JP2004004625A - 光複合モジュール、光波長多重装置、光波長分離装置および光複合モジュール製造方法 - Google Patents

光複合モジュール、光波長多重装置、光波長分離装置および光複合モジュール製造方法 Download PDF

Info

Publication number
JP2004004625A
JP2004004625A JP2003074378A JP2003074378A JP2004004625A JP 2004004625 A JP2004004625 A JP 2004004625A JP 2003074378 A JP2003074378 A JP 2003074378A JP 2003074378 A JP2003074378 A JP 2003074378A JP 2004004625 A JP2004004625 A JP 2004004625A
Authority
JP
Japan
Prior art keywords
light
optical
optical fiber
rod lens
converging rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003074378A
Other languages
English (en)
Inventor
Hironori Hayata
早田 博則
Tomoaki Ohira
大平 智亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003074378A priority Critical patent/JP2004004625A/ja
Publication of JP2004004625A publication Critical patent/JP2004004625A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】光軸調整が容易で、小型で実装性に優れた光複合モジュールを提供することである。
【解決手段】一端にバンドパス光フィルタ(BPF)5を接着する集束性ロッドレンズ2と、集束性ロッドレンズ2の外径と同一の外径を有し、入力用光ファイバ1aおよび出力用光ファイバ1bを収納する二芯ガラス管3とが固定される。入力用光ファイバ1aおよび出力用光ファイバ1bの間の中心線は、集束性ロッドレンズの光軸と一致する。入力用光ファイバ1aより出射した波長λ4の光は、BPF5を通過し、受光チップ7で受光され電気信号に変換される。入力用光ファイバ1aより出射したそれ以外の光は、BPF5で反射し、出力用光ファイバ1bに結合する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバ通信に用いる光合波もしくは光分波機能を有する光複合モジュール並びにそれを用いた光波長多重装置および光波長分離装置に関し、より特定的には、発光素子あるいは受光素子を内部に一体化する光複合モジュール並びにそれを用いた光波長多重装置および光波長分離装置に関する。
【0002】
【従来の技術】
高密度波長多重伝送では、波長間隔が狭いため、効率よく波長を分離する必要があり、より急峻な波長特性を持つ光フィルタが必要となってくる。急峻な特性を得るためには100層以上の多層膜が必要であり、フィルタ面への入射角も大きく取ることができないため、光学結合系の構成上の制約も多くなってくる。
【0003】
このような条件の下、高密度の波長間隔で配列された光信号を効率よく合波、分波するため、1978年頃、2個の集束性ロッドレンズ間に光フィルタを装着する内部干渉膜形と呼ばれる光合分波器が提案された。
【0004】
図21は、内部干渉膜形の従来の光合分波器の構成を示す図である。図21おいて、光合分波器1100は、波長λ1、λ2の光を合波、分波する構成となっており、第1の集束性ロッドレンズ1000と、第2の集束性ロッドレンズ1001と、波長λ1の光を通過し波長λ2の光を反射するバンドパス光フィルタ(以下、BPFという)1002とを含み、第1の集束性ロッドレンズ1000の一端には光ファイバ1003および1004が、第2の集束性ロッドレンズ1001の一端には光ファイバ1005が接続されている。
【0005】
光ファイバ1004から入力される波長λ2の光は、第1の集束性ロッドレンズ1000により平行光に変換され、BPF1002に向かって進行し、BPF1002で反射される。BPF1002で反射された波長λ2の光は、再び第1の集束性ロッドレンズ1000を通って光ファイバ1003に結合する。一方、光ファイバ1005から入力される波長λ1の光は、第2の集束性ロッドレンズ1001で平行光に変換され、BPF1002を通過し、第1の集束性ロッドレンズ1000により集光されて、光ファイバ1003に結合する。このように、BPF1002での透過と反射とを利用して波長λ1の光と波長λ2の光とが合波される。
【0006】
波長λ1,λ2の光を分波する場合、合波の場合と逆にして、波長λ1,λ2の光を光ファイバ1003に入力し、波長λ2の光を光ファイバ1004から取り出し、波長λ1の光を光ファイバ1005から取り出せばよい。
【0007】
しかし、上記のような内部干渉膜形の従来の光合分波器では、別途光送信用の発光素子モジュール、あるいは光受信用の受光素子モジュールを光ファイバ1003〜1005の一端に接続する必要があり、装置が大がかりとなる。また、光ファイバ融着等の処理が必要となるために挿入損失が増加する等の問題が生じる。
【0008】
そのため、発光素子あるいは受光素子モジュールが一体化されている光モジュールが提案されている。例えば、特許文献1に記載の光モジュールがそれである。図22は、特許文献1に記載の光モジュールの構成を示す図である。
【0009】
図22において、光モジュール2100は、波長λ1の光を出力する光源2000と、レンズ2001と、波長λ1の光を通過し波長λ2の光を反射するBPF2002と、集束性ロッドレンズ2003とを含む。光ファイバ2005から入力される波長λ2の光は、集束性ロッドレンズ2003で平行光に変換され、BPF2002に向かって進行し、BPF2002で反射する。BPF2002で反射された波長λ2の光は、再び第1の集束性ロッドレンズ2003を通って光ファイバ2004に結合する。一方、光源2000から出力される波長λ1の光は、レンズ2001で平行光に変換され、BPF2002を通過し、集束性ロッドレンズ2003により集光されて、光ファイバ2004に結合される。このようにして、波長λ1,λ2の光が合波される。光モジュール2100では、波長λ1の発光素子である光源2000がその内部に一体化されているので、小型化でき、挿入損失低減を図ることができる。
【0010】
【特許文献1】
特開平11−242130号公報
【特許文献2】
特開平05−181035号公報
【0011】
【発明が解決しようとする課題】
内部干渉膜形の従来の光合分波器1100には、装置が大がかりになったり、挿入損失が増加するといった問題以外に、光ファイバと集束性ロッドレンズの結合の位置調整が困難であるといった問題があった。具体的には、BPF1002での反射光を光ファイバ1003に結合するため、光ファイバ1003および1004間の中心線と第1の集束性ロッドレンズ1000の光軸とを一致させる必要がある。この際、出力確認をするための条件として、10μm以下の精度での光軸調整が必要である。また、光ファイバ1005からの出力光を光ファイバ1003に結合するために、第2の集束性ロッドレンズ1001の端面における光ファイバ1005を、10μm以下の精度で、出力確認するために位置調整する必要がある。
【0012】
さらに、内部干渉膜形の従来の光合分波器1100を光波長多重装置や光波長分離装置に用いた場合、装置が大がかりとなり、光損失が増大するといった問題がある。
【0013】
また、特許文献1に記載の光モジュール2100では、受光素子を一体化することによって、装置を小型化し、損失低減を図ることができるものの、製造が困難であるという問題を抱えている。具体的には、光ファイバ2005から出力される光をBPF2002で反射させ、光ファイバ2004に結合するために、集束性ロッドレンズ2003の光軸と光ファイバ2004および2005間の中心線とを一致させる必要があり、10μm以下の精度で、出力確認をするために光軸調整する必要がある。また、光源2000からの波長λ1の光を集束性ロッドレンズ2003に入力し光ファイバ2004に結合するために、レンズ2001と集束性ロッドレンズ2003とを0.1度以下の精度で角度調整する必要がある。
【0014】
それゆえ、本発明の目的は、発光素子あるいは受光素子を内部に一体化しつつ、反射結合系の位置あるいは角度調整を容易にし、製造が容易で低損失な小型の光複合モジュールを提供することである。
【0015】
また、本発明の他の目的は、低損失で小型の光波長多重装置および光波長分離装置を提供することである。
【0016】
また、本発明の他の目的は、上記光複合モジュールを用いた光波長多重装置および光波長分離装置を提供することである。
【0017】
【課題を解決するための手段】
第1の発明は、入力用光ファイバから入力される複数の波長の光を分波し、一部を電気信号に変換し、一部を出力用光ファイバに出力する光複合モジュールであって、
入射する光の内、電気信号に変換したい波長帯の光を透過し、それ以外の波長帯の光を反射する光フィルタと、
入力用光ファイバおよび出力用光ファイバと光フィルタとの間に配置されており、入力用光ファイバから入力される光を平行光に変換して光フィルタに入射し、光フィルタが反射した平行光を出力用光ファイバの一端に集光する第1の集束性ロッドレンズと、
光フィルタの透過光である平行光を一点に集光する集光手段と、
集光手段が集光した光を受光して電気信号に変換する受光素子と、
第1の集束性ロッドレンズの光軸と入力用光ファイバおよび出力用光ファイバ間の中心線とを一致させる位置決め部材とを含む。
【0018】
上記第1の発明の構成によれば、内部に受光素子を含んでいるので、光モジュールの小型化、挿入損失の低減化を図ることができる。また、位置決め部材によって、第1の集束性ロッドレンズの光軸と入力用光ファイバおよび出力用光ファイバの中心線とが一致するので、結合位置の調整が容易となる。
【0019】
第2の発明は、第1の発明に従属する発明であって、位置決め部材は、
第1の集束性ロッドレンズを保持するための光軸を中心とする円筒状のレンズ保持筐体と、
レンズ保持筐体と同一の外径であって、中心から径方向等間隔の位置に入力用光ファイバおよび出力用光ファイバを保持するための二つのガイド穴を持つ光ファイバ保持筐体とを有する。
【0020】
上記第2の発明の構成によれば、レンズ保持筐体と光ファイバ保持筐体との外径が一致するので、これらの外縁をあわせるだけで光軸と光ファイバ間の中心線とが一致することとなる。
【0021】
第3の発明は、第1の発明に従属する発明であって、位置決め部材は、第1の集束性ロッドレンズと同一の外径であって、第1の集束性ロッドレンズの光軸から径方向等間隔の位置に入力用光ファイバおよび出力用光ファイバを保持するための二つのガイド穴を持つ筐体であることを特徴とする。
【0022】
上記第3の発明の構成によれば、第1の集束性ロッドレンズの外径と光ファイバを保持する筐体の外径とが一致するので、これらの外縁をあわせるだけで光軸と光ファイバ間の中心線とが一致することとなる。
【0023】
第4の発明は、第1の発明に従属する発明であって、集光手段は、光フィルタと受光素子との間に配置されており、光フィルタから出力される平行光を受光素子上に集光する球レンズであることを特徴とする。
【0024】
上記第4の発明によれば、平行光を受光素子上に集光する球レンズを用いるので、受光素子の微細な角度調整が不要となる。
【0025】
第5の発明は、第1の発明に従属する発明であって、集光手段は、
光フィルタと受光素子との間に配置されており、光フィルタの透過光である平行光を集光する第2の集束性ロッドレンズと、
第2の集束性ロッドレンズと受光素子との間に配置されており、第2の集束性ロッドレンズによって集光された後発散する光を再び受光素子上に集光する球レンズとを有する。
【0026】
上記第5の発明の構成によれば、第1の集束性ロッドレンズ、光フィルタおよび第2の集束性ロッドレンズの端面同士をそれぞれ面接触させるだけでよいので、これらの微細な角度調整が不要となる。さらに、汎用品のレンズ付き受光素子が利用できることとなる。
【0027】
第6の発明は、第1の発明に従属する発明であって、集光手段は、光フィルタと受光素子との間に配置されており、光フィルタが透過した平行光を受光素子上に集光する第2の集束性ロッドレンズであることを特徴とする。
【0028】
上記第6の発明の構成によれば、第1の集束性ロッドレンズ、光フィルタおよび第2の集束性ロッドレンズの端面同士をそれぞれ面接触させるだけでよいので、これらの微細な角度調整が不要となる。さらに、第2の集束性ロッドレンズによって集光する光を直接受光することとなるので、僅かな光であっても受光することができ、受光素子の最適位置への位置決めが容易となる。
【0029】
第7の発明は、第1〜第6の発明のいずれかに従属する発明であって、所定の角度位置に調整されたときに集光手段による焦点位置に受光素子を配置する受光素子位置決め部材をさらに含む。
【0030】
上記第7の発明の構成によれば、一次元的に角度調整するだけで受光素子が適切な位置に配置されることとなる。
【0031】
第8の発明は、第7の発明に従属する発明であって、受光素子位置決め部材は、
第1の集束性ロッドレンズを保持するための光軸を中心とする円筒状の保持筐体と、
保持筐体と同一の外径であって、受光素子を固定するための受光素子保持筐体とを有し、
受光素子保持筐体は、回動されて保持筐体との相対的角度関係が所定の角度位置に調整されたときに受光素子が焦点位置に配置されるよう受光素子を固定することを特徴とする。
【0032】
上記第8の発明の構成によれば、受光素子保持筐体を軸を中心に回転させて保持筐体との相対的角度関係を調整するだけで、受光素子が適切な位置に配置されることとなる。
【0033】
第9の発明は、入力される電気信号で変調された光を出力し、当該光と入力用光ファイバから入力される複数の波長の光とを合波して、出力用光ファイバに出力する光複合モジュールであって、
入力される電気信号で変調された光を出力する発光素子と、
発光素子が出力する光を平行光に変換する平行光変換手段と、
平行光変換手段と入力用光ファイバおよび出力用光ファイバとの間に配置され、入射する光の内、平行光変換手段から入力される波長帯の光を透過し、それ以外の波長帯の光を反射する光フィルタと、
光フィルタと入力用光ファイバおよび出力用光ファイバとの間に配置され、入力用光ファイバから入力される光を平行光に変換して光フィルタに入射し、光フィルタの反射光である平行光および光フィルタの透過光である平行光を出力用光ファイバの一端に集光する第1の集束性ロッドレンズと、
第1の集束性ロッドレンズの光軸と入力用光ファイバおよび出力用光ファイバ間の中心線とを一致させる位置決め部材とを含む。
【0034】
上記第9の発明の構成によれば、内部に発光素子を含んでいるので、光モジュールの小型化、挿入損失の低減化を図ることができる。また、位置決め部材によって、第1の集束性ロッドレンズの光軸と入力用光ファイバおよび出力用光ファイバの中心線とが一致するので、結合位置の調整が容易となる。
【0035】
