JP2004002910A - Electrolytic working method and apparatus - Google Patents

Electrolytic working method and apparatus Download PDF

Info

Publication number
JP2004002910A
JP2004002910A JP2002158162A JP2002158162A JP2004002910A JP 2004002910 A JP2004002910 A JP 2004002910A JP 2002158162 A JP2002158162 A JP 2002158162A JP 2002158162 A JP2002158162 A JP 2002158162A JP 2004002910 A JP2004002910 A JP 2004002910A
Authority
JP
Japan
Prior art keywords
electrode
processing
power supply
fluid
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002158162A
Other languages
Japanese (ja)
Inventor
Masayuki Kumegawa
粂川 正行
Hozumi Yasuda
安田 穂積
Itsuki Obata
小畠 厳貴
Osamu Nabeya
鍋谷 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002158162A priority Critical patent/JP2004002910A/en
Priority to TW091120555A priority patent/TW592859B/en
Priority to US10/485,306 priority patent/US20040256237A1/en
Priority to EP06021548A priority patent/EP1772536A1/en
Priority to EP02772846A priority patent/EP1432852A2/en
Priority to PCT/JP2002/009256 priority patent/WO2003029531A2/en
Publication of JP2004002910A publication Critical patent/JP2004002910A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic working apparatus in which, e.g., CMP (Chemical Mechanical Polishing) treatment itself can be obviated, an electrically conductive material provided on the surface of a substrate can flatly be worked while reducing loads on CMP treatment as much as possible, and further, adherent materials deposited on the surface of the object to be worked such as a substrate can be removed (washed). <P>SOLUTION: The electrolytic working apparatus is provided with a working electrode 84, a feeding electrode 86 of feeding power to a substrate W, a retaining part 42 of retaining the substrate W, and bringing the same into contact with the working electrode 84 or proximately arranging them, a power source of applying voltage to the space between the working electrode 84 and the feeding electrode 86, and a driving part of relatively moving the substrate W retained by the retaining part 42 and the working electrode 84. Fluid suction holes 84b and 86a of sucking fluid present between the substrate W and at least either the working electrode 84 or the feeding electrode 86 are formed on the working electrode 84 and the feeding electrode 86. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電解加工方法及び装置に係り、特に半導体ウェハ等の基板の表面に形成された導電性材料を加工したり、基板の表面に付着した不純物を除去したりするために使用される電解加工方法及び装置に関するものである。
【0002】
【従来の技術】
近年、半導体ウェハ等の基板上に回路を形成するための配線材料として、アルミニウム又はアルミニウム合金に代えて、電気抵抗率が低くエレクトロマイグレーション耐性が高い銅(Cu)を用いる動きが顕著になっている。この種の銅配線は、基板の表面に設けた微細凹みの内部に銅を埋め込むことによって一般に形成される。この銅配線を形成する方法としては、化学気相成長法(CVD:Chemical Vapor Deposition)、スパッタリング及びめっきといった手法があるが、いずれにしても、基板のほぼ全表面に銅を成膜して、化学機械的研磨(CMP:Chemical Mechanical Polishing)により不要の銅を除去するようにしている。
【0003】
図1(a)乃至図1(c)は、この種の銅配線基板Wの一製造例を工程順に示すものである。図1(a)に示すように、半導体素子が形成された半導体基材1上の導電層1aの上にSiOからなる酸化膜やLow−k材膜などの絶縁膜2が堆積され、リソグラフィ・エッチング技術によりコンタクトホール3と配線用の溝4が形成されている。これらの上にTaN等からなるバリア膜5、更にその上に電解めっきの給電層としてスパッタリングやCVD等によりシード層7が形成されている。
【0004】
そして、基板Wの表面に銅めっきを施すことで、図1(b)に示すように、半導体基材1のコンタクトホール3及び溝4内に銅を充填するとともに、絶縁膜2上に銅膜6を堆積する。その後、化学機械的研磨(CMP)により、絶縁膜2上の銅膜6を除去して、コンタクトホール3及び配線用の溝4に充填させた銅膜6の表面と絶縁膜2の表面とをほぼ同一平面にする。これにより、図1(c)に示すように銅膜6からなる配線が形成される。
【0005】
また、最近ではあらゆる機器の構成要素において微細化かつ高精度化が進み、サブミクロン領域での物作りが一般的となるにつれて、加工法自体が材料の特性に与える影響は益々大きくなっている。このような状況下においては、従来の機械加工のように、工具が被加工物を物理的に破壊しながら除去していく加工方法では、加工によって被加工物に多くの欠陥を生み出してしまうため、被加工物の特性が劣化してしまう。したがって、いかに材料の特性を損なうことなく加工を行うことができるかが問題となってくる。
【0006】
この問題を解決する手段として開発された特殊加工法に、化学研磨や電解加工、電解研磨がある。これらの加工方法は、従来の物理的な加工とは対照的に、化学的溶解反応を起こすことによって、除去加工等を行うものである。したがって、塑性変形による加工変質層や転位等の欠陥は発生せず、上述の材料の特性を損なわずに加工を行うといった課題が達成される。
【0007】
【発明が解決しようとする課題】
例えば、CMP工程は、一般にかなり複雑な操作が必要で、制御も複雑となり、加工時間もかなり長い。更に、研磨後の基板の後洗浄を十分に行う必要があるばかりでなく、スラリーや洗浄液の廃液処理のための負荷が大きい等の課題がある。このため、CMP自体を省略する、あるいはこの負荷を軽減することが強く求められている。また、今後、絶縁膜も誘電率の小さいLow−k材に変わると予想され、このLow−k材は強度が弱くCMPによるストレスに耐えられなくなる。したがって、CMPのような過大なストレスを基板に与えることなく、平坦化できるようにしたプロセスが望まれている。
【0008】
なお、化学機械的電解研磨のように、めっきをしながらCMPで削るというプロセスも発表されているが、めっき成長面に機械加工が付加されることで、めっきの異常成長を促すことにもなり、膜質に問題を起こしている。
【0009】
本発明は、このような従来技術の問題点に鑑みてなされたもので、例えばCMP処理そのものを省略したり、CMP処理の負荷を極力低減しつつ、基板表面に設けられた導電性材料を平坦に加工したり、更には基板等の被加工物の表面に付着した付着物を除去(洗浄)できるようにした電解加工方法及び装置を提供することを目的とする。特に、本発明は、上述した従来技術に代わる電解加工において、被加工面の加工量の均一性を悪化させたり、加工後の表面の荒れを生じさせたりする原因となる被加工面と加工面に存在する気泡等を除去することができる電解加工方法及び装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
このような従来技術における問題点を解決するために、本発明の第1の態様は、加工電極部と、被加工物に給電する給電電極部と、上記被加工物を保持して上記加工電極部に接触又は近接させる保持部と、上記加工電極部と上記給電電極部との間に電圧を印加する電源と、上記保持部で保持した被加工物と上記加工電極部とを相対移動させる駆動部とを備え、上記被加工物と上記加工電極部又は上記給電電極部の少なくとも一方との間に存在する流体を吸引する流体吸引孔を上記加工電極部又は上記給電電極部の少なくとも一方に形成したことを特徴とする電解加工装置である。
【0011】
本発明の第2の態様は、加工電極部と給電電極部とを配置し、上記加工電極部と上記給電電極部との間に電圧を印加し、上記被加工物を上記加工電極部に接触又は近接させ、上記加工電極部又は上記給電電極部の少なくとも一方に形成された流体吸引孔を介して、上記被加工物と上記加工電極部又は上記給電電極部の少なくとも一方との間に存在する流体を吸引しつつ、上記被加工物と上記加工電極部とを相対移動させて上記被加工物の表面を加工することを特徴とする電解加工方法である。
【0012】
本発明の好ましい一態様は、上記被加工物と加工電極部又は給電電極部の少なくとも一方との間に上記流体を供給する流体供給孔を上記加工電極部又は上記給電電極部の少なくとも一方に形成したことを特徴としている。
【0013】
本発明の好ましい一態様は、上記加工電極部又は上記給電電極部の一方に上記流体吸引孔を形成し、他方に上記流体供給孔を形成したことを特徴としている。
【0014】
本発明の好ましい一態様は、上記流体吸引孔が形成された電極はメッシュ電極であることを特徴としている。このような構成により、メッシュ電極の網目(メッシュ)により多数の流体吸引孔が構成されるため、流体を吸引する効率を高めることができる。
【0015】
本発明の好ましい一態様は、上記被加工物と加工電極部又は給電電極部の少なくとも一方との間にイオン交換体を配置したことを特徴としている。
【0016】
本発明の好ましい一態様は、上記加工電極部及び上記給電電極部の外部から、上記上記被加工物と上記加工電極部又は上記給電電極部の少なくとも一方との間に上記流体を供給することを特徴としている。
【0017】
本発明の好ましい一態様は、上記流体は、純水、超純水、又は電気伝導度が500μS/cm以下の流体であることを特徴としている。
【0018】
ここで、加工電極部及び給電電極部は、単一の電極だけではなく、小さな電極の集合体をも含む概念である。また、加工電極部又は給電電極部が小さな電極の集合体からなる場合には、電極と電極との間に流体吸引孔及び/又は流体供給孔を形成してもよい。
【0019】
図2及び図3は、本発明の加工原理を示すものである。図2は、被加工物10の表面に、加工電極14に取り付けたイオン交換体12aと、給電電極16に取り付けたイオン交換体12bとを接触又は近接させ、加工電極14と給電電極16との間に電源17を介して電圧を印加しつつ、加工電極14及び給電電極16と被加工物10との間に流体供給部19から超純水等の流体18を供給した状態を示している。図3は、被加工物10の表面に、加工電極14に取り付けたイオン交換体12aを接触又は近接させ、給電電極16を被加工物10に直接接触させて、加工電極14と給電電極16との間に電源17を介して電圧を印加しつつ、加工電極14と被加工物10との間に流体供給部19から超純水等の流体18を供給した状態を示している。
【0020】
超純水のような流体自身の抵抗値が大きい液体を使用する場合には、イオン交換体12aを被加工物10の表面に「接触させる」ことが好ましく、このようにイオン交換体12aを被加工物10の表面に接触させることにより、電気抵抗を低減させることができ、印加電圧も小さくて済み、消費電力も低減できる。したがって、本発明に係る加工における「接触」は、例えばCMPのように物理的なエネルギー(応力)を被加工物に与えるために「押し付ける」ものではない。
【0021】
図2及び図3において、超純水等の流体18中の水分子20をイオン交換体12a,12bで水酸化物イオン22と水素イオン24に解離し、例えば生成された水酸化物イオン22を、被加工物10と加工電極14との間の電界と超純水等の流体18の流れによって、被加工物10の加工電極14と対面する表面に供給して、ここでの被加工物10近傍の水酸化物イオン22の密度を高め、被加工物10の原子10aと水酸化物イオン22を反応させる。反応によって生成された反応物質26は、超純水18中に溶解し、被加工物10の表面に沿った超純水等の流体18の流れによって被加工物10から除去される。これにより、被加工物10の表面層の除去加工が行われる。
【0022】
このように、本加工法は純粋に被加工物との電気化学的相互作用のみにより被加工物の除去加工を行うものであり、CMPのような研磨部材と被加工物との物理的な相互作用及び研磨液中の化学種との化学的相互作用の混合による加工とは加工原理が異なるものである。この方法では、被加工物10の加工電極14と対面する部分が加工されるので、加工電極14を移動させることで、被加工物10の表面を所望の表面形状に加工することができる。
【0023】
なお、本発明に係る電解加工装置は、電気化学的相互作用による溶解反応のみにより被加工物の除去加工を行うため、CMPのような研磨部材と被加工物との物理的な相互作用及び研磨液中の化学種との化学的相互作用の混合による加工とは加工原理が異なるものである。したがって、材料の特性を損なわずに除去加工を行うことが可能であり、例えば上述したLow−k材に挙げられる機械的強度の小さい材料に対しても、物理的な相互作用を及ぼすことなく除去加工が可能である。また、通常の電解液を用いる電解加工装置と比較しても、加工液に500μS/cm以下の流体、好ましくは純水、更に好ましくは超純水を用いるため、被加工物表面への汚染も大幅に低減させることが可能であり、また加工後の廃液の処理も容易となる。
【0024】
上述したように、本発明に係る電解加工においては、反応種であるイオンは加工電極14及び給電電極16と被加工物10との間に生じる電界により被加工物10の表面に移動する。したがって、イオンの移動に対する阻害物が発生した場合には、この阻害物が加工の一様性及び均一性に影響を及ぼす。ここで、阻害物とは、例えば、図4(a)に示すように、加工過程において被加工物10とイオンとの電気化学的反応により被加工物10の表面に生じる加工生成物28aや、被加工物10及び電極の表面における副反応により生じる気泡28bを意味する。これらの阻害物が被加工物10と加工電極14(又は給電電極)との間に存在すると、イオンの移動の妨げとなり、被加工物10の表面の加工量の一様化及び均一化の妨げとなる。特に加工電極14と被加工物10との間の気泡28bは被加工物10の表面にピット29(小さな穴、図4(a)参照)が形成される原因となる。したがって、被加工物10の表面を一様かつ均一に加工するためには、イオンの移動に対する阻害物が発生した場合に、これらの阻害物を速やかに除去する必要がある。
