 ° C. for 40 seconds, and then washed with water. The washed aluminum substrate was immersed in a 3% by mass aqueous hydrochloric acid solution at 25 ° C. for 60 seconds, washed with water and dried. Next, contact heating and final annealing were performed under the same conditions as in Example 1 to obtain an aluminum material for an electrolytic capacitor electrode.
(Example 3)
The aluminum substrate was degreased with an organic solvent: n-hexane, immersed in a 0.2% by mass aqueous sodium orthosilicate solution at 50 ° C. for 40 seconds, washed with water, and dried. The dried aluminum substrate was sandwiched between two stainless steel heating plates whose surface temperature was set at 250 ° C., and contact heating was performed for 2 seconds. In a state where the aluminum base materials after the contact heating are stacked, the actual temperature of the aluminum base material is increased from room temperature to 540 ° C. at a rate of 50 ° C./h in an argon atmosphere, and then maintained at 540 ° C. for 24 hours. After annealing and then cooling, the furnace was taken out. Thus, an aluminum material for an electrolytic capacitor electrode was obtained.
(Examples 4 to 30)
An aqueous solution containing at least one of hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid was prepared as an acid washing solution. An aqueous solution containing at least one of sodium hydroxide, potassium hydroxide and sodium orthosilicate was prepared as an alkaline cleaning solution. Then, the aluminum base material was washed by changing the type of the washing solution and the immersion time in the alkali and acid washing, immersed in pure water, and dried in air. Next, contact heating was performed while changing the heating time and temperature. The aluminum substrate for the electrolytic capacitor electrode was obtained by changing the annealing temperature and time in an inert gas atmosphere or in a vacuum in a state where the aluminum substrates after the contact heating were stacked, in an inert gas atmosphere or in a vacuum.
(Comparative Examples 1-4)
An aqueous solution containing at least one of hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid was prepared as an acid washing solution. An aqueous solution containing at least one of sodium hydroxide, potassium hydroxide and sodium orthosilicate was prepared as an alkaline cleaning solution. Then, the aluminum base material was washed by changing the types, concentrations, and immersion times of the alkali cleaning solution and the acid cleaning solution, immersed in pure water, and dried in air. Next, without contact heating, the temperature was raised in an inert gas atmosphere or vacuum in a state where the aluminum base materials were stacked, and the temperature was maintained at 450 to 580 ° C. An aluminum material for a capacitor electrode was obtained.
[0058]
With respect to the surface oxide film of the aluminum material for an electrolytic capacitor electrode obtained in each of the examples and comparative examples, the film thickness, the crystallization rate, the particle density of the crystalline oxide particles, the average particle diameter, and the geometric standard deviation were determined. Here, the crystalline oxide particle diameter is a projected circle equivalent diameter.
[0059]
The film thickness was measured by the Hunter Hall method.
[0060]
The particle density, average particle diameter, and crystallization ratio of the crystalline oxide particles are determined by observing a single or a plurality of visual fields in which at least 50 or more crystalline oxide particles are present (observed at 3000 to 30,000 times). ). The confirmation of whether or not each particle is an oxide and the calculation of the crystal part area in the crystalline oxide particles are performed by expanding each field of view and at an appropriate magnification (30,000 to 200,000 times). Observation, electron diffraction, and energy dispersive X-ray analysis were performed.
[0061]
The geometric standard deviation was measured by observing the crystalline oxide particles with a transmission electron microscope, or calculated from the measured particle diameters based on the formulas (F1) and (F2). The geometric standard deviation of the particle size of the crystalline oxide particles present on the surface of the aluminum material for each electrolytic capacitor electrode was determined from the diameters of 50 or more particles. In addition, the sample for observation with a transmission electron microscope was obtained by forming a carbon vapor-deposited film on one surface of an aluminum material for an electrode of an electrolytic capacitor, and immersing the film in a bromine-methanol solution to dissolve aluminum. The results are shown in Tables 1, 2, and 3.
[0062]
On the other hand, the aluminum material for an electrolytic capacitor electrode obtained in each of Examples and Comparative Examples was prepared by adding HCl: 1.0 mol · dm. -3 And H 2 SO 4 : 3.5mol ・ dm -3 And a current density of 0.2 A / cm 2 And electrolytic etching was performed. Further, it was immersed in a hydrochloric acid-sulfuric acid mixed aqueous solution of the above composition at 90 ° C. for 360 seconds and subjected to chemical etching to increase the pit diameter, thereby obtaining an etched aluminum material. The obtained etched aluminum material was subjected to a chemical conversion treatment at a chemical conversion voltage of 270 V according to the EIAJ standard, and the capacitance was measured by the EIAJ method. Tables 1, 2, and 3 show the measured capacitance as a relative value when Comparative Example 1 is set to 100.
[0063]
[Table 1]
Figure 2004006683
[0064]
[Table 2]
Figure 2004006683
[0065]
[Table 3]
Figure 2004006683
[0066]
From Tables 1, 2, and 3, it was confirmed that by controlling the thickness of the oxide film of the surface layer and the crystalline oxide particles, the etching characteristics could be increased and the capacitance could be increased.
[0067]
【The invention's effect】
As described above, in the aluminum material for an electrolytic capacitor electrode according to the present invention, the crystallization ratio of the surface oxide film is larger than 1% and smaller than 3%, and the density of the crystalline oxide particles in the oxide film is 1 × 10 3. 4 -10 7 Pieces / mm 2 Therefore, the etching produces a large number and uniformity of deep tunnel-shaped etching pits having crystalline oxide particles as nuclei. For this reason, the effective area is enlarged, and the capacitance can be increased.
[0068]
When the average particle diameter of the crystalline oxide particles in the aluminum material for an electrolytic capacitor electrode is 0.05 to 1.2 μm, a large number of etching pits are formed without bonding to adjacent pits.
[0069]
Also, the geometric standard deviation σ of the particle diameter of the crystalline oxide particles g Is 1.5 or less, etching pits are particularly formed uniformly.
[0070]
When the thickness of the oxide film is 2.5 to 5 nm as measured by the Hunter Hall method, a particularly deep tunnel-shaped etching pit is sufficiently formed.
[0071]
Further, when the aluminum material has an aluminum purity of 99.9% by mass or more, it is possible to suppress overdissolution and prevent deterioration in etching characteristics.
[0072]
When the aluminum material for an electrolytic capacitor electrode is used as an anode material, a high capacitance can be obtained by enlarging the effective area.
[0073]
Since the etched aluminum material for an electrolytic capacitor electrode of the present invention is obtained by forming etching pits in the aluminum material for an electrolytic capacitor electrode, a large number of deep tunnel-like pits are formed, thereby reducing the capacitance. It can increase.
[0074]
Since the electrolytic capacitor of the present invention uses the etched aluminum material for an electrolytic capacitor electrode as the electrode material, a high capacitance can be obtained by enlarging the effective area of the electrode material.