第10の発明は、第9の発明に従属する発明であって、平行光変換手段は、
発光素子から出力される発散光を一点に集光する集光レンズと、
光フィルタと集光レンズとの間に配置されており、集光レンズが集光した光を平行光に変換して光フィルタに入射する第2の集束性ロッドレンズとを有する。
【0036】
上記第10の発明の構成によれば、発光素子から出力される光が平行光に変換されて光フィルタに入射することとなる。
【0037】
第11の発明は、第10の発明に従属する発明であって、さらに、集光レンズと第2の集束性ロッドレンズとの間に配置されており、集光レンズからの光による第2の集束性ロッドレンズのレンズ端面での反射光が発光素子に戻るのを防止する反射戻り光防止手段を含む。
【0038】
上記第11の発明の構成によれば、第2の集束性ロッドレンズのレンズ端での反射光が発光素子に戻るのを防止することができる。
【0039】
第12の発明は、第11の発明に従属する発明であって、反射戻り光防止手段は、光アイソレータであることを特徴とする。
【0040】
上記第12の発明の構成によれば、光アイソレータを用いるので、反射によって発光素子に光が戻ってくるのを確実に防止することが期待できる。
【0041】
第13の発明は、第11の発明に従属する発明であって、反射戻り光防止手段は、第2の集束性ロッドレンズのレンズ端面に設けられた傾斜によって反射光の戻りを防止することを特徴とする。
【0042】
上記第13の発明の構成によれば、傾斜が設けられているので、第2の集束性ロッドレンズのレンズ端面で反射された光は、発光素子の位置とは異なる方向に反射されることとなり、反射戻り光の入射を防止できる。
【0043】
第14の発明は、第11の発明に従属する発明であって、反射戻り光防止手段は、第2の集束性ロッドレンズのレンズ端面に設けられた反射防止コートであることを特徴とする。
【0044】
上記第14の発明の構成によれば、反射防止コートが施されているので、第2の集束性ロッドレンズのレンズ端での反射の抑制が期待できる。
【0045】
第15の発明は、第10の発明に従属する発明であって、集光レンズは、球レンズであることを特徴とする。
【0046】
上記第15の発明の構成によれば、汎用の発光素子を用いることができ、取り込む光量の増加も図れる。
【0047】
第16の発明は、第10の発明に従属する発明であって、集光レンズは、発光素子側のレンズ端面が球面状となっている先球集束性ロッドレンズであることを特徴とする。
【0048】
上記第16の発明の構成によれば、レンズ端が球面上となっているので、取り込む光量が増加することとなる。
【0049】
第17の発明は、第9の発明に従属する発明であって、位置決め部材は、
第1の集束性ロッドレンズを保持するための光軸を中心とする円筒状のレンズ保持筐体と、
レンズ保持筐体と同一の外径であって、中心から径方向等間隔の位置に入力用光ファイバおよび出力用光ファイバを保持するための二つのガイド穴を有する光ファイバ保持筐体とを有する。
【0050】
第18の発明は、第9の発明に従属する発明であって、位置決め部材は、第1の集束性ロッドレンズと同一の外径であって、第1の集束性ロッドレンズの光軸から径方向等間隔の位置に入力用光ファイバおよび出力用光ファイバを保持するための二つのガイド穴を有する筐体であることを特徴とする。
【0051】
第19の発明は、第9〜第18の発明のいずれかに従属する発明であって、所定の角度位置に調整されたときに平行光変換手段から出力される平行光が、光フィルタおよび第1の集束性ロッドレンズを通った後、出力用光ファイバの一端に集光する位置に発光素子を配置する発光素子位置決め部材をさらに含む。
【0052】
上記第19の発明の構成によれば、角度位置に調整するだけで発光素子が適切な位置に配置されることとなる。
【0053】
第20の発明は、第19の発明に従属する発明であって、発光素子位置決め部材は、
第1の集束性ロッドレンズを保持するための光軸を中心とする円筒状の保持筐体と、
保持筐体と同一の外径であって、発光素子を固定するための発光素子保持筐体とを有し、
発光素子保持筐体は、回動されて保持筐体との相対的角度関係が所定の角度位置に調整されたときに、平行光変換手段から出力される平行光が出力用光ファイバの一端に集光する位置に発光素子が配置されるよう発光素子を固定することを特徴とする。
【0054】
上記第20の発明の構成により、発光素子保持筐体を回転させて保持筐体との相対的角度関係を調整するだけで、発光素子が適切な位置に配置されることとなる。
【0055】
第21の発明は、入力される電気信号で変調された光を出力し、当該光と入力用光ファイバから入力される複数の波長の光とを合波して、出力用光ファイバに出力する光複合モジュールであって、
入力される電気信号で変調された光を出力し、一点に集光する発光素子と、
発光素子が集光する光を、光軸に平行な平行光に変換する第1の集束性ロッドレンズと、
第1の集束性レンズと入力用光ファイバおよび出力用光ファイバとの間に配置され、入射する光の内、第1の集束性ロッドレンズから入力される波長帯の光を透過し、それ以外の波長帯の光を反射する光フィルタと、
光フィルタと入力用光ファイバおよび出力用光ファイバとの間に配置され、入力用光ファイバから入力される光を、平行光に変換して光フィルタに入射し、光フィルタの反射光である平行光および光フィルタの透過光である平行光を出力用光ファイバの一端に集光する第2の集束性ロッドレンズと、
第2の集束性ロッドレンズの光軸と出力用光ファイバの中心とを一致させる位置決め部材とを含み、
光フィルタと第2の集束性ロッドレンズとの境界面は、光フィルタの反射光である平行光および光フィルタの透過光である平行光が出力用光ファイバの一端に集光するように、互いに傾斜していることを特徴とする。
【0056】
上記第21の発明の構成により、内部に発光素子を含んでいるので、光モジュールの小型化、挿入損失の低減化を図ることができる。また、位置決め部材によって、第2の集束性ロッドレンズの光軸と出力用光ファイバの中心とが一致するので、結合位置の調整が容易となる。また、第1の集束性ロッドレンズからは、光軸に平行な平行光が出力されることとなるので、結合位置の調整が容易となる。
【0057】
第22の発明は、第21の発明に従属する発明であって、さらに、発光素子と第1の集束性ロッドレンズとを一体化する第1のユニット部材と、
光フィルタ、第2の集束性ロッドレンズ、および位置決め部材を一体化する第2のユニット部材とを含み、
第1のユニット部材と第2のユニット部材とは、着脱可能であることを特徴とする。
【0058】
上記第22の発明の構成により、発光素子が劣化したとしても、入力する光の伝送を中断することなく、発光素子側を交換することが可能となる。また、第1の集束性ロッドレンズからは、光軸に平行な平行光が出力されるので、交換の際、ユーザは、高度な位置決めを必要としない。
【0059】
第23の発明は、入力される電気信号で変調された光を出力し、当該光と入力用光ファイバから入力される複数の波長の光とを合波して、出力用光ファイバに出力する光複合モジュールであって、
入力される電気信号で変調された光を出力し、一点に集光する発光素子と、
発光素子が集光する光を、光軸に平行な平行光に変換する第1の集束性ロッドレンズと、
第1の集束性レンズと入力用光ファイバおよび出力用光ファイバとの間に配置され、入射する光の内、第1の集束性ロッドレンズから入力される波長帯の光を透過し、それ以外の波長帯の光を反射する光フィルタと、
光フィルタと入力用光ファイバおよび出力用光ファイバとの間に配置され、入力用光ファイバから入力される光を平行光に変換して光フィルタに入射し、光フィルタの反射光である平行光および光フィルタの透過光である平行光を出力用光ファイバの一端に集光する第2の集束性ロッドレンズと、
第2の集束性ロッドレンズの光軸と入力用光ファイバおよび出力用光ファイバ間の中心線とを一致させる位置決め部材とを含み、
光フィルタは、第1の集束性ロッドレンズからの平行光が屈折して、出力用光ファイバの一端に集光するように、第1の集束性ロッドレンズ側が傾斜していることを特徴とする。
【0060】
上記第23の発明の構成により、内部に発光素子を含んでいるので、光モジュールの小型化、挿入損失の低減化を図ることができる。また、位置決め部材によって、第2の集束性ロッドレンズの光軸と入力用光ファイバおよび出力用光ファイバの中心とが一致するので、結合位置の調整が容易となる。また、第1の集束性ロッドレンズからは、光軸に平行な平行光が出力されることとなるので、結合位置の調整が容易となる。
【0061】
第24の発明は、第23の発明に従属する発明であって、さらに、発光素子と第1の集束性ロッドレンズとを一体化する第1のユニット部材と、
光フィルタ、第2の集束性ロッドレンズ、および位置決め部材を一体化する第2のユニット部材とを含み、
第1のユニット部材と第2のユニット部材とは、着脱可能であることを特徴とする。
【0062】
上記第24の発明の構成により、発光素子が劣化したとしても、入力する光の伝送を中断することなく、発光素子側を交換することが可能となる。また、第1の集束性ロッドレンズからは、光軸に平行な平行光が出力されるので、交換の際、ユーザは、高度な位置決めを必要としない。
【0063】
第25の発明は、入力用光ファイバから入力される複数の波長の光を分波し、一部を電気信号に変換し、一部を出力用光ファイバに出力する光複合モジュールであって、
入射する光の内、電気信号に変換したい波長帯の光を透過し、それ以外の波長帯の光を反射する光フィルタと、
入力用光ファイバおよび出力用光ファイバと光フィルタとの間に配置されており、入力用光ファイバから入力される光を平行光に変換して光フィルタに入射し、光フィルタが反射した平行光を出力用光ファイバの一端に集光する第1の集束性ロッドレンズと、
光フィルタの透過光である平行光を一点に集光する第2の集束性ロッドレンズと、
第2の集束性ロッドレンズが集光した光を受光して電気信号に変換する受光素子と、
第1の集束性ロッドレンズの光軸と入力用光ファイバの中心とを一致させる位置決め部材とを含み、
光フィルタと第1の集束性ロッドレンズとの境界面は、光フィルタの反射光である平行光が出力用光ファイバの一端に集光するように、互いに傾斜していることを特徴とする。
【0064】
上記第25の発明の構成により、内部に受光素子を含んでいるので、光モジュールの小型化、挿入損失の低減化を図ることができる。また、位置決め部材によって、第1の集束性ロッドレンズの光軸と入力用光ファイバの中心とが一致するので、結合位置の調整が容易となる。
【0065】
第26の発明は、第25の発明に従属する発明であって、さらに、光フィルタと第1の集束性ロッドレンズとの境界面は、光フィルタの透過光である平行光が光軸に対して平行となるように、互いに傾斜していることを特徴とする。
【0066】
上記第26の発明の構成により、光フィルタからは、光軸に平行な平行光が出力されることとなるので、結合位置の調整が容易となる。
【0067】
第27の発明は、第26の発明に従属する発明であって、受光素子と第2の集束性ロッドレンズとを一体化する第1のユニット部材と、
光フィルタ、第1の集束性ロッドレンズ、および位置決め部材を一体化する第2のユニット部材とを含み、
第1のユニット部材と第2のユニット部材とは、着脱可能であることを特徴とする。
【0068】
上記第27の発明の構成により、受光素子が劣化したとしても、入力する光の伝送を中断することなく、受光素子側を交換することが可能となる。また、光フィルタからは、光軸に平行な平行光が出力されるので、交換の際、ユーザは、高度な位置決めを必要としない。
【0069】
第28の発明は、入力用光ファイバから入力される複数の波長の光を分波し、一部を電気信号に変換し、一部を出力用光ファイバに出力する光複合モジュールであって、
入射する光の内、電気信号に変換したい波長帯の光を透過し、それ以外の波長帯の光を反射する光フィルタと、
入力用光ファイバおよび出力用光ファイバと光フィルタとの間に配置されており、入力用光ファイバから入力される光を平行光に変換して光フィルタに入射し、光フィルタが反射した平行光を出力用光ファイバの一端に集光する第1の集束性ロッドレンズと、
光フィルタの透過光である平行光を一点に集光する第2の集束性ロッドレンズと、
第2の集束性ロッドレンズが集光した光を受光して電気信号に変換する受光素子と、
第1の集束性ロッドレンズの光軸と入力用光ファイバおよび出力用光ファイバ間の中心線とを一致させる位置決め部材とを含む。
【0070】
上記第28の発明の構成により、内部に受光素子を含んでいるので、光モジュールの小型化、挿入損失の低減化を図ることができる。また、位置決め部材によって、第1の集束性ロッドレンズの光軸と入力用光ファイバおよび出力用光ファイバの中心とが一致するので、結合位置の調整が容易となる。
【0071】
第29の発明は、第28の発明に従属する発明であって、光フィルタは、透過光である平行光が光軸に対して平行となるように、第2の集束性ロッドレンズ側が傾斜していることを特徴とする。
【0072】
上記第29の発明の構成により、光フィルタからは、光軸に平行な平行光が出力されることとなるので、結合位置の調整が容易となる。
【0073】
第30の発明は、第29の発明に従属する発明であって、受光素子と第2の集束性ロッドレンズとを一体化する第1のユニット部材と、
光フィルタ、第1の集束性ロッドレンズ、および位置決め部材を一体化する第2のユニット部材とを含み、
第1のユニット部材と第2のユニット部材とは、着脱可能であることを特徴とする。
【0074】
上記第30の発明の構成により、受光素子が劣化したとしても、入力する光の伝送を中断することなく、受光素子側を交換することが可能となる。また、光フィルタからは、光軸に平行な平行光が出力されるので、交換の際、ユーザは、高度な位置決めを必要としない。
【0075】
第31の発明は、波長多重されている複数の波長の光信号を受信して各波長毎の光信号に分離する光波長分離装置であって、
受信した波長多重されている光信号を少なくとも2以上の波長群の光信号に分波する波長分波手段と、
各波長群毎に設けられており、波長分波手段が分波した波長群の光信号を波長帯毎の光信号に分離する光信号分離部とを含み、
各光信号分離部は、入力される光信号の一部を分波して電気信号に変換し一部を出力する受光素子を内部に一体化した複数の光複合モジュールを有し、
複数の光複合モジュールは、直列に接続されていることを特徴とする。
【0076】
上記第31の発明の構成によれば、受光素子を内蔵化した光複合モジュールを用いるので、装置の小型化、低損失化が図れる。また、波長群に分割して光信号を分離するので、直列接続によって生じる最終段の累積過剰損失が減少し、光複合モジュールに要求される挿入損失の仕様を緩和することができる。
【0077】
第32の発明は、第31の発明に従属する発明であって、光複合モジュールは、第1〜8,25〜30の発明のいずれかの光複合モジュールであることを特徴とする。
【0078】
第33の発明は、少なくとも2以上の波長群の光信号に分けられている複数の波長の光信号を波長多重して出力する光波長多重装置であって、
各波長群毎に設けられており、当該波長群に含まれる複数の波長の光信号を合波して波長群の光信号として出力する光信号合波部と、
各光信号合波部が出力する波長群の光信号を合波して出力する波長群光信号合波手段とを含み、
各光信号合波部は、入力される電気信号で変調された光信号を出力し当該光信号と入力される光信号とを合波して出力する発光素子を一体化した複数の光複合モジュールを有し、
複数の光複合モジュールは、直列に接続されていることを特徴とする。
【0079】
上記第33の発明の構成により、発光素子を内蔵化した光複合モジュールを用いるので、装置の小型化、低損失化が図れる。また、波長群に分割して光信号を合波するので、直列接続によって生じる最終段の累積過剰損失が減少し、光複合モジュールに要求される挿入損失の仕様を緩和することができる。
【0080】
第34の発明は、第33の発明に従属する発明であって、光複合モジュールは、第9〜24の発明のいずれかの光複合モジュールであることを特徴とする。
【0081】
第35の発明は、発光素子から出力される一点に集光する光を光軸方向に平行な平行光に変換して出力するための光複合モジュールを製造するための方法であって、
光軸中心に配置されている光ファイバからの出射光を光軸中心に対して平行な平行光に変換する光ファイバコリメータを、割スリーブの片側から着脱可能に挿入する工程と、
割スリーブの反対側から、集束性ロッドレンズを保持したレンズ保持部材を装着する工程と、
レンズ保持部材の外周の一部を嵌合すると共に、レンズ保持部材が軸方向に移動可能な調整スリーブに、レンズ保持部材を挿入する工程と、
発光素子を光らせた状態で、光ファイバからの出力が最大となるような、集束性ロッドレンズの位置を見つける工程と、
集束性ロッドレンズの位置を見つける工程で見つかった位置で、調整スリーブとレンズ保持部材とを固定し、かつ調整スリーブと発光素子を保持する部材とを固定する工程と、
固定する工程の後、割スリーブに挿入されている光ファイバコリメータを抜き出す工程とを含む。
【0082】
上記第35の発明では、光ファイバコリメータを用いるので、簡単に、光ファイバ複合モジュールを製造することが可能となる。
【0083】
第36の発明は、入射する平行光を一点に集光して、受光素子に入射させるための光複合モジュールを製造するための方法であって、
光軸中心に配置されている光ファイバからの出射光を光軸中心に対して平行な平行光に変換する光ファイバコリメータを、割スリーブの片側から着脱可能に挿入する工程と、
割スリーブの反対側から、集束性ロッドレンズを保持したレンズ保持部材を装着する工程と、
レンズ保持部材の外周の一部を嵌合すると共に、レンズ保持部材が軸方向に移動可能な調整スリーブに、レンズ保持部材を挿入する工程と、
光ファイバから光を出射させた状態で、受光素子からの出力が最大となるような、集束性ロッドレンズの位置を見つける工程と、
集束性ロッドレンズの位置を見つける工程で見つかった位置で、調整スリーブとレンズ保持部材とを固定し、かつ調整スリーブと受光素子を保持する部材とを固定する工程と、
固定する工程の後、割スリーブに挿入されている光ファイバコリメータを抜き出す工程とを含む。
【0084】
上記第36の発明では、光ファイバコリメータを用いるので、簡単に、光ファイバ複合モジュールを製造することが可能となる。
【0085】
【発明の実施の形態】
(第1の実施形態)
図1は、本発明の第1の実施形態に係る光複合モジュールの断面図である。本実施形態では、波長λ1〜λ8の多重化された光信号の中より、波長λ4の光信号を受光素子で受信する光複合モジュールについて説明する。図中において、点線は、光の流れを示す。図1において、光複合モジュールは、入力用光ファイバ1aと、出力用光ファイバ1bと、集束性ロッドレンズ2と、二芯ガラス管3と、第1の筐体4と、BPF5と、受光素子6と、第2の筐体9と、屈折率整合層10とを含む。
【0086】
入力用光ファイバ1aには、波長λ1〜λ8の多重化された光信号が伝送する。出力用光ファイバ1bには、集束性ロッドレンズ2から出力される波長λ1〜λ3,λ5〜λ8の多重化された光信号が伝送する。
【0087】
集束性ロッドレンズ2は、光軸上の屈折率が一番高く、外周部に行くに従って屈折率が下がる円柱状のレンズである。集束性ロッドレンズ2は、0.25ピッチの大きさである。ここで、ピッチとは、レンズ内の光線の蛇行周期のことをいう。上記屈折率および大きさの特徴により、集束性ロッドレンズ2は、入力用光ファイバ1aから入力される光を平行光に変換して出力し、BPF5が反射する平行光を出力用光ファイバ1bの一端上の点に集光する。
【0088】
二芯ガラス管3は、入力用光ファイバ1aおよび出力用光ファイバ1bを挿入してこれらを保持するための二つのガイド穴を有するガラス管である。二芯ガラス管3は、第1の筐体4に接着されて固定される。図2は、第1の筐体4に接着された二芯ガラス管3を輪切りにしたときの断面図である。二芯ガラス管3は、入力用光ファイバ1aを挿入するガイド穴1haと、出力用光ファイバ1bを挿入するガイド穴1hbとを有する。二芯ガラス管3の外径は、集束性ロッドレンズ2の外径と同一である。二芯ガラス管3の中心は、ガイド穴1haおよび1hb間の中心と一致する。すなわち、集束性ロッドレンズ2の光軸に対し、入力用光ファイバ1aおよび出力用光ファイバ1bは、等距離の位置に配置されており、当該光軸と入力用光ファイバ1aおよび出力用光ファイバ1b間の中心線とは一致する。
【0089】
屈折率整合層10は、光ファイバと空気層間、および空気層間で生じるフレネル反射損失を低減する。
【0090】
図3は、BPF5の波長特性を示す図である。BPF5は、λ4の波長帯の光を通過し、λ1〜λ3,λ5〜λ8の波長帯の光を反射させる特性を有する。
【0091】
受光素子6は、受光チップ7と球レンズ8とを有する。球レンズ8は、BPF5から出力される平行光を受光チップ7に集光する。受光チップ7は、受光した光信号を電気信号に変換し、受光素子6に接続されている端子に出力する。受光素子6は、受光する光信号による電気信号の出力レベルが最も最適となる位置に配置される。
【0092】
第1の筐体4は、二芯ガラス管3を固定するための円筒状の筐体である。第2の筐体9は、集束性ロッドレンズ2、BPF5および受光素子6を固定するための凸形状の筐体であって、小さい円筒穴と大きい円筒穴とを有する。第1の筐体4の外径と第2の筐体9の小さい円筒穴の外径とは一致する。第1の筐体4および第2の筐体9は、SUS304などの金属で製作されている。集束性ロッドレンズ2の外縁と二芯ガラス管3の外縁とが一致するようにして(すなわち、第2の筐体9の外縁と第1の筐体4の外縁とが一致するようにして)、第2の筐体9の小さい側の円筒穴端と第1の筐体4の屈折率調整層側一端とは、YAG溶接で固定される。第2の筐体9と第1の筐体4とは、集束性ロッドレンズ2の光軸と入力用光ファイバ1aおよび出力用光ファイバ1b間の中心線とを一致させる位置決め部材である。
【0093】
次に、上記光複合モジュールの製造工程について詳しく説明する。
まず、BPF5の端面が集束性ロッドレンズ2の焦点位置にくるように、エポキシ樹脂やUV硬化樹脂を用いて、集束性ロッドレンズ2の端面にBPF5を貼り付ける。なお、BPF5は、集束性ロッドレンズ2の端面に蒸着するようにしてもよい。
【0094】
次に、第2の筐体9の小さい側の円筒穴に、集束性ロッドレンズ2の他端面を第2の筐体9の端面より約10μm程度凹ました状態で、集束性ロッドレンズ2を固定する。次に、第1の筐体4の端面と二芯ガラス管3の端面とが一致するように、端面研磨された入力用光ファイバ1aおよび出力用光ファイバ1bを挿入した二芯ガラス管3を第1の筐体4に接着し固定する。
【0095】
次に、入力用光ファイバ1aの一端に波長λ1の光源を、出力用光ファイバ1bの一端に光パワメータを接続する。次に、集束性ロッドレンズ2の二芯ガラス管側端面に屈折率整合剤を塗布し、屈折率整合層10を形成する。その後、集束性ロッドレンズ2の外縁と二芯ガラス管3の外縁とが一致するように、第1の筐体4と第2の筐体9とをそれぞれ調整治具に固定する。この状態で、第1の筐体4と第2の筐体9とを近づけていくと、屈折率整合剤が入力用光ファイバ1aおよび出力用ファイバ1bの一端に接する。これにより、出力用光ファイバ1bに接続された光パワメータから出力値が得られ、出力確認できる。その後、光パワーメータを参照しながら、第1の筐体4と第2の筐体9とを互いに向き合わせた状態で、光軸方向に微調整し、最適な結合状態が得られる位置を決定する。最適な結合状態が得られたら、第1の筐体4および第2の筐体9の接触部にYAGレーザを照射して、これらを溶接する。最適な結合位置は、集束性ロッドレンズ2の焦点位置に入力用光ファイバ1aおよび出力用光ファイバ1bの一端が配置される位置である。
【0096】
次に、第2の筐体9の大きい側の円筒穴に受光素子6を仮接続する。次に、入力用光ファイバ1aに波長λ4の光源を接続し、受光チップ7が少しでも光を取り込む位置を探す。次に、当該位置の近傍において、受光素子6が出力する電気信号の出力が最大になるように、受光素子6の位置を集束性ロッドレンズ2の光軸垂直面上で微調整し、最大の出力レベルが得られたら、第2の筐体9と受光素子6とをYAGレーザで溶接する。なお、受光素子6は大きいので、光軸垂直面上の位置調整はそれほど厳しくない。最大の出力レベルが得られる位置は、球レンズ8がBPF5からの平行光を受光チップ7に集光する位置である。このようにして、上記光複合モジュールが完成する。
【0097】
次に、上記光複合モジュールの動作について説明する。入力用光ファイバ1aから入力される波長λ1〜λ8の光は、フレネル反射することなく屈折率整合層10を通り、集束性ロッドレンズ2に入射し、集束性ロッドレンズ2で平行光に変換され、BPF5へ入射する。BPF5は、波長λ4の光を透過し、残りの波長λ1〜λ3,λ5〜λ8の光を反射する。BPF5で反射された波長λ1〜λ3,λ5〜λ8の光は、集束性ロッドレンズ2内を再び通って出力用光ファイバ1bの一端に集光し、出力用光ファイバ1bに結合される。この集光位置は、集束性ロッドレンズ2の光軸中心に対し、入力用光ファイバ1aからの光信号の入力位置と点対称の位置となる。上記光複合モジュールでは、入力用光ファイバ1aおよび出力用光ファイバ1b間の中心は、集束性ロッドレンズ2の光軸と一致しているので、集光位置に出力用光ファイバ1bが設けられていることとなる。したがって、波長λ1〜λ3,λ5〜λ8の光は、出力用光ファイバ1bに結合されることとなる。
【0098】
一方、BPF5を透過した波長λ4の平行光は、受光素子6の球レンズ8によって受光チップ7に集光され、電気信号に変換される。
【0099】
このように、第1の実施形態では、受光素子を内部に一体化しているので、装置の小型化および挿入損失の低減化を図ることができる。
【0100】
また、集束性ロッドレンズ2の光軸と入出力用の光ファイバ間の中心線とが一致するように、集束性ロッドレンズ2の外径と二芯ガラス管3の外径とを等しくし、さらに第2の筐体9と第1の筐体4との外径を等しくしているので、出力確認のための位置決めが容易になり、光ファイバに出力光を結合するための光軸調整を簡単に行うことができ、容易に製造することができる光複合モジュールを提供することが可能となる。
【0101】
さらに、平行光を球レンズを用いて受光する受光素子6を用いるので、BPF5からの光をより多く取り込むことができ、受光チップ7のチップ上のいずれかの位置には集光するので、受光素子6の角度調整が不要となる。
【0102】
さらに、入出力用の光ファイバが片側から出ているので実装性に優れているという効果も有する。
【0103】
なお、集束性ロッドレンズ2の大きさを0.25ピッチであるとしたが、レンズ端の焦点位置に光ファイバを配置するのであれば、これに限られることはなく、0.23ピッチなどであってもよい。
【0104】
なお、BPF5の波長特性を変えれば、任意の波長帯の光信号のみを受光することができる光複合モジュールが提供できる。
【0105】
なお、ここでは、集束性ロッドレンズ2の外径と二芯ガラス管3の外径とが同一となることとしたが、少なくとも第1の筐体4の外径と第2の筐体9の外径とが一致しておれば位置決めを容易に行うことができる。
【0106】
なお、二芯ガラス管3を保持する第1の筐体4は、図1で説明したような形に限られない。図4に示すように、第1の筐体4は、その一端の内径が第2の筐体9の外径と同一となる凹形をしている。第2の筐体9の先端を第1の筐体4の凹部分に挿入すれば、集束性ロッドレンズ2の光軸と入力用光ファイバ1aおよび出力用光ファイバ1b間の中心線とが一致する。このように、集束性ロッドレンズ2の光軸と入力用光ファイバ1aおよび出力用光ファイバ1b間の中心線とが一致するような位置決め部材であれば、特に形が限定されるわけではない。
【0107】
(第2の実施形態)
図5は、本発明の第2の実施形態に係る光複合モジュールの断面図である。図5において、第1の実施形態に係る光複合モジュールの構成部材と同等の機能を有する部分については、同一の符号を付し、説明を省略することとする。
【0108】
第2の実施形態に係る光複合モジュールは、発散光を受光し電気信号に変換する受光素子62と、BPF5と受光素子62との間に配置された集束性ロッドレンズ22と、第2の筐体92とを含む。
【0109】
集束性ロッドレンズ22は、0.25ピッチの大きさである。集束性ロッドレンズ22は、その大きさが0.25ピッチであるので、BPF5の透過光である平行光をレンズ端の一点に集光する。
【0110】
受光素子62は、有限系(ビームが広がっている光を集光させるようなレンズ系)の球レンズ82を有する。球レンズ82は、集束性ロッドレンズ22からの発散光を受光チップ7の位置に集光する。受光素子62は、広く一般に用いられている汎用品のレンズ付き受光素子である。受光素子62は、集束性ロッドレンズ22からの光を受光し、最大の出力レベルが得られる位置に配置される。
【0111】
第2の筐体92は、集束性ロッドレンズ2、BPF5、集束性ロッドレンズ22および受光素子62を収納するための凸形状の筐体である。第2の筐体92は、その小さい側の円筒穴に、エポキシ樹脂等で貼り付けられた集束性ロッドレンズ2、BPF5および集束性ロッドレンズ22を固定する。集束性ロッドレンズ2の端面には屈折率整合層10が形成され、最適な位置に配置した二芯ガラス管3、入力用光ファイバ1aおよび出力用光ファイバ1bを含む第1の筐体4が、第2の筐体92と溶接によって接合される。第2の筐体92の大きい側の円筒穴には、出力レベルが最大となる位置に受光素子62が配置され、受光素子62と第2の筐体92とが溶接される。
【0112】
次に、上記光複合モジュールの動作について説明する。
入力用光ファイバ1aから入力される波長λ1〜λ8の光は、集束性ロッドレンズ2で平行光に変換され、BPF5へ入射する。BPF5は、波長λ4の光を透過し、残りの波長λ1〜λ3,λ5〜λ8の光を反射する。BPF5で反射した光は、第1の実施形態と同様、出力用光ファイバ1bに結合する。
【0113】
一方、BPF5の透過光である波長λ4の平行光は、集束性ロッドレンズ22によって、そのレンズ端に集光する。レンズ端に集光した光は、再び光ファイバのNA(numerical aperture:開口数)に相当する広がりを持って進行し、球レンズ82に入射し、受光チップ7上に集光され電気信号に変換される。
【0114】
このように、第2の実施形態では、汎用品のレンズ付き受光素子62を用いることとなるので、光複合モジュールを低コストに提供することが可能となる。
【0115】
また、集束性ロッドレンズ2、BPF5および集束性ロッドレンズ22の端面同士を固定するだけでよいので、レンズの高精度の角度調整が不要となる。
【0116】
