JP2004006582A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2004006582A
JP2004006582A JP2002249957A JP2002249957A JP2004006582A JP 2004006582 A JP2004006582 A JP 2004006582A JP 2002249957 A JP2002249957 A JP 2002249957A JP 2002249957 A JP2002249957 A JP 2002249957A JP 2004006582 A JP2004006582 A JP 2004006582A
Authority
JP
Japan
Prior art keywords
led
light emitting
electrode
leds
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002249957A
Other languages
Japanese (ja)
Other versions
JP3822545B2 (en
Inventor
Shiro Sakai
酒井 士郎
Kinpei Go
敖 金平
Yasuo Ono
大野 泰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitride Semiconductors Co Ltd
Original Assignee
Nitride Semiconductors Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002249957A priority Critical patent/JP3822545B2/en
Application filed by Nitride Semiconductors Co Ltd filed Critical Nitride Semiconductors Co Ltd
Priority to ES03794115T priority patent/ES2362407T3/en
Priority to EP20030794115 priority patent/EP1553641B1/en
Priority to EP20090014622 priority patent/EP2149906A3/en
Priority to CNB2007101029609A priority patent/CN100570883C/en
Priority to US10/525,998 priority patent/US7417259B2/en
Priority to EP09014623.4A priority patent/EP2154721B1/en
Priority to EP20090014621 priority patent/EP2149905A3/en
Priority to KR20057002667A priority patent/KR100697803B1/en
Priority to EP09014624.2A priority patent/EP2154722B1/en
Priority to EP18150767.4A priority patent/EP3389094A1/en
Priority to EP07118916.1A priority patent/EP1892764B1/en
Priority to RU2005103616A priority patent/RU2295174C2/en
Priority to AT03794115T priority patent/ATE500616T1/en
Priority to PCT/JP2003/010922 priority patent/WO2004023568A1/en
Priority to EP20090014625 priority patent/EP2149907A3/en
Priority to EP20090000561 priority patent/EP2101355A1/en
Priority to CNB038206226A priority patent/CN100421266C/en
Priority to EP20090014620 priority patent/EP2157609A3/en
Priority to DE60336252T priority patent/DE60336252D1/en
Priority to TW92123908A priority patent/TWI280672B/en
Publication of JP2004006582A publication Critical patent/JP2004006582A/en
Publication of JP3822545B2 publication Critical patent/JP3822545B2/en
Application granted granted Critical
Priority to US11/705,205 priority patent/US7956367B2/en
Priority to US12/060,693 priority patent/US8129729B2/en
Priority to US12/139,927 priority patent/US7897982B2/en
Priority to US12/352,296 priority patent/US8084774B2/en
Priority to US12/352,271 priority patent/US7569861B2/en
Priority to US12/352,240 priority patent/US8097889B2/en
Priority to US12/352,280 priority patent/US7615793B2/en
Priority to US12/478,456 priority patent/US7667237B2/en
Priority to US12/479,380 priority patent/US7646031B2/en
Priority to US12/652,518 priority patent/US8680533B2/en
Priority to US12/958,947 priority patent/US8735918B2/en
Priority to US13/584,140 priority patent/US20120305951A1/en
Priority to US13/610,819 priority patent/US8735911B2/en
Priority to US13/890,878 priority patent/US9947717B2/en
Priority to US14/583,476 priority patent/US20150108497A1/en
Priority to US15/430,440 priority patent/US20170154922A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device which can be operated with a higher drive voltage and a lower drive current. <P>SOLUTION: A plurality of LEDs 1 are formed in two dimensions on an insulated substrate 10 such as sapphire with the monolithic formation process and these LEDs are connected in series to form an LED array. Two sets of LED arrays are connected in the reverse polarities to the electrode 32. An air bridge wiring 28 is formed between the LEDs 1 and between the LED 1 and electrode 32. Many LEDs 1 are formed by allocating LED arrays in zig-zag in order to obtain a higher drive voltage and a lower drive current. Since two LED arrays are connected in the reverse polarities, an AC power supply may be used as the power source. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、基板上に複数の発光素子が形成された発光装置に関する。
【0002】
【従来の技術】
発光素子(LED)等の発光手段が表示用途等に使用される場合には、その使用条件が駆動電圧約1〜4V、駆動電流が約20mAとなっている。ところで、近年GaN系化合物半導体を用いた短波長LEDが開発され、フルカラーや白色等の固体光源が実用化されたことに伴い、次第にLEDを照明用途にも応用することが検討されている。LEDを照明用途に応用する場合に、上述した駆動電圧1〜4V、駆動電流20mAという使用条件とは異なる条件で使用される事態も生じる。このため、LEDにより大電流を流し、発光出力を大きくする工夫がなされている。大電流を流すためには、LEDのpn接合面積を大きくし、電流密度を小さく抑える必要がある。
【0003】
【発明が解決しようとする課題】
LEDを照明用光源として使用する場合には、電源として交流を使用し、100V以上の駆動電圧で使用できることが便利である。また、同じ電力を投入して同じ発光出力を得るのであれば、低い電流値を保ちながら高い電圧を印加した方が電力損失を小さくすることができる。しかし、従来のLEDでは、必ずしも十分に駆動電圧を高くすることはできなかった。
【0004】
本発明は、上記従来技術の有する課題に鑑みなされたものであり、その目的は、高い駆動電圧で動作できる発光装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明は、絶縁基板上に複数の発光素子が形成され、前記複数の発光素子がモノリシックに直列接続されることを特徴とする。
【0006】
ここで、前記複数の発光素子は、前記基板上に二次元配置されていることが好適である。
【0007】
また、前記複数の発光素子は2組に分けられ、2個の電極に互いに反対極性となるように並列接続されることが好適である。
【0008】
前記複数の発光素子間の接続はエアブリッジ配線とすることが好適である。
【0009】
前記複数の発光素子間の電気的な分離は、前記基板として使用されるサファイアにより行われることが好適である。
【0010】
また、前記複数の発光素子は同数ずつ2組に分けられ、各組の発光素子アレイはジグザグ状に配置し、かつ、2組の発光素子アレイは2個の電極に互いに反対極性となるように並列接続されることも好適であり、前記2組の発光素子アレイは、互い違いに配置することができる。
【0011】
また、前記発光素子及び電極は、平面形状が略正方形あるいは三角形状とすることが好適である。
【0012】
また、前記複数の発光素子及び電極は、全体形状が略正方形となるように配置されることが好適である。
【0013】
本発明において、電極は、交流電源用電極とすることができる。
【0014】
また、前記2組の発光素子アレイは、共通のn電極を有することが好適である。
【0015】
このように、本発明では複数の発光素子をモノリシックに、すなわち同一基板上に形成し、これらを直列接続することで、高駆動電圧を可能とする。複数の発光素子を一方向に接続することで直流駆動が可能となるが、複数の発光素子を2組に分け、各組の発光素子(発光素子アレイ)を互いに逆極性となるように電極に接続することで交流駆動も可能となる。各組の個数は同数でもよく、あるいは異なっていてもよい。
【0016】
複数の発光素子を二次元配列する方法は種々存在するが、基板専有面積をできるだけ小さくすることが望ましい。例えば、2組の発光素子アレイをそれぞれジグザグ状に、すなわち複数の発光素子を折れ曲がった直線上に配置し、それぞれの発光素子アレイを互い違いに配置することで、基板面積を有効活用して多数の発光素子を接続することができる。2組の発光素子アレイを互い違いに配置することで、配線の交叉部分が生じる場合もあるが、発光素子間をエアブリッジ配線で接続することにより交叉部分での短絡を有効に防止できる。発光素子及び電極の形状は任意であるが、例えば平面形状が略正方形となるように形成することで全体形状も略正方形となり、標準的なマウント構造を使用できる。発光素子及び電極を正方形以外、例えば三角形とした場合でも、これらの三角形状を組み合わせることで全体として略正方形を形成すれば、同様に標準的なマウント構造を使用できるようになる。
【0017】
【発明の実施の形態】
以下、図面に基づき本発明の実施形態について説明する。
【0018】
図1には、本実施形態においてGaN系化合物半導体発光素子としてのLED1の基本構成が示されている。LED1は、基板10上に順次GaN層12、Siドープのn型GaN層14、InGaN発光層16、AlGaN層18、p型GaN層20が積層され、p型GaN層20に接してp電極22、n型GaN層14に接してn電極24が形成される構成である。
【0019】
図1に示されたLEDは以下のプロセスにより作製される。すなわち、まず、MOCVD装置にてサファイアc面基板を水素雰囲気中で1100℃、10分間熱処理する。そして、温度を500℃まで降温させ、シランガスとアンモニアガスを100秒間供給して不連続なSiN膜を基板10上に形成する。なお、このプロセスはデバイス中の転位密度を低減させるためのものであり、図ではSiN膜は省略している。次に、同一温度でトリメチルガリウム及びアンモニアガスを供給してGaN層を20nm厚成長させる。温度を1050℃に昇温し、再びトリメチルガリウム及びアンモニアガスを供給してアンドープGaN(u−GaN)層12及びSiドープのn型GaN層14を各2μm厚成長させる。その後、温度を700℃程度まで降温してInGaN発光層16を2nm厚成長させる。目標組成はx=0.15、すなわちIn0.15Ga0.85Nである。発光層16成長後、温度を1000℃まで昇温してAlGaN正孔注入層18を成長させ、さらにp型GaN層20を成長させる。
【0020】
p型GaN層20を成長させた後、ウエハをMOCVD装置から取り出し、Ni10nm厚、Au10nm厚を順次真空蒸着で成長層表面に形成する。5%の酸素を含む窒素ガス雰囲気中で520℃熱処理することで金属膜はp型透明電極22となる。透明電極形成後、全面にフォトレジストを塗布し、n型電極形成のためのエッチングをフォトレジストをマスクとして行う。エッチング深さは、例えば600nm程度である。エッチングで露出したn型GaN層14上にTi5nm厚、Al5nm厚を形成し、窒素ガス雰囲気中で450℃、30分間熱処理してn型電極24を形成する。最後に、基板10の裏面を100μmまで研磨してチップを切り出し、マウントすることでLED1が得られる。
【0021】
図1では、基板10上に一つのLED1が形成されているが、本実施形態では、基板10上にLED1をモノリシックに、かつ二次元アレイ状に複数形成し、各LEDを接続して発光装置(チップ)を構成する。
【0022】
図2には、発光装置の等価回路図が示されている。図2において、2次元アレイ状に形成された発光素子群は同数(図では4個)ずつ2組に分けられ、各組のLED1はそれぞれ直列接続され、2組のLED列は電極(駆動電極)に対して逆極性となるように並列接続される。このようにLED列が直列接続されることにより、各々の駆動電圧が加算された高い電圧でLED1を駆動することができる。また、各LED列はその極性が互いに反対となるように電極に並列接続されているので、電源として交流電源を使用した場合にも、電源の各周期中に必ずどちらかのLED列が発光していることになるので、効率のよい発光を行うことができる。
【0023】
図3には、基板10上にモノリシックに形成された複数のLEDの部分的な平面図が示されている。また、図4は、図3のIV−IV断面図が示されている。図3において、LED1の上面には、図1に示されるようにp電極22及びn電極24が形成されている。隣接するLED1のp電極22とn電極24との間がエアブリッジ配線28により接続され、複数のLED1が直列接続される。
【0024】
図4において、各LED1は説明の都合上簡略的に示されている。すなわち、n−GaN層14、p−GaN層20、p−電極22、n−電極24のみが示されている。実際には図1に示されるようにInGaN発光層16等が存在することは云うまでもない。エアブリッジ配線28は、p電極22からn電極24までを空中を介して接続する。これにより、素子表面に絶縁膜を塗布し、この上に電極を形成してp電極22とn電極24とを電気的に接続する方法に比べ、エッチング溝に沿って電極を配置する必要が無くなるので、配線切れや絶縁膜からn層、p層へ絶縁材料を構成する元素が熱拡散してLED1を劣化させるという問題を回避できる。エアブリッジ配線28は、LED1間のみならずLED1と図示しない電極との間の接続にも使用される。
【0025】
また、図4に示されるように、各LED1は互いに独立し、電気的に絶縁される必要がある。このため、各LED1はサファイア基板10上で分離された構成となっている。サファイアはそれ自身絶縁体であるので、LED1をそれぞれ電気的に分離することができる。このように、サファイア基板10をLEDの電気的な分離を行うための抵抗体として使用することにより、容易かつ確実にLEDの電気的な分離を行うことができる。
【0026】
なお、発光素子としては、pn接合を有するLEDの他、MISとすることもできる。
【0027】
図5には、発光装置の他の等価回路図が示されている。図において、20個のLED1が直列接続されて1つのLEDアレイを形成しており、2つのLEDアレイ(合計40個のLED)が電源に並列に接続されている。LED1の駆動電圧は5Vに設定されており、各LEDアレイの駆動電圧は100Vとなっている。2つのLEDアレイは図2と同様に互いに反対極性となるように電源に並列接続されており、電源の極性がいずれであっても必ずどちらかのLEDアレイが発光することになる。
【0028】
図6には、二次元アレイが具体的に示されている。図2の等価回路図に対応するものである。図において、サファイア基板10上に合計40個のLED1が形成されており、それぞれ20個ずつ2組に分けられ、エアブリッジ配線28により直列接続されて2つのLEDアレイを形成している。より詳細には、各LED1は全て同形の正方形で同サイズであり、1つのLEDアレイは上から6個、7個、7個とそれぞれ直線上に配置され、上から第1列目(6個)と第2列目(7個)は互いに逆向きに形成され、第2列目と第3列目も互いに逆向きに形成される。第1列目と第2列目、第2列目と第3列目は互いに離間して配置されている。これは、後述するように他方のLEDアレイの列が交互に挿入されるためである。第1列目の右端のLED1と第2列目の右端のLED1とはエアブリッジ配線28により接続される。第2列目の左端のLED1と第3列目の左端のLED1もエアブリッジ配線28で接続されてジグザグ配列となる。第1列目の左端のLED1は基板10の左上部に形成された電極(パッド)32にエアブリッジ配線28で接続され、第3列目の右端のLED1は基板10の右下部に形成された電極(パッド)32にエアブリッジ配線28で接続される。2つの電極(パッド)32もLED1と同形の正方形である。他方のLEDアレイは上述した一方のLEDアレイの間隙に互い違いとなるように形成される。すなわち、他方のLEDアレイは上から7個、7個、6個とそれぞれ直線上に配置され、上から第1列目は一方のLEDアレイの第1列目と第2列目の間に形成され、第2列目は一方のLEDアレイの第2列目と第3列目の間に形成され、第3列目は一方のLEDアレイの第3列目の下に形成される。他方のLEDアレイの第1列目と第2列目、及び第2列目と第3列目も互いに逆方向となるように形成され、第1列目の右端のLED1は第2列目の右端のLED1にエアブリッジ配線28で接続され、第2列目の左端のLED1は第3列の左端のLED1にエアブリッジ配線28で接続されてジグザグ状となる。他方のLEDアレイの第1列目の左端のLEDは基板10の左上部に形成された電極32にエアブリッジ配線28で接続され、第3列目の右端のLED1は基板10の右下部に形成された電極32にエアブリッジ配線28で接続される。一方のLEDアレイと他方のLEDアレイの電極32に対する極性は互いに逆である。発光装置(チップ)の全体形状は長方形である。電源が供給される2つの電極32は、長方形の対角位置に離間して形成される点も着目されたい。
【0029】
図7には、図6の回路図が示されている。それぞれのLEDアレイはジグザグ状に屈曲しつつ直列接続され、2つのLEDアレイはジグザグ状の各列が互いの列の間に形成される様子が明らかとなろう。このような配置とすることで、多数のLED1を小さな基板10上に配置することができる。また、40個のLED1に対して電極32が2個でよいので、この点でも基板10の使用効率を向上させることができる。また、各LED1を分離するためにLED1を個別に形成する場合にはウエハをカットして分離する必要があるのに対し、本実施形態では各LED1の分離をエッチングで行うことができるので、LED1の間隔を狭くすることができる。これにより、サファイア基板10の大きさをより小さくすることができる。LED1同士の分離は、フォトレジストや反応性イオンエッチング、ウエットエッチングを併用することでLED1以外の領域を基板10に達するまでエッチング除去することで達成される。各LEDアレイは交互に発光するので、発光効率を向上できるとともに放熱特性も向上させることができる。また、直列接続させるLED1の数を変更すれば、全体としての駆動電圧も変更できる。また、LED1の面積を小さくすると、1つのLED当たりの駆動電圧を高くすることもできる。LED1を20個直列に接続した場合、商用電源(100V、60Hz)で駆動すると、およそ150mWの発光出力を得ることができる。この場合の駆動電流としては20mA程度である。
【0030】
なお、図7から分かるように、2つのLEDアレイをジグザグ状に交互に配列する場合、エアブリッジ配線28に交叉部分34が必然的に発生する。例えば、他方のLEDアレイの第1列目と第2列目を接続する際に、一方のLEDアレイの第1列目と第2列目を接続するための配線部分と交叉する。しかし、本実施形態のエアブリッジ配線28は、上述したように基板10に接着しておらず、基板10から離れて空中を通過するので、交叉部分34においてエアブリッジ配線28同士が接触し、短絡することを容易に回避することができる。エアブリッジ配線28を用いる利点の一つである。エアブリッジ配線28は、例えば以下のようにして形成される。すなわち、全面に2μmの厚さのフォトレジストを塗布し、エアブリッジ配線の形状に穴を開けた後にポストベークする。その上に、真空蒸着でTiを10nm、Auを10nm、この順序で蒸着する。さらにその上の全面に2μm厚さでフォトレジストを再度塗布し、エアブリッジ配線を形成する部分のみに穴を開ける。次いで、TiとAuを電極として電解液中でイオンプレーティング(メッキ)により電極全面に3〜5μmの厚さのAuを付着させる。その後、試料をアセトンに浸し、超音波洗浄によりフォトレジストを溶解除去してエアブリッジ配線28が完成する。
【0031】
このように、複数のLED1を二次元アレイ状に配置することで、基板面積を有効に活用しつつ高駆動電圧、特に商用電源での駆動も可能となるが、二次元アレイのパターンとしてはこの他にも種々のパターンが可能である。一般に、二次元アレイパターンとしては、以下の条件を備えることが望ましい。
【0032】
(1)各LEDに均一に電流を流し、均一な発光を得るためには各LEDの形状、電極位置が同一であることが望ましい。
【0033】
(2)ウエハをカットしてチップにするためには、各LEDの辺は直線であることが望ましい。
【0034】
(3)光取り出し効率を向上させるため、標準的なマウントを使用して周辺からの反射を利用するためにはLEDは平面形状が正方形に近い形状が望ましい。
【0035】
(4)2つの電極(ボンディングパット)の大きさは100μm角程度で、互いに離れていることが望ましい。
【0036】
(5)ウエハ面積の有効利用のため、配線、パッドの占める割合は小さい方が望ましい。
【0037】
もちろん、これらは必須ではなく、例えば各LEDの形状としては平面形状三角形を用いることも可能であろう。各LEDの形状が三角形であっても、これらを組み合わせることで全体形状を略正方形とすることができる。以下、二次元アレイパターンの例をいくつか示す。
【0038】
図8には、合計6個のLED1を二次元に配置した例が示されており、図9にはその回路図が示されている。図8の配置は、基本的には図6の配置と同様であり、合計6個のLEDアレイは同数ずつ2組に分けられ、それぞれ直列接続された3個のLEDから構成される。一方のLEDアレイはジグザグ状に配列され、上から第1列目は1個のLED1、第2列目は2個のLED1が形成される。第1列目のLEDと第2列目の右端のLED1はエアブリッジ配線28で直列接続され、第2列目の2個のLED1もエアブリッジ配線28で直列接続される。基板10の左上部と左下部に電極(パッド)32が形成され、第1列目のLED1は左上部の電極32にエアブリッジ配線で接続され、第2列目の左端のLED1は左下部の電極32に接続される。他方のLEDアレイもジグザグ状に配列され、上から第1列目は2個のLED1、第2列目は1個のLED1が形成される。他方のLEDアレイの第1列目は前記一方のLEDアレイの第1列目と第2列目の間に形成され、他方のLEDアレイの第2列目は前記一方のLEDアレイの第2列目の下方に形成される。第1列目の右端のLED1は第2列目のLED1にエアブリッジ配線28で直列接続され、第1列目の2個のLED1同士もエアブリッジ配線28で直列接続される。第1列目の左端のLED1は左上部の電極32にエアブリッジ配線28で接続され、第2列目のLED1は左下部の電極32にエアブリッジ配線28で接続される。図9から分かるように、この例でも2つのLEDアレイは互いに並列に電極32に接続され、かつ、互いに逆極性となるように接続される。したがって、交流電源を供給した場合、2つのLEDアレイは交互に発光することになる。
【0039】
図10には、合計14個のLEDを二次元配置した例が示されており、図11にはその回路図が示されている。合計14個のLEDアレイは2組に分けられ、それぞれ直列接続された7個のLEDから構成される。一方のLEDアレイはジグザグ状に配列され、上から第1列目は3個のLED1、第2列目は4個のLED1が形成される。第1列目の左端のLEDと第2列目の左端のLED1はエアブリッジ配線28で直列接続され、第1列目の3個のLED同士、及び第2列目の4個のLED1同士もエアブリッジ配線28で直列接続される。基板10の右上部と右下部に電極(パッド)32が形成され、第1列目の右端のLED1は右上部の電極32にエアブリッジ配線で接続され、第2列目の右端のLED1は右下部の電極32に接続される。他方のLEDアレイもジグザグ状に配列され、上から第1列目は4個のLED1、第2列目は3個のLED1が形成される。他方のLEDアレイの第1列目は前記一方のLEDアレイの第1列目と第2列目の間に形成され、他方のLEDアレイの第2列目は前記一方のLEDアレイの第2列目の下方に形成される。第1列目の左端のLED1は第2列目の左端のLED1にエアブリッジ配線28で直列接続される。第1列目の4個のLED1同士、及び第2列目の3個のLED1同士も直列接続される。第1列目の右端のLED1は右上部の電極32にエアブリッジ配線28で接続され、第2列目の右端のLED1は右下部の電極32にエアブリッジ配線28で接続される。図11から分かるように、この例でも2つのLEDアレイは互いに並列に電極32に接続され、かつ、互いに逆極性となるように接続される。したがって、交流電源を供給した場合、2つのLEDアレイは交互に発光することになる。
【0040】
図6、図8、図10の二次元パターンに共通する特徴としては、各LED1が略正方形の同形、同サイズであること、2つの電極(パッド)も略正方形であり、隣接形成されていない(離間形成されている)こと、2つのLEDアレイの組み合わせであること、2つのLEDアレイは屈曲しつつチップ上に互いに交錯するように形成されること、2つのLEDアレイは互いに逆極性となるように電極に接続されること、等である。
【0041】
図12には、平面形状が三角形のLEDを二次元配列した場合の例が示されており、図13にはその回路図が示されている。図12において、合計6個のLED1a、1b、1c、1d、1e、1fがその平面形状が三角形状となるように形成されている。LED1aとLED1eが三角形の一辺で対向して2つで略正方形となるように配置され、LED1bと1fが対向して2つで略正方形となるように配置される。また、LED1dと電極32が対向して接続し、LED1cと電極32が対向して接続する。2つの電極32もLEDと同様に平面形状が三角形状であり、同様に略正方形となるように配置される。LED同士の対向する辺はn電極24を構成し、すなわち、対向する2つのLEDはn電極24を共有する。LEDと電極32もn電極接続である。この配置も、上述した例と同様に合計6個のLEDは2組に分けられる。一方のLEDアレイは、LED1a、LED1b、LED1cからなるアレイであり、LED1aのp電極22は電極32にエアブリッジ配線28で接続され、そのn電極24はLED1bのp電極22とエアブリッジ配線28で接続される。LED1bのn電極24はLED1cのp電極22とエアブリッジ配線28で接続される。LED1cのn電極24は電極32に接続される。他方のLEDアレイは、LED1d、LED1e、LED1fから構成され、電極32とLED1fのp電極22はエアブリッジ配線28で接続され、LED1fのn電極24はLED1eのp電極22とエアブリッジ配線28で接続され、LED1eのn電極24とLED1dのp電極22はエアブリッジ配線28で接続され、LED1dのn電極24は電極32に接続される。
【0042】
図13において、一方のLEDアレイを構成するLED1aと他方のLEDアレイを構成するLED1eのn電極が接続されており、一方のLEDアレイを構成するLED1bと他方のLEDアレイを構成するLED1fのn電極が接続されている点にも着目されたい。2組のLEDアレイのいくつかのn電極を共有することで、回路配線を削減することができる。また、この例においても、2つのLEDアレイは並列に電極32に接続され、かつ、互いに逆極性となるように接続される。また、各LEDは同形、同サイズであり、各LEDを一つの辺で対向させるとともに電極32も三角形状とすることでLED及び電極を高密度に形成して必要な基板面積を小さくすることができる。
【0043】
図14には、平面形状が三角形のLEDを二次元配列した他の例が示されており、図15にはその回路図が示されている。この例では、合計16個のLED1a〜1rが二次元形成されている。LED1aと1j、1bと1k、1cと1m、1dと1n、1eと1p、1fと1q、1gと1rがそれぞれ三角形の一つの辺で対向する。対向する辺にはn電極24が共通形成されている。また、LED1iと電極32が対向し、LED1hと電極32が対向する。一方のLEDアレイはLED1a、1b、1c、1d、1e、1f、1g、1hから構成され、他方のLEDアレイはLED1r、1q、1p、1n、1m、1k、1j、1iから構成される。LED1bのn電極24はエアブリッジ配線28によりLED1cのp電極22に接続され、LED1eのn電極24もエアブリッジ配線28によりLED1fのp電極22に接続される。また、LED1qのn電極24もエアブリッジ配線28によりLED1pのp電極22に接続され、LED1mのn電極24もエアブリッジ配線28によりLED1kのp電極22に接続される。図14においても、図12と同様に交叉部分が生じるが、エアブリッジ配線28により短絡を回避できる。また、この例においても2組のLEDアレイのいくつかのn電極24を共有構造とすることで必要な配線を削減している。また、この例においても2つのLEDアレイは並列で互いに逆極性で電極32に接続されており、交流駆動が可能である。図12においては合計6個のLEDの場合、図14においては合計16個のLEDの場合について示したが、他の個数のLEDでも同様に二次元配列できる。本願出願人は、38個のLEDを二次元配列した発光装置も作成している。
【0044】
以上、交流駆動の場合について説明したが、直流駆動も可能であることは言うまでもない。この場合、LEDアレイを互いに逆極性となるように電極に接続するのではなく、直流電源の極性の向きに合わせてLEDアレイを順方向に接続すればよい。複数のLEDを直列接続することで、高電圧駆動が可能である。以下、直流駆動の場合についても説明する。
【0045】
図16には、2個のLEDを直列接続した例が示されており、図17にはその回路図が示されている。各LED1は平面形状が矩形状であり、2個のLED間はエアブリッジ配線28で接続される。電極32は各LED1の近傍に形成されており、電極32とLED1とで長方形の領域を形成する。すなわち、電極32は長方形領域の一部を占有し、長方形領域の他の領域にLED1が形成されている。
【0046】
図18には、合計4個のLEDを二次元配列した例が示されており、図19にはその回路図が示されている。図16のLED1を2個に分割し、それぞれを並列に接続したものである。2個のLEDからなるLEDアレイを2組並列に順方向接続したと云うこともできる。LED1aと1bで一つのLEDアレイを構成し、LED1cと1dでもう一つのLEDアレイを構成する。LED1aとLED1cはp電極22及びn電極24を共有し、LED1bとLED1dもp電極22及びn電極24を共有する。この構成によれば、図16に比べて電流が均一化する効果がある。
【0047】
図20は、合計3個のLEDを二次元配列した例が示されており、図21にはその回路図が示されている。LED1a、1b、1cは同形ではなく、LED1aの一部に電極32が形成されている。LED1aのn電極24とLED1bのp電極はLED1bの上を跨ぐエアブリッジ配線28で接続される。各LEDの形状及び配置を工夫することで、3個のLEDであっても発光装置(チップ)全体の外観形状を略正方形とすることができる。
【0048】
図22には、合計6個のLEDを二次元配列した例が示されており、図23にはその回路図が示されている。各LED1a〜1fは同形、同サイズである。LED1a〜1fは直列接続される。LED1a〜1cは直線上に配置され、LED1d〜1fは他の直線上に配置される。LED1cとLED1dはエアブリッジ配線28で接続される。この例においても、チップの全体形状を略正方形とすることができる。
【0049】
図24には、合計5個のLEDを二次元配列した例が示されており、図25にはその回路図が示されている。LED1a〜1eは同形(長方形)、同サイズである。この例においても、全体形状を略正方形とすることができる。
【0050】
以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではなく種々の変更が可能である。特に、複数の発光素子(LED等)を二次元配置する場合のパターンは上述したパターン以外にも可能である。この場合、隣接する発光素子間で電極を共有して配線を少なくすること、全体形状を正方形あるいは長方形とすること、複数組の発光素子アレイを電極に並列接続すること、交流駆動の場合に複数組の発光素子アレイを互い逆極性とすること、複数組の発光素子アレイをそれぞれジグザグ状に屈曲させて組み合わせること、等が好適である。
【0051】
図26〜図31には、これらの変更例のいくつかが例示されている。図26は交流駆動の場合の二次元配置であり、合計40個のLEDが配置されている。図27はその回路図である。図6と異なる点は、2組のLEDアレイのいくつかがn電極24を共有する点である(図5参照)。例えば、一方のLEDアレイの第1列の右端から2番目に位置するLED(図中αで示す)のn電極24は、他方のLEDアレイの第1列の右端に位置するLED(図中βで示す)のn電極24と共有されている。なお、LEDアレイの端部(図中γ部分)におけるエアブリッジ配線28は、交叉させることなく共通形成されている。
【0052】
図28は、交流駆動の場合の二次元配置であり、合計14個のLEDが配置されている。図29はその回路図である。図10と異なる点は、2組のLEDアレイのいくつかがn電極24を共有する点である。例えば、一方のLEDアレイの第1列の左端のLED(図中αで示す)のn電極24は、他方のLEDアレイの第1列の右端から2番目に位置するLED(図中βで示す)のn電極24と共有されている。また、端部(図中γ部分)におけるエアブリッジ配線28は共通形成されている。
【0053】
図30は、交流駆動の場合の二次元配置であり、合計6個のLEDが配置されている。図31はその回路図である。この例においても、端部(γ部)のエアブリッジ配線28が共通形成されている。この構成も、一方のLEDアレイにおけるn電極24と他方のLEDアレイにおけるn電極24が共有されていると云うことができる。
【0054】
【発明の効果】
以上説明したように、本発明によれば、高い駆動電圧で駆動し発光させることができる。
【図面の簡単な説明】
【図1】発光素子(LED)の基本構成図である。
【図2】発光装置の等価回路図である。
【図3】2個のLEDの平面図である。
【図4】図3のIV−IV断面図である。
【図5】発光装置の他の等価回路図である。
【図6】40個のLEDを二次元配列した説明図である。
【図7】図6の回路図である。
【図8】6個のLEDを二次元配列した説明図である。
【図9】図8の回路図である。
【図10】14個のLEDを二次元配列した説明図である。
【図11】図10の回路図である。
【図12】6個のLEDを二次元配列した説明図である。
【図13】図12の回路図である。
【図14】16個のLEDを二次元配列した説明図である。
【図15】図14の回路図である。
【図16】2個のLEDを配列した説明図である。
【図17】図16の回路図である。
【図18】4個のLEDを二次元配列した説明図である。
【図19】図18の回路図である。
【図20】3個のLEDを二次元配列した説明図である。
【図21】図20の回路図である。
【図22】6個のLEDを二次元配列した説明図である。
【図23】図22の回路図である。
【図24】5個のLEDを二次元配列した説明図である。
【図25】図24の回路図である。
【図26】他の二次元配置説明図である。
【図27】図26の回路図である。
【図28】他の二次元配置説明図である。
【図29】図28の回路図である。
【図30】他の二次元配置説明図である。
【図31】図30の回路図である。
【符号の説明】
10 基板(ウエハ)、12 u−GaN層、14 n型GaN層、16 InGaN発光層、18 AlGaN層、20 p−GaN層、22 p−電極、24 n−電極。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light emitting device in which a plurality of light emitting elements are formed on a substrate.
[0002]
[Prior art]
When a light emitting means such as a light emitting element (LED) is used for a display purpose or the like, the use conditions are a driving voltage of about 1 to 4 V and a driving current of about 20 mA. By the way, with the development of short-wavelength LEDs using GaN-based compound semiconductors in recent years, and the realization of solid-state light sources such as full-color and white, it has been studied to gradually apply LEDs to lighting applications. When an LED is applied to a lighting application, a situation may arise in which the LED is used under conditions different from the above-described use conditions of a drive voltage of 1 to 4 V and a drive current of 20 mA. For this reason, a scheme has been devised in which a large current flows through the LED to increase the light emission output. In order to allow a large current to flow, it is necessary to increase the pn junction area of the LED and reduce the current density.
[0003]
[Problems to be solved by the invention]
When an LED is used as a light source for illumination, it is convenient to use an alternating current as a power supply and to use it at a driving voltage of 100 V or more. If the same power is applied to obtain the same light emission output, applying a high voltage while maintaining a low current value can reduce power loss. However, in the conventional LED, the driving voltage cannot always be sufficiently increased.
[0004]
The present invention has been made in view of the above-mentioned problems of the related art, and has as its object to provide a light-emitting device that can operate at a high driving voltage.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is characterized in that a plurality of light emitting elements are formed on an insulating substrate, and the plurality of light emitting elements are monolithically connected in series.
[0006]
Here, it is preferable that the plurality of light emitting elements are two-dimensionally arranged on the substrate.
[0007]
Further, it is preferable that the plurality of light emitting elements are divided into two sets and are connected in parallel to two electrodes so as to have opposite polarities.
[0008]
The connection between the plurality of light emitting elements is preferably an air bridge wiring.
[0009]
The electrical separation between the plurality of light emitting elements is preferably performed by sapphire used as the substrate.
[0010]
Further, the plurality of light emitting elements are divided into two sets each having the same number, the light emitting element arrays of each set are arranged in a zigzag shape, and the two light emitting element arrays are provided with two electrodes having opposite polarities. It is also preferable that they are connected in parallel, and the two sets of light emitting element arrays can be arranged alternately.
[0011]
Preferably, the light emitting element and the electrode have a substantially square or triangular planar shape.
[0012]
Further, it is preferable that the plurality of light emitting elements and the electrodes are arranged so that the overall shape is substantially square.
[0013]
In the present invention, the electrode may be an AC power supply electrode.
[0014]
Further, it is preferable that the two sets of light emitting element arrays have a common n-electrode.
[0015]
As described above, in the present invention, a plurality of light-emitting elements are formed monolithically, that is, on the same substrate, and these elements are connected in series, thereby enabling a high driving voltage. DC driving is possible by connecting a plurality of light emitting elements in one direction. However, the plurality of light emitting elements are divided into two sets, and each set of light emitting elements (light emitting element array) is connected to an electrode so that the polarities thereof are opposite to each other. The connection enables AC driving. The number of each set may be the same or different.
[0016]
Although there are various methods for two-dimensionally arranging a plurality of light emitting elements, it is desirable to reduce the area occupied by the substrate as much as possible. For example, by arranging two light emitting element arrays in a zigzag shape, that is, arranging a plurality of light emitting elements on a bent straight line, and arranging the respective light emitting element arrays alternately, a large number of light emitting elements can be effectively used by utilizing the substrate area. A light-emitting element can be connected. By alternately arranging the two sets of light emitting element arrays, a crossing portion of the wiring may occur. However, by connecting the light emitting elements with an air bridge wiring, a short circuit at the crossing portion can be effectively prevented. The shapes of the light emitting element and the electrode are arbitrary. For example, when the planar shape is formed to be substantially square, the overall shape becomes substantially square, and a standard mounting structure can be used. Even when the light emitting element and the electrode are formed in a shape other than a square, for example, a triangle, a standard mount structure can be used similarly by combining these triangles to form a substantially square as a whole.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
FIG. 1 shows a basic configuration of an LED 1 as a GaN-based compound semiconductor light emitting device in the present embodiment. In the LED 1, a GaN layer 12, a Si-doped n-type GaN layer 14, an InGaN light-emitting layer 16, an AlGaN layer 18, and a p-type GaN layer 20 are sequentially stacked on a substrate 10, and the p-type electrode 22 is in contact with the p-type GaN layer 20. , An n-electrode 24 is formed in contact with the n-type GaN layer 14.
[0019]
The LED shown in FIG. 1 is manufactured by the following process. That is, first, a sapphire c-plane substrate is heat-treated at 1100 ° C. for 10 minutes in a hydrogen atmosphere by an MOCVD apparatus. Then, the temperature is lowered to 500 ° C., and a silane gas and an ammonia gas are supplied for 100 seconds to form a discontinuous SiN film on the substrate 10. This process is for reducing the dislocation density in the device, and the drawing does not show the SiN film. Next, trimethylgallium and ammonia gas are supplied at the same temperature to grow a GaN layer to a thickness of 20 nm. The temperature is raised to 1050 ° C., and trimethylgallium and ammonia gas are supplied again to grow the undoped GaN (u-GaN) layer 12 and the Si-doped n-type GaN layer 14 to a thickness of 2 μm each. Thereafter, the temperature is lowered to about 700 ° C., and the InGaN light emitting layer 16 is grown to a thickness of 2 nm. The target composition is x = 0.15, that is, In 0.15 Ga 0.85 N. After the light emitting layer 16 is grown, the temperature is raised to 1000 ° C. to grow the AlGaN hole injection layer 18 and further to grow the p-type GaN layer 20.
[0020]
After the growth of the p-type GaN layer 20, the wafer is taken out from the MOCVD apparatus, and a 10 nm thick Ni and 10 nm thick Au are sequentially formed on the surface of the grown layer by vacuum evaporation. By performing the heat treatment at 520 ° C. in a nitrogen gas atmosphere containing 5% oxygen, the metal film becomes the p-type transparent electrode 22. After forming the transparent electrode, a photoresist is applied to the entire surface, and etching for forming an n-type electrode is performed using the photoresist as a mask. The etching depth is, for example, about 600 nm. A 5 nm thick Ti and 5 nm thick Al are formed on the n-type GaN layer 14 exposed by the etching, and heat-treated at 450 ° C. for 30 minutes in a nitrogen gas atmosphere to form an n-type electrode 24. Finally, the back surface of the substrate 10 is polished to 100 μm, and chips are cut out and mounted, whereby the LED 1 is obtained.
[0021]
In FIG. 1, one LED 1 is formed on a substrate 10, but in the present embodiment, a plurality of LEDs 1 are formed on the substrate 10 in a monolithic and two-dimensional array, and the LEDs are connected to form a light emitting device. (Chip).
[0022]
FIG. 2 shows an equivalent circuit diagram of the light emitting device. In FIG. 2, the light emitting element groups formed in a two-dimensional array are divided into two sets each having the same number (four in the figure), each set of LEDs 1 is connected in series, and two sets of LED columns are connected to electrodes (drive electrodes). ) Are connected in parallel so that they have opposite polarities. By connecting the LED strings in series in this manner, the LED 1 can be driven at a high voltage obtained by adding the respective drive voltages. In addition, since each LED string is connected in parallel to the electrodes so that their polarities are opposite to each other, even when an AC power supply is used, one of the LED strings always emits light during each cycle of the power supply. Therefore, efficient light emission can be performed.
[0023]
FIG. 3 is a partial plan view of a plurality of LEDs formed monolithically on the substrate 10. FIG. 4 is a sectional view taken along line IV-IV of FIG. 3, a p-electrode 22 and an n-electrode 24 are formed on the upper surface of the LED 1 as shown in FIG. The p-electrode 22 and the n-electrode 24 of the adjacent LED 1 are connected by an air bridge wiring 28, and a plurality of LEDs 1 are connected in series.
[0024]
In FIG. 4, each LED 1 is simply shown for convenience of explanation. That is, only the n-GaN layer 14, the p-GaN layer 20, the p-electrode 22, and the n-electrode 24 are shown. Needless to say, the InGaN light emitting layer 16 and the like actually exist as shown in FIG. The air bridge wiring 28 connects the p-electrode 22 to the n-electrode 24 via the air. This eliminates the need to dispose the electrodes along the etching grooves, as compared with a method in which an insulating film is applied to the element surface, electrodes are formed thereon, and the p-electrode 22 and the n-electrode 24 are electrically connected. Therefore, it is possible to avoid a problem that the LED 1 is deteriorated due to thermal cutoff of the wiring and elements constituting the insulating material from the insulating film to the n-layer and the p-layer due to thermal diffusion. The air bridge wiring 28 is used not only between the LEDs 1 but also between the LEDs 1 and electrodes (not shown).
[0025]
Further, as shown in FIG. 4, each LED 1 needs to be independent of each other and electrically insulated. For this reason, each LED 1 is configured to be separated on the sapphire substrate 10. Since sapphire itself is an insulator, each LED 1 can be electrically isolated. As described above, by using the sapphire substrate 10 as a resistor for electrically separating the LEDs, the electrical separation of the LEDs can be easily and reliably performed.
[0026]
The light emitting element may be an MIS in addition to an LED having a pn junction.
[0027]
FIG. 5 shows another equivalent circuit diagram of the light emitting device. In the figure, 20 LEDs 1 are connected in series to form one LED array, and two LED arrays (40 LEDs in total) are connected in parallel to a power supply. The driving voltage of LED1 is set to 5V, and the driving voltage of each LED array is 100V. The two LED arrays are connected in parallel to the power supply so as to have opposite polarities as in FIG. 2, and one of the LED arrays always emits light regardless of the polarity of the power supply.
[0028]
FIG. 6 specifically shows a two-dimensional array. This corresponds to the equivalent circuit diagram of FIG. In the figure, a total of 40 LEDs 1 are formed on a sapphire substrate 10, each of which is divided into two sets of 20 and connected in series by an air bridge wiring 28 to form two LED arrays. More specifically, the LEDs 1 are all the same square and of the same size, and one LED array is arranged on a straight line with 6, 7, and 7 from the top, respectively. ) And the second row (seven) are formed in opposite directions, and the second and third rows are also formed in opposite directions. The first and second rows and the second and third rows are spaced apart from each other. This is because the rows of the other LED array are inserted alternately as described later. The rightmost LED1 in the first column and the rightmost LED1 in the second column are connected by an air bridge wiring 28. The leftmost LED1 in the second column and the leftmost LED1 in the third column are also connected by the air bridge wiring 28 to form a zigzag arrangement. The leftmost LED1 in the first column is connected to an electrode (pad) 32 formed on the upper left of the substrate 10 by an air bridge wiring 28, and the rightmost LED1 in the third column is formed on the lower right of the substrate 10. The electrode (pad) 32 is connected to the air bridge wiring 28. The two electrodes (pads) 32 are also the same square as the LED 1. The other LED array is formed so as to be staggered in the gap between the one LED array. That is, the other LED array is arranged on the straight line with 7, 7, and 6 from the top, respectively, and the first column from the top is formed between the first and second columns of one LED array. The second column is formed between the second and third columns of one LED array, and the third column is formed below the third column of one LED array. The first and second columns and the second and third columns of the other LED array are also formed to be in opposite directions, and the rightmost LED 1 of the first column is the second column. The leftmost LED1 in the second row is connected to the rightmost LED1 via the airbridge wiring 28, and the leftmost LED1 in the third row is connected to the leftmost LED1 via the airbridge wiring 28 in a zigzag shape. The leftmost LED in the first column of the other LED array is connected to an electrode 32 formed on the upper left of the substrate 10 by an air bridge wiring 28, and the rightmost LED1 in the third column is formed on the lower right of the substrate 10. The electrode 32 is connected by an air bridge wiring 28. The polarities of the one LED array and the other LED array with respect to the electrodes 32 are opposite to each other. The overall shape of the light emitting device (chip) is rectangular. It should also be noted that the two electrodes 32 to which power is supplied are formed apart from each other at diagonal positions of a rectangle.
[0029]
FIG. 7 shows the circuit diagram of FIG. Each LED array is connected in series while bending in a zigzag manner, and it will be apparent that the two LED arrays are formed with each zigzag row between each other. With such an arrangement, a large number of LEDs 1 can be arranged on the small substrate 10. Since only two electrodes 32 are required for 40 LEDs 1, the use efficiency of the substrate 10 can be improved in this respect as well. Further, when the LEDs 1 are individually formed in order to separate the LEDs 1, it is necessary to cut and separate the wafer. On the other hand, in the present embodiment, the separation of the LEDs 1 can be performed by etching. Can be narrowed. Thereby, the size of the sapphire substrate 10 can be further reduced. Separation between the LEDs 1 is achieved by using a photoresist, reactive ion etching, and wet etching in combination to etch away the areas other than the LEDs 1 until they reach the substrate 10. Since each LED array emits light alternately, luminous efficiency can be improved and heat radiation characteristics can be improved. Also, by changing the number of LEDs 1 connected in series, the driving voltage as a whole can be changed. When the area of the LED 1 is reduced, the driving voltage per LED can be increased. When 20 LEDs 1 are connected in series, an emission output of about 150 mW can be obtained when driven by a commercial power supply (100 V, 60 Hz). The drive current in this case is about 20 mA.
[0030]
As can be seen from FIG. 7, when the two LED arrays are alternately arranged in a zigzag manner, a crossing portion 34 is inevitably generated in the air bridge wiring 28. For example, when the first column and the second column of the other LED array are connected, they cross the wiring portion for connecting the first column and the second column of one LED array. However, since the air bridge wiring 28 of the present embodiment does not adhere to the substrate 10 as described above and passes through the air away from the substrate 10, the air bridge wirings 28 come into contact with each other at the intersection portion 34 and are short-circuited. Can be easily avoided. This is one of the advantages of using the air bridge wiring 28. The air bridge wiring 28 is formed, for example, as follows. That is, a photoresist having a thickness of 2 μm is applied to the entire surface, and a hole is formed in the shape of the air bridge wiring, followed by post-baking. On top of this, 10 nm of Ti and 10 nm of Au are deposited in this order by vacuum deposition. Further, a photoresist is applied again on the entire surface with a thickness of 2 μm, and holes are formed only in portions where air bridge wiring is to be formed. Then, Au having a thickness of 3 to 5 μm is attached to the entire surface of the electrode by ion plating (plating) in an electrolytic solution using Ti and Au as electrodes. Thereafter, the sample is immersed in acetone, and the photoresist is dissolved and removed by ultrasonic cleaning, whereby the air bridge wiring 28 is completed.
[0031]
By arranging the plurality of LEDs 1 in a two-dimensional array in this manner, it is possible to effectively use the substrate area and drive the device with a high drive voltage, particularly a commercial power supply. Various other patterns are also possible. Generally, it is desirable that the two-dimensional array pattern has the following conditions.
[0032]
(1) In order to uniformly supply a current to each LED and obtain uniform light emission, it is desirable that each LED has the same shape and electrode position.
[0033]
(2) In order to cut the wafer into chips, it is desirable that the sides of each LED be straight.
[0034]
(3) In order to improve light extraction efficiency and utilize reflection from the periphery using a standard mount, it is desirable that the LED has a planar shape close to a square.
[0035]
(4) The size of the two electrodes (bonding pads) is about 100 μm square and desirably separated from each other.
[0036]
(5) For effective utilization of the wafer area, it is desirable that the ratio of the wiring and the pad is small.
[0037]
Of course, these are not essential, and for example, a planar triangle may be used as the shape of each LED. Even if the shape of each LED is triangular, the overall shape can be made substantially square by combining them. Hereinafter, some examples of the two-dimensional array pattern will be described.
[0038]
FIG. 8 shows an example in which a total of six LEDs 1 are arranged two-dimensionally, and FIG. 9 shows a circuit diagram thereof. The arrangement shown in FIG. 8 is basically the same as the arrangement shown in FIG. 6. The total of six LED arrays are divided into two sets each of the same number, and each is composed of three LEDs connected in series. One LED array is arranged in a zigzag shape, and one LED 1 is formed in the first row and two LEDs 1 are formed in the second row from the top. The LEDs in the first column and the rightmost LEDs 1 in the second column are connected in series by an air bridge wiring 28, and the two LEDs 1 in the second column are also connected in series by an air bridge wiring 28. Electrodes (pads) 32 are formed on the upper left and lower left of the substrate 10, the first row of LEDs 1 is connected to the upper left electrode 32 by air bridge wiring, and the leftmost LED 1 in the second row is lower left. Connected to electrode 32. The other LED array is also arranged in a zigzag manner, and two LEDs 1 are formed in the first column and one LED 1 is formed in the second column from the top. The first column of the other LED array is formed between the first column and the second column of the one LED array, and the second column of the other LED array is the second column of the one LED array. Formed below the eyes. The LED 1 at the right end in the first column is connected in series to the LED 1 in the second column by an air bridge wiring 28, and the two LEDs 1 in the first column are also connected in series by the air bridge wiring 28. The leftmost LED 1 in the first column is connected to the upper left electrode 32 by an air bridge wiring 28, and the second column LED 1 is connected to the lower left electrode 32 by an air bridge wiring 28. As can be seen from FIG. 9, also in this example, the two LED arrays are connected to the electrode 32 in parallel with each other, and are connected so as to have opposite polarities to each other. Therefore, when the AC power is supplied, the two LED arrays emit light alternately.
[0039]
FIG. 10 shows an example in which a total of 14 LEDs are two-dimensionally arranged, and FIG. 11 shows a circuit diagram thereof. The total of 14 LED arrays are divided into two sets, each of which is composed of 7 LEDs connected in series. One LED array is arranged in a zigzag shape, and three LEDs 1 are formed in the first row and four LEDs 1 are formed in the second row from the top. The left end LED in the first column and the left end LED 1 in the second column are connected in series by an air bridge wiring 28, and the three LEDs in the first column and the four LEDs 1 in the second column are also connected. They are connected in series by an air bridge wiring 28. Electrodes (pads) 32 are formed on the upper right and lower right portions of the substrate 10, the rightmost LED1 in the first column is connected to the upper right electrode 32 by air bridge wiring, and the rightmost LED1 in the second column is connected to the right. Connected to lower electrode 32. The other LED array is also arranged in a zigzag manner, with four LEDs 1 being formed in the first row and three LEDs 1 being formed in the second row. The first column of the other LED array is formed between the first column and the second column of the one LED array, and the second column of the other LED array is the second column of the one LED array. Formed below the eyes. The leftmost LED 1 in the first column is connected in series to the leftmost LED 1 in the second column by an air bridge wiring 28. The four LEDs 1 in the first column and the three LEDs 1 in the second column are also connected in series. The rightmost LED1 in the first column is connected to the upper right electrode 32 by an air bridge wiring 28, and the rightmost LED1 in the second column is connected to the lower right electrode 32 by an air bridge wiring 28. As can be seen from FIG. 11, also in this example, the two LED arrays are connected to the electrode 32 in parallel with each other, and are connected so as to have opposite polarities to each other. Therefore, when the AC power is supplied, the two LED arrays emit light alternately.
[0040]
The features common to the two-dimensional patterns of FIGS. 6, 8 and 10 are that each LED 1 is substantially the same shape and size as a square, and the two electrodes (pads) are also substantially square and are not formed adjacent to each other. (Separately formed), a combination of two LED arrays, two LED arrays are formed so as to be bent and intersect each other on a chip, and the two LED arrays have opposite polarities. Connected to the electrodes as described above.
[0041]
FIG. 12 shows an example in which LEDs having a triangular planar shape are two-dimensionally arranged, and FIG. 13 shows a circuit diagram thereof. In FIG. 12, a total of six LEDs 1a, 1b, 1c, 1d, 1e, and 1f are formed such that their planar shapes are triangular. The LED 1a and the LED 1e face each other on one side of the triangle and are arranged so as to form a substantially square shape, and the LEDs 1b and 1f are arranged so as to face each other and form a substantially square shape. Further, the LED 1d and the electrode 32 are connected to face each other, and the LED 1c and the electrode 32 are connected to face each other. The two electrodes 32 also have a triangular planar shape similarly to the LED, and are similarly arranged to be substantially square. The opposing sides of the LEDs constitute the n-electrode 24, that is, the two opposing LEDs share the n-electrode 24. The LED and the electrode 32 also have an n-electrode connection. Also in this arrangement, a total of six LEDs are divided into two sets as in the above-described example. One LED array is an array composed of LEDs 1a, 1b, and 1c. The p-electrode 22 of the LED 1a is connected to the electrode 32 by an air bridge wiring 28, and the n-electrode 24 is connected to the p-electrode 22 of the LED 1b by the air bridge wiring 28. Connected. The n-electrode 24 of the LED 1b is connected to the p-electrode 22 of the LED 1c by an air bridge wiring 28. The n-electrode 24 of the LED 1c is connected to the electrode 32. The other LED array is composed of LED1d, LED1e, and LED1f. The electrode 32 and the p-electrode 22 of LED1f are connected by an air bridge wiring 28, and the n-electrode 24 of LED1f is connected to the p-electrode 22 of LED1e by an air bridge wiring 28. The n-electrode 24 of the LED 1e and the p-electrode 22 of the LED 1d are connected by an air bridge wiring 28, and the n-electrode 24 of the LED 1d is connected to the electrode 32.
[0042]
In FIG. 13, an n-electrode of an LED 1a forming one LED array and an n-electrode of an LED 1e forming the other LED array are connected, and an n-electrode of an LED 1b forming one LED array and an LED 1f forming the other LED array. Note that is connected. Circuit wiring can be reduced by sharing some n-electrodes of the two sets of LED arrays. Also in this example, the two LED arrays are connected to the electrodes 32 in parallel and connected to have opposite polarities. In addition, each LED has the same shape and the same size, and the LEDs 32 are formed in a triangular shape while facing each LED on one side, so that the LEDs and the electrodes can be formed at a high density to reduce the required substrate area. it can.
[0043]
FIG. 14 shows another example in which LEDs having a triangular planar shape are two-dimensionally arranged, and FIG. 15 is a circuit diagram thereof. In this example, a total of 16 LEDs 1a to 1r are formed two-dimensionally. The LEDs 1a and 1j, 1b and 1k, 1c and 1m, 1d and 1n, 1e and 1p, 1f and 1q, 1g and 1r face each other on one side of the triangle. An n-electrode 24 is commonly formed on the opposing sides. The LED 1i faces the electrode 32, and the LED 1h faces the electrode 32. One LED array includes LEDs 1a, 1b, 1c, 1d, 1e, 1f, 1g, and 1h, and the other LED array includes LEDs 1r, 1q, 1p, 1n, 1m, 1k, 1j, and 1i. The n-electrode 24 of the LED 1b is connected to the p-electrode 22 of the LED 1c by an air bridge wiring 28, and the n-electrode 24 of the LED 1e is also connected to the p-electrode 22 of the LED 1f by the air bridge wiring 28. The n-electrode 24 of the LED 1q is also connected to the p-electrode 22 of the LED 1p by the air bridge wiring 28, and the n-electrode 24 of the LED 1m is also connected to the p-electrode 22 of the LED 1k by the air bridge wiring 28. In FIG. 14 as well, crossover portions occur as in FIG. 12, but a short circuit can be avoided by the air bridge wiring 28. Also in this example, the necessary wiring is reduced by using some of the n-electrodes 24 of the two sets of LED arrays in a shared structure. Also in this example, the two LED arrays are connected in parallel to the electrodes 32 with polarities opposite to each other, and can be driven by AC. FIG. 12 shows a case of a total of six LEDs, and FIG. 14 shows a case of a total of sixteen LEDs. However, other numbers of LEDs can be similarly arranged two-dimensionally. The present applicant has also created a light emitting device in which 38 LEDs are two-dimensionally arranged.
[0044]
Although the case of the AC drive has been described above, it goes without saying that the DC drive is also possible. In this case, instead of connecting the LED arrays to the electrodes so as to have opposite polarities, the LED arrays may be connected in the forward direction according to the direction of the polarity of the DC power supply. High voltage driving is possible by connecting a plurality of LEDs in series. Hereinafter, the case of DC drive will be described.
[0045]
FIG. 16 shows an example in which two LEDs are connected in series, and FIG. 17 shows a circuit diagram thereof. Each LED 1 has a rectangular planar shape, and the two LEDs are connected by an air bridge wiring 28. The electrode 32 is formed near each LED1, and the electrode 32 and the LED1 form a rectangular area. That is, the electrode 32 occupies a part of the rectangular area, and the LED 1 is formed in another area of the rectangular area.
[0046]
FIG. 18 shows an example in which a total of four LEDs are two-dimensionally arranged, and FIG. 19 shows a circuit diagram thereof. The LED 1 shown in FIG. 16 is divided into two parts, which are connected in parallel. It can also be said that two sets of LED arrays each composed of two LEDs are connected in parallel in the forward direction. The LEDs 1a and 1b constitute one LED array, and the LEDs 1c and 1d constitute another LED array. The LED 1a and the LED 1c share the p-electrode 22 and the n-electrode 24, and the LED 1b and the LED 1d also share the p-electrode 22 and the n-electrode 24. According to this configuration, there is an effect that the current is made uniform as compared with FIG.
[0047]
FIG. 20 shows an example in which a total of three LEDs are two-dimensionally arranged, and FIG. 21 shows a circuit diagram thereof. The LEDs 1a, 1b, and 1c are not the same shape, and an electrode 32 is formed on a part of the LED 1a. The n-electrode 24 of the LED 1a and the p-electrode of the LED 1b are connected by an air bridge wiring 28 extending over the LED 1b. By devising the shape and arrangement of each LED, the overall appearance of the light emitting device (chip) can be made substantially square even with three LEDs.
[0048]
FIG. 22 shows an example in which a total of six LEDs are two-dimensionally arranged, and FIG. 23 shows a circuit diagram thereof. The LEDs 1a to 1f have the same shape and the same size. The LEDs 1a to 1f are connected in series. The LEDs 1a to 1c are arranged on a straight line, and the LEDs 1d to 1f are arranged on another straight line. The LED 1c and the LED 1d are connected by an air bridge wiring 28. Also in this example, the overall shape of the chip can be made substantially square.
[0049]
FIG. 24 shows an example in which a total of five LEDs are two-dimensionally arranged, and FIG. 25 shows a circuit diagram thereof. The LEDs 1a to 1e have the same shape (rectangle) and the same size. Also in this example, the overall shape can be substantially square.
[0050]
Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications can be made. In particular, a pattern in the case where a plurality of light emitting elements (eg, LEDs) are two-dimensionally arranged can be other than the above-described pattern. In this case, the electrodes may be shared between adjacent light emitting elements to reduce the number of wirings, the whole shape may be square or rectangular, a plurality of light emitting element arrays may be connected in parallel to the electrodes, It is preferable that the sets of light emitting element arrays have opposite polarities, and that a plurality of sets of light emitting element arrays are bent in a zigzag shape and combined.
[0051]
26 to 31 illustrate some of these modifications. FIG. 26 shows a two-dimensional arrangement in the case of AC driving, in which a total of 40 LEDs are arranged. FIG. 27 is a circuit diagram thereof. The difference from FIG. 6 is that some of the two sets of LED arrays share the n-electrode 24 (see FIG. 5). For example, the n-electrode 24 of the LED (indicated by α in the drawing) located second from the right end of the first column of one LED array is connected to the LED (β in the drawing) located at the right end of the first column of the other LED array. ) Is shared with the n-electrode 24. The air bridge wiring 28 at the end of the LED array (the γ portion in the figure) is commonly formed without crossing.
[0052]
FIG. 28 shows a two-dimensional arrangement in the case of AC driving, in which a total of 14 LEDs are arranged. FIG. 29 is a circuit diagram thereof. The difference from FIG. 10 is that some of the two sets of LED arrays share the n-electrode 24. For example, the n-electrode 24 of the leftmost LED (indicated by α in the drawing) of the first column of one LED array is the second LED (shown by β in the drawing) located from the right end of the first column of the other LED array. ) Is shared with the n-electrode 24. Further, the air bridge wiring 28 at the end portion (the γ portion in the drawing) is formed in common.
[0053]
FIG. 30 shows a two-dimensional arrangement in the case of AC driving, in which a total of six LEDs are arranged. FIG. 31 is a circuit diagram thereof. Also in this example, the air bridge wiring 28 at the end (γ portion) is commonly formed. Also in this configuration, it can be said that the n-electrode 24 in one LED array and the n-electrode 24 in the other LED array are shared.
[0054]
【The invention's effect】
As described above, according to the present invention, light can be emitted by driving at a high driving voltage.
[Brief description of the drawings]
FIG. 1 is a basic configuration diagram of a light emitting element (LED).
FIG. 2 is an equivalent circuit diagram of the light emitting device.
FIG. 3 is a plan view of two LEDs.
FIG. 4 is a sectional view taken along line IV-IV of FIG. 3;
FIG. 5 is another equivalent circuit diagram of the light emitting device.
FIG. 6 is an explanatory diagram in which forty LEDs are two-dimensionally arranged.
FIG. 7 is a circuit diagram of FIG. 6;
FIG. 8 is an explanatory diagram in which six LEDs are two-dimensionally arranged.
FIG. 9 is a circuit diagram of FIG.
FIG. 10 is an explanatory diagram in which 14 LEDs are two-dimensionally arranged.
FIG. 11 is a circuit diagram of FIG.
FIG. 12 is an explanatory diagram in which six LEDs are two-dimensionally arranged.
FIG. 13 is a circuit diagram of FIG.
FIG. 14 is an explanatory diagram in which 16 LEDs are two-dimensionally arranged.
FIG. 15 is a circuit diagram of FIG. 14;
FIG. 16 is an explanatory diagram in which two LEDs are arranged.
FIG. 17 is a circuit diagram of FIG.
FIG. 18 is an explanatory diagram in which four LEDs are two-dimensionally arranged.
FIG. 19 is a circuit diagram of FIG. 18;
FIG. 20 is an explanatory diagram in which three LEDs are two-dimensionally arranged.
FIG. 21 is a circuit diagram of FIG. 20;
FIG. 22 is an explanatory diagram in which six LEDs are two-dimensionally arranged.
FIG. 23 is a circuit diagram of FIG. 22;
FIG. 24 is an explanatory diagram in which five LEDs are two-dimensionally arranged.
FIG. 25 is a circuit diagram of FIG. 24;
FIG. 26 is an explanatory diagram of another two-dimensional arrangement.
FIG. 27 is a circuit diagram of FIG. 26;
FIG. 28 is an explanatory diagram of another two-dimensional arrangement.
FIG. 29 is a circuit diagram of FIG. 28;
FIG. 30 is an explanatory diagram of another two-dimensional arrangement.
FIG. 31 is a circuit diagram of FIG. 30;
[Explanation of symbols]
10 substrate (wafer), 12 u-GaN layer, 14 n-type GaN layer, 16 InGaN light emitting layer, 18 AlGaN layer, 20 p-GaN layer, 22 p-electrode, 24 n-electrode.

Claims (13)

絶縁基板上に複数の発光素子が形成され、前記複数の発光素子がモノリシックに直列接続されることを特徴とする発光装置。A plurality of light emitting elements are formed on an insulating substrate, and the plurality of light emitting elements are monolithically connected in series. 請求項1記載の装置において、
前記複数の発光素子は、前記基板上に二次元配置されていることを特徴とする発光装置。
The device of claim 1,
The light emitting device, wherein the plurality of light emitting elements are two-dimensionally arranged on the substrate.
請求項1、2のいずれかに記載の装置において、
前記複数の発光素子は2組に分けられ、2個の電極に互いに反対極性となるように並列接続されることを特徴とする発光装置。
The apparatus according to any one of claims 1 and 2,
The light-emitting device, wherein the plurality of light-emitting elements are divided into two sets, and are connected in parallel to two electrodes so as to have opposite polarities.
請求項1〜3のいずれかに記載の装置において、
前記複数の発光素子間の接続はエアブリッジ配線であることを特徴とする発光装置。
The device according to any one of claims 1 to 3,
The light emitting device according to claim 1, wherein the connection between the plurality of light emitting elements is an air bridge wiring.
請求項1〜4のいずれかに記載の装置において、
前記複数の発光素子間の電気的な分離は、前記基板として使用されるサファイアにより行われることを特徴とする発光装置。
The apparatus according to any one of claims 1 to 4,
The light emitting device according to claim 1, wherein the electrical separation between the plurality of light emitting elements is performed by sapphire used as the substrate.
請求項2記載の装置において、
前記複数の発光素子は同数ずつ2組に分けられ、各組の発光素子アレイはジグザグ状に配置され、かつ、2組の発光素子アレイは2個の電極に互いに反対極性となるように並列接続されることを特徴とする発光装置。
The device according to claim 2,
The plurality of light-emitting elements are divided into two groups each having the same number, the light-emitting element arrays of each set are arranged in a zigzag pattern, and the two light-emitting element arrays are connected in parallel to two electrodes so as to have opposite polarities. A light emitting device characterized by being performed.
請求項6記載の装置において、
前記2組の発光素子アレイは、互い違いに配置されることを特徴とする発光装置。
The device according to claim 6,
The light emitting device, wherein the two sets of light emitting element arrays are alternately arranged.
請求項6、7のいずれかに記載の装置において、
前記発光素子及び電極は、平面形状が略正方形であることを特徴とする発光装置。
The apparatus according to any one of claims 6 and 7,
The light emitting device is characterized in that the light emitting element and the electrode have a substantially square planar shape.
請求項6、7のいずれかに記載の装置において、
前記発光素子及び電極は、平面形状が三角形状であることを特徴とする発光装置。
The apparatus according to any one of claims 6 and 7,
The light emitting device is characterized in that the light emitting element and the electrode have a triangular planar shape.
請求項2記載の装置において、
前記複数の発光素子及び電極は、全体形状が略正方形となるように配置されることを特徴とする発光装置。
The device according to claim 2,
The light emitting device according to claim 1, wherein the plurality of light emitting elements and the electrodes are arranged so that the overall shape is substantially square.
請求項10記載の装置において、
前記複数の発光素子からなる発光素子アレイはジグザグ状に配置されることを特徴とする発光装置。
The device according to claim 10,
The light emitting device according to claim 1, wherein the light emitting element array including the plurality of light emitting elements is arranged in a zigzag shape.
請求項6〜9のいずれかに記載の装置において、
前記電極は、交流電源用電極であることを特徴とする発光装置。
The device according to any one of claims 6 to 9,
The light emitting device, wherein the electrode is an electrode for an AC power supply.
請求項6〜9のいずれかに記載の装置において、
前記2組の発光素子アレイは、共通のn電極を有することを特徴とする発光装置。
The device according to any one of claims 6 to 9,
A light-emitting device, wherein the two sets of light-emitting element arrays have a common n-electrode.
JP2002249957A 2002-04-12 2002-08-29 Light emitting device Expired - Lifetime JP3822545B2 (en)

Priority Applications (37)

Application Number Priority Date Filing Date Title
JP2002249957A JP3822545B2 (en) 2002-04-12 2002-08-29 Light emitting device
EP09014623.4A EP2154721B1 (en) 2002-08-29 2003-08-28 Light-emitting device having light-emitting diodes
EP20090014622 EP2149906A3 (en) 2002-08-29 2003-08-28 Light-emitting device having light-emitting diodes
KR20057002667A KR100697803B1 (en) 2002-08-29 2003-08-28 Light-emitting device having light-emitting elements
US10/525,998 US7417259B2 (en) 2002-08-29 2003-08-28 Light-emitting device having light-emitting elements
CNB2007101029609A CN100570883C (en) 2002-08-29 2003-08-28 Light-emitting device with a plurality of light-emitting components
EP20090014621 EP2149905A3 (en) 2002-08-29 2003-08-28 Light-emitting device having light-emitting diodes
EP20030794115 EP1553641B1 (en) 2002-08-29 2003-08-28 Light-emitting device having light-emitting diodes
EP09014624.2A EP2154722B1 (en) 2002-08-29 2003-08-28 Light-emitting device having light-emitting diodes
EP18150767.4A EP3389094A1 (en) 2002-08-29 2003-08-28 Light-emitting device having light-emitting elements
EP07118916.1A EP1892764B1 (en) 2002-08-29 2003-08-28 Light-emitting device having light-emitting diodes
RU2005103616A RU2295174C2 (en) 2002-08-29 2003-08-28 Light-emitting device incorporating light-emitting components (alternatives)
AT03794115T ATE500616T1 (en) 2002-08-29 2003-08-28 LIGHT EMITTING COMPONENT WITH LIGHT EMITTING DIODES
PCT/JP2003/010922 WO2004023568A1 (en) 2002-08-29 2003-08-28 Light-emitting device having light-emitting elements
EP20090014625 EP2149907A3 (en) 2002-08-29 2003-08-28 Light-emitting device having light-emitting diodes
EP20090000561 EP2101355A1 (en) 2002-08-29 2003-08-28 Light-emitting device having light-emitting elements
CNB038206226A CN100421266C (en) 2002-08-29 2003-08-28 Light-emitting device having light-emitting elements
EP20090014620 EP2157609A3 (en) 2002-08-29 2003-08-28 Light-emitting device having light-emitting diodes
ES03794115T ES2362407T3 (en) 2002-08-29 2003-08-28 LIGHTING ISSUER DEVICE PROVIDED BY LIGHTING ISSUING DIODES.
DE60336252T DE60336252D1 (en) 2002-08-29 2003-08-28 LIGHT-EMITTING COMPONENT WITH LIGHT-EMITTING DIODES
TW92123908A TWI280672B (en) 2002-08-29 2003-08-29 Light-emitting device having light-emitting elements
US11/705,205 US7956367B2 (en) 2002-08-29 2007-02-12 Light-emitting device having light-emitting elements connected in series
US12/060,693 US8129729B2 (en) 2002-08-29 2008-04-01 Light emitting device having light emitting elements and an air bridge line
US12/139,927 US7897982B2 (en) 2002-08-29 2008-06-16 Light emitting device having common N-electrode
US12/352,296 US8084774B2 (en) 2002-08-29 2009-01-12 Light emitting device having light emitting elements
US12/352,271 US7569861B2 (en) 2002-08-29 2009-01-12 Light emitting device having light emitting elements
US12/352,240 US8097889B2 (en) 2002-08-29 2009-01-12 Light emitting device having light emitting elements with a shared electrode
US12/352,280 US7615793B2 (en) 2002-08-29 2009-01-12 AC driven light—emitting device
US12/478,456 US7667237B2 (en) 2002-08-29 2009-06-04 Light emitting device having light emitting elements
US12/479,380 US7646031B2 (en) 2002-08-29 2009-06-05 Light emitting device having light emitting elements
US12/652,518 US8680533B2 (en) 2002-08-29 2010-01-05 Light-emitting device having light-emitting elements with a shared electrode
US12/958,947 US8735918B2 (en) 2002-08-29 2010-12-02 Light-emitting device having light-emitting elements with polygonal shape
US13/584,140 US20120305951A1 (en) 2002-08-29 2012-08-13 Light-emitting device having light-emitting elements
US13/610,819 US8735911B2 (en) 2002-08-29 2012-09-11 Light emitting device having shared electrodes
US13/890,878 US9947717B2 (en) 2002-08-29 2013-05-09 Light-emitting device having light-emitting elements and electrode spaced apart from the light emitting element
US14/583,476 US20150108497A1 (en) 2002-08-29 2014-12-26 Light-emitting device having light-emitting elements
US15/430,440 US20170154922A1 (en) 2002-08-29 2017-02-10 Light-emitting device having an array of light-emitting elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002110760 2002-04-12
JP2002249957A JP3822545B2 (en) 2002-04-12 2002-08-29 Light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006117739A Division JP4195041B2 (en) 2002-04-12 2006-04-21 Light emitting device

Publications (2)

Publication Number Publication Date
JP2004006582A true JP2004006582A (en) 2004-01-08
JP3822545B2 JP3822545B2 (en) 2006-09-20

Family

ID=30446964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002249957A Expired - Lifetime JP3822545B2 (en) 2002-04-12 2002-08-29 Light emitting device

Country Status (1)

Country Link
JP (1) JP3822545B2 (en)

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608920B1 (en) 2005-06-30 2006-08-03 서울옵토디바이스주식회사 Wire form of light emitting device, wherein a plurality of light emitting cell is arrayed
JP2006324434A (en) * 2005-05-18 2006-11-30 Rohm Co Ltd Semiconductor light-emitting device
WO2007001124A1 (en) * 2005-06-29 2007-01-04 Seoul Opto Device Co., Ltd. Light emitting diode having a thermal conductive substrate and method of fabricating the same
WO2007018360A1 (en) * 2005-08-09 2007-02-15 Seoul Opto Device Co., Ltd. Ac light emitting diode and method for fabricating the same
US7213942B2 (en) 2002-10-24 2007-05-08 Ac Led Lighting, L.L.C. Light emitting diodes for high AC voltage operation and general lighting
US7221044B2 (en) 2005-01-21 2007-05-22 Ac Led Lighting, L.L.C. Heterogeneous integrated high voltage DC/AC light emitter
JP2007157969A (en) * 2005-12-05 2007-06-21 Rohm Co Ltd Semiconductor light-emitting element
WO2007069869A1 (en) * 2005-12-15 2007-06-21 Seoul Semiconductor.Co., Ltd. Light emitting device
WO2007072873A1 (en) 2005-12-22 2007-06-28 Rohm Co., Ltd. Light emitting device and illumination instrument
KR100758541B1 (en) 2005-08-22 2007-09-13 서울옵토디바이스주식회사 light emitting diode having light emitting cells arranged in matrix layout and method for fabricating the same
WO2007119663A1 (en) * 2006-04-04 2007-10-25 Rohm Co., Ltd. Semiconductor light emitting device
JP2007294519A (en) * 2006-04-21 2007-11-08 Matsushita Electric Works Ltd El illuminating panel
EP1897151A1 (en) * 2005-06-22 2008-03-12 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
WO2008078880A1 (en) * 2006-12-22 2008-07-03 Seoul Opto Device Co., Ltd. A luminous element having a plurality of cells
WO2008078881A1 (en) * 2006-12-26 2008-07-03 Seoul Opto Device Co., Ltd. Light emitting device
JP2008523637A (en) * 2004-12-14 2008-07-03 ソウル オプト−デバイス カンパニー リミテッド Light emitting device having a plurality of light emitting cells and package mounting the same
JP2008529297A (en) * 2005-01-26 2008-07-31 ソウル オプト デバイス カンパニー リミテッド Light emitting device having a plurality of light emitting cells connected in series and method for manufacturing the same
JP2008235894A (en) * 2007-03-19 2008-10-02 Seoul Opto Devices Co Ltd Light emitting diode of ac drive type
KR100872248B1 (en) 2007-06-11 2008-12-05 삼성전기주식회사 Ac operated light emitting device
JP2009505392A (en) * 2005-08-10 2009-02-05 ソウル オプト デバイス カンパニー リミテッド Light emitting device and manufacturing method thereof
JP2009505393A (en) * 2005-08-08 2009-02-05 ソウル オプト デバイス カンパニー リミテッド AC light emitting device
CN100464111C (en) * 2005-03-04 2009-02-25 吕大明 AC LED lighting lamp
JP2009510762A (en) * 2005-09-30 2009-03-12 ソウル オプト デバイス カンパニー リミテッド Light emitting device having vertically stacked light emitting diodes
JP2009516370A (en) * 2005-11-10 2009-04-16 ソウル オプト デバイス カンパニー リミテッド AC driven light emitting device having photonic crystal structure and method for manufacturing the same
JP2009088482A (en) * 2007-09-27 2009-04-23 Seoul Opto Devices Co Ltd Ac driven light emitting diode
US7531843B2 (en) 2004-08-31 2009-05-12 Industrial Technology Research Institute Structure of AC light-emitting diode dies
US7535028B2 (en) 2005-02-03 2009-05-19 Ac Led Lighting, L.Lc. Micro-LED based high voltage AC/DC indicator lamp
JP2009111339A (en) * 2007-10-29 2009-05-21 Seoul Opto Devices Co Ltd Light emitting diode package
WO2009051376A3 (en) * 2007-10-15 2009-07-16 Lg Innotek Co Ltd Light emitting device and method for fabricating the same
JP2009267423A (en) * 2002-04-12 2009-11-12 Seoul Semiconductor Co Ltd Light-emitting device
JP2010016333A (en) * 2008-06-30 2010-01-21 Samsung Electro-Mechanics Co Ltd Ac driven light-emitting device
JP2010034610A (en) * 2004-06-30 2010-02-12 Seoul Opto Devices Co Ltd Light-emitting element, method of manufacturing the same, and light-emitting device using the same
US7667237B2 (en) 2002-08-29 2010-02-23 Seoul Semiconductor Co., Ltd. Light emitting device having light emitting elements
JP2010506384A (en) * 2006-09-30 2010-02-25 ソウル オプト デバイス カンパニー リミテッド Light emitting diode having light emitting cells of different sizes and light emitting element employing the same
US7704771B2 (en) 2007-03-21 2010-04-27 Samsung Electro-Mechanics Co., Ltd. Light emitting device, method of manufacturing the same and monolithic light emitting diode array
WO2010050694A2 (en) * 2008-10-29 2010-05-06 서울옵토디바이스주식회사 Light emitting diode
JP2010517273A (en) * 2007-01-22 2010-05-20 クリー レッド ライティング ソリューションズ、インコーポレイテッド Fault tolerant illuminant, system including fault tolerant illuminant and method for making fault tolerant illuminant
JP2010521807A (en) * 2007-03-13 2010-06-24 ソウル オプト デバイス カンパニー リミテッド AC drive type light emitting diode
JP2010157716A (en) * 2008-12-31 2010-07-15 Seoul Opto Devices Co Ltd Light emitting device having a plurality of non-polar light emitting cells and method of manufacturing the same
EP1864339A4 (en) * 2005-03-11 2010-12-29 Seoul Semiconductor Co Ltd Led package having an array of light emitting cells coupled in series
JP2011055007A (en) * 2010-12-13 2011-03-17 Seoul Opto Devices Co Ltd Ac-driven light emitting diode
CN102032486A (en) * 2004-02-25 2011-04-27 迈克尔·米斯金 AC light emitting diode and AC LED drive methods and apparatus
JP2011181921A (en) * 2010-02-26 2011-09-15 Samsung Led Co Ltd Semiconductor light emitting device having multi-cell array, and method for manufacturing the same
WO2011115361A2 (en) * 2010-03-15 2011-09-22 서울옵토디바이스주식회사 Light-emitting device having a plurality of light-emitting cells
US8026675B2 (en) 2007-06-22 2011-09-27 Samsung Led Co., Ltd. Light emitting diode driving circuit and light emitting diode array device
US8070983B2 (en) 2004-06-10 2011-12-06 Seoul Semiconductor Co., Ltd. Luminescent material
US8071988B2 (en) 2004-05-06 2011-12-06 Seoul Semiconductor Co., Ltd. White light emitting device comprising a plurality of light emitting diodes with different peak emission wavelengths and a wavelength converter
JP2012015480A (en) * 2010-07-02 2012-01-19 Shogen Koden Kofun Yugenkoshi Photoelectric element
KR101106139B1 (en) * 2011-04-04 2012-01-20 서울옵토디바이스주식회사 Light emitting diode with a metal reflection layer expanded and method for manufacturing the same
KR101115540B1 (en) * 2011-06-30 2012-02-28 서울옵토디바이스주식회사 Light emitting diode package
KR101115538B1 (en) * 2011-04-04 2012-02-28 서울옵토디바이스주식회사 Luminous device and the method therefor
US8134165B2 (en) 2007-08-28 2012-03-13 Seoul Semiconductor Co., Ltd. Light emitting device employing non-stoichiometric tetragonal alkaline earth silicate phosphors
JP2012054447A (en) * 2010-09-02 2012-03-15 Seiwa Electric Mfg Co Ltd Semiconductor light-emitting element, light-emitting device, lighting unit, and display unit
US8137589B2 (en) 2007-08-22 2012-03-20 Seoul Semiconductor Co., Ltd. Non stoichiometric tetragonal copper alkaline earth silicate phosphors and method of preparing the same
KR101138974B1 (en) 2005-01-07 2012-04-25 서울옵토디바이스주식회사 Luminous element and method of manufacturing thereof
KR101138975B1 (en) * 2009-09-15 2012-04-25 서울옵토디바이스주식회사 Ac light emitting diode having full-wave lihgt emitting cell and half-wave light emitting cell
KR101142939B1 (en) 2005-02-23 2012-05-10 서울반도체 주식회사 Luminous Device
US8188492B2 (en) 2006-08-29 2012-05-29 Seoul Semiconductor Co., Ltd. Light emitting device having plural light emitting diodes and at least one phosphor for emitting different wavelengths of light
KR101158073B1 (en) * 2005-12-13 2012-06-22 서울옵토디바이스주식회사 Light emitting device having arrayed cells
US8211724B2 (en) 2008-12-31 2012-07-03 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of non-polar light emitting cells and a method of fabricating the same
CN102598327A (en) * 2009-10-28 2012-07-18 欧司朗光电半导体有限公司 Optoelectronic component and method for producing an opto-electronic component
US8232571B2 (en) 2008-12-24 2012-07-31 Seoul Opto Device Co., Ltd. Light emitting device having plurality of light emitting cells and method of fabricating the same
US8247980B2 (en) 2008-06-30 2012-08-21 Samsung Led Co., Ltd. LED driving circuit and light emitting diode array device
US8273266B2 (en) 2005-11-11 2012-09-25 Seoul Semiconductor Co., Ltd. Copper-alkaline-earth-silicate mixed crystal phosphors
US8308980B2 (en) 2004-06-10 2012-11-13 Seoul Semiconductor Co., Ltd. Light emitting device
JP2012227543A (en) * 2005-06-28 2012-11-15 Seoul Opto Devices Co Ltd Light-emitting device
KR101203138B1 (en) 2006-01-12 2012-11-20 서울옵토디바이스주식회사 Luminous device and the method therefor
KR101203139B1 (en) * 2010-01-06 2012-11-20 서울옵토디바이스주식회사 Luminous element having arrayed cells
KR101205529B1 (en) 2012-06-20 2012-11-27 서울옵토디바이스주식회사 A light emitting device having a plurality of light emitting cells and Menufacturing method thereof
KR101216938B1 (en) 2004-10-28 2012-12-31 서울반도체 주식회사 Luminous element having arrayed cells and method of manufacturing thereof and luminous apparatus using the same
KR101221336B1 (en) * 2011-07-12 2013-01-21 서울옵토디바이스주식회사 Light emitting device and method of fabricating the same
KR101229835B1 (en) * 2012-03-08 2013-02-04 서울옵토디바이스주식회사 Luminous element having arrayed cells and Method for manufacturing the same and Luminous device using the same
JP2013048163A (en) * 2011-08-29 2013-03-07 Seiwa Electric Mfg Co Ltd Semiconductor light-emitting element, light-emitting device and semiconductor light-emitting element manufacturing method
KR101238981B1 (en) * 2005-02-28 2013-03-08 오스람 옵토 세미컨덕터스 게엠베하 Module comprising radiation-emitting semiconductor bodies
US8399895B2 (en) 2008-01-11 2013-03-19 Rohm Co., Ltd. Semiconductor light emitting device
KR101248513B1 (en) * 2005-03-29 2013-04-04 서울반도체 주식회사 High flux led lamp mounting a led having an array of light emitting cells coupled in series
KR101259998B1 (en) * 2011-03-31 2013-05-06 서울옵토디바이스주식회사 Light emitting diode
KR101308129B1 (en) * 2012-04-27 2013-09-12 서울옵토디바이스주식회사 Light emitting device and method of fabricating the same
US8535564B2 (en) 2009-06-24 2013-09-17 Seoul Semiconductor, Co., Ltd. Light emitting device employing luminescent substances with oxyorthosilicate luminophores
WO2014039343A1 (en) * 2012-09-04 2014-03-13 Micron Technology, Inc. High voltage solid-state transducers and solid-state transducer arrays having electrical cross-connections and associated systems and methods
US8703014B2 (en) 2009-06-24 2014-04-22 Seoul Semiconductor Co., Ltd. Luminescent substances having Eu2+-doped silicate luminophores
WO2015063947A1 (en) * 2013-11-01 2015-05-07 星和電機株式会社 Semiconductor light-emitting element and light-emitting device
US9048409B2 (en) 2010-09-24 2015-06-02 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US9209162B2 (en) 2004-05-13 2015-12-08 Seoul Semiconductor Co., Ltd. Light emitting device including RGB light emitting diodes and phosphor
JP2016012707A (en) * 2014-06-30 2016-01-21 晶元光電股▲ふん▼有限公司 Photoelectric component and manufacturing method of the same
KR101603773B1 (en) * 2009-01-07 2016-03-17 서울바이오시스 주식회사 Light emitting diode having plurality of light emitting cells
US9312246B2 (en) 2006-03-31 2016-04-12 Seoul Semiconductor Co., Ltd. Light emitting device and lighting system having the same
AT516416A1 (en) * 2014-10-21 2016-05-15 Zizala Lichtsysteme Gmbh Printed circuit board having a plurality of arranged on the circuit board in at least one group of electronic components
US9642196B2 (en) 2013-03-14 2017-05-02 Samsung Electronics Co., Ltd. Light-emitting device package and light-emitting apparatus
JP2018029217A (en) * 2009-10-20 2018-02-22 晶元光電股▲ふん▼有限公司Epistar Corporation Photoelectric element
CN109686730A (en) * 2019-01-23 2019-04-26 苏州弘磊光电有限公司 It is a kind of being capable of the mixed LAMP LED of alternating current-direct current
JP2019145843A (en) * 2019-05-14 2019-08-29 晶元光電股▲ふん▼有限公司Epistar Corporation Photoelectric component
US10580929B2 (en) 2016-03-30 2020-03-03 Seoul Viosys Co., Ltd. UV light emitting diode package and light emitting diode module having the same
US10586787B2 (en) 2007-01-22 2020-03-10 Cree, Inc. Illumination devices using externally interconnected arrays of light emitting devices, and methods of fabricating same
JP2020205454A (en) * 2010-08-30 2020-12-24 晶元光電股▲ふん▼有限公司Epistar Corporation Light-emitting device
JP2021082837A (en) * 2021-02-24 2021-05-27 晶元光電股▲ふん▼有限公司Epistar Corporation Photoelectric component
US11322541B2 (en) 2019-08-28 2022-05-03 Nichia Corporation Light-emitting device
US11355550B2 (en) 2014-05-19 2022-06-07 Epistar Corporation Optoelectronic device having conductor arrangement structures non-overlapped with heat dissipation pads
JP7319551B2 (en) 2020-03-31 2023-08-02 日亜化学工業株式会社 light emitting device
JP7378749B2 (en) 2022-04-11 2023-11-14 厦門普為光電科技有限公司 Reliable environmental protection light emitting diode
DE102023113087A1 (en) 2022-05-23 2023-11-23 Stanley Electric Co., Ltd. LIGHT EMITTING SEMICONDUCTOR DEVICE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448153B1 (en) 2008-06-25 2014-10-08 삼성전자주식회사 Multi-chip package for LED chip and multi-chip package LED device
JP5855344B2 (en) * 2010-02-12 2016-02-09 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Light emitting diode chip having distributed Bragg reflector and method of manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206873A (en) * 1983-05-11 1984-11-22 株式会社東芝 Luminous display
JPS62273755A (en) * 1986-05-21 1987-11-27 Nec Corp Field-effect transistor and manufacture of the same
JPH0786691A (en) * 1993-09-14 1995-03-31 Sony Corp Light emitting device
JP2000068555A (en) * 1998-08-19 2000-03-03 Hitachi Ltd Lighting system
JP2001150718A (en) * 1999-11-26 2001-06-05 Kyocera Corp Light-emitting element array
JP2001156331A (en) * 1999-11-30 2001-06-08 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
JP2001307506A (en) * 2000-04-17 2001-11-02 Hitachi Ltd White light emitting device and illuminator
JP2001351789A (en) * 2000-06-02 2001-12-21 Toshiba Lighting & Technology Corp Drive device for light-emitting diode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206873A (en) * 1983-05-11 1984-11-22 株式会社東芝 Luminous display
JPS62273755A (en) * 1986-05-21 1987-11-27 Nec Corp Field-effect transistor and manufacture of the same
JPH0786691A (en) * 1993-09-14 1995-03-31 Sony Corp Light emitting device
JP2000068555A (en) * 1998-08-19 2000-03-03 Hitachi Ltd Lighting system
JP2001150718A (en) * 1999-11-26 2001-06-05 Kyocera Corp Light-emitting element array
JP2001156331A (en) * 1999-11-30 2001-06-08 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
JP2001307506A (en) * 2000-04-17 2001-11-02 Hitachi Ltd White light emitting device and illuminator
JP2001351789A (en) * 2000-06-02 2001-12-21 Toshiba Lighting & Technology Corp Drive device for light-emitting diode

Cited By (227)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296013A (en) * 2002-04-12 2009-12-17 Seoul Semiconductor Co Ltd Light emitting device
JP4585028B2 (en) * 2002-04-12 2010-11-24 ソウル セミコンダクター カンパニー リミテッド Light emitting device
JP2009296012A (en) * 2002-04-12 2009-12-17 Seoul Semiconductor Co Ltd Light emitting device
JP2009267423A (en) * 2002-04-12 2009-11-12 Seoul Semiconductor Co Ltd Light-emitting device
JP2012089887A (en) * 2002-04-12 2012-05-10 Seoul Semiconductor Co Ltd Light-emitting device
JP2009296011A (en) * 2002-04-12 2009-12-17 Seoul Semiconductor Co Ltd Light emitting device
US8097889B2 (en) 2002-08-29 2012-01-17 Seoul Semiconductor Co., Ltd. Light emitting device having light emitting elements with a shared electrode
US8680533B2 (en) 2002-08-29 2014-03-25 Seoul Semiconductor Co., Ltd. Light-emitting device having light-emitting elements with a shared electrode
US8084774B2 (en) 2002-08-29 2011-12-27 Seoul Semiconductor Co., Ltd. Light emitting device having light emitting elements
US7667237B2 (en) 2002-08-29 2010-02-23 Seoul Semiconductor Co., Ltd. Light emitting device having light emitting elements
US9947717B2 (en) 2002-08-29 2018-04-17 Seoul Semiconductor Co., Ltd. Light-emitting device having light-emitting elements and electrode spaced apart from the light emitting element
US8735918B2 (en) 2002-08-29 2014-05-27 Seoul Semiconductor Co., Ltd. Light-emitting device having light-emitting elements with polygonal shape
US8129729B2 (en) 2002-08-29 2012-03-06 Seoul Semiconductor Co., Ltd. Light emitting device having light emitting elements and an air bridge line
US8735911B2 (en) 2002-08-29 2014-05-27 Seoul Semiconductor Co., Ltd. Light emitting device having shared electrodes
US7897982B2 (en) 2002-08-29 2011-03-01 Seoul Semiconductor Co., Ltd. Light emitting device having common N-electrode
US7956367B2 (en) 2002-08-29 2011-06-07 Seoul Semiconductor Co., Ltd. Light-emitting device having light-emitting elements connected in series
US7213942B2 (en) 2002-10-24 2007-05-08 Ac Led Lighting, L.L.C. Light emitting diodes for high AC voltage operation and general lighting
CN102032486A (en) * 2004-02-25 2011-04-27 迈克尔·米斯金 AC light emitting diode and AC LED drive methods and apparatus
US8071988B2 (en) 2004-05-06 2011-12-06 Seoul Semiconductor Co., Ltd. White light emitting device comprising a plurality of light emitting diodes with different peak emission wavelengths and a wavelength converter
US11605762B2 (en) 2004-05-13 2023-03-14 Seoul Semiconductor Co., Ltd. Light emitting device including RGB light emitting diodes and phosphor
US9209162B2 (en) 2004-05-13 2015-12-08 Seoul Semiconductor Co., Ltd. Light emitting device including RGB light emitting diodes and phosphor
US10672956B2 (en) 2004-05-13 2020-06-02 Seoul Semiconductor Co., Ltd. Light emitting device including RGB light emitting diodes and phosphor
US10186642B2 (en) 2004-05-13 2019-01-22 Seoul Semiconductor Co., Ltd. Light emitting device including RGB light emitting diodes and phosphor
US10916684B2 (en) 2004-05-13 2021-02-09 Seoul Semiconductor Co., Ltd. Light emitting device including RGB light emitting diodes and phosphor
US8070984B2 (en) 2004-06-10 2011-12-06 Seoul Semiconductor Co., Ltd. Luminescent material
US8318044B2 (en) 2004-06-10 2012-11-27 Seoul Semiconductor Co., Ltd. Light emitting device
US8883040B2 (en) 2004-06-10 2014-11-11 Seoul Semiconductor Co., Ltd. Luminescent material
US8308980B2 (en) 2004-06-10 2012-11-13 Seoul Semiconductor Co., Ltd. Light emitting device
US8252203B2 (en) 2004-06-10 2012-08-28 Seoul Semiconductor Co., Ltd. Luminescent material
US8900482B2 (en) 2004-06-10 2014-12-02 Seoul Semiconductor Co., Ltd. Light emitting device
US8158028B2 (en) 2004-06-10 2012-04-17 Seoul Semiconductor Co., Ltd. Luminescent material
US8070983B2 (en) 2004-06-10 2011-12-06 Seoul Semiconductor Co., Ltd. Luminescent material
US8075802B2 (en) 2004-06-10 2011-12-13 Seoul Semiconductor Co., Ltd. Luminescent material
US8198643B2 (en) 2004-06-30 2012-06-12 Seoul Opto Device Co., Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
US7964880B2 (en) 2004-06-30 2011-06-21 Seoul Opto Device Co., Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
JP2010034610A (en) * 2004-06-30 2010-02-12 Seoul Opto Devices Co Ltd Light-emitting element, method of manufacturing the same, and light-emitting device using the same
US7804098B2 (en) 2004-06-30 2010-09-28 Seoul Opto Device Co., Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
US8168988B2 (en) 2004-06-30 2012-05-01 Seoul Opto Device Co., Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
US7871839B2 (en) 2004-06-30 2011-01-18 Seoul Opto Device Co., Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
US8492775B2 (en) 2004-06-30 2013-07-23 Seoul Opto Device Co. Ltd. Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same
US8803166B2 (en) 2004-08-31 2014-08-12 Epistar Corporation Structure of AC light-emitting diode dies
US8053791B2 (en) 2004-08-31 2011-11-08 Industrial Technology Research Institute Structure of AC light-emitting diode dies
US7531843B2 (en) 2004-08-31 2009-05-12 Industrial Technology Research Institute Structure of AC light-emitting diode dies
KR101216938B1 (en) 2004-10-28 2012-12-31 서울반도체 주식회사 Luminous element having arrayed cells and method of manufacturing thereof and luminous apparatus using the same
JP2011061244A (en) * 2004-12-14 2011-03-24 Seoul Opto Devices Co Ltd Light emitting element having plural light-emitting cells
JP2008523637A (en) * 2004-12-14 2008-07-03 ソウル オプト−デバイス カンパニー リミテッド Light emitting device having a plurality of light emitting cells and package mounting the same
US7723736B2 (en) 2004-12-14 2010-05-25 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of light emitting cells and package mounting the same
US7838891B2 (en) 2004-12-14 2010-11-23 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of light emitting cells and package mounting the same
JP2010062592A (en) * 2004-12-14 2010-03-18 Seoul Opto Devices Co Ltd Light emitting element having a plurality of light emitting cells
US7842959B2 (en) 2004-12-14 2010-11-30 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of light emitting cells and package mounting the same
KR101138974B1 (en) 2005-01-07 2012-04-25 서울옵토디바이스주식회사 Luminous element and method of manufacturing thereof
US7221044B2 (en) 2005-01-21 2007-05-22 Ac Led Lighting, L.L.C. Heterogeneous integrated high voltage DC/AC light emitter
JP2008529297A (en) * 2005-01-26 2008-07-31 ソウル オプト デバイス カンパニー リミテッド Light emitting device having a plurality of light emitting cells connected in series and method for manufacturing the same
US7535028B2 (en) 2005-02-03 2009-05-19 Ac Led Lighting, L.Lc. Micro-LED based high voltage AC/DC indicator lamp
KR101142939B1 (en) 2005-02-23 2012-05-10 서울반도체 주식회사 Luminous Device
KR101238981B1 (en) * 2005-02-28 2013-03-08 오스람 옵토 세미컨덕터스 게엠베하 Module comprising radiation-emitting semiconductor bodies
CN100464111C (en) * 2005-03-04 2009-02-25 吕大明 AC LED lighting lamp
US8937326B2 (en) 2005-03-11 2015-01-20 Seoul Semiconductor Co., Ltd. LED package having an array of light emitting cells coupled in series
US8076680B2 (en) 2005-03-11 2011-12-13 Seoul Semiconductor Co., Ltd. LED package having an array of light emitting cells coupled in series
US8159000B2 (en) 2005-03-11 2012-04-17 Seoul Semiconductor Co., Ltd. LED package having an array of light emitting cells coupled in series
EP1864339A4 (en) * 2005-03-11 2010-12-29 Seoul Semiconductor Co Ltd Led package having an array of light emitting cells coupled in series
US8368190B2 (en) 2005-03-11 2013-02-05 Seoul Semiconductor Co., Ltd. LED package having an array of light emitting cells coupled in series
KR101248513B1 (en) * 2005-03-29 2013-04-04 서울반도체 주식회사 High flux led lamp mounting a led having an array of light emitting cells coupled in series
JP2006324434A (en) * 2005-05-18 2006-11-30 Rohm Co Ltd Semiconductor light-emitting device
US9627435B2 (en) 2005-06-22 2017-04-18 Seoul Viosys Co., Ltd. Light emitting device
US8476648B2 (en) 2005-06-22 2013-07-02 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
US9929208B2 (en) 2005-06-22 2018-03-27 Seoul Vlosys Co., Ltd. Light emitting device
US7723737B2 (en) 2005-06-22 2010-05-25 Seoul Opto Device Co., Ltd. Light emitting device
JP2014112713A (en) * 2005-06-22 2014-06-19 Seoul Viosys Co Ltd Light-emitting device and manufacturing method therefor
US7977691B2 (en) 2005-06-22 2011-07-12 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
US8895957B2 (en) 2005-06-22 2014-11-25 Seoul Viosys Co., Ltd Light emitting device and method of manufacturing the same
US9209223B2 (en) 2005-06-22 2015-12-08 Seoul Viosys Co., Ltd. Light emitting device and method of manufacturing the same
EP2161752A3 (en) * 2005-06-22 2010-03-24 Seoul Opto Device Co., Ltd. Light-emitting device and method of manufacturing the same
US8704246B2 (en) 2005-06-22 2014-04-22 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
US7951626B2 (en) 2005-06-22 2011-05-31 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
US10340309B2 (en) 2005-06-22 2019-07-02 Seoul Viosys Co., Ltd. Light emitting device
EP2161752A2 (en) * 2005-06-22 2010-03-10 Seoul Opto Device Co., Ltd. Light-emitting device and method of manufacturing the same
EP1897151A1 (en) * 2005-06-22 2008-03-12 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
EP1897151A4 (en) * 2005-06-22 2010-03-10 Seoul Opto Device Co Ltd Light emitting device and method of manufacturing the same
JP2012227543A (en) * 2005-06-28 2012-11-15 Seoul Opto Devices Co Ltd Light-emitting device
CN101604701B (en) * 2005-06-29 2011-11-16 首尔Opto仪器股份有限公司 Light emitting diode having a thermal conductive substrate and method of fabricating the same
US8129207B2 (en) 2005-06-29 2012-03-06 Seoul Opto Device Co., Ltd. Light emitting diode having a thermal conductive substrate and method of fabricating the same
US8039846B2 (en) 2005-06-29 2011-10-18 Seoul Opto Device Co., Ltd. Light emitting diode having a thermal conductive substrate and method of fabricating the same
WO2007001124A1 (en) * 2005-06-29 2007-01-04 Seoul Opto Device Co., Ltd. Light emitting diode having a thermal conductive substrate and method of fabricating the same
KR100608920B1 (en) 2005-06-30 2006-08-03 서울옵토디바이스주식회사 Wire form of light emitting device, wherein a plurality of light emitting cell is arrayed
US8350276B2 (en) * 2005-08-08 2013-01-08 Seoul Opto Device Co., Ltd. Alternating current light emitting device
JP2009505393A (en) * 2005-08-08 2009-02-05 ソウル オプト デバイス カンパニー リミテッド AC light emitting device
US8901575B2 (en) 2005-08-09 2014-12-02 Seoul Viosys Co., Ltd. AC light emitting diode and method for fabricating the same
US8384098B2 (en) 2005-08-09 2013-02-26 Seoul Opto Device Co., Ltd. AC light emitting diode and method for fabricating the same
WO2007018360A1 (en) * 2005-08-09 2007-02-15 Seoul Opto Device Co., Ltd. Ac light emitting diode and method for fabricating the same
US8952397B2 (en) 2005-08-09 2015-02-10 Seoul Viosys Co., Ltd. AC light emitting diode and method for fabricating the same
US7834364B2 (en) 2005-08-09 2010-11-16 Seoul Opto Device Co., Ltd. AC light emitting diode and method for fabricating the same
US9368548B2 (en) 2005-08-09 2016-06-14 Seoul Viosys Co., Ltd. AC light emitting diode and method for fabricating the same
JP2009505392A (en) * 2005-08-10 2009-02-05 ソウル オプト デバイス カンパニー リミテッド Light emitting device and manufacturing method thereof
KR100758541B1 (en) 2005-08-22 2007-09-13 서울옵토디바이스주식회사 light emitting diode having light emitting cells arranged in matrix layout and method for fabricating the same
US8089074B2 (en) 2005-09-30 2012-01-03 Seoul Opto Device Co., Ltd. Light emitting device having vertically stacked light emitting diodes
US8598598B2 (en) 2005-09-30 2013-12-03 Seoul Opto Device Co., Ltd. Light emitting device having vertically stacked light emitting diodes
JP2009510762A (en) * 2005-09-30 2009-03-12 ソウル オプト デバイス カンパニー リミテッド Light emitting device having vertically stacked light emitting diodes
JP2009516370A (en) * 2005-11-10 2009-04-16 ソウル オプト デバイス カンパニー リミテッド AC driven light emitting device having photonic crystal structure and method for manufacturing the same
US8273266B2 (en) 2005-11-11 2012-09-25 Seoul Semiconductor Co., Ltd. Copper-alkaline-earth-silicate mixed crystal phosphors
JP2007157969A (en) * 2005-12-05 2007-06-21 Rohm Co Ltd Semiconductor light-emitting element
KR101158073B1 (en) * 2005-12-13 2012-06-22 서울옵토디바이스주식회사 Light emitting device having arrayed cells
WO2007069869A1 (en) * 2005-12-15 2007-06-21 Seoul Semiconductor.Co., Ltd. Light emitting device
US8847254B2 (en) 2005-12-15 2014-09-30 Seoul Semiconductor Co., Ltd. Light emitting device
KR101055772B1 (en) 2005-12-15 2011-08-11 서울반도체 주식회사 Light emitting device
WO2007072873A1 (en) 2005-12-22 2007-06-28 Rohm Co., Ltd. Light emitting device and illumination instrument
KR101203138B1 (en) 2006-01-12 2012-11-20 서울옵토디바이스주식회사 Luminous device and the method therefor
US9576939B2 (en) 2006-03-31 2017-02-21 Seoul Semiconductor Co., Ltd. Light emitting device and lighting system having the same
US9312246B2 (en) 2006-03-31 2016-04-12 Seoul Semiconductor Co., Ltd. Light emitting device and lighting system having the same
US11322484B2 (en) 2006-03-31 2022-05-03 Seoul Semiconductor Co., Ltd. Light emitting device and lighting system having the same
US7847305B2 (en) 2006-04-04 2010-12-07 Rohm Co., Ltd. Semiconductor light emitting device
WO2007119663A1 (en) * 2006-04-04 2007-10-25 Rohm Co., Ltd. Semiconductor light emitting device
JP2007294519A (en) * 2006-04-21 2007-11-08 Matsushita Electric Works Ltd El illuminating panel
JP4736926B2 (en) * 2006-04-21 2011-07-27 パナソニック電工株式会社 EL lighting panel
US8188492B2 (en) 2006-08-29 2012-05-29 Seoul Semiconductor Co., Ltd. Light emitting device having plural light emitting diodes and at least one phosphor for emitting different wavelengths of light
US8674380B2 (en) 2006-08-29 2014-03-18 Seoul Semiconductor Co., Ltd. Light emitting device having plural light emitting diodes and plural phosphors for emitting different wavelengths of light
JP2010506384A (en) * 2006-09-30 2010-02-25 ソウル オプト デバイス カンパニー リミテッド Light emitting diode having light emitting cells of different sizes and light emitting element employing the same
JP2010067990A (en) * 2006-09-30 2010-03-25 Seoul Opto Devices Co Ltd Light-emitting diode having light-emitting cells with different sizes and light-emitting element employing the same
WO2008078880A1 (en) * 2006-12-22 2008-07-03 Seoul Opto Device Co., Ltd. A luminous element having a plurality of cells
JP2010514198A (en) * 2006-12-22 2010-04-30 ソウル オプト デバイス カンパニー リミテッド Light emitting device having a plurality of cells
KR101158079B1 (en) 2006-12-22 2012-07-20 서울옵토디바이스주식회사 A luminous element having numerous cells
US7999271B2 (en) 2006-12-22 2011-08-16 Seoul Opto Device Co., Ltd. Luminous element having a plurality of cells
US8872419B2 (en) 2006-12-26 2014-10-28 Seoul Viosys Co., Ltd. Light emitting device
US8598775B2 (en) 2006-12-26 2013-12-03 Seoul Opto Device Co., Ltd. Light emitting device
WO2008078881A1 (en) * 2006-12-26 2008-07-03 Seoul Opto Device Co., Ltd. Light emitting device
US9391118B2 (en) 2007-01-22 2016-07-12 Cree, Inc. Fault tolerant light emitters, systems incorporating fault tolerant light emitters and methods of fabricating fault tolerant light emitters
JP2010517273A (en) * 2007-01-22 2010-05-20 クリー レッド ライティング ソリューションズ、インコーポレイテッド Fault tolerant illuminant, system including fault tolerant illuminant and method for making fault tolerant illuminant
US10586787B2 (en) 2007-01-22 2020-03-10 Cree, Inc. Illumination devices using externally interconnected arrays of light emitting devices, and methods of fabricating same
JP2010521807A (en) * 2007-03-13 2010-06-24 ソウル オプト デバイス カンパニー リミテッド AC drive type light emitting diode
US9461091B2 (en) 2007-03-19 2016-10-04 Seoul Viosys Co., Ltd. Light emitting diode
KR100974923B1 (en) * 2007-03-19 2010-08-10 서울옵토디바이스주식회사 Light emitting diode
US8283682B2 (en) 2007-03-19 2012-10-09 Seoul Opto Device Co., Ltd. Light emitting diode
JP2008235894A (en) * 2007-03-19 2008-10-02 Seoul Opto Devices Co Ltd Light emitting diode of ac drive type
US8896011B2 (en) 2007-03-19 2014-11-25 Seoul Viosys Co., Ltd. Light emitting diode
US7884377B2 (en) 2007-03-21 2011-02-08 Samsung Led Co., Ltd. Light emitting device, method of manufacturing the same and monolithic light emitting diode array
US7704771B2 (en) 2007-03-21 2010-04-27 Samsung Electro-Mechanics Co., Ltd. Light emitting device, method of manufacturing the same and monolithic light emitting diode array
KR100872248B1 (en) 2007-06-11 2008-12-05 삼성전기주식회사 Ac operated light emitting device
US8339050B2 (en) 2007-06-22 2012-12-25 Samsung Electronics Co., Ltd. Light emitting diode driving circuit and light emitting diode array device
US8026675B2 (en) 2007-06-22 2011-09-27 Samsung Led Co., Ltd. Light emitting diode driving circuit and light emitting diode array device
US8137589B2 (en) 2007-08-22 2012-03-20 Seoul Semiconductor Co., Ltd. Non stoichiometric tetragonal copper alkaline earth silicate phosphors and method of preparing the same
US8501040B2 (en) 2007-08-22 2013-08-06 Seoul Semiconductor Co., Ltd. Non-stoichiometric tetragonal copper alkaline earth silicate phosphors and method of preparing the same
US8134165B2 (en) 2007-08-28 2012-03-13 Seoul Semiconductor Co., Ltd. Light emitting device employing non-stoichiometric tetragonal alkaline earth silicate phosphors
US8431954B2 (en) 2007-08-28 2013-04-30 Seoul Semiconductor Co., Ltd. Light emitting device employing non-stoichiometric tetragonal alkaline earth silicate phosphors
JP2009088482A (en) * 2007-09-27 2009-04-23 Seoul Opto Devices Co Ltd Ac driven light emitting diode
US8299477B2 (en) 2007-10-15 2012-10-30 Lg Innotek Co., Ltd. Light emitting device and method for fabricating the same
KR100928259B1 (en) 2007-10-15 2009-11-24 엘지전자 주식회사 Light emitting device and manufacturing method thereof
US9893118B2 (en) 2007-10-15 2018-02-13 Lg Innotek Co., Ltd. Light emitting device and method for fabricating the same
WO2009051376A3 (en) * 2007-10-15 2009-07-16 Lg Innotek Co Ltd Light emitting device and method for fabricating the same
US8507923B2 (en) 2007-10-29 2013-08-13 Seoul Opto Device Co., Ltd. Light emitting diode package
JP2009111339A (en) * 2007-10-29 2009-05-21 Seoul Opto Devices Co Ltd Light emitting diode package
KR101423723B1 (en) * 2007-10-29 2014-08-04 서울바이오시스 주식회사 Light emitting diode package
US8399895B2 (en) 2008-01-11 2013-03-19 Rohm Co., Ltd. Semiconductor light emitting device
US8188654B2 (en) 2008-06-30 2012-05-29 Samsung Led Co., Ltd. AC driven light emitting device
US8247980B2 (en) 2008-06-30 2012-08-21 Samsung Led Co., Ltd. LED driving circuit and light emitting diode array device
JP2010016333A (en) * 2008-06-30 2010-01-21 Samsung Electro-Mechanics Co Ltd Ac driven light-emitting device
US8754578B2 (en) 2008-06-30 2014-06-17 Samsung Electronics Co., Ltd. AC driven light emitting device connection structure
US8040050B2 (en) 2008-06-30 2011-10-18 Samsung Led Co., Ltd. AC driven light emitting device
JP2012028821A (en) * 2008-06-30 2012-02-09 Samsung Led Co Ltd Ac driven light emitting device
WO2010050694A3 (en) * 2008-10-29 2010-07-15 서울옵토디바이스주식회사 Light emitting diode
US8232565B2 (en) 2008-10-29 2012-07-31 Seoul Opto Device Co., Ltd. Light emitting diode for AC operation
US8188489B2 (en) 2008-10-29 2012-05-29 Seoul Opto Device Co., Ltd. Light emitting diode for AC operation
WO2010050694A2 (en) * 2008-10-29 2010-05-06 서울옵토디바이스주식회사 Light emitting diode
US8232571B2 (en) 2008-12-24 2012-07-31 Seoul Opto Device Co., Ltd. Light emitting device having plurality of light emitting cells and method of fabricating the same
JP2010157716A (en) * 2008-12-31 2010-07-15 Seoul Opto Devices Co Ltd Light emitting device having a plurality of non-polar light emitting cells and method of manufacturing the same
US8436389B2 (en) 2008-12-31 2013-05-07 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of non-polar light emitting cells and a method of fabricating the same
US8183072B2 (en) 2008-12-31 2012-05-22 Seoul Opto Device Co., Ltd. Light emitting device having plurality of non-polar light emitting cells and method of fabricating the same
US8211724B2 (en) 2008-12-31 2012-07-03 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of non-polar light emitting cells and a method of fabricating the same
US8294171B2 (en) 2008-12-31 2012-10-23 Seoul Opto Device Co., Ltd. Light emitting device having plurality of non-polar light emitting cells and method of fabricating the same
US8648380B2 (en) 2008-12-31 2014-02-11 Seoul Opto Device Co., Ltd. Light emitting device having a plurality of non-polar light emitting cells and a method of fabricating the same
KR101603773B1 (en) * 2009-01-07 2016-03-17 서울바이오시스 주식회사 Light emitting diode having plurality of light emitting cells
US8703014B2 (en) 2009-06-24 2014-04-22 Seoul Semiconductor Co., Ltd. Luminescent substances having Eu2+-doped silicate luminophores
US8535564B2 (en) 2009-06-24 2013-09-17 Seoul Semiconductor, Co., Ltd. Light emitting device employing luminescent substances with oxyorthosilicate luminophores
KR101138975B1 (en) * 2009-09-15 2012-04-25 서울옵토디바이스주식회사 Ac light emitting diode having full-wave lihgt emitting cell and half-wave light emitting cell
JP2018029217A (en) * 2009-10-20 2018-02-22 晶元光電股▲ふん▼有限公司Epistar Corporation Photoelectric element
US9419193B2 (en) 2009-10-28 2016-08-16 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an opto-electronic component
CN102598327A (en) * 2009-10-28 2012-07-18 欧司朗光电半导体有限公司 Optoelectronic component and method for producing an opto-electronic component
KR101203139B1 (en) * 2010-01-06 2012-11-20 서울옵토디바이스주식회사 Luminous element having arrayed cells
JP2011181921A (en) * 2010-02-26 2011-09-15 Samsung Led Co Ltd Semiconductor light emitting device having multi-cell array, and method for manufacturing the same
WO2011115361A2 (en) * 2010-03-15 2011-09-22 서울옵토디바이스주식회사 Light-emitting device having a plurality of light-emitting cells
WO2011115361A3 (en) * 2010-03-15 2011-11-10 서울옵토디바이스주식회사 Light-emitting device having a plurality of light-emitting cells
JP2012015480A (en) * 2010-07-02 2012-01-19 Shogen Koden Kofun Yugenkoshi Photoelectric element
JP2020205454A (en) * 2010-08-30 2020-12-24 晶元光電股▲ふん▼有限公司Epistar Corporation Light-emitting device
JP7186754B2 (en) 2010-08-30 2022-12-09 晶元光電股▲ふん▼有限公司 light emitting device
JP2012054447A (en) * 2010-09-02 2012-03-15 Seiwa Electric Mfg Co Ltd Semiconductor light-emitting element, light-emitting device, lighting unit, and display unit
US9882102B2 (en) 2010-09-24 2018-01-30 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode and wafer-level light emitting diode package
US9048409B2 (en) 2010-09-24 2015-06-02 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US10879437B2 (en) 2010-09-24 2020-12-29 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US10892386B2 (en) 2010-09-24 2021-01-12 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US9293664B2 (en) 2010-09-24 2016-03-22 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US9543490B2 (en) 2010-09-24 2017-01-10 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US10069048B2 (en) 2010-09-24 2018-09-04 Seoul Viosys Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US9219196B2 (en) 2010-09-24 2015-12-22 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US9070851B2 (en) 2010-09-24 2015-06-30 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US9153750B2 (en) 2010-09-24 2015-10-06 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
JP2011055007A (en) * 2010-12-13 2011-03-17 Seoul Opto Devices Co Ltd Ac-driven light emitting diode
KR101259998B1 (en) * 2011-03-31 2013-05-06 서울옵토디바이스주식회사 Light emitting diode
KR101106139B1 (en) * 2011-04-04 2012-01-20 서울옵토디바이스주식회사 Light emitting diode with a metal reflection layer expanded and method for manufacturing the same
KR101115538B1 (en) * 2011-04-04 2012-02-28 서울옵토디바이스주식회사 Luminous device and the method therefor
KR101115540B1 (en) * 2011-06-30 2012-02-28 서울옵토디바이스주식회사 Light emitting diode package
KR101221336B1 (en) * 2011-07-12 2013-01-21 서울옵토디바이스주식회사 Light emitting device and method of fabricating the same
JP2013048163A (en) * 2011-08-29 2013-03-07 Seiwa Electric Mfg Co Ltd Semiconductor light-emitting element, light-emitting device and semiconductor light-emitting element manufacturing method
KR101229835B1 (en) * 2012-03-08 2013-02-04 서울옵토디바이스주식회사 Luminous element having arrayed cells and Method for manufacturing the same and Luminous device using the same
KR101308129B1 (en) * 2012-04-27 2013-09-12 서울옵토디바이스주식회사 Light emitting device and method of fabricating the same
KR101205529B1 (en) 2012-06-20 2012-11-27 서울옵토디바이스주식회사 A light emitting device having a plurality of light emitting cells and Menufacturing method thereof
US10418349B2 (en) 2012-09-04 2019-09-17 Micron Technology, Inc. High voltage solid-state transducers and solid-state transducer arrays having electrical cross-connections and associated systems and methods
WO2014039343A1 (en) * 2012-09-04 2014-03-13 Micron Technology, Inc. High voltage solid-state transducers and solid-state transducer arrays having electrical cross-connections and associated systems and methods
US11183486B2 (en) 2012-09-04 2021-11-23 Micron Technology, Inc. High voltage solid-state transducers and solid-state transducer arrays having electrical cross-connections and associated systems and methods
US9171826B2 (en) 2012-09-04 2015-10-27 Micron Technology, Inc. High voltage solid-state transducers and solid-state transducer arrays having electrical cross-connections and associated systems and methods
US10177122B2 (en) 2012-09-04 2019-01-08 Micron Technology, Inc. High voltage solid-state transducers and solid-state transducer arrays having electrical cross-connections and associated systems and methods
US9642196B2 (en) 2013-03-14 2017-05-02 Samsung Electronics Co., Ltd. Light-emitting device package and light-emitting apparatus
WO2015063947A1 (en) * 2013-11-01 2015-05-07 星和電機株式会社 Semiconductor light-emitting element and light-emitting device
US11355550B2 (en) 2014-05-19 2022-06-07 Epistar Corporation Optoelectronic device having conductor arrangement structures non-overlapped with heat dissipation pads
US11705480B2 (en) 2014-05-19 2023-07-18 Epistar Corporation Optoelectronic device with electrodes forming an outer boundary beyond an outer boundary of an epitaxial stack
JP2016012707A (en) * 2014-06-30 2016-01-21 晶元光電股▲ふん▼有限公司 Photoelectric component and manufacturing method of the same
US10139066B2 (en) 2014-10-21 2018-11-27 Zkw Group Gmbh Printed circuit board having a plurality of electronic components arranged on the printed circuit board in at least one group
AT516416A1 (en) * 2014-10-21 2016-05-15 Zizala Lichtsysteme Gmbh Printed circuit board having a plurality of arranged on the circuit board in at least one group of electronic components
AT516416B1 (en) * 2014-10-21 2019-12-15 Zkw Group Gmbh Printed circuit board with a plurality of electronic components arranged on the printed circuit board in at least one group
US10580929B2 (en) 2016-03-30 2020-03-03 Seoul Viosys Co., Ltd. UV light emitting diode package and light emitting diode module having the same
CN109686730A (en) * 2019-01-23 2019-04-26 苏州弘磊光电有限公司 It is a kind of being capable of the mixed LAMP LED of alternating current-direct current
CN109686730B (en) * 2019-01-23 2024-01-05 苏州弘磊光电有限公司 LAMP LED capable of being used in AC-DC hybrid mode
JP2019145843A (en) * 2019-05-14 2019-08-29 晶元光電股▲ふん▼有限公司Epistar Corporation Photoelectric component
US11322541B2 (en) 2019-08-28 2022-05-03 Nichia Corporation Light-emitting device
JP7319551B2 (en) 2020-03-31 2023-08-02 日亜化学工業株式会社 light emitting device
JP7223046B2 (en) 2021-02-24 2023-02-15 晶元光電股▲ふん▼有限公司 photoelectric components
JP2021082837A (en) * 2021-02-24 2021-05-27 晶元光電股▲ふん▼有限公司Epistar Corporation Photoelectric component
JP7378749B2 (en) 2022-04-11 2023-11-14 厦門普為光電科技有限公司 Reliable environmental protection light emitting diode
DE102023113087A1 (en) 2022-05-23 2023-11-23 Stanley Electric Co., Ltd. LIGHT EMITTING SEMICONDUCTOR DEVICE

Also Published As

Publication number Publication date
JP3822545B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
JP3822545B2 (en) Light emitting device
JP4938821B2 (en) Light emitting device
KR100697803B1 (en) Light-emitting device having light-emitting elements
JP4195041B2 (en) Light emitting device
JP4949211B2 (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050408

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060622

R150 Certificate of patent or registration of utility model

Ref document number: 3822545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term