Claims (8)

表層の酸化膜の結晶化率が1%より大きく3%より小さく、該酸化膜における結晶性酸化物粒子の存在密度が1×10〜10個/mmとなされていることを特徴とする電解コンデンサ電極用アルミニウム材。The crystallization ratio of the surface oxide film is greater than 1% and less than 3%, and the density of the crystalline oxide particles in the oxide film is 1 × 10 4 to 10 7 / mm 2. Material for electrolytic capacitor electrodes. 結晶性酸化物粒子の平均粒子径が0.05〜1.2μmである請求項1に記載の電解コンデンサ電極用アルミニウム材。The aluminum material for an electrolytic capacitor electrode according to claim 1, wherein the average particle diameter of the crystalline oxide particles is 0.05 to 1.2 µm. 結晶性酸化物粒子は、(F1)式で計算される幾何平均粒子径Mを用いて(F2)式で計算される粒子径の幾何標準偏差σが、1.5以下となされている請求項1または請求項2に記載の電解コンデンサ電極用アルミニウム材。
Figure 2004006683
Figure 2004006683
The crystalline oxide particles have a geometric standard deviation σ g of the particle diameter calculated by the equation (F2) using the geometric average particle diameter M g calculated by the equation (F1) of 1.5 or less. The aluminum material for an electrode of an electrolytic capacitor according to claim 1 or 2.
Figure 2004006683
Figure 2004006683
酸化膜の厚さが、ハンターホール法による測定値で2.5〜5nmである請求項1ないし請求項3の何れかに記載の電解コンデンサ電極用アルミニウム材。The aluminum material for an electrolytic capacitor electrode according to any one of claims 1 to 3, wherein the thickness of the oxide film is 2.5 to 5 nm as measured by a Hunter Hall method. アルミニウム材におけるアルミニウム純度が99.9質量%以上である請求項1ないし請求項4の何れかに記載の電解コンデンサ電極用アルミニウム材。The aluminum material for an electrolytic capacitor electrode according to any one of claims 1 to 4, wherein the aluminum material has an aluminum purity of 99.9% by mass or more. 前記電解コンデンサ電極用アルミニウム材は陽極材である請求項1ないし請求項5の何れかに記載の電解コンデンサ電極用アルミニウム材。The aluminum material for an electrolytic capacitor electrode according to any one of claims 1 to 5, wherein the aluminum material for an electrolytic capacitor electrode is an anode material. 請求項1ないし請求項6の何れかに記載された電解コンデンサ電極用アルミニウム材において、エッチングピットが形成されてなることを特徴とするエッチングされた電解コンデンサ電極用アルミニウム材。7. The etched aluminum material for an electrolytic capacitor electrode according to claim 1, wherein etching pits are formed in the aluminum material for an electrolytic capacitor electrode according to claim 1. 電極材料として、請求項7に記載されたエッチングされた電解コンデンサ電極用アルミニウム材が用いられてなることを特徴とする電解コンデンサ。An electrolytic capacitor, wherein the electrode material is the etched aluminum material for an electrolytic capacitor electrode according to claim 7.
JP2003057692A 2002-04-02 2003-03-04 Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor Expired - Fee Related JP4226930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003057692A JP4226930B2 (en) 2002-04-02 2003-03-04 Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002100433 2002-04-02
JP2003057692A JP4226930B2 (en) 2002-04-02 2003-03-04 Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2004006683A true JP2004006683A (en) 2004-01-08
JP4226930B2 JP4226930B2 (en) 2009-02-18