【0025】
しかしながら、被加工物10と加工電極14との間の距離は0.1mm〜数mm程度であり、また、イオン交換体12a,12bの抵抗があるため、外部の流体供給部19から流体を供給するだけでは上記阻害物を被加工物10の表面から速やかに除去することが難しい。また、加工面積が大きくなると、これらの阻害物を被加工物10の表面から除去することが更に難しくなる。本発明に係る電解加工装置では、図4(b)に示すように、被加工物10と加工電極14(又は給電電極)の間に存在する流体を吸引する流体吸引孔14aを形成し、この流体吸引孔14aから、被加工物10とイオン交換体12a,12bとの間に存在する流体を吸引しているため、この流体とともに上述した加工生成物28aや気泡28bなどの阻害物が吸引される。このように、本発明に係る電解加工装置によれば、イオンの移動に対する阻害物28a,28bが被加工物10の表面から速やかに除去、排出されるので、このような阻害物の影響を受けることなく被加工物10の表面を一様かつ均一に加工することが可能となる。この場合において、被加工物10に対向する面から流体を吸引することとすればより効果的である。
【0026】
【発明の実施の形態】
以下、本発明に係る電解加工装置及びこれを組み込んだ基板処理装置の実施形態について図面を参照して詳細に説明する。なお、以下の説明では、被加工物として基板を使用し、電解加工装置で基板を加工するようにした例を示しているが、本発明を基板以外にも適用できることは言うまでもない。
【0027】
図5は、本発明の第1の実施形態における基板処理装置の構成を示す平面図である。図5に示すように、この基板処理装置は、例えば、図1(b)に示すように、表面に導電体膜(被加工物)としての銅膜6を有する基板Wを収納したカセットを搬出入する搬出入部としての一対のロード・アンロード部30と、基板Wを反転させる反転機32と、電解加工装置34とを備えている。これらの機器は直列に配置されており、これらの機器の間で基板Wを搬送して授受する搬送装置としての搬送ロボット36がこれらの機器と平行に配置されている。また、電解加工装置34による電解加工の際に、後述する加工電極と給電電極との間に印加する電圧又はこれらの間を流れる電流をモニタするモニタ部38がロード・アンロード部30に隣接して配置されている。
【0028】
図6は、基板処理装置内の電解加工装置34を模式的に示す縦断面図である。図6に示すように、電解加工装置34は、上下動可能かつ水平方向に揺動自在なアーム40と、アーム40の自由端に垂設されて基板Wを下向き(フェイスダウン)に吸着保持する基板保持部42と、基板保持部42の下方に配置される円板状の電極部44と、電極部44に接続される電源46とを備えている。
【0029】
アーム40は、揺動用モータ48に連結された揺動軸50の上端に取り付けられており、揺動用モータ48の駆動に伴って水平方向に揺動するようになっている。また、この揺動軸50は、上下方向に延びるボールねじ52に連結されており、ボールねじ52に連結された上下動用モータ54の駆動に伴ってアーム40とともに上下動するようになっている。
【0030】
基板保持部42は、基板保持部42で保持した基板Wと電極部44とを相対移動させる第1駆動部としての自転用モータ56に接続されており、この自転用モータ56の駆動に伴って回転(自転)するようになっている。また、上述したように、アーム40は上下動及び水平方向に揺動可能となっており、基板保持部42はアーム40と一体となって上下動及び水平方向に揺動可能となっている。
【0031】
電極部44の下方には、基板Wと電極部44とを相対移動させる第2駆動部としての中空モータ60が設置されており、この中空モータ60の主軸62には、この主軸62の中心から偏心した位置に駆動端64が設けられている。電極部44は、その中央において上記駆動端64に軸受(図示せず)を介して回転自在に連結されている。また、電極部44と中空モータ60との間には、周方向に3つ以上の自転防止機構が設けられている。
【0032】
図7(a)は本実施形態における自転防止機構を示す平面図、図7(b)は図7(a)のA−A線断面図である。図7(a)及び図7(b)に示すように、電極部44と中空モータ60との間には、周方向に3つ以上(図7(a)においては4つ)の自転防止機構66が設けられている。図7(b)に示すように、中空モータ60の上面と電極部44の下面の対応する位置には、周方向に等間隔に複数の凹所68,70が形成されており、これらの凹所68,70にはそれぞれ軸受72,74が装着されている。軸受72,74には、距離eだけずれた2つの軸体76,78の一端部がそれぞれ挿入されており、軸体76,78の他端部は連結部材80により互いに連結される。ここで、中空モータ60の主軸62の中心に対する駆動端64の偏心量も上述した距離eと同じになっている。したがって、電極部44は、中空モータ60の駆動に伴って、主軸62の中心と駆動端64との間の距離eを半径とした、自転を行わない公転運動、いわゆるスクロール運動(並進回転運動)を行うようになっている。
【0033】
図8は基板保持部42及び電極部44を模式的に示す縦断面図、図9は電極部44を示す平面図である。図9において、基板Wは点線で示されている。図8及び図9に示すように、電極部44は、略円板状の加工電極84と、この加工電極84の外周部に配置された複数の給電電極86と、加工電極84と給電電極86とを分離する絶縁体88とを備えている。図8に示すように、加工電極84の上面はイオン交換体90により、また給電電極86の上面はイオン交換体92によりそれぞれ覆われている。これらのイオン交換体90,92は一体に形成してもよい。なお、これらのイオン交換体90,92は図9では図示していない。
【0034】
本実施形態では、電極部44及び基板保持部42の大きさの関係で、電解加工中に電極部44の上方から電極部44の上面に流体の供給を行うことができない。したがって、本実施形態では、図8及び図9に示すように、加工電極84に、純水、より好ましくは超純水を供給する複数の流体供給孔84aを形成している。本実施形態においては、加工電極84の中心に対して放射状に複数の流体供給孔84aが配置されている。これらの流体供給孔84aは、中空モータ60の中空部の内部を延びる流体供給管82(図6参照)に接続されており、流体供給孔84aから電極部44の上面に純水又は超純水が供給されるようになっている。
【0035】
また、加工電極84には、上述した流体供給孔84aを介して電極部44の上面に供給された純水又は超純水を吸引する複数の流体吸引孔84bが形成されており、これらの流体吸引孔84bは加工電極84の中心に対して放射状に配置されている。また、給電電極86にも流体吸引孔86aが形成されている。加工電極84の流体吸引孔84b及び給電電極86の流体吸引孔86aは流体吸引管94を介して吸引ポンプなどの吸引装置96に接続されている。
【0036】
このような多数の流体供給孔84a及び流体吸引孔84b,86aが形成された電極部44は、多孔質材、例えば導電性セラミックスなどを用いて形成することができる。このようにすることで、電極部44の全面から流体の供給及び/又は吸引を行うことが可能となる。
【0037】
本実施形態では、加工電極84を電源46の陰極に接続し、給電電極86を電源46の陽極に接続しているが、加工材料によっては、電源46の陰極に接続される電極を給電電極とし、陽極に接続される電極を加工電極としてもよい。すなわち、被加工材料が例えば銅やモリブデン、鉄である場合には、陰極側に電解加工作用が生じるため、電源46の陰極に接続した電極が加工電極となり、陽極に接続した電極が給電電極となる。一方、被加工材料が例えばアルミニウムやシリコンである場合には、陽極側で電解加工作用が生じるため、電源46の陽極に接続した電極が加工電極となり、陰極に接続した電極が給電電極となる。
【0038】
次に、本実施形態における基板処理装置を用いた基板処理(電解加工)について説明する。まず、例えば、図1(b)に示すように、表面に導電体膜(被加工部)として銅膜6を形成した基板Wを収納したカセットをロード・アンロード部30にセットし、このカセットから1枚の基板Wを搬送ロボット36で取り出す。搬送ロボット36は、取り出した基板Wを必要に応じて反転機32に搬送し、基板Wの導電体膜(銅膜6)を形成した表面が下を向くように反転させる。
【0039】
搬送ロボット36は反転させた基板Wを受け取り、これを電解加工装置34に搬送し、基板保持部42に吸着保持させる。そして、アーム40を揺動させて基板Wを保持した基板保持部42を電極部44の直上方の加工位置まで移動させる。次に、上下動用モータ54を駆動して基板保持部42を下降させ、この基板保持部42で保持した基板Wを電極部44のイオン交換体90,92の表面に接触又は近接させる。この状態で、自転用モータ(第1駆動部)56を駆動して基板Wを回転させ、同時に中空モータ60(第2駆動部)を駆動して電極部44をスクロール運動させる。このとき、加工電極84の流体供給孔84aから基板Wとイオン交換体90,92との間に純水又は超純水を供給する。
【0040】
そして、電源46により加工電極84と給電電極86との間に所定の電圧を印加し、イオン交換体90,92により生成された水素イオン又は水酸化物イオンによって、加工電極(陰極)において基板Wの表面の導電体膜(銅膜6)の電解加工を行う。このとき、加工電極84と対面する部分において加工が進行するが、上述したように、基板Wと加工電極84とを相対移動させることにより基板Wの全面の加工を行っている。この電解加工中には、吸引装置96を作動させ、加工電極84の流体吸引孔84b及び給電電極86の流体吸引孔86aから、基板Wとイオン交換体90,92との間の純水又は超純水を吸引する。
【0041】
電極84,86の表面及び基板Wの表面では、電解加工に伴い副生成物として加工生成物や気泡などが発生する。これらの加工生成物や気泡などは、電極84,86と基板Wとの間に存在することによりイオンの移動の妨げとなり、基板Wの表面の加工量の一様化及び均一化の妨げとなる。特に、電極84,86と基板Wとの間の気泡は基板Wの表面にピット(小さな穴、図4(a)参照)が形成される原因となる。したがって、基板Wの表面から純水とともに加工生成物や気泡などの阻害物を吸引することが重要となる。本実施形態では、上述したように、加工電極84の流体吸引孔84b及び給電電極86の流体吸引孔86aから、純水又は超純水とともに、基板Wとイオンとの電気化学的反応により生じた加工生成物や基板W及び電極84,86の表面における副反応により生じた気泡などの阻害物が吸引される。このように、本発明に係る電解加工装置によれば、電解加工に用いられるイオンの移動に対する阻害物が基板Wの表面から速やかに除去、排出されるので、このような阻害物の影響を受けることなく基板Wの表面を一様かつ均一に加工することが可能となる。
【0042】
電解加工中には、加工電極と給電電極との間に印加する電圧、又はこの間を流れる電流をモニタ部38でモニタして、エンドポイント(加工終点)を検知する。すなわち、同じ電圧(電流)を印加した状態で電解加工を行うと、材料によって流れる電流(印加される電圧)に違いが生じる。例えば、図10(a)に示すように、表面に材料Bと材料Aとを順次成膜した基板Wの該表面に電解加工を施したときに流れる電流をモニタすると、材料Aを電解加工している間は一定の電流が流れるが、異なる材料Bの加工に移行する時点で流れる電流が変化する。同様に、加工電極と給電電極との間に印加される電圧にあっても、図10(b)に示すように、材料Aを電解加工している間は一定の電圧が印加されるが、異なる材料Bの加工に移行する時点で印加される電圧が変化する。なお、図10(a)は、材料Bを電解加工するときの方が、材料Aを電解加工するときよりも電流が流れにくくなる場合を、図10(b)は、材料Bを電解加工するときの方が、材料Aを電解加工するときよりも電圧が高くなる場合の例を示している。これにより、この電流又は電圧の変化をモニタすることでエンドポイントを確実に検知することができる。
【0043】
なお、モニタ部38で加工電極と給電電極との間に印加する電圧、又はこの間を流れる電流をモニタして加工終点を検知するようにした例を説明したが、このモニタ部38で、加工中の基板の状態の変化をモニタして、任意に設定した加工終点を検知するようにしてもよい。この場合、加工終点は、被加工面の指定した部位について、所望の加工量に達した時点、又は加工量と相関関係を有するパラメータが所望の加工量に相当する量に達した時点を指す。このように、加工の途中においても、加工終点を任意に設定して検知できるようにすることで、多段プロセスでの電解加工が可能となる。
【0044】
例えば、基板が異材料に達した時に生じる摩擦係数の違いによる摩擦力の変化や、基板の表面の凹凸を平坦化する際、凹凸を除去したことにより生じる摩擦力の変化等を検出することで加工量を判断し、加工終点を検出することとしてもよい。また、被加工面の電気抵抗による発熱や、加工面と被加工面との間に液体(純水)の中を移動するイオンと水分子の衝突による発熱が生じ、例えば基板の表面に堆積した銅膜を定電圧制御で電解研磨する際には、電解加工が進み、バリア層や絶縁膜が露出するのに伴って、電気抵抗が大きくなり電流値が小さくなって発熱量が順に減少する。したがって、この発熱量の変化を検出することで加工量を判断し、加工終点を検出することとしてもよい。あるいは、異材料に達した時に生じる反射率の違いによる反射光の強度の変化を検出して、基板上の被加工膜の膜厚を検知し、これにより加工終点を検出してもよい。また、銅膜等の導電性膜の内部にうず電流を発生させ、基板の内部を流れるうず電流をモニタし、例えば周波数の変化を検出して、基板上の被加工膜の膜厚を検知し、これにより加工終点を検出してもよい。更に、電解加工にあっては、加工電極と給電電極との間を流れる電流値で加工レートが決まり、加工量は、この電流値と加工時間の積で求められる電気量に比例する。したがって、電流値と加工時間の積で求められる電気量を積算し、この積算値が所定の値に達したことを検出することで加工量を判断し、加工終点を検出してもよい。
【0045】
電解加工完了後、電源46の接続を切り、基板保持部42の回転と電極部44のスクロール運動を停止させ、しかる後、基板保持部42を上昇させ、アーム40を移動させて基板Wを搬送ロボット36に受け渡す。基板Wを受け取った搬送ロボット36は、必要に応じて反転機32に搬送して反転させた後、基板Wをロード・アンロード部30のカセットに戻す。
【0046】
ここで、電解加工中に基板Wとイオン交換体90,92との間に供給する純水は、例えば電気伝導度が10μS/cm以下の水であり、超純水は、例えば電気伝導度が0.1μS/cm以下の水である。このように電解質を含まない純水又は超純水を使用して電解加工を行うことで、基板Wの表面に電解質等の余分な不純物が付着したり、残留したりすることをなくすことができる。更に、電解によって溶解した銅イオン等が、イオン交換体90,92にイオン交換反応で即座に捕捉されるため、溶解した銅イオン等が基板Wの他の部分に再度析出したり、酸化されて微粒子となり基板Wの表面を汚染したりすることがない。
【0047】
また、純水又は超純水の代わりに電気伝導度500μS/cm以下の液体、例えば純水又は超純水に電解質を添加した電解液を使用してもよい。電解液を使用することで、電気抵抗を低減して消費電力を削減することができる。この電解液としては、例えば、NaClやNaSO等の中性塩、HClやHSO等の酸、更には、アンモニア等のアルカリなどの溶液を使用することができ、被加工物の特性によって適宜選択して使用することができる。
【0048】
更に、純水又は超純水の代わりに、純水又は超純水に界面活性剤等を添加して、電気伝導度が500μS/cm以下、好ましくは、50μS/cm以下、更に好ましくは、0.1μS/cm以下(比抵抗で10MΩ・cm以上)にした液体を使用してもよい。このように、純水又は超純水に界面活性剤を添加することで、基板Wとイオン交換体90,92の界面にイオンの移動を防ぐ一様な抑制作用を有する層を形成し、これによって、イオン交換(金属の溶解)の集中を緩和して被加工面の平坦性を向上させることができる。ここで、界面活性剤濃度は、100ppm以下が好ましい。なお、電気伝導度の値が高すぎると電流効率が下がり、加工速度が遅くなるが、500μS/cm以下、好ましくは、50μS/cm以下、更に好ましくは、0.1μS/cm以下の電気伝導度を有する液体を使用することで、所望の加工速度を得ることができる。