なお、第2の実施形態では、集束性ロッドレンズ22の大きさを0.25ピッチであるとしたが、集束性ロッドレンズ22が内部または外部に光を集光し、発散光を出力するのであれば、その大きさは0.25ピッチに限られるものではない。
【0117】
(第3の実施形態)
図6は、本発明の第3の実施形態に係る光複合モジュールの断面図である。図6において、第1の実施形態に係る光複合モジュールの構成部材と同等の機能を有する部分については、同一の符号を付し、説明を省略することとする。
【0118】
第3の実施形態に係る光複合モジュールは、球レンズを有しない受光素子63と、受光素子63とBPF5との間に配置される集束性ロッドレンズ23と、第2の筐体93とを含む。集束性ロッドレンズ23は、BPF5の端面に貼り付けられている。
【0119】
集束性ロッドレンズ23は、ピッチが0.25より短く(たとえば、0.23)、光軸上の屈折率が一番高く、外周部に行くに従って屈折率が下がる円柱状のレンズである。集束性ロッドレンズ23の焦点位置は、レンズ端より外側に存在する。受光素子63は、球レンズを有していない。受光素子63は、受光チップ7が集束性ロッドレンズ23の焦点位置にくるように配置されている。
【0120】
第2の筐体93は、集束性ロッドレンズ2、BPF5、集束性ロッドレンズ23および受光素子63を収納するための凸形状の筐体である。第2の筐体93は、その小さい側の円筒穴に、エポキシ樹脂等で貼り付けられた集束性ロッドレンズ2、BPF5および集束性ロッドレンズ23を固定する。二芯ガラス管3および光ファイバを含む第1の筐体4は、第2の筐体93と溶接によって最適な位置に接合される。第2の筐体93の大きい側の円筒穴には、出力レベルが最大となる位置(受光チップ7が集束性ロッドレンズ23の焦点にくる位置)に受光素子63が配置され、受光素子63と第2の筐体93とが溶接される。
【0121】
BPF5の透過光である波長λ4の平行光は、集束性ロッドレンズ23によって、レンズ端より外側に集光される。この集光位置には、受光素子63の受光チップ7が存在するので、受光チップ7によって光信号が電気信号に変換される。波長λ1〜λ3,λ5〜λ8の光を出力用光ファイバ1bに結合するときの動作は、第1の実施形態の場合と同様である。
【0122】
球レンズのない受光素子においては、光軸がずれている状態でも僅かな光を検出することができる。光が検出できれば、出力が最大になるように調整していけばよいため、出力がない状態から探すより容易である。一方、球レンズ付きの受光素子においては、球レンズにおいて僅かな光を受けたとしても光軸がずれている場合、受光チップで必ず受光するとは限らないため、出力が最大になるように調整するのには手間がかかる。
【0123】
したがって、第3の実施形態では、球レンズ付きの受光素子を用いる場合に比べ、受光素子での集光位置に対する最適位置の調整を容易に行うことができる光複合モジュールが提供される。
【0124】
(第4の実施形態)
第1〜第3の実施形態では、光信号を分波する受信用の光複合モジュールについて説明したが、第4の実施形態では、光信号を出力して合波する送信用の光複合モジュールについて説明する。
【0125】
図7は、本発明の第4の実施形態に係る光複合モジュールの断面図である。図7において、第1の実施形態に係る光複合モジュールの構成部材と同等の機能を有する部分については、同一の符号を付し、説明を省略することとする。
【0126】
第4の実施形態に係る光複合モジュールは、出力用光ファイバ14aと、入力用光ファイバ14bと、集束性ロッドレンズ24と、発光素子64と、第2の筐体94とを含む。
【0127】
入力用光ファイバ14bには、波長λ1〜λ3,λ5〜λ8の光信号が伝送する。出力用光ファイバ14aには、合波後の波長λ1〜λ8の光信号が伝送する。第1の実施形態の場合と同様、入力用光ファイバ14bおよび出力用光ファイバ14a間の中心と、集束性ロッドレンズ2の光軸とは一致する。すなわち、光軸を中心に、入力用光ファイバ14bと出力用光ファイバ14aとが線対称に配置される。
【0128】
集束性ロッドレンズ24は、一端面がエポキシ樹脂等によってBPF5と接続しており、他端面が研磨されており、8度に傾斜している。集束性ロッドレンズ24は、集束性ロッドレンズ2と同様、光軸上の屈折率が一番高く、外周部に行くに従って屈折率が下がる円柱状のレンズである。発光素子64は、発光チップ74と、球レンズ84とを有している。発光チップ74は、入力される電気信号で変調された光信号を出力する。球レンズ84は、発光チップ74から出力される出射光を集光して集束性ロッドレンズ24の傾斜面に入射する。発光素子64は、出力光が集束性ロッドレンズ24の傾斜面に集光し、集光された光が集束性ロッドレンズ24、BPF5および集束性ロッドレンズ2を通って、出力用光ファイバ14aに結合する位置に配置されている。
【0129】
第2の筐体94は、集束性ロッドレンズ2、BPF5、集束性ロッドレンズ24および発光素子64を収納するための凸形状の筐体である。第2の筐体94は、その小さい側の円筒穴に、エポキシ樹脂等で貼り付けられた集束性ロッドレンズ2、BPF5および集束性ロッドレンズ24を固定する。二芯ガラス管3、入力用光ファイバ14bおよび出力用光ファイバ14aを含む第1の筐体4は、第2の筐体94と溶接によって最適な位置に接合される。第2の筐体94の大きい側の円筒穴には、出力用光ファイバ14aからの出力光パワーが最大となる位置に発光素子64が配置され、発光素子64と第2の筐体94とが溶接される。発光素子64の位置調整は、集束性ロッドレンズ2および24の光軸垂直面上で行えばよい。
【0130】
次に、上記光複合モジュールの動作について説明する。
入力用光ファイバ14bより入力される波長λ1〜λ3,λ5〜λ8の光は、集束性ロッドレンズ2で平行光に変換され、BPF5へ入射し、反射される。BPF5で反射された波長λ1〜λ3,λ5〜λ8の光は、集束性ロッドレンズ2内を再び通って、出力用光ファイバ14aに結合される。
【0131】
発光チップ74から出力される波長λ4の光は、球レンズ84によって集光され、集束性ロッドレンズ24に入射する。集束性ロッドレンズ24に入射した波長λ4の光は、平行光に変換され、BPF5を透過し、集束性ロッドレンズ2によって集光され、出力用光ファイバ14aに結合される。これにより、波長λ1〜λ3,λ5〜λ8の光と波長λ4の光とが合波される。
【0132】
このように、第4の実施形態では、発光素子を内部に一体化しているので、装置の小型化、挿入損失の低減化を図る送信用の光複合モジュールが提供される。
【0133】
また、集束性ロッドレンズ2の光軸と入力用光ファイバ14bおよび出力用光ファイバ14a間の中心線とが一致するように、集束性ロッドレンズ2および二芯ガラス管3の外径を等しくし、第2の筐体94の外径と第1の筐体4の外径とを等しくしているので、光ファイバに出力光を結合するための光軸調整を簡単に行うことができ、容易に製造することができる送信用の光複合モジュールを提供することが可能となる。
【0134】
さらに、集束性ロッドレンズ2、BPF5および集束性ロッドレンズ24を予め固定しているので、レンズの高精度の角度調整が不要となる。
【0135】
さらに、入出力用の光ファイバが片側から出ているので実装性に優れているという効果も有する。
【0136】
さらに、集束性ロッドレンズ24のレンズ端が傾斜しているので、発光素子64の出力光のレンズ端での反射戻り光を抑制することができ、反射戻り光が発光チップ74に入力することによって発生する雑音を抑圧でき、安定した送信用の光複合モジュールを提供することができる。
【0137】
なお、発光素子64が出力する光の波長およびBPF5の波長特性を変えることによって、任意の波長帯の光信号を合波することができる送信用の光複合モジュールが提供できる。
【0138】
なお、第4の実施形態では、集束性ロッドレンズ24のレンズ端の傾斜を8度であるとしたが、反射光が悪影響を与えないのであれば、この角度に限定されるものではない。
【0139】
なお、第4の実施形態では、反射戻り光を抑制するために、集束性ロッドレンズ24のレンズ端を傾斜させることとしたが、別に、ARコート(antireflection coating:反射防止コート)等をレンズ表面に施すのであれば、レンズ端を傾斜させなくてもよい。
【0140】
なお、集束性ロッドレンズ2の光軸と入力用光ファイバ14bおよび出力用光ファイバ1a間の中心線とが一致するのであれば、第1の筐体4および第2の筐体94の形状は上記に限られるものではない。
【0141】
(第5の実施形態)
第5の実施形態では、送信用の光複合モジュールについて説明する。図8は、本発明の第5の実施形態に係る光複合モジュールの断面図である。図8において、第1、第2および第4の実施形態に係る光複合モジュールの構成部材と同等の機能を有する部分については、同一の符号を付し、説明を省略する。
【0142】
図8において、光複合モジュールは、先球集束性ロッドレンズ26と、光アイソレータ25と、第2の筐体95と、第3の筐体27と、発光素子65とを含む。発光素子65は、球レンズを有さない。先球集束性ロッドレンズ26は、発光チップ74から出射される光を集束性ロッドレンズ22のレンズ端に集光する。先球集束性ロッドレンズ26は、先端を球状にすることによって、NAを拡大し、取り込む光量を増大することができる。
【0143】
光アイソレータ25は、先球集束性ロッドレンズ26と集束性ロッドレンズ22との間に配置され、先球集束性ロッドレンズ26からの光は透過するが、集束性ロッドレンズ22からの光は透過しない。したがって、集束性ロッドレンズ22のレンズ端で反射される光は、発光チップ74には入射しない。
【0144】
第2の筐体95は、エポキシ樹脂等で貼り付けられた集束性ロッドレンズ2、BPF5および集束性ロッドレンズ22を片側の円筒穴に接着し、もう片側の円筒穴に光アイソレータ25を接着するための凸形状の筐体である。第3の筐体27は、小さい側の円筒穴に先球集束性ロッドレンズ26を接着し、大きい側の円筒穴に発光素子65を固定するための円筒状の筐体である。
【0145】
集束性ロッドレンズ2、BPF5、集束性ロッドレンズ22および光アイソレータ25を収納した第2の筐体95と、二芯ガラス管3、入力用光ファイバ14bおよび出力用光ファイバ14aを収容した第1の筐体4とは、溶接によって最適な位置に接合される。先球集束性ロッドレンズ26は、第3の筐体27において、概ね発光素子65からの出力光が集束性ロッドレンズ22のレンズ端に集光する位置に接着される。第2の筐体95と、先球集束性ロッドレンズ26を収納した第3の筐体27とは、溶接によって接合される。発光素子65は、出力光が出力用光ファイバ14aに結合するよう、集束性ロッドレンズ2および22、先球集束性ロッドレンズ26の光軸垂直面上で位置調整して配置され、第3の筐体27と溶接によって接合される。
【0146】
発光チップ74から出力される光は、先球集束性ロッドレンズ26によって集束性ロッドレンズ22のレンズ端に集光し、集束性ロッドレンズ22に入射する。集束性ロッドレンズ22に入射した光は、第4の実施形態の場合と同様にして、出力用光ファイバ14aに結合する。入力用光ファイバ14bから出力される光の流れは第4の実施形態の場合と同様である。
【0147】
このように、第5の実施形態においては、光アイソレータ25によって集束性ロッドレンズ22からの反射戻り光の発光チップ74への入射を抑制することとなるので、反射戻り光が発光チップ74に入力することによって発生する雑音を抑圧でき、安定した送信用の光複合モジュールを提供することができる。
【0148】
(第6の実施形態)
第6の実施形態に係る光複合モジュールの構成は、第2の実施形態に係る光複合モジュールにおける受光素子62の位置決めをより容易にする構成となる。図9は、本発明の第6の実施形態に係る光複合モジュールの断面図である。図10は、第6の実施形態に係る光複合モジュールの分解斜視図である。図9および図10において、第2の実施形態に係る光複合モジュールの構成部材と同等の機能を有する部分については、同一の符号を付し、説明を省略する。図9において、光複合モジュールは、エポキシ樹脂等で貼り付けられた集束性ロッドレンズ2、BPF5および集束性ロッドレンズ22を収納する第2の筐体96と、受光素子62を収納するための第3の筐体36とを含む。
【0149】
第2の筐体96は、凸形をした円筒であり、第2の筐体96の小さい側円筒穴端Aと第1の筐体4とが接合される。第2の実施形態と同様、第2の筐体96の小さい側円筒穴の外径と第1の筐体4の外径とは、同一である。第2の筐体96の大きい側円筒穴端Bと、第3の筐体36とが接合される。第3の筐体36の外径と第2の筐体96の大きい側円筒穴の外径とは、同一である。
【0150】
第3の筐体36には、中心から少しずれた位置に受光素子62の先端部を収納するための受光素子収納穴361が開いている。受光素子収納穴361の内径は、受光素子62の外径と一致している。受光素子収納穴361の中心は、集束性ロッドレンズ22がそのレンズ端面に波長λ4の光を集光する集光位置22aと一致する。受光チップ7は、受光素子収納穴361の中心線上かつ集束性ロッドレンズ22のレンズ端面からの焦点距離上に配置される。
【0151】
入力用光ファイバ1a、出力用光ファイバ1bの光軸からの間隔が決まっているので、集束性ロッドレンズ22の集光位置22aは、所定の位置として、一意に決まる。一般的に、集光位置22aは、出力用光ファイバ1bと対向する位置に決まる。したがって、第3の筐体36における受光素子収納穴361の中心位置を決めることができる。この中心位置に受光素子収納穴361を形成しておけばよい。受光素子62の先端部を受光素子収納穴361に入れ、受光素子62と第3の筐体36とが溶接等によって接合される。
【0152】
第3の筐体36を第2の筐体96に接合する場合、第3の筐体36における受光素子収納穴361の中心が集束性ロッドレンズ22の集光位置22aにくるように、第3の筐体36を第2の筐体96の外縁と一致するようにして回転させるだけでよい。第3の筐体36と第2の筐体96とは、受光素子の位置決めをする部材である。
【0153】
図11は、第2の筐体96の一端面Bに、光ファイバ1a,1b、集光位置22a、および中心位置361aを投影させた図である。図11を参照しながら、第3の筐体36の位置決めについて詳しく説明する。なお、図11においては、説明のため、集光位置22aと光ファイバ1bとの位置を少しずらして記載しているが、一般的に、集光位置22aと光ファイバ1bとは、対向しているのでこれらの位置は、一致することとなる。集束性ロッドレンズ22のレンズ端での集光位置22aと、受光素子収納穴361の中心位置361aとを一致させるために、第3の筐体36を第2の筐体96の外縁と一致するように回転させると、中心位置361aは、入力用光ファイバ1a、出力用光ファイバ1b間の中心点を中心にして円を描くように移動する。中心位置361aが集光位置22aに位置すると、受光素子62の出力レベルが最大となる。この位置で、第3の筐体36と第2の筐体96とを溶接して接合すれば、最適な位置に受光チップ7が配置されることとなる。すなわち、第2の筐体96と第3の筐体36との相対的角度関係が所定の角度位置となった場合、最適な位置に受光チップ7が配置されることとなる。
【0154】
このように、第6の実施形態では、受光素子62を収納する第3の筐体36の外径と第2の筐体96の大きい側円筒穴の外径とを同一にし、相対的な角度関係を調整することによって、受光チップ7を適切な位置に配置することができるので、受光素子62の位置調整がより簡単となり、より容易に光複合モジュールを製造することが可能となる。
【0155】
なお、第3の筐体36および第2の筐体96の形状は、上記に限られるものではない。たとえば、図12に示すように、第3の筐体36を凹形にし、第2の筐体96の先端がすっぽり第3の筐体36に入り込むようにしてもよい。この場合も、第3の筐体36を回転させるだけで、第2の筐体96との相対的角度関係が調整され、適切な角度位置に受光チップ7が配置されることとなる。
【0156】
なお、ここでは、第2の実施形態に係る光複合モジュールの位置決めを容易にすることができる構成について説明したが、上記その他の実施形態においても同様に受光素子または発光素子を取り付けるような筐体を用いれば、より光複合モジュールの製造が容易となる。
【0157】
具体的には、第1の実施形態に係る光複合モジュール(図1参照)においては、BPF5から出力される平行光の中心位置を中心に受光素子用の円筒穴が形成されている受光素子6を収納する筐体を用い、当該筐体の外径と第2の筐体9の外径とを同一のものとすれば、相対的な角度位置を調整するだけでよいので、受光素子6の位置決めが容易となる。
【0158】
また、第3の実施形態に係る光複合モジュール(図6参照)においては、集束性ロッドレンズ23からの光が集光する位置を中心とする円筒穴に受光チップ7が配置される筐体を用い、当該筐体の外径と第2の筐体93の外径とを同一のものとすれば、受光素子63の位置決めが容易となる。
【0159】
また、第4の実施形態に係る光複合モジュール(図7参照)においては、発光素子64から出力される光が出力用光ファイバ14aに結合する集束性ロッドレンズ24の端面への入射位置を中心とする円筒穴に発光素子64が配置される筐体を用い、当該筐体の外径と第2の筐体94の外径とを同一のものとすれば、発光素子64の位置決めが容易となる。
【0160】
また、第5の実施形態に係る光複合モジュール(図8参照)においては、発光素子65から出力される光が出力用光ファイバ14aに結合する先球集束性ロッドレンズ26の端面への入射位置を中心とする円筒穴に発光素子65が配置される筐体を用い、当該筐体の外径と第3の筐体27の外径とを同一のものとすれば、発光素子65の位置決めが容易となる。
【0161】
(第7の実施形態)
第7の実施形態では、λ1〜λ8までの8波長の光信号を波長多重、波長分離する装置について説明する。図13は、本発明の第7の実施形態に係る光波長多重装置50および光波長分離装置60の構成、並びにこれらが適用されるシステムの構成を示す図である。図13において、当該システムは、光波長多重装置50と、光ファイバ40と、光波長分離装置60とを備える。
【0162】
光波長多重装置50は、波長λ1〜λ8までの光信号を波長多重して出力する。光ファイバ40は、光波長多重装置50が出力する光信号を伝送し、光波長分離装置60に入力する。光波長分離装置60は、光ファイバ40を介して伝送されてくる波長多重されている波長λ1〜λ8までの光信号を各波長帯に分離する。
【0163】
光波長多重装置50は、光合波器59と、8つの送信用光複合モジュール58とを含む。各送信用光複合モジュール58が出力する光信号の波長帯は異なっており、波長λi(i=1〜8)の光信号を出力する送信用光複合モジュールの参照符号を58(#i)と記す。特に波長を限定する以外は、これらを総称して送信用光複合モジュール58と呼ぶことにする。
【0164】
送信用光複合モジュール58の構成は、上記第4、第5または第6の実施形態で説明した光複合モジュールの構成と同様である。送信用光複合モジュール58は、波長λ1〜λ4の第1の波長群を出力する送信用光複合モジュール58(#1)〜58(#4)と、波長λ5〜λ8の第2の波長群を出力する送信用光複合モジュール58(#5)〜58(#8)とに分かれる。
【0165】
第1の波長群において、送信用光複合モジュール58(#4)から順に送信用光複合モジュール58(#3)、58(#2)、58(#1)が直列に接続されている。二つの送信用光複合モジュール58を接続する場合、出力用光ファイバと入力用光ファイバとが接続される。送信用光複合モジュール58(#1)は、最終的に、波長多重されたλ1〜λ4の光信号を出力し、光合波器59に入力する。
【0166】
第2の波長群についても、同様に、送信用光複合モジュール58(#8)から順に送信用光複合モジュール58(#7)、58(#6)、58(#5)が直列に接続されている。送信用光複合モジュール58(#5)は、最終的に、波長多重されたλ5〜λ8の光信号を出力し、光合波器59に入力する。
【0167】
光合波器59は、送信用光複合モジュール58(#1)から出力される波長λ1〜λ4までの光信号と、送信用光複合モジュール58(#5)から出力されるλ5〜λ8までの光信号とを合波し、光ファイバ40に入力する。
【0168】
光波長分離装置60は、光分波器69と、8つの受信用光複合モジュール68とを含む。波長λiの光信号を受光する受信用光複合モジュール68は、受信用光複合モジュール68(#i)と記す。光分波器69は、光ファイバ40から入力される波長λ1〜λ8の光信号を第1の波長群と第2の波長群とに分波し、第1の波長群の光信号を受信用光複合モジュール68(#4)に入力し、第2の波長群の光信号を受信用光複合モジュール68(#8)に入力する。
【0169】
受信用光複合モジュール68の構成は、上記第1〜第3または第6の実施形態で説明した光複合モジュールの構成と同様である。受信用光複合モジュール68(#i)は、波長λiの光信号を受光し電気信号に変換する。第1の波長群の光信号を分波するために、受信用光複合モジュール68(#4)に続いて、受信用光複合モジュール68(#3)、68(#2)、68(#1)が直列に接続されている。第2の波長群の光を分波するために、受信用光複合モジュール68(#8)に続いて、受信用光複合モジュール68(#7)、68(#6)、68(#5)が直列に接続されている。
【0170】
次に、当該システムにおける波長多重、波長分離の動作について説明する。
まず、送信用光複合モジュール58(#4)から出力された波長λ4の光信号は、送信用光複合モジュール58(#3)内部のBPF(図示せず)で反射され、送信用光複合モジュール58(#3)が出力する波長λ3の光信号と合波されて、送信用光複合モジュール58(#2)に入力する。以下、同様にして、送信用光複合モジュール58(#2),(#1)でそれぞれ波長λ2、λ1の光信号と合波され、波長λ1〜λ4の光信号が光合波器59に入力する。同様に、第2の波長群の光信号についても、送信用光複合モジュール58(#8)〜58(#5)によって合波され、光合波器59に入力する。
【0171】
光合波器59は、入力される第1の波長群の光信号と第2の波長群の光信号とを合波して、光ファイバ40に入力する。光ファイバ40を伝送する波長λ1〜λ8の光信号は、光分波器69の入力端に入射し、第1の波長群の光信号と第2の波長群の光信号とに分波される。光分波器69で分波された第1の波長群の光信号は、波長λ4の光信号のみ通過するBPFを有する受信用光複合モジュール68(#4)に入力し、波長λ4の光信号のみが取り出され電気信号に変換される。残りの波長λ1〜λ3の光信号は、当該BPFで反射されて、次段の受信用光複合モジュール68(#3)に入力する。受信用光複合モジュール68(#3)では、波長λ3の光信号のみを取り出し、波長λ1,λ2の光信号を反射し、次段の受信用光複合モジュール68(#2)に入力する。以下、同様にして、波長λ2,λ1の光信号を対応する受信用光複合モジュール68(#2),68(#1)で取り出す。第2の波長群の光信号は、受信用光複合モジュール68(#8)に入力され、以下同様に、受信用光複合モジュール68(#8)〜68(#5)で、波長λ8,λ7,λ6,λ5の光に分離される。
【0172】
次に、上記光波長多重装置50および光波長分離装置60の光損失について説明する。光合波器59の合成損失または光分波器69の分離損失をΔ1とし、送信用光複合モジュール58および受信用光複合モジュールの通過損失をΔ2であるとし、波長分離数をn(ここでは、n=8)であるとする。
【0173】
この場合、最終段の送信用光複合モジュール(図13では、送信用光複合モジュール58(#4)または58(#8))が出力する光の過剰損失、および光波長分離装置に入力した光の最終段の受信用光複合モジュール(図13では、受信用光複合モジュール68(#1)または68(#5))での過剰損失は、Δ1+(n/2−1)×Δ2となる(ただし、nが奇数の場合は、上記式においてn=n+1とする)。
【0174】
一方、光合波器を設けずに送信用光複合モジュールを直列にn段接続した光波長多重装置、および光分波器を設けずに受信用光複合モジュールを直列にn段接続した光波長分離装置の光損失について考える。この場合、最終段の送信用光複合モジュールが出力する光の過剰損失、および光波長分離装置に入力した光の最終段の受信用光複合モジュールでの過剰損失は、(n−1)×Δ2となる。
【0175】
たとえば、Δ1=Δ2=0.5dB、n=8の場合を考えてみると、光合波器を設ける光波長多重装置および光分波器を設ける光波長分離装置での過剰損失は、2dBであるのに対し、8段直列接続した光波長多重装置および光波長分離装置での過剰損失は、3.5dBとなる。
【0176】
このように、第7の実施形態における光波長多重装置50および光波長分離装置60は、多重または分離する波長を二つの波長群に分けて光合波器または光分波器で合波あるいは分波するので、光損失の低減をはかることが可能となる。
【0177】
また、発光素子または受光素子が内蔵されている光複合モジュールを用いているので、小型で、低損失な光波長多重装置および光波長分離装置を提供することができる。
【0178】
なお、分波する波長群の数を増やすことでさらに過剰損失を緩和することができる。この場合、光波長多重装置では、送信用光複合モジュールを各波長群ごとに直列接続し、波長群の数だけの入力ポートを持つ光合波器によって、各波長群の光を合波すればよい。光波長分離装置についても、受信用光複合モジュールを各波長群ごとに直列接続し、波長群の数だけの出力ポートを持つ光分波器によって、各波長群の光信号を分波すればよい。
【0179】
なお、第7の実施形態では、一方向の光通信について説明しているが、双方向の光通信に上記光複合モジュールを用いることもできる。この場合、光波長多重装置50における送信用光複合モジュール58(#5)〜58(#8)を受信用光複合モジュール68(#5)〜68(#8)に置き換え、光合波器59を第1の波長群の光信号と第2の波長群の光信号とを分波合波するWDMカプラなどに置き換え、光波長分離装置60における受信用光複合モジュール68(#5)〜68(#8)を送信用光複合モジュール58(#5)〜58(#8)に置き換え、光分波器69を第1の波長群の光信号と第2の波長群の光信号とを分波合波するWDMカプラなどに置き換えればよい。このように置き換えることによって、波長多重分離装置が提供され、双方向の光通信が実現できる。この場合も、光損失を低減するため、送信光信号を複数の波長群に分け、直列接続される複数の送信用光複合モジュールからの波長群毎の光信号を光合波器で合波し、直列接続される複数の受信用光モジュールへの光信号を光分波器で波長群毎に分波するようにしてもよい。
【0180】
(第8の実施形態)
上記第7の実施形態に係るシステムにおいて、いずれかの送信用光複合モジュール58(たとえば、58(#6))が故障した場合、当該送信用光複合モジュール58を取り外して交換する必要があるので、それ以前に接続されている送信用光複合モジュール58(たとえば、58(#7),(#8))からの光の出力が遮断されることとなり、結果、遮断された波長の光信号の伝送が中断することとなる。同様に、いずれかの受信用光複合モジュール68(たとえば、68(#7))が故障して交換する場合、それ以後に接続されている受信用光複合モジュール68(たとえば、68(#6),(#5))への光信号の伝送が中断されることとなる。
【0181】
このように、本願発明の光複合モジュールを用いて、多段接続による光送受信システムを構築した場合、一部の光複合モジュールを故障のため交換する際、全体の伝送に影響を与えてしまう。第8の実施形態では、この問題を解決する光複合モジュールを提案する。
【0182】
図14は、本発明の第8の実施形態に係る光複合モジュールの構成を示す断面図である。図15は、第8の実施形態に係る光複合モジュールを分解したときの構成を示す断面図である。図16は、第8の実施形態に係る光複合モジュールの割スリーブによる結合の関係を示す分解斜視図である。図14〜16において、同一の箇所については、同一の参照符号を付す。図14、図15、および図16において、光複合モジュールは、半導体レーザコリメータユニット100と、光ファイバ反射結合ユニット200とを備える。
【0183】
半導体レーザコリメータユニット100は、発光素子101と、半導体レーザ用筐体102と、集束性ロッドレンズ103と、レンズ保持部材104と、調整スリーブ105と、割スリーブ106と、固定部材107と、雄ねじ部材108とを含む。
【0184】
発光素子101は、キャンパッケージ内部に集光レンズを内蔵した半導体レーザである。発光素子101は、出力光が集束性ロッドレンズ103の端面上の光軸に集光する位置に配置されている。保持部材107には、半導体レーザ用筐体102に圧入された発光素子101が接着固定されている。
【0185】
集束性ロッドレンズ103は、発光素子101からの出射光を平行光に変換する。集束性ロッドレンズ103の発光素子側端面は、傾斜している。これは、発光素子101からの光が反射して、発光素子101に戻るのを防止するためである。反射防止膜等を利用して反射戻り光を防ぐのであれば、この傾斜は不要である。集束性ロッドレンズ103は、レンズ保持部材104に接着固定している。
【0186】
レンズ保持部材104と調整スリーブ105とは、嵌め合い構造となっている。レンズ保持部材104の外径と調整スリーブ105の内径とは、ほぼ同じである。調整スリーブ105は、発光素子101からの出射光が集束性ロッドレンズ103によって平行光に変換され、かつ、当該平行光が集束性ロッドレンズ103の光軸に平行となって出力されるように、半導体レーザ用筐体102とレンズ保持部材104とを固定するための位置決め部材である。半導体レーザ用筐体102と調整スリーブ105とによって、発光素子101と集束性ロッドレンズ103とが、光軸方向および光軸垂直方向の最適な位置に固定されることとなる。
【0187】
割スリーブ106は、円筒の一部がスリット加工されたもので、レンズ保持部材104の外径と同一の内径を有する。固定部材107は、半導体レーザ用筐体102、調整スリーブ105、レンズ保持部材104、および割スリーブ106を保持するための部材である。固定部材107の外側には、雄ねじ部材108が取り付けられている。
【0188】
光ファイバ反射結合ユニット200は、二芯ガラス管201と、集束性ロッドレンズ202と、BPF203と、弾性体204と、光ファイバ用筐体205と、雌ねじ部材206とを含む。光ファイバ反射結合ユニット200は、発光素子101からの光と入力用光ファイバ11aから入力される光とを合成するためのユニットであって、合成した光を出力用光ファイバ11bに出力する。
【0189】
二芯ガラス管201は、入力用光ファイバ11aおよび出力用光ファイバ11bを保持するためのガラス管である。二芯ガラス管201の中心は、集束性ロッドレンズ202の光軸と一致している。二芯ガラス管201の中心には、出力用光ファイバ11bを保持するための穴が穿孔されている。当該中心から適切な距離だけずれた位置に、入力用光ファイバ11aを保持するための穴が穿孔されている。二芯ガラス管201の外径と集束性ロッドレンズ202の外径とは、一致している。
【0190】
二芯ガラス管201と集束性ロッドレンズ202との境界面は、反射戻り光を抑制するために斜めに研磨されている。なお、反射戻り光の影響が無視できるのであれば、当該境界面は、斜めに研磨されていなくてもよい。
【0191】
集束性ロッドレンズ202は、BPF203を透過した集束性ロッドレンズ103からの平行光を出力用光ファイバ11bの入力端に集光すると共に、BPF203によって反射された入力用光ファイバ11aからの光を出力用光ファイバ11bの入力端に集光する。集束性ロッドレンズ202の光軸と出力用光ファイバ11bの中心とは一致している。
【0192】
BPF203は、発光素子101から出力される光の波長帯は通過するが、それ以外の波長帯の光は反射する。
【0193】
集束性ロッドレンズ202とBPF203との蒸着面207は、傾斜している。この傾斜は、入力用光ファイバ11aから入力される光の内、BPF203によって反射される光を出力用光ファイバ11bの入力端に集光するために設けられている。したがって、この傾斜の傾斜角は、集束性ロッドレンズ202の光軸から出力用光ファイバ11bの中心までの距離によって求めることができる。
【0194】
光ファイバ用筐体205は、集束性ロッドレンズ202と二芯ガラス管201とを保持するための筐体である。光ファイバ用筐体205に集束性ロッドレンズ202と二芯ガラス管201とを挿入して、接続面を一致させることによって、出力用光ファイバ11bの中心を集束性ロッドレンズ202の光軸と一致させることができる。したがって、入出力用光ファイバと集束性ロッドレンズ202との結合位置調整が容易となる。
【0195】
雌ねじ部材206は、雄ねじ部材108と結合するための部材であって、光ファイバ用筐体205と接続している。弾性体204は、雄ねじ部材108と雌ねじ部材206とを締め付ける際の過剰締め付け防止、および締め付けねじのゆるみ防止のためのゴム等の弾性物である。
【0196】
以下、光複合モジュールの動作について説明する。
ここでは、集束性ロッドレンズ202の光軸上にある入力用光ファイバ11aから、波長λ2〜λ8の光が入射するものとする。また、発光素子101は、波長λ1の光を出射するものとする。さらに、BPF203は、波長λ1の光は通過するものの、それ以外の波長の光は反射するものとする。
【0197】
入力用光ファイバ11aからの波長λ2〜λ8の光は、集束性ロッドレンズ202で平行光に変換されて、BPF203に入射する。BPF203は波長λ2〜λ8の光を反射する。BPF203と集束性ロッドレンズ202との接合面は傾斜しているので、反射された波長λ2〜λ4の光は、集束性ロッドレンズ202によって集光され、入力用光ファイバ11aの出力端とは異なる位置である出力用光ファイバ11bの入力端に集光し、出力用光ファイバ11bに結合する。
【0198】
一方、発光素子101より出射する波長λ1の光は、内蔵されている集光レンズの働きにより、集束性ロッドレンズ103の端面上の光軸中心に集光し、集束性ロッドレンズ103によって、光軸に平行な平行光に変換されて、集束性ロッドレンズ103から出力される。集束性ロッドレンズ103から出力される平行光は、空気層を通って、BPF203に垂直に入射する。BPF203は、当該平行光をそのまま透過して、集束性ロッドレンズ202に入射させる。
【0199】
当該平行光の集束性ロッドレンズ202での入射位置は、入力用光ファイバ11aからの波長λ2〜λ8の光が反射する位置と一致する。したがって、集束性ロッドレンズ202に入射した平行光は、集束性ロッドレンズ202によって、出力用光ファイバ11bの入力端に集光し、出力用光ファイバ11bに結合する。これによって、波長λ1の光と波長λ2〜λ8の光とが、合波されることとなる。
【0200】
以上のような動作環境において、半導体レーザが劣化することによって、発光素子101からの光出力が低下した場合、ユーザは、半導体レーザコリメータユニット100を交換する必要がある。このとき、ユーザは、雄ねじ部材108と雌ねじ部材206とを緩め、半導体レーザコリメータユニット100を切り離す。
【0201】
半導体レーザコリメータユニット100が切り離された状態であっても、光ファイバ反射結合ユニット200は、有効に機能し、入力用光ファイバ11aからの光をBPF203で反射して、出力用光ファイバ11bに結合する。したがって、波長λ2〜λ8の光の伝送は、遮断されることなく正常に行われることとなる。
【0202】
ユーザは、切り離された半導体レーザコリメータユニット100を新しいものと交換することによって、波長λ1の光の伝送を再開することが可能となる。集束性ロッドレンズ103から出力される光は、集束性ロッドレンズ103および202の光軸に平行な平行光である。したがって、集束性ロッドレンズ103から出力される光を、容易に、集束性ロッドレンズ202に結合させることが可能となるので、部品交換の際、ユーザは、精度が要求される位置決め作業をする必要がなくなる。
【0203】
また、割スリーブ106が用いられているので、集束性ロッドレンズ202を容易に半導体レーザコリメータユニット100に挿入することができ、ユーザは、簡単に部品交換することができる。
【0204】
このように、第8の実施形態によれば、半導体レーザの部品交換を簡単に行うことができる光複合モジュールが提供されることなる。
【0205】
なお、上記第8の実施形態によれば、波長λ2〜λ8の光を入力用光ファイバ11aから入射することとしたが、双方向伝送する場合、出力用光ファイバ11bから光を入射させてもよい。
【0206】
なお、上記第8の実施形態によれば、半導体レーザコリメータユニット100と光ファイバ反射結合ユニット200とを結合するために、雄ねじ部材108と雌ねじ部材206とを用いることとしたが、別にこれに限られるものではなく、これら二つのユニットを着脱することができる機構のものであればよい。たとえば、これら二つのユニットをボルトとナットとで固定するような構造であってもよい。
【0207】
(製造方法について)
図17は、第8の実施形態に係る半導体レーザコリメータユニット100の製造方法を示す図である。以下、図17を参照しながら、半導体レーザコリメータユニット100の製造方法について説明する。
【0208】
半導体レーザユニット100を製造するために、製造者は、シングル光ファイバコリメータ300を用いる。シングル光ファイバコリメータ300は、光ファイバ301と、一芯ガラス管302と、集束性ロッドレンズ303と、保持部材304とを含む。集束性ロッドレンズ303と一芯ガラス管302とは、保持部材304によって固定されている。一芯ガラス管302には、集束性ロッドレンズ303の光軸を中心とする穴が穿孔されており、当該穴に光ファイバ301が挿入されている。一芯ガラス管302と集束性ロッドレンズ303との境界面は、反射戻り光防止のため傾斜している。なお、この傾斜はなくてもよい。
【0209】
集束性ロッドレンズ303は、一芯ガラス管側とは逆の端面から光軸に平行な平行光が入射した場合、当該平行光を光ファイバ301の一端に集光させるような屈折分布を有する。
【0210】
保持部材304の外径とレンズ保持部材104の外径とは、一致している。保持部材304とレンズ保持部材104とは、割スリーブ106内で、嵌合される。
【0211】
まず、製造者は、シングル光ファイバコリメータ300を割スリーブ106の一方から挿入し、他方から集束性ロッドレンズ103を固定したレンズ保持部材104を挿入し、集束性ロッドレンズ303の端面と集束性ロッドレンズ103の端面とを密着させる。
【0212】
次に、製造者は、調整スリーブ105内に、レンズ保持部材104を挿入する。
【0213】
次に、製造者は、調整スリーブ105を半導体レーザ用筐体102の端面に接触させて、調整スリーブ105を光軸垂直方向に動かすと共に、調整スリーブ105内のレンズ保持部材104を光軸方向に動かすことによって、半導体レーザ用筐体102に実装されている発光素子101から出力される光が光ファイバ301に結合するように、集束性ロッドレンズ103の大まかな位置を調整する(図17(a)参照)。なお、製造者は、光ファイバ301からの出力を検出すれば、光が最適な位置に結合しているか否かを判断することができる。
【0214】
次に、製造者は、調整スリーブ105の端面が半導体レーザ用筐体102の端面に接触した状態で、調整スリーブ105内のレンズ保持部材104を光軸方向に動かすことによって、光ファイバ301からの出力が最大となる位置を決定し、調整スリーブ105の側面からYAGレーザを照射して、調整スリーブ105とレンズ保持部材104とを溶接し、光軸方向の位置を固定する(図17(b)参照)。
【0215】
次に、製造者は、調整スリーブ105の端面が半導体レーザ用筐体102の端面に接触した状態で、調整スリーブ105を光軸垂直方向に動かすことによって、光ファイバ301からの出力が最大となる位置を決定し、YAGレーザを照射することによって、調整スリーブ105と半導体レーザ用筐体102とを溶接し、集束性ロッドレンズ103と発光素子101との最終的な位置決めをする(図17(c)参照)。
【0216】
最後に、製造者は、シングル光ファイバコリメータ300を割スリーブ106から抜き出し、固定部材107と雄ねじ部材108とを取り付ける。これで、半導体レーザコリメータユニット100の製造が完了する(図17(d)参照)。
【0217】
このように、上記製造方法によれば、光ファイバ反射結合ユニット200に使用する実際の二芯コリメータを利用することなく半導体レーザコリメータユニット100を製造することができるので、簡単に光複合モジュールを製造することが可能となる。したがって、第8の実施形態に係る光複合モジュールは、量産性に優れていることとなる。
【0218】
なお、上記第8の実施形態に係る発光素子101を受光素子に置き換えれば、光複合モジュールは、光分波器となる。この場合、BPF203は、分波したい波長の光のみを通過し、それ以外の波長の光を反射する特性を有しておればよい。この場合の製造方法も、基本的には、図17に示した方法と同様である。異なるのは、光ファイバ301から光を入力して、受光素子の出力が最大となる位置で、調整スリーブ105およびレンズ保持部材104を固定する点だけである。
【0219】
(第9の実施形態)
図18は、本発明の第9の実施形態に係る光複合モジュールの光学系のみの構成を示す図である。図19は、第9の実施形態に係る光複合モジュールの光ファイバ側における光学系の反射光路および透過光路を示す拡大図である。
【0220】
第9の実施形態において、各光学系部材を保持するための部材の構成は、第8の実施形態の場合と同様であるので、図14〜16を援用することにし、光学系の構成についてのみ説明する。また、図18および図19において、同一の部分については、同一の参照符号を付す。また、第8の実施形態と同様の部分については、同一の参照符号を付す。
【0221】
図18において、光複合モジュールは、発光素子101と、集束性ロッドレンズ103aと、BPF203aと、集束性ロッドレンズ202aとを含む。
【0222】
集束性ロッドレンズ202aの光ファイバ側端面は、反射戻り光を防止するために傾斜している。なお、反射戻り光の影響が少ないのであれば、この傾斜は、設けなくてもよい。集束性ロッドレンズ202aとBPF203aとの境界面は、光軸に対して垂直である。
【0223】
BPF203aの逆側端面は、角度αで内側に傾斜している。この傾斜角αについては、後述する。BPF203aは、波長λ1の光のみを透過し、それ以外の波長の光を反射する。
【0224】
入力用光ファイバ12aおよび出力用光ファイバ12bは、集束性ロッドレンズ202aの光軸に対して、線対称な位置に配置されている。
【0225】
入力用光ファイバ12aから入射した光は、集束性ロッドレンズ202aで平行光に変換されて、BPF203aに入射する。BPF203aは、波長λ1の光のみを透過し、波長λ2〜λ8の光を反射する。
【0226】
BPF203aを反射した波長λ2〜λ8の光は、集束性ロッドレンズ202aによって集光され、出力用光ファイバ12bに結合する。
【0227】
一方、発光素子101より出射する波長λ1の光は、内蔵されている集光レンズの働きにより、集束性ロッドレンズ103aの端面上の光軸中心に集光し、集束性ロッドレンズ103aによって、光軸に平行な平行光に変換されて、出力される。集束性ロッドレンズ103aから出力される平行光は、空気層を通って、BPF203aに入射する。BPF203aの端面は傾斜しているので、当該平行光は屈折して、集束性ロッドレンズ202aの端面に、角度φで入射する。角度φについては後述する。
【0228】
次に、傾斜角αおよび角度φについて説明する。
集束性ロッドレンズ202aの光軸中心から出力用光ファイバ12aの中心までの距離をr、集束性ロッドレンズ202aの軸上屈折率をn、集束性ロッドレンズ202aの屈折率分布定数をg、BPF203aを保持しておくためのガラスブロック(図示せず)の屈折率をn1とすると、集束性ロッドレンズ202aのレンズ端面からの光の出射角φは、下記(1)式で表される。
φ=ngr/n1(ラジアン) …(1)
【0229】
ここで、g=0.294,n=1.59,r=0.0625(mm),n1=1.5とすると、φ=1.11度となる。すなわち、1.11度の角度で、集束性ロッドレンズ202aの端面にコリメート光を入射させると、当該コリメート光は、集束性ロッドレンズの他端面における光軸から62.5μmの位置に集光することとなる。
【0230】
BPF203のガラスブロック端から光軸に平行に出射させるためには、ガラスブロックの端面角度αは、下記(2)式を満たす必要がある。
n1・sin(α−φ)=n0・sinα …(2)
ここで、n0は、空気の屈折率1である。
【0231】
(1)式、(2)式を用いて、上記の場合におけるαを求めると、α=約2.22度となる。
【0232】
このように、第9の実施形態によれば、BPF203aと集束性ロッドレンズ202aとの境界面が、光軸に対して垂直であるので、組立が容易になる。
【0233】
また、BPF203aからは、光軸に対して平行な平行光が出力されることとなるので、集束性ロッドレンズ103aへの結合が容易となるので、ユーザは、発光素子101の取り替え時に、精度の高い位置決め作業を必要としないこととなる。
【0234】
なお、上記第8の実施形態に係る発光素子101を受光素子に置き換えれば、光複合モジュールは、光分波器となる。この場合、BPF203aは、分波したい波長の光のみを通過し、それ以外の波長の光を反射する特性を有しておればよい。
【0235】
なお、発光素子101から集束性ロッドレンズ103aまでの光の流れは第8の実施形態の場合と同様であるので、第9の実施形態に係る光複合モジュールの製造方法は、光合波器または光分波器どちらの場合であっても、第8の実施形態の場合と同様である。具体的には、光分波器の場合、製造者は、シングル光ファイバコリメータを、割スリーブ106の片側から着脱可能に挿入し、割スリーブ106の反対側から、集束性ロッドレンズ103を保持したレンズ保持部材104を装着し、調整スリーブ105に、レンズ保持部材104を挿入する。その後、製造者は、光ファイバ301から光を出射させた状態で、受光素子からの出力が最大となるような、集束性ロッドレンズ103の位置を見つけ、調整スリーブ105とレンズ保持部材104とを固定し、かつ調整スリーブ105と受光素子を保持する部材とを固定する。最後に、製造者は、シングル光ファイバコリメータを抜き出すことによって、光分波器として機能する光複合モジュールを完成する。
【0236】
なお、図20は、第9の実施形態に係る光複合モジュールの発光素子を受光素子に置き換えた場合の構成を示す図である。図20に示す光複合モジュールの特徴は、集束性ロッドレンズ103bの出力端面が傾斜していることである。この傾斜により、集光された光が屈折され、斜めに出力されずに、光軸方向を中心に出力されることとなるので、結果、受光素子101aへの光の結合が向上することとなる。
【0237】
BPF203aから出力される平行光が光軸からS(mm)ずれているとした場合における集束性ロッドレンズ103bの出力端面の傾斜角βは、下記(3)式によって求められる。
β≒ngS …(3)
【0238】
【発明の効果】
以上のように本発明は、発光素子あるいは受光素子を光合波/分波機能と一体化して光複合モジュールを構成しているため、小型化、挿入損失の低減化を図ることができる。また、2本の光ファイバ間の中心線と、集束性ロッドレンズの光軸とが一致するような位置決め部材を用いるので、入出力用光ファイバの位置調整が容易となる。さらに、片側より光ファイバが出るために実装性に優れているという効果を有する光複合モジュールを提供することができるものである。さらに、発光素子側または受光素子側を交換したとしても、他の波長の光の伝送を中断しない光複合モジュールを提供する。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る光複合モジュールの断面図である。
【図2】第1の筐体4に接着された二芯ガラス管3を輪切りにしたときの断面図である。
【図3】BPF5の波長特性を示す図である。
【図4】第1の筐体4の他の構成例を示す図である。
【図5】本発明の第2の実施形態に係る光複合モジュールの断面図である。
【図6】本発明の第3の実施形態に係る光複合モジュールの断面図である。
【図7】本発明の第4の実施形態に係る光複合モジュールの断面図である。
【図8】本発明の第5の実施形態に係る光複合モジュールの断面図である。
【図9】本発明の第6の実施形態に係る光複合モジュールの断面図である。
【図10】第6の実施形態に係る光複合モジュールの分解斜視図である。
【図11】第2の筐体96の一端面Bに、光ファイバ1a,1b、集光位置22a、および中心位置361aを投影させた図である。
【図12】第3の筐体36の他の構成例を示す図である。
【図13】本発明の第7の実施形態に係る光波長多重装置50および光波長分離装置60の構成、並びにこれらが適用されるシステムの構成を示す図である。
【図14】本発明の第8の実施形態に係る光複合モジュールの構成を示す断面図である。
【図15】本発明の第8の実施形態に係る光複合モジュールを分解したときの構成を示す断面図である。
【図16】本発明の第8の実施形態に係る光複合モジュールの割スリーブによる結合の関係を示す分解斜視図である。
【図17】本発明の第8の実施形態に係る半導体レーザコリメータユニット100の製造方法を示す図である。
【図18】本発明の第9の実施形態に係る光複合モジュールの光学系の構成を示す図である。
【図19】本発明の第9の実施形態に係る光複合モジュールの光ファイバ側における光学系の反射光路および透過光路を示す拡大図である。
【図20】第9の実施形態に係る光複合モジュールの発光素子を受光素子に置き換えた場合の構成を示す図である。
【図21】内部干渉膜形の従来の光合分波器の構成を示す図である。
【図22】特開平11−242130号公報に記載の光モジュールの構成を示す図である。
【符号の説明】
1a,11a,12a,14b 入力用光ファイバ
1b,11a,12b,14a 出力用光ファイバ
1ha,1hb ガイド穴
2,22,23,24、103,202,103a,202a,303 集束性ロッドレンズ
3,201 二芯ガラス管
4 第1の筐体
5,203,203a BPF
6,62,63,101a 受光素子
7 受光チップ
8,82,84 球レンズ
9,92,93,94,95,96 第2の筐体
10 屈折率整合層
25 光アイソレータ
26 先球集束性ロッドレンズ
27,36 第3の筐体
64,65,101 発光素子
74 発光チップ
361 受光素子用円筒穴
40,301 光ファイバ
50 光波長多重装置
58 送信用光複合モジュール
59 光合波器
60 光波長分離装置
68 受信用光複合モジュール
69 光分波器
100 半導体レーザコリメータユニット
102 半導体レーザ用筐体
104 レンズ保持部材
105 調整スリーブ
106 割スリーブ
107 固定部材
108 雄ねじ部材
200 光ファイバ反射結合ユニット
205 光ファイバ用筐体
300 シングル光ファイバコリメータ
302 一芯ガラス管
304 保持部材

Claims (36)

  1. 入力用光ファイバから入力される複数の波長の光を分波し、一部を電気信号に変換し、一部を出力用光ファイバに出力する光複合モジュールであって、
    入射する光の内、電気信号に変換したい波長帯の光を透過し、それ以外の波長帯の光を反射する光フィルタと、
    前記入力用光ファイバおよび前記出力用光ファイバと前記光フィルタとの間に配置されており、前記入力用光ファイバから入力される光を平行光に変換して前記光フィルタに入射し、前記光フィルタが反射した平行光を前記出力用光ファイバの一端に集光する第1の集束性ロッドレンズと、
    前記光フィルタの透過光である平行光を一点に集光する集光手段と、
    前記集光手段が集光した光を受光して電気信号に変換する受光素子と、
    前記第1の集束性ロッドレンズの光軸と前記入力用光ファイバおよび前記出力用光ファイバ間の中心線とを一致させる位置決め部材とを含む、光複合モジュール。
  2. 前記位置決め部材は、
    前記第1の集束性ロッドレンズを保持するための前記光軸を中心とする円筒状のレンズ保持筐体と、
    前記レンズ保持筐体と同一の外径であって、中心から径方向等間隔の位置に前記入力用光ファイバおよび前記出力用光ファイバを保持するための二つのガイド穴を持つ光ファイバ保持筐体とを有する、請求項1に記載の光複合モジュール。
  3. 前記位置決め部材は、前記第1の集束性ロッドレンズと同一の外径であって、前記第1の集束性ロッドレンズの光軸から径方向等間隔の位置に前記入力用光ファイバおよび前記出力用光ファイバを保持するための二つのガイド穴を持つ筐体であることを特徴とする、請求項1に記載の光複合モジュール。
  4. 前記集光手段は、前記光フィルタと前記受光素子との間に配置されており、前記光フィルタから出力される平行光を前記受光素子上に集光する球レンズであることを特徴とする、請求項1に記載の光複合モジュール。
  5. 前記集光手段は、
    前記光フィルタと前記受光素子との間に配置されており、前記光フィルタの透過光である平行光を集光する第2の集束性ロッドレンズと、
    前記第2の集束性ロッドレンズと前記受光素子との間に配置されており、前記第2の集束性ロッドレンズによって集光された後発散する光を再び前記受光素子上に集光する球レンズとを有する、請求項1に記載の光複合モジュール。
  6. 前記集光手段は、前記光フィルタと前記受光素子との間に配置されており、前記光フィルタが透過した平行光を前記受光素子上に集光する第2の集束性ロッドレンズであることを特徴とする、請求項1に記載の光複合モジュール。
  7. 所定の角度位置に調整されたときに前記集光手段による焦点位置に前記受光素子を配置する受光素子位置決め部材をさらに含む、請求項1〜6のいずれかに記載の光複合モジュール。
  8. 前記受光素子位置決め部材は、
    前記第1の集束性ロッドレンズを保持するための前記光軸を中心とする円筒状の保持筐体と、
    前記保持筐体と同一の外径であって、前記受光素子を固定するための受光素子保持筐体とを有し、
    前記受光素子保持筐体は、回動されて前記保持筐体との相対的角度関係が前記所定の角度位置に調整されたときに前記受光素子が前記焦点位置に配置されるよう前記受光素子を固定することを特徴とする、請求項7に記載の光複合モジュール。
  9. 入力される電気信号で変調された光を出力し、当該光と入力用光ファイバから入力される複数の波長の光とを合波して、出力用光ファイバに出力する光複合モジュールであって、
    入力される電気信号で変調された光を出力する発光素子と、
    前記発光素子が出力する光を平行光に変換する平行光変換手段と、
    前記平行光変換手段と前記入力用光ファイバおよび出力用光ファイバとの間に配置され、入射する光の内、前記平行光変換手段から入力される波長帯の光を透過し、それ以外の波長帯の光を反射する光フィルタと、
    前記光フィルタと前記入力用光ファイバおよび出力用光ファイバとの間に配置され、前記入力用光ファイバから入力される光を平行光に変換して前記光フィルタに入射し、前記光フィルタの反射光である平行光および前記光フィルタの透過光である平行光を前記出力用光ファイバの一端に集光する第1の集束性ロッドレンズと、
    前記第1の集束性ロッドレンズの光軸と前記入力用光ファイバおよび前記出力用光ファイバ間の中心線とを一致させる位置決め部材とを含む、光複合モジュール。
  10. 前記平行光変換手段は、
    前記発光素子から出力される発散光を一点に集光する集光レンズと、
    前記光フィルタと前記集光レンズとの間に配置されており、前記集光レンズが集光した光を平行光に変換して前記光フィルタに入射する第2の集束性ロッドレンズとを有する、請求項9に記載の光複合モジュール。
  11. さらに、前記集光レンズと前記第2の集束性ロッドレンズとの間に配置されており、前記集光レンズからの光による前記第2の集束性ロッドレンズのレンズ端面での反射光が前記発光素子に戻るのを防止する反射戻り光防止手段を含む、請求項10に記載の光複合モジュール。
  12. 前記反射戻り光防止手段は、光アイソレータであることを特徴とする、請求項11に記載の光複合モジュール。
  13. 前記反射戻り光防止手段は、前記第2の集束性ロッドレンズのレンズ端面に設けられた傾斜によって反射光の戻りを防止することを特徴とする、請求項11に記載の光複合モジュール。
  14. 前記反射戻り光防止手段は、前記第2の集束性ロッドレンズのレンズ端面に設けられた反射防止コートであることを特徴とする、請求項11に記載の光複合モジュール。
  15. 前記集光レンズは、球レンズであることを特徴とする、請求項10に記載の光複合モジュール。
  16. 前記集光レンズは、前記発光素子側のレンズ端面が球面状となっている先球集束性ロッドレンズであることを特徴とする、請求項10に記載の光複合モジュール。
  17. 前記位置決め部材は、
    前記第1の集束性ロッドレンズを保持するための前記光軸を中心とする円筒状のレンズ保持筐体と、
    前記レンズ保持筐体と同一の外径であって、中心から径方向等間隔の位置に前記入力用光ファイバおよび前記出力用光ファイバを保持するための二つのガイド穴を有する光ファイバ保持筐体とを有する、請求項9に記載の光複合モジュール。
  18. 前記位置決め部材は、前記第1の集束性ロッドレンズと同一の外径であって、前記第1の集束性ロッドレンズの光軸から径方向等間隔の位置に前記入力用光ファイバおよび前記出力用光ファイバを保持するための二つのガイド穴を有する筐体であることを特徴とする、請求項9に記載の光複合モジュール。
  19. 所定の角度位置に調整されたときに前記平行光変換手段から出力される平行光が、前記光フィルタおよび前記第1の集束性ロッドレンズを通った後、前記出力用光ファイバの一端に集光する位置に前記発光素子を配置する発光素子位置決め部材をさらに含む、請求項9〜18のいずれかに記載の光複合モジュール。
  20. 前記発光素子位置決め部材は、
    前記第1の集束性ロッドレンズを保持するための前記光軸を中心とする円筒状の保持筐体と、
    前記保持筐体と同一の外径であって、前記発光素子を固定するための発光素子保持筐体とを有し、
    前記発光素子保持筐体は、回動されて前記保持筐体との相対的角度関係が前記所定の角度位置に調整されたときに、前記平行光変換手段から出力される平行光が前記出力用光ファイバの一端に集光する位置に前記発光素子が配置されるよう前記発光素子を固定することを特徴とする、請求項19に記載の光複合モジュール。
  21. 入力される電気信号で変調された光を出力し、当該光と入力用光ファイバから入力される複数の波長の光とを合波して、出力用光ファイバに出力する光複合モジュールであって、
    入力される電気信号で変調された光を出力し、一点に集光する発光素子と、
    前記発光素子が集光する光を、光軸に平行な平行光に変換する第1の集束性ロッドレンズと、
    前記第1の集束性ロッドレンズと前記入力用光ファイバおよび出力用光ファイバとの間に配置され、入射する光の内、前記第1の集束性ロッドレンズから入力される波長帯の光を透過し、それ以外の波長帯の光を反射する光フィルタと、
    前記光フィルタと前記入力用光ファイバおよび出力用光ファイバとの間に配置され、前記入力用光ファイバから入力される光を、平行光に変換して前記光フィルタに入射し、前記光フィルタの反射光である平行光および前記光フィルタの透過光である平行光を前記出力用光ファイバの一端に集光する第2の集束性ロッドレンズと、
    前記第2の集束性ロッドレンズの光軸と前記出力用光ファイバの中心とを一致させる位置決め部材とを含み、
    前記光フィルタと前記第2の集束性ロッドレンズとの境界面は、前記光フィルタの反射光である平行光および前記光フィルタの透過光である平行光が前記出力用光ファイバの一端に集光するように、互いに傾斜していることを特徴とする、光複合モジュール。
  22. さらに、前記発光素子と前記第1の集束性ロッドレンズとを一体化する第1のユニット部材と、
    前記光フィルタ、前記第2の集束性ロッドレンズ、および前記位置決め部材を一体化する第2のユニット部材とを含み、
    前記第1のユニット部材と前記第2のユニット部材とは、着脱可能であることを特徴とする、請求項21に記載の光複合モジュール。
  23. 入力される電気信号で変調された光を出力し、当該光と入力用光ファイバから入力される複数の波長の光とを合波して、出力用光ファイバに出力する光複合モジュールであって、
    入力される電気信号で変調された光を出力し、一点に集光する発光素子と、
    前記発光素子が集光する光を、光軸に平行な平行光に変換する第1の集束性ロッドレンズと、
    前記第1の集束性ロッドレンズと前記入力用光ファイバおよび出力用光ファイバとの間に配置され、入射する光の内、前記第1の集束性ロッドレンズから入力される波長帯の光を透過し、それ以外の波長帯の光を反射する光フィルタと、
    前記光フィルタと前記入力用光ファイバおよび出力用光ファイバとの間に配置され、前記入力用光ファイバから入力される光を平行光に変換して前記光フィルタに入射し、前記光フィルタの反射光である平行光および前記光フィルタの透過光である平行光を前記出力用光ファイバの一端に集光する第2の集束性ロッドレンズと、
    前記第2の集束性ロッドレンズの光軸と前記入力用光ファイバおよび前記出力用光ファイバ間の中心線とを一致させる位置決め部材とを含み、
    前記光フィルタは、前記第1の集束性ロッドレンズからの平行光が屈折して、前記出力用光ファイバの一端に集光するように、前記第1の集束性ロッドレンズ側が傾斜していることを特徴とする、光複合モジュール。
  24. さらに、前記発光素子と前記第1の集束性ロッドレンズとを一体化する第1のユニット部材と、
    前記光フィルタ、前記第2の集束性ロッドレンズ、および前記位置決め部材を一体化する第2のユニット部材とを含み、
    前記第1のユニット部材と前記第2のユニット部材とは、着脱可能であることを特徴とする、請求項23に記載の光複合モジュール。
  25. 入力用光ファイバから入力される複数の波長の光を分波し、一部を電気信号に変換し、一部を出力用光ファイバに出力する光複合モジュールであって、
    入射する光の内、電気信号に変換したい波長帯の光を透過し、それ以外の波長帯の光を反射する光フィルタと、
    前記入力用光ファイバおよび前記出力用光ファイバと前記光フィルタとの間に配置されており、前記入力用光ファイバから入力される光を平行光に変換して前記光フィルタに入射し、前記光フィルタが反射した平行光を前記出力用光ファイバの一端に集光する第1の集束性ロッドレンズと、
    前記光フィルタの透過光である平行光を一点に集光する第2の集束性ロッドレンズと、
    前記第2の集束性ロッドレンズが集光した光を受光して電気信号に変換する受光素子と、
    前記第1の集束性ロッドレンズの光軸と前記入力用光ファイバの中心とを一致させる位置決め部材とを含み、
    前記光フィルタと前記第1の集束性ロッドレンズとの境界面は、前記光フィルタの反射光である平行光が前記出力用光ファイバの一端に集光するように、互いに傾斜していることを特徴とする、光複合モジュール。
  26. さらに、前記光フィルタと前記第1の集束性ロッドレンズとの境界面は、前記光フィルタの透過光である平行光が光軸に対して平行となるように、互いに傾斜していることを特徴とする、請求項25に記載の光複合モジュール。
  27. 前記受光素子と前記第2の集束性ロッドレンズとを一体化する第1のユニット部材と、
    前記光フィルタ、前記第1の集束性ロッドレンズ、および前記位置決め部材を一体化する第2のユニット部材とを含み、
    前記第1のユニット部材と前記第2のユニット部材とは、着脱可能であることを特徴とする、請求項26に記載の光複合モジュール。
  28. 入力用光ファイバから入力される複数の波長の光を分波し、一部を電気信号に変換し、一部を出力用光ファイバに出力する光複合モジュールであって、
    入射する光の内、電気信号に変換したい波長帯の光を透過し、それ以外の波長帯の光を反射する光フィルタと、
    前記入力用光ファイバおよび前記出力用光ファイバと前記光フィルタとの間に配置されており、前記入力用光ファイバから入力される光を平行光に変換して前記光フィルタに入射し、前記光フィルタが反射した平行光を前記出力用光ファイバの一端に集光する第1の集束性ロッドレンズと、
    前記光フィルタの透過光である平行光を一点に集光する第2の集束性ロッドレンズと、
    前記第2の集束性ロッドレンズが集光した光を受光して電気信号に変換する受光素子と、
    前記第1の集束性ロッドレンズの光軸と前記入力用光ファイバおよび前記出力用光ファイバ間の中心線とを一致させる位置決め部材とを含む、光複合モジュール。
  29. 前記光フィルタは、前記透過光である平行光が光軸に対して平行となるように、前記第2の集束性ロッドレンズ側が傾斜していることを特徴とする、請求項28に記載の光複合モジュール。
  30. 前記受光素子と前記第2の集束性ロッドレンズとを一体化する第1のユニット部材と、
    前記光フィルタ、前記第1の集束性ロッドレンズ、および前記位置決め部材を一体化する第2のユニット部材とを含み、
    前記第1のユニット部材と前記第2のユニット部材とは、着脱可能であることを特徴とする、請求項29に記載の光複合モジュール。
  31. 波長多重されている複数の波長の光信号を受信して各波長毎の光信号に分離する光波長分離装置であって、
    受信した波長多重されている光信号を少なくとも2以上の波長群の光信号に分波する波長分波手段と、
    各前記波長群毎に設けられており、前記波長分波手段が分波した波長群の光信号を波長帯毎の光信号に分離する光信号分離部とを含み、
    各前記光信号分離部は、入力される光信号の一部を分波して電気信号に変換し一部を出力する受光素子を内部に一体化した複数の光複合モジュールを有し、
    前記複数の光複合モジュールは、直列に接続されていることを特徴とする、光波長分離装置。
  32. 前記光複合モジュールは、請求項1〜8,25〜30のいずれかに記載の光複合モジュールであることを特徴とする、請求項31に記載の光波長分離装置。
  33. 少なくとも2以上の波長群の光信号に分けられている複数の波長の光信号を波長多重して出力する光波長多重装置であって、
    各前記波長群毎に設けられており、当該波長群に含まれる複数の波長の光信号を合波して波長群の光信号として出力する光信号合波部と、
    各前記光信号合波部が出力する波長群の光信号を合波して出力する波長群光信号合波手段とを含み、
    各前記光信号合波部は、入力される電気信号で変調された光信号を出力し当該光信号と入力される光信号とを合波して出力する発光素子を一体化した複数の光複合モジュールを有し、
    前記複数の光複合モジュールは、直列に接続されていることを特徴とする、光波長多重装置。
  34. 前記光複合モジュールは、請求項9〜24のいずれかに記載の光複合モジュールであることを特徴とする、請求項33に記載の光波長多重装置。
  35. 発光素子から出力される一点に集光する光を光軸方向に平行な平行光に変換して出力するための光複合モジュールを製造するための方法であって、
    光軸中心に配置されている光ファイバからの出射光を光軸中心に対して平行な平行光に変換する光ファイバコリメータを、割スリーブの片側から着脱可能に挿入する工程と、
    前記割スリーブの反対側から、集束性ロッドレンズを保持したレンズ保持部材を装着する工程と、
    前記レンズ保持部材の外周の一部を嵌合すると共に、前記レンズ保持部材が軸方向に移動可能な調整スリーブに、前記レンズ保持部材を挿入する工程と、
    前記発光素子を光らせた状態で、前記光ファイバからの出力が最大となるような、前記集束性ロッドレンズの位置を見つける工程と、
    前記集束性ロッドレンズの位置を見つける工程で見つかった位置で、前記調整スリーブと前記レンズ保持部材とを固定し、かつ前記調整スリーブと前記発光素子を保持する部材とを固定する工程と、
    前記固定する工程の後、前記割スリーブに挿入されている前記光ファイバコリメータを抜き出す工程とを含む、光複合モジュール製造方法。
  36. 入射する平行光を一点に集光して、受光素子に入射させるための光複合モジュールを製造するための方法であって、
    光軸中心に配置されている光ファイバからの出射光を光軸中心に対して平行な平行光に変換する光ファイバコリメータを、割スリーブの片側から着脱可能に挿入する工程と、
    前記割スリーブの反対側から、集束性ロッドレンズを保持したレンズ保持部材を装着する工程と、
    前記レンズ保持部材の外周の一部を嵌合すると共に、前記レンズ保持部材が軸方向に移動可能な調整スリーブに、前記レンズ保持部材を挿入する工程と、
    前記光ファイバから光を出射させた状態で、前記受光素子からの出力が最大となるような、前記集束性ロッドレンズの位置を見つける工程と、
    前記集束性ロッドレンズの位置を見つける工程で見つかった位置で、前記調整スリーブと前記レンズ保持部材とを固定し、かつ前記調整スリーブと前記受光素子を保持する部材とを固定する工程と、
    前記固定する工程の後、前記割スリーブに挿入されている前記光ファイバコリメータを抜き出す工程とを含む、光複合モジュール製造方法。
JP2003074378A 2002-03-27 2003-03-18 光複合モジュール、光波長多重装置、光波長分離装置および光複合モジュール製造方法 Pending JP2004004625A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003074378A JP2004004625A (ja) 2002-03-27 2003-03-18 光複合モジュール、光波長多重装置、光波長分離装置および光複合モジュール製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002089058 2002-03-27
JP2003074378A JP2004004625A (ja) 2002-03-27 2003-03-18 光複合モジュール、光波長多重装置、光波長分離装置および光複合モジュール製造方法

Publications (1)

Publication Number Publication Date
JP2004004625A true JP2004004625A (ja) 2004-01-08

Family

ID=30446130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003074378A Pending JP2004004625A (ja) 2002-03-27 2003-03-18 光複合モジュール、光波長多重装置、光波長分離装置および光複合モジュール製造方法

Country Status (1)

Country Link
JP (1) JP2004004625A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003342A (ja) * 2004-05-18 2006-01-05 Ccs Inc 光照射装置及び光伝達素子
JP2014179504A (ja) * 2013-03-15 2014-09-25 Stanley Electric Co Ltd 発光装置
JP2014196955A (ja) * 2013-03-29 2014-10-16 株式会社ミツトヨ 光電式エンコーダ
JP2018073881A (ja) * 2016-10-25 2018-05-10 パナソニックIpマネジメント株式会社 半導体レーザ装置
JP2018518669A (ja) * 2015-05-19 2018-07-12 ニューポート・コーポレイションNewport Corporation 光学導管の光送達を伴う光学分析システム
JP2020120000A (ja) * 2019-01-24 2020-08-06 日亜化学工業株式会社 光源ユニット
US11594853B2 (en) 2019-01-24 2023-02-28 Nichia Corporation Light source unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003342A (ja) * 2004-05-18 2006-01-05 Ccs Inc 光照射装置及び光伝達素子
JP4590291B2 (ja) * 2004-05-18 2010-12-01 シーシーエス株式会社 光照射装置及び光伝達素子
JP2014179504A (ja) * 2013-03-15 2014-09-25 Stanley Electric Co Ltd 発光装置
JP2014196955A (ja) * 2013-03-29 2014-10-16 株式会社ミツトヨ 光電式エンコーダ
JP2018518669A (ja) * 2015-05-19 2018-07-12 ニューポート・コーポレイションNewport Corporation 光学導管の光送達を伴う光学分析システム
JP2018073881A (ja) * 2016-10-25 2018-05-10 パナソニックIpマネジメント株式会社 半導体レーザ装置
JP2020120000A (ja) * 2019-01-24 2020-08-06 日亜化学工業株式会社 光源ユニット
JP7041362B2 (ja) 2019-01-24 2022-03-24 日亜化学工業株式会社 光源ユニット
US11594853B2 (en) 2019-01-24 2023-02-28 Nichia Corporation Light source unit

Similar Documents

Publication Publication Date Title
US20030210874A1 (en) Optical composite module, optical wavelength multiplexer, optical wavelength demultiplexer, and optical composite module manufacturing method
US8380075B2 (en) Optical transceiver module
WO2009081539A1 (ja) 光送受信モジュール
US6498876B1 (en) Multi-port fiber optic device with v-groove ferrule
US7184621B1 (en) Multi-wavelength transmitter optical sub assembly with integrated multiplexer
JP2004354752A (ja) 一心双方向光モジュールのジョイントフォルダ
JP2009198958A (ja) 波長多重光受信モジュール
JP2009198576A (ja) 波長多重光受信モジュール
JP4311579B2 (ja) 光モジュール及び光波長合分波装置
JP2004133038A (ja) フィルタモジュール
JP3866585B2 (ja) フィルタモジュールの製造方法
JP2006154535A (ja) 光モジュール
JP2004004625A (ja) 光複合モジュール、光波長多重装置、光波長分離装置および光複合モジュール製造方法
JP2005164971A (ja) 波長分離素子および光モジュール
CN201804144U (zh) 光纤短插针及使用其的光模块
JP2005222022A (ja) 波長多重光カプラ
JP5707600B2 (ja) 光モジュールおよび光モジュールの製造方法
JP4262692B2 (ja) 光ファイバ反射モジュールの製造方法及びそれを用いた光フィルタモジュールの製造方法、波長多重通信用波長分離光モジュールの製造方法
KR20050029083A (ko) 더블유디엠 광커플러가 내장된 트라이플렉서 광모듈
US20040091210A1 (en) Optical module
JP2003107276A (ja) 光ファイバコリメータ及び光ファイバコリメータ用レンズ並びに光結合部品
US6894846B1 (en) Optical add/drop apparatus and the method for making the same
CN113495323A (zh) 一种多波长波分复用解复用光组件
JP2008209916A (ja) 光合分波器およびこれを用いた光送受信器
JP2003066271A (ja) 光波長分波素子