Family

ID=30446572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003057692A Expired - Fee Related JP4226930B2 (en) 2002-04-02 2003-03-04 Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4226930B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006685A (en) * 2002-04-25 2004-01-08 Showa Denko Kk Method of manufacturing aluminum material for electrode of electrolytic capacitor, method of manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
CN115148501A (en) * 2022-07-15 2022-10-04 新疆众和股份有限公司 Hot-pressed foil and preparation method thereof, electrode and capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202108961WA (en) 2019-03-13 2021-09-29 Givaudan Sa (3aS,4aR,5S,7aS,9R,9aR)-2,2,5,8,8,9a-hexamethyloctahydro-4H-4a,9-methanoazuleno[5,6-d][1,3]dioxole

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006685A (en) * 2002-04-25 2004-01-08 Showa Denko Kk Method of manufacturing aluminum material for electrode of electrolytic capacitor, method of manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4498682B2 (en) * 2002-04-25 2010-07-07 昭和電工株式会社 The manufacturing method of the aluminum material for electrolytic capacitor electrodes, the manufacturing method of the electrode material for electrolytic capacitors, and an aluminum electrolytic capacitor.
CN115148501A (en) * 2022-07-15 2022-10-04 新疆众和股份有限公司 Hot-pressed foil and preparation method thereof, electrode and capacitor
CN115148501B (en) * 2022-07-15 2023-10-03 新疆众和股份有限公司 Hot-pressed foil, preparation method thereof, electrode and capacitor

Also Published As

Publication number Publication date
JP4226930B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
JP2014031586A (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, method for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP5501152B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4498682B2 (en) The manufacturing method of the aluminum material for electrolytic capacitor electrodes, the manufacturing method of the electrode material for electrolytic capacitors, and an aluminum electrolytic capacitor.
JP5551743B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4226930B2 (en) Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP4105565B2 (en) Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP4938226B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4708808B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4732892B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4105558B2 (en) Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor, and electrolytic capacitor
JP4874596B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4652205B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP5123479B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2007169690A (en) Aluminum foil for electrolytic capacitor
JP4170797B2 (en) Method for manufacturing electrolytic capacitor electrode aluminum material, electrolytic capacitor electrode aluminum material, and electrolytic capacitor electrode manufacturing method
JP4874589B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4308556B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JP2001143971A (en) Low pressure hard electrolytic al foil with etching stability and manufacturing method thereof
JP4874600B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4981932B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4690182B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2004088069A (en) Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the same, and manufacturing method of electrode material for electrolytic capacitor
WO2003091482A1 (en) Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and process for producing electrode material for electrolytic capacitor
JP2004100033A (en) Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, and method for manufacturing electrode material for electrolytic capacitor
JP2004165597A (en) Aluminium material for electrode of electrolytic capacitor, process for producing electrode material of electrolytic capacitor, and electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4226930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141205

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees