JP4233331B2 - Electrolytic machining method and apparatus - Google Patents

Electrolytic machining method and apparatus Download PDF

Info

Publication number
JP4233331B2
JP4233331B2 JP2003011660A JP2003011660A JP4233331B2 JP 4233331 B2 JP4233331 B2 JP 4233331B2 JP 2003011660 A JP2003011660 A JP 2003011660A JP 2003011660 A JP2003011660 A JP 2003011660A JP 4233331 B2 JP4233331 B2 JP 4233331B2
Authority
JP
Japan
Prior art keywords
electrode
workpiece
processing
machining
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003011660A
Other languages
Japanese (ja)
Other versions
JP2004043952A (en
Inventor
正行 粂川
穂積 安田
厳貴 小畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003011660A priority Critical patent/JP4233331B2/en
Publication of JP2004043952A publication Critical patent/JP2004043952A/en
Application granted granted Critical
Publication of JP4233331B2 publication Critical patent/JP4233331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電解加工方法及び装置に係り、特に半導体ウェハ等の基板の表面に形成された導電性材料を加工したり、基板の表面に付着した不純物を除去したりするために使用される電解加工方法及び装置に関するものである。
【0002】
【従来の技術】
近年、半導体ウェハ等の基板上に回路を形成するための配線材料として、アルミニウム又はアルミニウム合金に代えて、電気抵抗率が低くエレクトロマイグレーション耐性が高い銅(Cu)を用いる動きが顕著になっている。この種の銅配線は、基板の表面に設けた微細凹みの内部に銅を埋め込むことによって一般に形成される。この銅配線を形成する方法としては、化学気相成長法(CVD:Chemical Vapor Deposition)、スパッタリング及びめっきといった手法があるが、いずれにしても、基板のほぼ全表面に銅を成膜して、化学機械的研磨(CMP:Chemical Mechanical Polishing)により不要の銅を除去するようにしている。
【0003】
図1(a)乃至図1(c)は、この種の銅配線基板Wの一製造例を工程順に示すものである。図1(a)に示すように、半導体素子が形成された半導体基材1上の導電層1aの上にSiOからなる酸化膜やLow−k材膜などの絶縁膜2が堆積され、リソグラフィ・エッチング技術によりコンタクトホール3と配線用の溝4が形成されている。これらの上にTaN等からなるバリア膜5、更にその上に電解めっきの給電層としてスパッタリングやCVD等によりシード層7が形成されている。
【0004】
そして、基板Wの表面に銅めっきを施すことで、図1(b)に示すように、半導体基材1のコンタクトホール3及び溝4内に銅を充填するとともに、絶縁膜2上に銅膜6を堆積する。その後、化学機械的研磨(CMP)により、絶縁膜2上の銅膜6及びシード層7を除去して、コンタクトホール3及び配線用の溝4に充填させた銅膜6の表面と絶縁膜2の表面とをほぼ同一平面にする。これにより、図1(c)に示すように銅膜6からなる配線が形成される。
【0005】
また、最近ではあらゆる機器の構成要素において微細化かつ高精度化が進み、サブミクロン領域での物作りが一般的となるにつれて、加工法自体が材料の特性に与える影響は益々大きくなっている。このような状況下においては、従来の機械加工のように、工具が被加工物を物理的に破壊しながら除去していく加工方法では、加工によって被加工物に多くの欠陥を生み出してしまうため、被加工物の特性が劣化してしまう。したがって、いかに材料の特性を損なうことなく加工を行うことができるかが問題となってくる。
【0006】