【0049】
また、電極部44のイオン交換体90,92は、例えば、アニオン交換能又はカチオン交換能を付与した不織布で構成することができる。カチオン交換体は、好ましくは強酸性カチオン交換基(スルホン酸基)を担持したものであるが、弱酸性カチオン交換基(カルボキシル基)を担持したものでもよい。また、アニオン交換体は、好ましくは強塩基性アニオン交換基(4級アンモニウム基)を担持したものであるが、弱塩基性アニオン交換基(3級以下のアミノ基)を担持したものでもよい。
【0050】
ここで、例えば強塩基アニオン交換能を付与した不織布は、繊維径20〜50μmで空隙率が約90%のポリオレフィン製の不織布に、γ線を照射した後グラフト重合を行う所謂放射線グラフト重合法により、グラフト鎖を導入し、次に導入したグラフト鎖をアミノ化して4級アンモニウム基を導入して作製される。導入されるイオン交換基の容量は、導入するグラフト鎖の量により決定される。グラフト重合を行うためには、例えばアクリル酸、スチレン、メタクリル酸グリシジル、更にはスチレンスルホン酸ナトリウム、クロロメチルスチレン等のモノマーを用い、これらのモノマー濃度、反応温度及び反応時間を制御することで、重合するグラフト量を制御することができる。したがって、グラフト重合前の素材の重量に対し、グラフト重合後の重量の比をグラフト率と呼ぶが、このグラフト率は、最大で500%が可能であり、グラフト重合後に導入されるイオン交換基は、最大で5meq/gが可能である。
【0051】
強酸性カチオン交換能を付与した不織布は、上記強塩基性アニオン交換能を付与する方法と同様に、繊維径20〜50μmで空隙率が約90%のポリオレフィン製の不織布に、γ線を照射した後グラフト重合を行う所謂放射線グラフト重合法により、グラフト鎖を導入し、次に導入したグラフト鎖を、例えば加熱した硫酸で処理してスルホン酸基を導入して作製される。また、加熱したリン酸で処理すればリン酸基が導入できる。ここでグラフト率は、最大で500%が可能であり、グラフト重合後に導入されるイオン交換基は、最大で5meq/gが可能である。
【0052】
なお、イオン交換体90,92の素材の材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン系高分子、又はその他有機高分子が挙げられる。また素材形態としては、不織布の他に、織布、シート、多孔質材、短繊維等が挙げられる。ここで、ポリエチレンやポリプロピレンは、放射線(γ線と電子線)を先に素材に照射する(前照射)ことで、素材にラジカルを発生させ、次にモノマーと反応させてグラフト重合することができる。これにより、均一性が高く、不純物が少ないグラフト鎖ができる。一方、その他の有機高分子は、モノマーを含浸させ、そこに放射線(γ線、電子線、紫外線)を照射(同時照射)することで、ラジカル重合することができる。この場合、均一性に欠けるが、ほとんどの素材に適用できる。
【0053】
このように、イオン交換体90,92をアニオン交換能又はカチオン交換能を付与した不織布で構成することで、純水又は超純水や電解液等の液体が不織布の内部を自由に移動して、不織布内部の水分解触媒作用を有する活性点に容易に到達することが可能となって、多くの水分子が水素イオンと水酸化物イオンに解離される。更に、解離によって生成した水酸化物イオンが純水又は超純水や電解液等の液体の移動に伴って効率良く加工電極84の表面に運ばれるため、低い印加電圧でも高電流が得られる。
【0054】
ここで、イオン交換体90,92をアニオン交換能又はカチオン交換能の一方を付与したもののみで構成すると、電解加工できる被加工材料が制限されるばかりでなく、極性により不純物が生成しやすくなる。そこで、アニオン交換能を有するアニオン交換体とカチオン交換能を有するカチオン交換体とを重ね合わせたり、イオン交換体90,92自体にアニオン交換能とカチオン交換能の双方の交換基を付与するようにしたりしてもよく、これにより、被加工材料の範囲を拡げるとともに、不純物を生成しにくくすることができる。
【0055】
また、電極は、電解反応により酸化又は溶出が一般に問題となる。このため、電極の素材として、炭素、比較的不活性な貴金属、導電性酸化物又は導電性セラミックスを使用することが好ましい。電極が酸化すると電極の電気抵抗値が増加し、印加電圧の上昇を招くが、白金などの酸化しにくい材料やイリジウムなどの導電性酸化物で電極表面を保護すれば、電極素材の酸化による導電性の低下を防止することができる。
【0056】
上述の実施形態では、電極部44をスクロール運動させ、基板Wを回転させた例を説明したが、加工電極84と基板Wとを相対運動させることができれば、どのようなものであってもよい。例えば、電極部44と基板Wの双方を回転させることとしてもよい。また、上述の実施形態では基板保持部43が基板Wを下向き(フェイスダウン)に吸着保持する例を説明したが、これに限られるものではなく、例えば基板Wを上向き(フェイスアップ)に保持してもよい。
【0057】
また、上述の実施形態では、電極部44に流体供給孔84a及び流体吸引孔84b,86aの双方を形成した例を説明したが、流体供給孔又は流体吸引孔のどちらか一方のみを電極部44に形成することとしてもよい。また、上述の実施形態では、加工電極84にのみ流体供給孔84aを形成し、加工電極84及び給電電極86の双方に流体吸引孔84b,86aを形成した例を説明したが、加工電極84及び給電電極86の双方、あるいは給電電極86にのみ流体供給孔を形成してもよく、加工電極84にのみ、あるいは給電電極86にのみ流体吸引孔を形成してもよい。
【0058】
図11は本発明の第2の実施形態における電解加工装置を模式的に示す縦断面図、図12は図11の電極部を示す平面図である。図11及び図12において、上述の第1の実施形態における部材又は要素と同一の作用又は機能を有する部材又は要素には同一の符号を付し、特に説明しない部分については第1の実施形態と同様である。本実施形態における電極部144は、図12に示すように、絶縁体からなるリブ144aによって互いに分離された加工電極184と給電電極186とを備えており、電極部144の上面には、加工電極184と給電電極186の表面を一体に覆う膜状のイオン交換体190が取り付けられている。このように、加工電極184と給電電極186とを電極部144の円周方向に沿って分割して交互に設けることで、基板の導電体膜(被加工物)への固定給電部が不要となり、基板の全面の加工が可能となる。
【0059】
図12に示すように、加工電極184には、純水、より好ましくは超純水を供給する複数の流体供給孔184aが形成されている。これらの流体供給孔184aは、中空モータ60の中空部の内部を延びる流体供給管82(図11参照)に接続されており、流体供給孔184aから電極部144の上面に純水又は超純水が供給されるようになっている。また、給電電極186には、電極部144の上面に供給された純水又は超純水を吸引する複数の流体吸引孔186aが形成されている。第1の実施形態と同様に、給電電極186の流体吸引孔186aは吸引ポンプなどの吸引装置(図示せず)に接続されている。このように、本実施形態では、加工電極184が流体の供給の役割を、給電電極186が流体の吸引の役割をそれぞれ担っている。その他の構成は上述した第1の実施形態と同様である。
【0060】
本実施形態では、加工電極184に流体供給孔184aを形成し、給電電極186に流体吸引孔186aを形成した例を説明したが、これとは逆に、給電電極186に流体供給孔を形成し、加工電極184に流体吸引孔を形成してもよい。また、流体の供給を電極に形成された流体供給孔を介して行わずに、例えばノズル等を用いて電極の外部から電極と基板Wとの間に流体の供給を行い、流体の吸引のみを電極に形成された流体吸引孔を介して行うこととしてもよい。
【0061】
また、メッシュ電極を使用して電極に流体吸引孔を形成してもよい。この場合には、図13に示すように、バッファ部200aが形成された電極保持部200の上方にメッシュ電極210を配置し、バッファ部200aを吸引ポンプなどの吸引装置(図示せず)に接続する。このメッシュ電極210は、例えば白金からなる網状の電極であり、通気性及び通水性に優れたものである。メッシュ電極210の網目(メッシュ)により多数の流体吸引孔が構成されるため、流体を吸引する効率を高めることができる。すなわち、メッシュ電極210のメッシュを介して基板Wとイオン交換体220との間に存在する流体を吸引することにより、上述した阻害物230を流体とともに効率的に吸引することが可能となる。なお、メッシュがあまりに粗いと加工特性に影響が出るため、メッシュの粗さは吸引効率と加工特性とを考慮して決定される。また、このようなメッシュ電極を使用して電極に流体供給孔を形成することもできる。
【0062】
これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
【0063】
【発明の効果】
上述したように、本発明によれば、基板等の被加工物に物理的な欠陥を与えて被加工物の特性を損なうことを防止しつつ、電気化学的作用によって、例えばCMPに代わる電解加工等を施すことができ、これによって、CMP処理そのものを省略したり、CMP処理の負荷を低減したり、更には基板等の被加工物の表面に付着した付着物を除去(洗浄)することができる。しかも、純水又は超純水のみを使用しても基板を加工することができ、これによって、基板の表面に電解質等の余分な不純物が付着したり、残留したりすることをなくして、加工除去加工後の洗浄工程を簡略化できるばかりでなく、廃液処理の負荷を極めて小さくすることができる。
【図面の簡単な説明】
【図1】銅配線基板の一製造例を工程順に示す図である。
【図2】加工電極及び給電電極を基板(被加工物)に近接させ、加工電極及び給電電極と基板(被加工物)との間に純水又は電気伝導度が500μS/cm以下の流体を供給するようにしたときの本発明による電解加工の原理の説明に付する図である。
【図3】加工電極のみにイオン交換体を取り付けて、加工電極と基板(被加工物)との間に流体を供給するようにしたときの本発明による電解加工の原理の説明に付する図である。
【図4】図4(a)は流体吸引孔が形成されていない加工電極を用いた場合の阻害物による影響を説明する図であり、図4(b)は流体吸引孔が形成された加工電極を用いた場合の本発明による電解加工の作用を説明する図である。
【図5】本発明の第1の実施形態における基板処理装置の構成を示す平面図である。
【図6】図5に示す基板処理装置の電解加工装置を模式的に示す縦断面図である。
【図7】図7(a)は図6の電解加工装置における自転防止機構を示す平面図、図7(b)は図7(a)のA−A線断面図である。
【図8】図6の電解加工装置における基板保持部及び電極部を模式的に示す縦断面図である。
【図9】図8の電極部を示す平面図である。
【図10】図10(a)は、異なる材料を成膜した基板の表面に電解加工を施したときに流れる電流と時間の関係を、図10(b)は、同じく印加される電圧と時間の関係をそれぞれ示すグラフである。
【図11】本発明の第2の実施形態における電解加工装置を模式的に示す縦断面図である。
【図12】図11の電極部を示す平面図である。
【図13】本発明の他の実施形態における電極を示す模式図である。
【符号の説明】
6  銅膜(導電体膜)
7  シード層
10  被加工物
12a,12b  イオン交換体
14  加工電極
14a 流体吸引孔
16  給電電極
17  電源
18  超純水
19  流体供給部
20  水分子
22  水酸化物イオン
24  水素イオン
26  反応物質
28a 加工生成物
28b 気泡
29  ピット
30  ロード・アンロード部
32  反転機
34  電解加工装置
36  搬送ロボット
38  モニタ部
40  アーム
42  基板保持部
44  電極部
46  電源
48  揺動用モータ
50  揺動軸
52  ボールねじ
54  上下動用モータ
56  自転用モータ
60  中空モータ
62  主軸
64  駆動端
66  自転防止機構
68,70  凹所
72,74  軸受
76,78  軸体
80  連結部材
82  流体供給管
84,184  加工電極
84a,184a 流体供給孔
84b 流体吸引孔
86,186  給電電極
86a,186a 流体吸引孔
88,89  絶縁体
90,92  イオン交換体
94  流体吸引管
96  吸引装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrolytic processing method and apparatus, and more particularly to an electrolytic processing method for processing a conductive material formed on the surface of a substrate such as a semiconductor wafer or removing impurities attached to the surface of the substrate. The present invention relates to a processing method and an apparatus.
[0002]
[Prior art]
In recent years, as a wiring material for forming a circuit on a substrate such as a semiconductor wafer, a trend to use copper (Cu) having a low electric resistivity and a high electromigration resistance instead of aluminum or an aluminum alloy has become remarkable. . This type of copper wiring is generally formed by embedding copper in a fine recess provided on the surface of a substrate. As a method of forming the copper wiring, there are techniques such as chemical vapor deposition (CVD), sputtering, and plating. In any case, copper is formed on almost the entire surface of the substrate. Unnecessary copper is removed by chemical mechanical polishing (CMP).
[0003]
1A to 1C show an example of manufacturing this type of copper wiring board W in the order of steps. As shown in FIG. 1A, a SiO 2 layer is formed on a conductive layer 1a on a semiconductor substrate 1 on which a semiconductor element is formed. 2 An insulating film 2 such as an oxide film or a low-k material film is deposited, and a contact hole 3 and a wiring groove 4 are formed by lithography / etching technology. A barrier film 5 made of TaN or the like is formed thereon, and a seed layer 7 is formed thereon as a power supply layer for electrolytic plating by sputtering or CVD.
[0004]
Then, by applying copper plating to the surface of the substrate W, as shown in FIG. 1B, copper is filled in the contact holes 3 and the grooves 4 of the semiconductor substrate 1 and a copper film is formed on the insulating film 2. 6 is deposited. Thereafter, the copper film 6 on the insulating film 2 is removed by chemical mechanical polishing (CMP), and the surface of the copper film 6 filled in the contact hole 3 and the trench 4 for wiring and the surface of the insulating film 2 are removed. Make them almost the same plane. Thus, a wiring made of the copper film 6 is formed as shown in FIG.
[0005]
In recent years, as the miniaturization and the precision of all the components of equipment have been advanced, and the fabrication in the submicron region has become general, the influence of the processing method itself on the characteristics of the material has been increasing more and more. In such a situation, in a machining method in which a tool physically removes and removes a workpiece as in conventional machining, the machining causes many defects in the workpiece. In addition, the characteristics of the workpiece are deteriorated. Therefore, the problem is how to perform the processing without deteriorating the properties of the material.
[0006]
Special polishing methods developed as means for solving this problem include chemical polishing, electrolytic processing, and electrolytic polishing. In these processing methods, in contrast to conventional physical processing, removal processing is performed by causing a chemical dissolution reaction. Therefore, defects such as a work-affected layer and dislocations due to plastic deformation do not occur, and the above-described problem of working without impairing the properties of the material is achieved.
[0007]
[Problems to be solved by the invention]
For example, a CMP process generally requires rather complicated operations, requires more complicated control, and requires a considerably long processing time. Furthermore, there is a problem that not only the post-cleaning of the substrate after polishing needs to be sufficiently performed, but also that the load for treating the waste liquid of the slurry or the cleaning liquid is large. Therefore, there is a strong demand for omitting the CMP itself or reducing this load. In addition, it is expected that the insulating film will be changed to a low-k material having a small dielectric constant in the future, and the low-k material has a low strength and cannot withstand stress due to CMP. Therefore, there is a demand for a process capable of flattening without applying an excessive stress such as CMP to a substrate.
[0008]
In addition, although a process of polishing by CMP while plating, such as chemical mechanical electropolishing, has been announced, the addition of machining to the plating growth surface may promote abnormal growth of plating. , Causing problems in the film quality.
[0009]
The present invention has been made in view of such problems of the related art. For example, the conductive material provided on the substrate surface can be flattened while omitting the CMP process itself or minimizing the load of the CMP process. It is an object of the present invention to provide an electrolytic processing method and apparatus capable of processing (or cleaning) an adhered substance attached to the surface of a workpiece such as a substrate. In particular, the present invention relates to the above-described electrolytic processing in place of the conventional technique, in which the uniformity of the processing amount of the processing surface is deteriorated, or the processing surface and the processing surface which cause roughness of the processed surface are generated. It is an object of the present invention to provide an electrolytic processing method and apparatus capable of removing bubbles and the like existing in a steel sheet.
[0010]
[Means for Solving the Problems]
In order to solve such problems in the prior art, a first aspect of the present invention provides a processing electrode unit, a power supply electrode unit for supplying power to a workpiece, and the processing electrode unit holding the workpiece. A holding unit that contacts or approaches the unit, a power supply that applies a voltage between the processing electrode unit and the power supply electrode unit, and a drive that relatively moves the workpiece held by the holding unit and the processing electrode unit. And a fluid suction hole for sucking a fluid existing between the workpiece and at least one of the processing electrode portion or the power supply electrode portion is formed in at least one of the processing electrode portion or the power supply electrode portion. An electrolytic processing apparatus characterized in that:
[0011]
According to a second aspect of the present invention, a processing electrode portion and a power supply electrode portion are arranged, a voltage is applied between the processing electrode portion and the power supply electrode portion, and the workpiece is brought into contact with the processing electrode portion. Or, close to each other, and exists between the workpiece and at least one of the processing electrode portion or the power supply electrode portion through a fluid suction hole formed in at least one of the processing electrode portion or the power supply electrode portion. An electrolytic machining method characterized by processing the surface of the workpiece by relatively moving the workpiece and the processing electrode portion while sucking a fluid.
[0012]
In a preferred aspect of the present invention, a fluid supply hole for supplying the fluid is provided between the workpiece and at least one of the processing electrode portion and the power supply electrode portion in at least one of the processing electrode portion and the power supply electrode portion. It is characterized by doing.
[0013]
In a preferred aspect of the present invention, the fluid suction hole is formed in one of the processing electrode portion and the power supply electrode portion, and the fluid supply hole is formed in the other.
[0014]
In a preferred aspect of the present invention, the electrode provided with the fluid suction hole is a mesh electrode. With such a configuration, since a large number of fluid suction holes are formed by the mesh of the mesh electrodes, the efficiency of sucking the fluid can be increased.
[0015]
In a preferred aspect of the present invention, an ion exchanger is disposed between the workpiece and at least one of the processing electrode portion and the power supply electrode portion.
[0016]
In a preferred aspect of the present invention, the fluid is supplied between the workpiece and at least one of the processing electrode unit and the power supply electrode unit from outside the processing electrode unit and the power supply electrode unit. Features.
[0017]
In a preferred aspect of the present invention, the fluid is pure water, ultrapure water, or a fluid having an electric conductivity of 500 μS / cm or less.
[0018]
Here, the processing electrode portion and the power supply electrode portion are concepts that include not only a single electrode but also an aggregate of small electrodes. When the processing electrode portion or the power supply electrode portion is formed of an aggregate of small electrodes, a fluid suction hole and / or a fluid supply hole may be formed between the electrodes.
[0019]
2 and 3 show the working principle of the present invention. FIG. 2 shows that the ion exchanger 12 a attached to the processing electrode 14 and the ion exchanger 12 b attached to the power supply electrode 16 are brought into contact with or close to each other on the surface of the workpiece 10. A state is shown in which a fluid 18 such as ultrapure water is supplied from a fluid supply unit 19 between the processing electrode 14 and the power supply electrode 16 and the workpiece 10 while a voltage is applied therebetween via the power supply 17. FIG. 3 shows that the ion exchanger 12 a attached to the processing electrode 14 is brought into contact with or close to the surface of the workpiece 10, and the power supply electrode 16 is brought into direct contact with the workpiece 10. A state is shown in which a fluid 18 such as ultrapure water is supplied from the fluid supply unit 19 between the processing electrode 14 and the workpiece 10 while applying a voltage via the power supply 17 during the operation.
[0020]
When a liquid having a large resistance value such as ultrapure water is used, it is preferable that the ion exchanger 12a be "contacted" with the surface of the workpiece 10, and thus the ion exchanger 12a is coated. By making contact with the surface of the workpiece 10, the electric resistance can be reduced, the applied voltage can be reduced, and the power consumption can be reduced. Therefore, “contact” in the processing according to the present invention is not “pressing” to apply physical energy (stress) to a workpiece as in, for example, CMP.
[0021]
2 and 3, a water molecule 20 in a fluid 18 such as ultrapure water is dissociated into hydroxide ions 22 and hydrogen ions 24 by ion exchangers 12a and 12b. By supplying an electric field between the workpiece 10 and the processing electrode 14 and the flow of the fluid 18 such as ultrapure water to the surface of the workpiece 10 facing the processing electrode 14, the workpiece 10 is supplied. The density of the hydroxide ions 22 in the vicinity is increased, and the atoms 10a of the workpiece 10 react with the hydroxide ions 22. The reactant 26 generated by the reaction dissolves in the ultrapure water 18 and is removed from the workpiece 10 by the flow of the fluid 18 such as ultrapure water along the surface of the workpiece 10. Thereby, the removal processing of the surface layer of the workpiece 10 is performed.
[0022]
As described above, this processing method performs the removal processing of the workpiece only by purely electrochemical interaction with the workpiece, and the physical interaction between the polishing member such as CMP and the workpiece. The processing principle is different from the processing by mixing the action and the chemical interaction with the chemical species in the polishing liquid. In this method, since the portion of the workpiece 10 facing the processing electrode 14 is processed, the surface of the workpiece 10 can be processed into a desired surface shape by moving the processing electrode 14.
[0023]
In addition, since the electrolytic processing apparatus according to the present invention performs the removal processing of the workpiece only by the dissolution reaction due to the electrochemical interaction, the physical interaction between the polishing member such as CMP and the workpiece and the polishing are performed. The processing principle is different from processing by mixing chemical interactions with chemical species in a liquid. Therefore, it is possible to carry out the removal processing without impairing the properties of the material. For example, even if the material has a small mechanical strength such as the above-mentioned Low-k material, it can be removed without exerting any physical interaction. Processing is possible. Also, compared with an electrolytic processing apparatus using a normal electrolytic solution, a fluid of 500 μS / cm or less, preferably pure water, and more preferably ultrapure water is used as the working liquid, so that contamination on the surface of the workpiece is also reduced. It can be greatly reduced, and the treatment of waste liquid after processing becomes easy.
[0024]
As described above, in the electrolytic processing according to the present invention, ions serving as reactive species move to the surface of the workpiece 10 by an electric field generated between the processing electrode 14 and the power supply electrode 16 and the workpiece 10. Therefore, when an obstacle to the movement of ions is generated, the obstacle affects the uniformity and uniformity of processing. Here, the obstruction refers to, for example, as shown in FIG. 4A, a processing product 28 a generated on the surface of the workpiece 10 by an electrochemical reaction between the workpiece 10 and ions in a processing process, It means bubbles 28b generated by a side reaction on the surface of the workpiece 10 and the electrode. If these obstructions exist between the workpiece 10 and the processing electrode 14 (or the power supply electrode), the movement of ions is hindered, and the processing amount of the surface of the workpiece 10 is prevented from being uniform and uniform. It becomes. In particular, air bubbles 28b between the processing electrode 14 and the workpiece 10 cause pits 29 (small holes, see FIG. 4A) to be formed on the surface of the workpiece 10. Therefore, in order to process the surface of the workpiece 10 uniformly and uniformly, it is necessary to promptly remove these obstructions, if they are obstructed by the movement of ions.
[0025]
However, the distance between the workpiece 10 and the processing electrode 14 is about 0.1 mm to several mm, and the fluid is supplied from the external fluid supply unit 19 because of the resistance of the ion exchangers 12a and 12b. It is difficult to remove the obstruction from the surface of the workpiece 10 quickly only by doing so. In addition, when the processing area increases, it becomes more difficult to remove these obstacles from the surface of the workpiece 10. In the electrolytic processing apparatus according to the present invention, as shown in FIG. 4B, a fluid suction hole 14a for sucking a fluid existing between the workpiece 10 and the processing electrode 14 (or the power supply electrode) is formed. Since the fluid existing between the workpiece 10 and the ion exchangers 12a and 12b is sucked from the fluid suction hole 14a, the fluid and the obstructions such as the above-described processing products 28a and bubbles 28b are sucked together with the fluid. You. As described above, according to the electrolytic processing apparatus of the present invention, the obstructions 28a and 28b against the movement of ions are quickly removed and discharged from the surface of the workpiece 10, so that they are affected by such obstructions. The surface of the workpiece 10 can be uniformly and uniformly processed without any processing. In this case, it is more effective to suck the fluid from the surface facing the workpiece 10.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of an electrolytic processing apparatus according to the present invention and a substrate processing apparatus incorporating the same will be described in detail with reference to the drawings. In the following description, an example is shown in which a substrate is used as an object to be processed and the substrate is processed by an electrolytic processing apparatus. However, it goes without saying that the present invention can be applied to other than the substrate.
[0027]
FIG. 5 is a plan view illustrating a configuration of the substrate processing apparatus according to the first embodiment of the present invention. As shown in FIG. 5, this substrate processing apparatus unloads a cassette containing a substrate W having a copper film 6 as a conductor film (workpiece) on the surface, for example, as shown in FIG. The apparatus includes a pair of loading / unloading sections 30 as loading / unloading sections for loading, a reversing machine 32 for reversing the substrate W, and an electrolytic processing device 34. These devices are arranged in series, and a transfer robot 36 as a transfer device that transfers and transfers the substrate W between these devices is arranged in parallel with these devices. Further, at the time of electrolytic processing by the electrolytic processing apparatus 34, a monitor section 38 for monitoring a voltage applied between a processing electrode and a feed electrode described later or a current flowing between them is adjacent to the load / unload section 30. Is arranged.
[0028]
FIG. 6 is a longitudinal sectional view schematically showing the electrolytic processing device 34 in the substrate processing apparatus. As shown in FIG. 6, the electrolytic processing apparatus 34 has an arm 40 that can move up and down and swings in the horizontal direction, and is vertically attached to a free end of the arm 40 to suck and hold the substrate W downward (face down). The semiconductor device includes a substrate holding unit 42, a disk-shaped electrode unit 44 disposed below the substrate holding unit 42, and a power supply 46 connected to the electrode unit 44.
[0029]
The arm 40 is attached to the upper end of a swing shaft 50 connected to the swing motor 48, and swings in the horizontal direction as the swing motor 48 is driven. Further, the swing shaft 50 is connected to a ball screw 52 extending in the vertical direction, and is configured to move up and down together with the arm 40 in accordance with driving of a motor 54 for vertical movement connected to the ball screw 52.
[0030]
The substrate holding unit 42 is connected to a rotation motor 56 as a first drive unit that relatively moves the substrate W and the electrode unit 44 held by the substrate holding unit 42, and is driven by the rotation of the rotation motor 56. It is designed to rotate (rotate). Further, as described above, the arm 40 can move up and down and swing in the horizontal direction, and the substrate holding unit 42 can swing up and down and swing in the horizontal direction integrally with the arm 40.
[0031]
A hollow motor 60 as a second drive unit for relatively moving the substrate W and the electrode unit 44 is provided below the electrode unit 44, and a main shaft 62 of the hollow motor 60 is provided from a center of the main shaft 62. A drive end 64 is provided at an eccentric position. The electrode portion 44 is rotatably connected to the drive end 64 via a bearing (not shown) at the center. Further, three or more rotation preventing mechanisms are provided in the circumferential direction between the electrode unit 44 and the hollow motor 60.
[0032]
FIG. 7A is a plan view showing a rotation preventing mechanism according to the present embodiment, and FIG. 7B is a cross-sectional view taken along line AA of FIG. 7A. As shown in FIGS. 7 (a) and 7 (b), three or more (four in FIG. 7 (a)) rotation preventing mechanisms are provided between the electrode portion 44 and the hollow motor 60 in the circumferential direction. 66 are provided. As shown in FIG. 7 (b), a plurality of recesses 68, 70 are formed at equal intervals in the circumferential direction at positions corresponding to the upper surface of the hollow motor 60 and the lower surface of the electrode portion 44. Bearings 72 and 74 are mounted on the places 68 and 70, respectively. One ends of two shafts 76 and 78 that are shifted by a distance e are inserted into the bearings 72 and 74, respectively, and the other ends of the shafts 76 and 78 are connected to each other by a connecting member 80. Here, the amount of eccentricity of the drive end 64 with respect to the center of the main shaft 62 of the hollow motor 60 is also the same as the distance e described above. Accordingly, the electrode portion 44 is driven by the hollow motor 60 to rotate around the distance e between the center of the main shaft 62 and the drive end 64 and has no radius, ie, a so-called scroll motion (translational rotation motion). It is supposed to do.
[0033]
FIG. 8 is a longitudinal sectional view schematically showing the substrate holding section 42 and the electrode section 44, and FIG. 9 is a plan view showing the electrode section 44. In FIG. 9, the substrate W is indicated by a dotted line. As shown in FIGS. 8 and 9, the electrode portion 44 includes a substantially disk-shaped processing electrode 84, a plurality of power supply electrodes 86 arranged on the outer periphery of the processing electrode 84, the processing electrode 84, and the power supply electrode 86. And an insulator 88 that separates them. As shown in FIG. 8, the upper surface of the processing electrode 84 is covered with an ion exchanger 90, and the upper surface of the feeding electrode 86 is covered with an ion exchanger 92. These ion exchangers 90 and 92 may be formed integrally. Note that these ion exchangers 90 and 92 are not shown in FIG.
[0034]
In the present embodiment, fluid cannot be supplied from above the electrode portion 44 to the upper surface of the electrode portion 44 during electrolytic processing due to the size of the electrode portion 44 and the substrate holding portion 42. Therefore, in the present embodiment, as shown in FIGS. 8 and 9, a plurality of fluid supply holes 84a for supplying pure water, more preferably ultrapure water, are formed in the processing electrode 84. In the present embodiment, a plurality of fluid supply holes 84a are arranged radially with respect to the center of the processing electrode 84. These fluid supply holes 84a are connected to a fluid supply pipe 82 (see FIG. 6) extending inside the hollow portion of the hollow motor 60, and pure water or ultrapure water is supplied from the fluid supply hole 84a to the upper surface of the electrode unit 44. Is supplied.
[0035]
Further, the processing electrode 84 is formed with a plurality of fluid suction holes 84b for sucking pure water or ultrapure water supplied to the upper surface of the electrode unit 44 via the above-described fluid supply holes 84a. The suction holes 84 b are arranged radially with respect to the center of the processing electrode 84. The power supply electrode 86 also has a fluid suction hole 86a. The fluid suction hole 84b of the processing electrode 84 and the fluid suction hole 86a of the power supply electrode 86 are connected via a fluid suction pipe 94 to a suction device 96 such as a suction pump.
[0036]
The electrode section 44 in which such a number of fluid supply holes 84a and the fluid suction holes 84b and 86a are formed can be formed using a porous material, for example, a conductive ceramic. By doing so, it becomes possible to supply and / or suck the fluid from the entire surface of the electrode unit 44.
[0037]
In the present embodiment, the processing electrode 84 is connected to the cathode of the power supply 46, and the power supply electrode 86 is connected to the anode of the power supply 46. However, depending on the processing material, the electrode connected to the cathode of the power supply 46 is used as the power supply electrode. Alternatively, the electrode connected to the anode may be a processing electrode. That is, when the material to be processed is, for example, copper, molybdenum, or iron, an electrolytic processing action occurs on the cathode side, so the electrode connected to the cathode of the power supply 46 becomes the processing electrode, and the electrode connected to the anode becomes the power supply electrode. Become. On the other hand, when the material to be processed is, for example, aluminum or silicon, an electrolytic processing action occurs on the anode side, so that the electrode connected to the anode of the power supply 46 is the processing electrode, and the electrode connected to the cathode is the power supply electrode.
[0038]
Next, substrate processing (electrolytic processing) using the substrate processing apparatus according to the present embodiment will be described. First, for example, as shown in FIG. 1B, a cassette containing a substrate W having a copper film 6 formed on the surface as a conductive film (processed portion) is set in the loading / unloading section 30, and this cassette is loaded. , One substrate W is taken out by the transfer robot 36. The transfer robot 36 transfers the removed substrate W to the reversing device 32 as necessary, and reverses the substrate W so that the surface of the substrate W on which the conductive film (copper film 6) is formed faces downward.
[0039]
The transfer robot 36 receives the inverted substrate W, transfers the inverted substrate W to the electrolytic processing device 34, and causes the substrate holding unit 42 to hold the substrate W by suction. Then, the arm 40 is swung to move the substrate holding unit 42 holding the substrate W to a processing position just above the electrode unit 44. Next, the vertical movement motor 54 is driven to lower the substrate holding unit 42, and the substrate W held by the substrate holding unit 42 is brought into contact with or close to the surfaces of the ion exchangers 90 and 92 of the electrode unit 44. In this state, the rotation motor (first driving unit) 56 is driven to rotate the substrate W, and at the same time, the hollow motor 60 (second driving unit) is driven to scroll the electrode unit 44. At this time, pure water or ultrapure water is supplied between the substrate W and the ion exchangers 90 and 92 from the fluid supply hole 84a of the processing electrode 84.
[0040]
Then, a predetermined voltage is applied between the processing electrode 84 and the power supply electrode 86 by the power supply 46, and hydrogen ions or hydroxide ions generated by the ion exchangers 90 and 92 cause the substrate W on the processing electrode (cathode). Of the conductor film (copper film 6) on the surface of the substrate. At this time, processing proceeds in a portion facing the processing electrode 84, and as described above, the entire surface of the substrate W is processed by relatively moving the substrate W and the processing electrode 84. During this electrolytic processing, the suction device 96 is operated, and pure water or ultrapure water between the substrate W and the ion exchangers 90 and 92 is supplied from the fluid suction hole 84b of the processing electrode 84 and the fluid suction hole 86a of the power supply electrode 86. Suction pure water.
[0041]
On the surfaces of the electrodes 84 and 86 and the surface of the substrate W, processing products, bubbles, and the like are generated as by-products due to the electrolytic processing. These processing products, bubbles, and the like, which exist between the electrodes 84 and 86 and the substrate W, hinder the movement of ions, and hinder uniformity and uniformity of the processing amount of the surface of the substrate W. . In particular, bubbles between the electrodes 84 and 86 and the substrate W cause pits (small holes, see FIG. 4A) to be formed on the surface of the substrate W. Therefore, it is important to suck the processing products and the obstacles such as bubbles from the surface of the substrate W together with the pure water. In the present embodiment, as described above, the water is generated by the electrochemical reaction between the substrate W and the ions together with pure water or ultrapure water from the fluid suction hole 84b of the processing electrode 84 and the fluid suction hole 86a of the power supply electrode 86. Inhibitors such as processing products and bubbles generated by side reactions on the surfaces of the substrate W and the electrodes 84 and 86 are sucked. As described above, according to the electrolytic processing apparatus according to the present invention, an obstacle to the movement of ions used for the electrolytic processing is quickly removed and discharged from the surface of the substrate W, and thus is affected by such an obstacle. It is possible to process the surface of the substrate W uniformly and uniformly without the need.
[0042]
During the electrolytic processing, the voltage applied between the processing electrode and the power supply electrode or the current flowing therebetween is monitored by the monitor unit 38 to detect an end point (processing end point). That is, if electrolytic processing is performed with the same voltage (current) applied, the current flowing (applied voltage) differs depending on the material. For example, as shown in FIG. 10A, when a current flowing when an electrolytic processing is performed on the surface of the substrate W on which the material B and the material A are sequentially formed on the surface is monitored, the material A is subjected to the electrolytic processing. While the current is flowing, a constant current flows, but the current flowing at the time of transition to processing of a different material B changes. Similarly, although the voltage applied between the processing electrode and the power supply electrode is constant while the material A is being electrolytically processed, as shown in FIG. The voltage applied changes at the time of transition to processing of a different material B. FIG. 10A shows a case where the current is less likely to flow when the material B is electrolytically processed than when the material A is electrolytically processed. FIG. 10B shows a case where the material B is electrolytically processed. An example is shown in which the time is higher than when the material A is electrolytically processed. Thus, the end point can be reliably detected by monitoring the change in the current or the voltage.
[0043]
In addition, although an example has been described in which the voltage applied between the processing electrode and the power supply electrode or the current flowing therebetween is monitored by the monitor unit 38 to detect the processing end point, The change in the state of the substrate may be monitored to detect an arbitrarily set processing end point. In this case, the processing end point indicates a point in time at which a desired processing amount has been reached or a parameter having a correlation with the processing amount has reached an amount corresponding to the desired processing amount with respect to a designated portion of the processing surface. As described above, even during the processing, the processing end point can be arbitrarily set and detected so that the electrolytic processing in a multi-step process can be performed.
[0044]
For example, by detecting a change in frictional force due to a difference in friction coefficient generated when the substrate reaches a different material, or a change in frictional force caused by removing the unevenness when flattening the unevenness on the surface of the substrate. The processing amount may be determined, and the processing end point may be detected. In addition, heat is generated due to electric resistance of the processed surface, and heat generated by collision of ions and water molecules moving in the liquid (pure water) between the processed surface and the processed surface, and is generated, for example, on the surface of the substrate. When the copper film is electrolytically polished under constant voltage control, electrolytic processing proceeds, and as the barrier layer and the insulating film are exposed, the electric resistance increases, the current value decreases, and the calorific value decreases in order. Therefore, the processing amount may be determined by detecting the change in the heat generation amount, and the processing end point may be detected. Alternatively, a change in the intensity of reflected light due to a difference in reflectance caused when the light reaches a different material may be detected to detect the film thickness of the film to be processed on the substrate, thereby detecting the processing end point. In addition, an eddy current is generated inside a conductive film such as a copper film, the eddy current flowing inside the substrate is monitored, for example, a change in frequency is detected, and a film thickness of a film to be processed on the substrate is detected. Thus, the processing end point may be detected. Further, in electrolytic machining, the machining rate is determined by the current value flowing between the machining electrode and the power supply electrode, and the machining amount is proportional to the amount of electricity obtained by multiplying the current value by the machining time. Therefore, the amount of electricity obtained by the product of the current value and the processing time may be integrated, the processing amount may be determined by detecting that the integrated value has reached a predetermined value, and the processing end point may be detected.
[0045]
After the completion of the electrolytic processing, the power supply 46 is disconnected, the rotation of the substrate holder 42 and the scroll movement of the electrode unit 44 are stopped, and then the substrate holder 42 is raised and the arm 40 is moved to transfer the substrate W. Transfer to robot 36. After receiving the substrate W, the transport robot 36 transports the substrate W to the reversing machine 32 as necessary, reverses the substrate W, and returns the substrate W to the cassette of the load / unload unit 30.
[0046]
Here, the pure water supplied between the substrate W and the ion exchangers 90 and 92 during the electrolytic processing is, for example, water having an electric conductivity of 10 μS / cm or less. It is water of 0.1 μS / cm or less. By performing electrolytic processing using pure water or ultrapure water that does not contain an electrolyte in this manner, extra impurities such as an electrolyte can be prevented from adhering to or remaining on the surface of the substrate W. . Furthermore, since the copper ions and the like dissolved by the electrolysis are immediately captured by the ion exchangers 90 and 92 by the ion exchange reaction, the dissolved copper ions and the like are deposited again on other portions of the substrate W or oxidized. It does not become fine particles and contaminate the surface of the substrate W.
[0047]
Further, instead of pure water or ultrapure water, a liquid having an electric conductivity of 500 μS / cm or less, for example, an electrolytic solution obtained by adding an electrolyte to pure water or ultrapure water may be used. By using the electrolytic solution, electric resistance can be reduced and power consumption can be reduced. As the electrolytic solution, for example, NaCl or Na 2 SO 4 Neutral salts such as HCl and H 2 SO 4 Or a solution of an alkali such as ammonia can be used, and can be appropriately selected and used depending on the characteristics of the workpiece.
[0048]
Further, instead of pure water or ultrapure water, a surfactant or the like is added to pure water or ultrapure water, and the electric conductivity is 500 μS / cm or less, preferably 50 μS / cm or less, more preferably 0 μS / cm or less. A liquid having a resistivity of 1 μS / cm or less (specific resistance of 10 MΩ · cm or more) may be used. As described above, by adding a surfactant to pure water or ultrapure water, a layer having a uniform inhibitory action for preventing the transfer of ions at the interface between the substrate W and the ion exchangers 90 and 92 is formed. Thereby, the concentration of ion exchange (dissolution of metal) can be reduced, and the flatness of the processed surface can be improved. Here, the surfactant concentration is preferably 100 ppm or less. If the value of the electric conductivity is too high, the current efficiency decreases and the processing speed decreases, but the electric conductivity is 500 μS / cm or less, preferably 50 μS / cm or less, and more preferably 0.1 μS / cm or less. By using a liquid having the following, a desired processing speed can be obtained.
[0049]
Further, the ion exchangers 90 and 92 of the electrode unit 44 can be made of, for example, a nonwoven fabric provided with an anion exchange ability or a cation exchange ability. The cation exchanger preferably carries a strongly acidic cation exchange group (sulfonic acid group), but may also carry a weakly acidic cation exchange group (carboxyl group). The anion exchanger preferably has a strongly basic anion exchange group (quaternary ammonium group), but may have a weakly basic anion exchange group (tertiary or lower amino group).
[0050]
Here, for example, a nonwoven fabric having a strong base anion exchange ability is obtained by so-called radiation graft polymerization in which a nonwoven fabric made of polyolefin having a fiber diameter of 20 to 50 μm and a porosity of about 90% is irradiated with γ-rays and then subjected to graft polymerization. , A graft chain is introduced, and then the introduced graft chain is aminated to introduce a quaternary ammonium group. The capacity of the ion exchange group to be introduced is determined by the amount of the graft chain to be introduced. In order to perform the graft polymerization, for example, acrylic acid, styrene, glycidyl methacrylate, further using a monomer such as sodium styrenesulfonate, chloromethylstyrene, by controlling the concentration of these monomers, reaction temperature and reaction time, The amount of graft to be polymerized can be controlled. Therefore, the ratio of the weight after the graft polymerization to the weight of the material before the graft polymerization is referred to as a graft ratio, and the graft ratio can be up to 500%. , At most 5 meq / g.
[0051]
The nonwoven fabric provided with the strongly acidic cation exchange ability was irradiated with γ-rays on a polyolefin nonwoven fabric having a fiber diameter of 20 to 50 μm and a porosity of about 90% in the same manner as the method of imparting the strong basic anion exchange ability. It is produced by introducing a graft chain by a so-called radiation graft polymerization method in which post-graft polymerization is performed, and then treating the introduced graft chain with, for example, heated sulfuric acid to introduce a sulfonic acid group. Further, by treating with heated phosphoric acid, a phosphate group can be introduced. Here, the graft ratio can be up to 500%, and the ion exchange group introduced after graft polymerization can be up to 5 meq / g.
[0052]
In addition, as a material of the material of the ion exchangers 90 and 92, a polyolefin-based polymer such as polyethylene and polypropylene, or another organic polymer can be used. Examples of the material form include, in addition to the nonwoven fabric, a woven fabric, a sheet, a porous material, and a short fiber. Here, polyethylene and polypropylene can be irradiated with radiation (γ-rays and electron beams) to the material first (pre-irradiation) to generate radicals in the material and then react with the monomer to undergo graft polymerization. . As a result, a graft chain having high uniformity and low impurities is obtained. On the other hand, other organic polymers can be radically polymerized by impregnating a monomer and irradiating (simultaneously irradiating) radiation (γ-ray, electron beam, ultraviolet ray) thereto. In this case, although it lacks uniformity, it can be applied to most materials.
[0053]
As described above, by configuring the ion exchangers 90 and 92 with a nonwoven fabric provided with an anion exchange ability or a cation exchange ability, a liquid such as pure water or ultrapure water or an electrolytic solution can freely move inside the nonwoven fabric. Thus, it is possible to easily reach an active point having a water decomposition catalytic action inside the nonwoven fabric, and many water molecules are dissociated into hydrogen ions and hydroxide ions. Furthermore, since the hydroxide ions generated by the dissociation are efficiently carried to the surface of the processing electrode 84 with the movement of the liquid such as pure water or ultrapure water or an electrolytic solution, a high current can be obtained even at a low applied voltage.
[0054]
Here, when the ion exchangers 90 and 92 are constituted only by those having one of the anion exchange ability and the cation exchange ability, not only the material to be processed which can be electrolytically processed is limited, but also impurities are easily generated due to the polarity. . Therefore, an anion exchanger having an anion exchange ability and a cation exchanger having a cation exchange ability are superimposed on each other, or exchange groups having both anion exchange ability and cation exchange ability are provided to the ion exchangers 90 and 92 themselves. This can increase the range of the material to be processed and make it difficult to generate impurities.
[0055]
In addition, oxidation or elution of an electrode generally causes a problem due to an electrolytic reaction. Therefore, it is preferable to use carbon, a relatively inert noble metal, a conductive oxide, or a conductive ceramic as a material of the electrode. When the electrode is oxidized, the electrical resistance of the electrode increases, causing an increase in the applied voltage.However, if the electrode surface is protected with a material that is difficult to oxidize such as platinum or a conductive oxide such as iridium, the conductivity of the electrode material due to oxidation is increased. Can be prevented from lowering.
[0056]
In the above-described embodiment, an example in which the electrode unit 44 is scrolled and the substrate W is rotated has been described, but any type may be used as long as the processing electrode 84 and the substrate W can be relatively moved. . For example, both the electrode unit 44 and the substrate W may be rotated. Further, in the above-described embodiment, an example has been described in which the substrate holding unit 43 sucks and holds the substrate W downward (face down). However, the present invention is not limited to this. For example, the substrate holding unit 43 holds the substrate W upward (face up). You may.
[0057]
Further, in the above-described embodiment, the example in which both the fluid supply hole 84a and the fluid suction holes 84b and 86a are formed in the electrode unit 44 has been described, but only one of the fluid supply hole and the fluid suction hole is connected to the electrode unit 44. May be formed. Further, in the above-described embodiment, the example in which the fluid supply hole 84a is formed only in the processing electrode 84 and the fluid suction holes 84b and 86a are formed in both the processing electrode 84 and the power supply electrode 86 has been described. A fluid supply hole may be formed in both of the power supply electrodes 86 or only in the power supply electrode 86, or a fluid suction hole may be formed only in the processing electrode 84 or only in the power supply electrode 86.
[0058]
FIG. 11 is a longitudinal sectional view schematically showing an electrolytic processing apparatus according to the second embodiment of the present invention, and FIG. 12 is a plan view showing the electrode section of FIG. 11 and 12, members or elements having the same functions or functions as the members or elements in the above-described first embodiment are denoted by the same reference numerals, and parts that are not particularly described are the same as in the first embodiment. The same is true. As shown in FIG. 12, the electrode portion 144 in the present embodiment includes a processing electrode 184 and a feeding electrode 186 separated from each other by a rib 144a made of an insulator. A membrane ion exchanger 190 that integrally covers the surfaces of the power supply electrode 186 and the power supply electrode 186 is attached. As described above, the processing electrode 184 and the power supply electrode 186 are divided and provided alternately along the circumferential direction of the electrode portion 144, so that a fixed power supply portion to the conductive film (workpiece) of the substrate becomes unnecessary. Thus, the entire surface of the substrate can be processed.
[0059]
As shown in FIG. 12, a plurality of fluid supply holes 184a for supplying pure water, more preferably ultrapure water, are formed in the processing electrode 184. These fluid supply holes 184a are connected to a fluid supply pipe 82 (see FIG. 11) extending inside the hollow portion of the hollow motor 60, and pure water or ultrapure water is supplied from the fluid supply hole 184a to the upper surface of the electrode portion 144. Is supplied. The power supply electrode 186 has a plurality of fluid suction holes 186 a for sucking pure water or ultrapure water supplied to the upper surface of the electrode part 144. As in the first embodiment, the fluid suction hole 186a of the power supply electrode 186 is connected to a suction device (not shown) such as a suction pump. As described above, in the present embodiment, the processing electrode 184 has a role of supplying a fluid, and the power supply electrode 186 has a role of sucking a fluid. Other configurations are the same as those of the above-described first embodiment.
[0060]
In the present embodiment, the example in which the fluid supply hole 184a is formed in the processing electrode 184 and the fluid suction hole 186a is formed in the power supply electrode 186 has been described. On the contrary, the fluid supply hole is formed in the power supply electrode 186. Alternatively, a fluid suction hole may be formed in the processing electrode 184. Also, without supplying the fluid through the fluid supply hole formed in the electrode, the fluid is supplied between the electrode and the substrate W from outside the electrode using, for example, a nozzle, and only the suction of the fluid is performed. It may be performed through a fluid suction hole formed in the electrode.
[0061]
Also, a fluid suction hole may be formed in the electrode using a mesh electrode. In this case, as shown in FIG. 13, the mesh electrode 210 is arranged above the electrode holding unit 200 on which the buffer unit 200a is formed, and the buffer unit 200a is connected to a suction device (not shown) such as a suction pump. I do. The mesh electrode 210 is a mesh electrode made of, for example, platinum and has excellent air permeability and water permeability. Since a large number of fluid suction holes are formed by the mesh (mesh) of the mesh electrode 210, the efficiency of sucking fluid can be increased. That is, by sucking the fluid existing between the substrate W and the ion exchanger 220 through the mesh of the mesh electrode 210, the above-described inhibitor 230 can be efficiently sucked together with the fluid. If the mesh is too coarse, the processing characteristics are affected. Therefore, the roughness of the mesh is determined in consideration of the suction efficiency and the processing characteristics. Also, a fluid supply hole can be formed in the electrode using such a mesh electrode.
[0062]
Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention may be embodied in various forms within the scope of the technical idea.
[0063]
【The invention's effect】
As described above, according to the present invention, electrochemical processing is performed by, for example, CMP instead of CMP while preventing a physical defect on a workpiece such as a substrate from impairing the characteristics of the workpiece. And the like, so that the CMP process itself can be omitted, the load of the CMP process can be reduced, and further, the adhered material adhered to the surface of the workpiece such as the substrate can be removed (cleaned). it can. In addition, the substrate can be processed using only pure water or ultrapure water, thereby preventing unnecessary impurities such as electrolytes from adhering to or remaining on the surface of the substrate. Not only can the cleaning process after the removal processing be simplified, but also the load of waste liquid treatment can be extremely reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing one example of manufacturing a copper wiring board in the order of steps.
FIG. 2 A processing electrode and a power supply electrode are brought close to a substrate (workpiece), and pure water or a fluid having an electric conductivity of 500 μS / cm or less is applied between the processing electrode and the power supply electrode and the substrate (workpiece). It is a figure attached to explanation of the principle of electrolytic processing by the present invention when it is made to supply.
FIG. 3 is a diagram attached to a description of the principle of electrolytic processing according to the present invention when an ion exchanger is attached only to a processing electrode and a fluid is supplied between the processing electrode and a substrate (workpiece). It is.
FIG. 4 (a) is a diagram for explaining the influence of an obstruction when a processing electrode having no fluid suction hole is used, and FIG. 4 (b) is a process in which a fluid suction hole is formed. It is a figure explaining an operation of electrolytic processing by the present invention at the time of using an electrode.
FIG. 5 is a plan view illustrating a configuration of the substrate processing apparatus according to the first embodiment of the present invention.
6 is a vertical sectional view schematically showing an electrolytic processing apparatus of the substrate processing apparatus shown in FIG.
7 (a) is a plan view showing a rotation preventing mechanism in the electrolytic processing apparatus of FIG. 6, and FIG. 7 (b) is a sectional view taken along line AA of FIG. 7 (a).
8 is a longitudinal sectional view schematically showing a substrate holding unit and an electrode unit in the electrolytic processing apparatus of FIG.
FIG. 9 is a plan view showing the electrode unit of FIG. 8;
FIG. 10 (a) shows the relationship between the current flowing when electrolytic processing is performed on the surface of a substrate on which different materials are formed and the time, and FIG. 10 (b) shows the applied voltage and time. Are graphs each showing the relationship.
FIG. 11 is a longitudinal sectional view schematically showing an electrolytic processing apparatus according to a second embodiment of the present invention.
FIG. 12 is a plan view showing the electrode unit of FIG. 11;
FIG. 13 is a schematic view showing an electrode according to another embodiment of the present invention.
[Explanation of symbols]
6 Copper film (conductor film)
7 Seed layer
10 Workpiece
12a, 12b ion exchanger
14 Processing electrode
14a Fluid suction hole
16 Power supply electrode
17 Power supply
18 Ultra pure water
19 Fluid supply unit
20 water molecules
22 hydroxide ion
24 hydrogen ion
26 Reactants
28a Processing product
28b bubbles
29 pits
30 Load / Unload section
32 reversing machine
34 Electrochemical processing equipment
36 Transfer robot
38 Monitor
40 arm
42 Substrate holder
44 electrode
46 power supply
48 Rocking motor
50 swing axis
52 ball screw
54 Motor for vertical movement
56 Motor for rotation
60 hollow motor
62 spindle
64 Drive end
66 Anti-rotation mechanism
68,70 recess
72, 74 bearing
76,78 shaft
80 Connecting member
82 Fluid supply pipe
84,184 machining electrode
84a, 184a Fluid supply hole
84b Fluid suction hole
86,186 feeding electrode
86a, 186a Fluid suction hole
88, 89 insulator
90,92 ion exchanger
94 Fluid suction tube
96 suction device

Claims (13)

加工電極部と、
被加工物に給電する給電電極部と、
前記被加工物を保持して前記加工電極部に接触又は近接させる保持部と、
前記加工電極部と前記給電電極部との間に電圧を印加する電源と、
前記保持部で保持した被加工物と前記加工電極部とを相対移動させる駆動部とを備え、
前記被加工物と前記加工電極部又は前記給電電極部の少なくとも一方との間に存在する流体を吸引する流体吸引孔を前記加工電極部又は前記給電電極部の少なくとも一方に形成したことを特徴とする電解加工装置。
Machining electrode part,
A power supply electrode for supplying power to the workpiece;
A holding unit that holds the workpiece and contacts or approaches the processing electrode unit,
A power supply for applying a voltage between the processing electrode portion and the power supply electrode portion,
A drive unit that relatively moves the workpiece and the processing electrode unit held by the holding unit,
A fluid suction hole for sucking a fluid existing between the workpiece and at least one of the processing electrode unit or the power supply electrode unit is formed in at least one of the processing electrode unit or the power supply electrode unit. Electrolytic processing equipment.
前記被加工物と加工電極部又は給電電極部の少なくとも一方との間に前記流体を供給する流体供給孔を前記加工電極部又は前記給電電極部の少なくとも一方に形成したことを特徴とする請求項1に記載の電解加工装置。A fluid supply hole for supplying the fluid is formed between at least one of the processing electrode unit and the power supply electrode unit between the workpiece and at least one of the processing electrode unit and the power supply electrode unit. 2. The electrolytic processing apparatus according to 1. 前記加工電極部又は前記給電電極部の一方に前記流体吸引孔を形成し、他方に前記流体供給孔を形成したことを特徴とする請求項2に記載の電解加工装置。The electrolytic processing apparatus according to claim 2, wherein the fluid suction hole is formed in one of the processing electrode portion and the power supply electrode portion, and the fluid supply hole is formed in the other. 前記流体吸引孔が形成された電極はメッシュ電極であることを特徴とする請求項1乃至3のいずれか一項に記載の電解加工装置。The electrolytic processing apparatus according to claim 1, wherein the electrode having the fluid suction hole is a mesh electrode. 前記被加工物と加工電極部又は給電電極部の少なくとも一方との間にイオン交換体を配置したことを特徴とする請求項1乃至4のいずれか一項に記載の電解加工装置。The electrolytic processing apparatus according to any one of claims 1 to 4, wherein an ion exchanger is disposed between the workpiece and at least one of the processing electrode unit and the power supply electrode unit. 前記流体は、純水、超純水、又は電気伝導度が500μS/cm以下の流体であることを特徴とする請求項1乃至5のいずれか一項に記載の電解加工装置。The electrolytic processing apparatus according to any one of claims 1 to 5, wherein the fluid is pure water, ultrapure water, or a fluid having an electric conductivity of 500 µS / cm or less. 加工電極部と給電電極部とを配置し、
前記加工電極部と前記給電電極部との間に電圧を印加し、
前記被加工物を前記加工電極部に接触又は近接させ、
前記加工電極部又は前記給電電極部の少なくとも一方に形成された流体吸引孔を介して、前記被加工物と前記加工電極部又は前記給電電極部の少なくとも一方との間に存在する流体を吸引しつつ、前記被加工物と前記加工電極部とを相対移動させて前記被加工物の表面を加工することを特徴とする電解加工方法。
Arrange the processing electrode part and the power supply electrode part,
Applying a voltage between the processing electrode portion and the power supply electrode portion,
The workpiece is brought into contact with or close to the processing electrode unit,
Through a fluid suction hole formed in at least one of the processing electrode portion or the power supply electrode portion, a fluid existing between the workpiece and at least one of the processing electrode portion or the power supply electrode portion is suctioned. An electrolytic processing method, wherein the surface of the workpiece is processed by relatively moving the workpiece and the processing electrode unit.
前記加工電極部又は前記給電電極部の少なくとも一方に形成された流体供給孔を介して、前記被加工物と前記加工電極部又は前記給電電極部の少なくとも一方との間に前記流体を供給することを特徴とする請求項7に記載の電解加工方法。Supplying the fluid between the workpiece and at least one of the processing electrode unit and the power supply electrode unit via a fluid supply hole formed in at least one of the processing electrode unit and the power supply electrode unit. The electrolytic processing method according to claim 7, wherein: 前記加工電極部又は前記給電電極部の一方に前記流体吸引孔を形成し、他方に前記流体供給孔を形成したことを特徴とする請求項8に記載の電解加工方法。The electrolytic processing method according to claim 8, wherein the fluid suction hole is formed in one of the processing electrode portion and the power supply electrode portion, and the fluid supply hole is formed in the other. 前記加工電極部及び前記給電電極部の外部から、前記被加工物と前記加工電極部又は前記給電電極部の少なくとも一方との間に前記流体を供給することを特徴とする請求項7に記載の電解加工方法。8. The fluid according to claim 7, wherein the fluid is supplied between the workpiece and at least one of the processing electrode unit and the power supply electrode unit from outside the processing electrode unit and the power supply electrode unit. Electrolytic processing method. 前記流体吸引孔が形成された電極はメッシュ電極であることを特徴とする請求項7乃至10のいずれか一項に記載の電解加工方法。The electrolytic processing method according to any one of claims 7 to 10, wherein the electrode having the fluid suction hole is a mesh electrode. 前記被加工物と加工電極部又は給電電極部の少なくとも一方との間にイオン交換体を配置することを特徴とする請求項7乃至11のいずれか一項に記載の電解加工方法。The electrolytic processing method according to any one of claims 7 to 11, wherein an ion exchanger is disposed between the workpiece and at least one of the processing electrode unit and the power supply electrode unit. 前記流体は、純水、超純水、又は電気伝導度が500μS/cm以下の流体であることを特徴とする請求項7乃至12のいずれか一項に記載の電解加工方法。The electrolytic processing method according to claim 7, wherein the fluid is pure water, ultrapure water, or a fluid having an electric conductivity of 500 μS / cm or less.
JP2002158162A 2001-09-11 2002-05-30 Electrolytic working method and apparatus Pending JP2004002910A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002158162A JP2004002910A (en) 2002-05-30 2002-05-30 Electrolytic working method and apparatus
TW091120555A TW592859B (en) 2001-09-11 2002-09-10 Electrolytic processing apparatus and method
US10/485,306 US20040256237A1 (en) 2001-09-11 2002-09-11 Electrolytic processing apparatus and method
EP06021548A EP1772536A1 (en) 2001-09-11 2002-09-11 Electrolytic processing apparatus and method
EP02772846A EP1432852A2 (en) 2001-09-11 2002-09-11 Electrolytic processing apparatus and method
PCT/JP2002/009256 WO2003029531A2 (en) 2001-09-11 2002-09-11 Electrolytic processing apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002158162A JP2004002910A (en) 2002-05-30 2002-05-30 Electrolytic working method and apparatus

Publications (1)

Publication Number Publication Date
JP2004002910A true JP2004002910A (en) 2004-01-08

Family

ID=30428621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002158162A Pending JP2004002910A (en) 2001-09-11 2002-05-30 Electrolytic working method and apparatus

Country Status (1)

Country Link
JP (1) JP2004002910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305910A (en) * 2007-06-06 2008-12-18 Hitachi Zosen Corp Method and device for removing conductive metal-oxide thin film
JP2009532578A (en) * 2006-03-31 2009-09-10 ラム リサーチ コーポレーション Apparatus and method for confinement area planarization

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119333A (en) * 1980-02-20 1981-09-18 Mitsubishi Electric Corp Electric discharge machining apparatus
JPS63121700A (en) * 1986-11-10 1988-05-25 Chugoku Denka Kogyo Kk Surface treatment of work
JPH01115516A (en) * 1987-10-28 1989-05-08 Shizuoka Seiki Co Ltd Electrochemical machine
JPH0332519A (en) * 1989-06-28 1991-02-13 Shizuoka Seiki Co Ltd Electrolytic finishing process
JPH03158486A (en) * 1989-11-15 1991-07-08 Mitsubishi Electric Corp Electrochemical cell
JPH0950977A (en) * 1995-05-31 1997-02-18 Shin Etsu Handotai Co Ltd Device and method for cleaning semiconductor substrate
JPH09141528A (en) * 1995-11-22 1997-06-03 Denso Corp Electro-chemical machining device
JPH09508179A (en) * 1994-01-28 1997-08-19 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for electrolytic metallization or etching of processing materials
JPH1043948A (en) * 1996-07-30 1998-02-17 Shizuoka Seiki Co Ltd Method of finish working by electrochemical machining
JPH1058236A (en) * 1996-08-12 1998-03-03 Yuzo Mori Machining method using hydroxyl group in ultrapure water
JP2000167714A (en) * 1998-12-07 2000-06-20 Japan Science & Technology Corp Working method by hydroxide ion in ultra-pure water
JP2000277478A (en) * 1999-03-25 2000-10-06 Canon Inc Anodization device and system, substrate processing device and method, and manufcature thereof
JP2001064799A (en) * 1999-08-27 2001-03-13 Yuzo Mori Electrolytic working method and device
JP2002093761A (en) * 2000-09-19 2002-03-29 Sony Corp Polishing method, polishing system, plating method and plating system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119333A (en) * 1980-02-20 1981-09-18 Mitsubishi Electric Corp Electric discharge machining apparatus
JPS63121700A (en) * 1986-11-10 1988-05-25 Chugoku Denka Kogyo Kk Surface treatment of work
JPH01115516A (en) * 1987-10-28 1989-05-08 Shizuoka Seiki Co Ltd Electrochemical machine
JPH0332519A (en) * 1989-06-28 1991-02-13 Shizuoka Seiki Co Ltd Electrolytic finishing process
JPH03158486A (en) * 1989-11-15 1991-07-08 Mitsubishi Electric Corp Electrochemical cell
JPH09508179A (en) * 1994-01-28 1997-08-19 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for electrolytic metallization or etching of processing materials
JPH0950977A (en) * 1995-05-31 1997-02-18 Shin Etsu Handotai Co Ltd Device and method for cleaning semiconductor substrate
JPH09141528A (en) * 1995-11-22 1997-06-03 Denso Corp Electro-chemical machining device
JPH1043948A (en) * 1996-07-30 1998-02-17 Shizuoka Seiki Co Ltd Method of finish working by electrochemical machining
JPH1058236A (en) * 1996-08-12 1998-03-03 Yuzo Mori Machining method using hydroxyl group in ultrapure water
JP2000167714A (en) * 1998-12-07 2000-06-20 Japan Science & Technology Corp Working method by hydroxide ion in ultra-pure water
JP2000277478A (en) * 1999-03-25 2000-10-06 Canon Inc Anodization device and system, substrate processing device and method, and manufcature thereof
JP2001064799A (en) * 1999-08-27 2001-03-13 Yuzo Mori Electrolytic working method and device
JP2002093761A (en) * 2000-09-19 2002-03-29 Sony Corp Polishing method, polishing system, plating method and plating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532578A (en) * 2006-03-31 2009-09-10 ラム リサーチ コーポレーション Apparatus and method for confinement area planarization
KR101358627B1 (en) 2006-03-31 2014-02-04 램 리써치 코포레이션 Apparatus and method for confined area planarization
JP2008305910A (en) * 2007-06-06 2008-12-18 Hitachi Zosen Corp Method and device for removing conductive metal-oxide thin film

Similar Documents

Publication Publication Date Title
US7655118B2 (en) Electrolytic processing apparatus and method
KR100849202B1 (en) Electrolytic processing device and substrate processing apparatus
US20070187257A1 (en) Electrolytic processing apparatus and electrolytic processing method
US7101465B2 (en) Electrolytic processing device and substrate processing apparatus
JP4310085B2 (en) Electrolytic machining method and apparatus
US20040256237A1 (en) Electrolytic processing apparatus and method
JP3933520B2 (en) Substrate processing apparatus and substrate processing method
JP2004002910A (en) Electrolytic working method and apparatus
JP4233331B2 (en) Electrolytic machining method and apparatus
JP4172945B2 (en) Method and apparatus for regenerating ion exchanger for electrolytic processing
JP4127361B2 (en) Electrolytic processing equipment
JP4130073B2 (en) Ion exchanger regeneration method and regeneration apparatus
JP2004255479A (en) Electrochemical machining method and electrochemical machining device
JP2003175422A (en) Electrochemical machining device and electrochemical machining method
US7563356B2 (en) Composite processing apparatus and method
JP2004084054A (en) Electrolytic processing method and device
JP2006013177A (en) Apparatus and method for electrolytic processing
JP2005054205A (en) Electrochemical machining apparatus and electrochemical machining method
JP2003266245A (en) Electrolytic machining device and method
JP2006128576A (en) Electrolytic processing apparatus and method therefor
JP2005199401A (en) Electrochemical machining device and method
JP2007284795A (en) Electrode structure and electrolytic processing device
JP2004322292A (en) Electrochemical machining device
JP2006009103A (en) Electrolytic processing apparatus and method for conditioning contact member
JP2003291028A (en) Electrochemical machining device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090901