この問題を解決する手段として開発された特殊加工法に、化学研磨や電解加工、電解研磨がある。これらの加工方法は、従来の物理的な加工とは対照的に、化学的溶解反応を起こすことによって、除去加工等を行うものである。したがって、塑性変形による加工変質層や転位等の欠陥は発生せず、上述の材料の特性を損なわずに加工を行うといった課題が達成される。
【0007】
近年、半導体基板上に強誘電体を用いたキャパシタを形成する際の電極材料として、白金属の金属乃至その酸化物が候補として上がっている。中でもルテニウムは成膜性が良好であることから、実現性の高い材料として検討が進んでいる。
【0008】
ここで、回路形成部以外の基板の周縁部及び裏面に成膜乃至付着したルテニウムは不要であるばかりでなく、その後の基板の搬送、保管及び各種処理工程において、クロスコンタミネーションの原因となり、例えば、誘電体の性能を低下させることも起こり得る。従って、ルテニウム膜の成膜工程やルテニウム膜に対して何らかの処理を行った後で、これらを完全に除去しておく必要がある。更に、例えば、キャパシタの電極材料としてルテニウムを使用した場合には、回路形成部に成膜したルテニウム膜の一部を除去する工程が必要となる。
【0009】
【発明が解決しようとする課題】
例えば、CMP工程は、一般にかなり複雑な操作が必要で、制御も複雑となり、加工時間もかなり長い。更に、研磨後の基板の後洗浄を十分に行う必要があるばかりでなく、スラリーや洗浄液の廃液処理のための負荷が大きい等の課題がある。このため、CMP自体を省略する、あるいはこの負荷を軽減することが強く求められている。また、今後、絶縁膜も誘電率の小さいLow−k材に変わると予想され、このLow−k材は強度が弱くCMPによるストレスに耐えられなくなる。したがって、CMPのような過大なストレスを基板に与えることなく、平坦化できるようにしたプロセスが望まれている。
【0010】
なお、化学機械的電解研磨のように、めっきをしながらCMPで削るというプロセスも発表されているが、めっき成長面に機械加工が付加されることで、めっきの異常成長を促すことにもなり、膜質に問題を起こしている。
【0011】
本発明は、このような従来技術の問題点に鑑みてなされたもので、例えばCMP処理そのものを省略したり、CMP処理の負荷を極力低減しつつ、基板表面に設けられた導電性材料を平坦に加工したり、更には基板等の被加工物の表面に付着した付着物を除去(洗浄)できるようにした電解加工方法及び装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
このような従来技術における問題点を解決するために、本発明の第1の態様は、略円板状の加工電極と、円板状の被加工物に給電する給電電極と、前記被加工物を保持して前記加工電極に接触又は近接させる保持部と、前記被加工物と前記加工電極又は前記給電電極の少なくとも一方との間に配置されるイオン交換体と、前記加工電極と前記給電電極との間に電圧を印加する電源と、前記イオン交換体が配置された被加工物と加工電極又は給電電極の少なくとも一方との間に超純水、純水または電気伝導度が500μS/cm以下の液体を供給する流体供給部と、前記加工電極の運動中心が前記被加工物の外径よりも内側に位置した状態で、前記保持部で保持した被加工物と前記加工電極を相対移動させる駆動部とを備え、前記加工電極の径は、前記被加工物と前記加工電極との相対運動距離と前記被加工物の径との合計よりも大きく、かつ前記被加工物の径の2倍よりも小さいことを特徴とする電解加工装置である。
【0013】
本発明の第2の態様は、略円板状で、下記の被加工物と加工電極との相対運動距離と被加工物の径との合計よりも大きく、かつ被加工物の径の2倍よりも小さい径を有する加工電極と円板状の被加工物に給電する給電電極とを配置し、前記被加工物と前記加工電極又は前記給電電極の少なくとも一方との間にイオン交換体を配置し、前記加工電極と前記給電電極との間に電圧を印加し、前記被加工物を前記加工電極に接触又は近接させ、前記イオン交換体が配置された被加工物と加工電極又は給電電極の少なくとも一方との間に超純水、純水または電気伝導度が500μS/cm以下の液体を供給し、前記加工電極の運動中心が常に前記被加工物の外径よりも内側に位置した状態で、前記被加工物と前記加工電極とを相対移動させて前記被加工物の表面を加工することを特徴とする電解加工方法である。
【0014】
図2及び図3は、本発明の加工原理を示すものである。図2は、被加工物10の表面に、加工電極14に取り付けたイオン交換体12aと、給電電極16に取り付けたイオン交換体12bとを接触又は近接させ、加工電極14と給電電極16との間に電源17を介して電圧を印加しつつ、加工電極14及び給電電極16と被加工物10との間に流体供給部19から超純水等の流体18を供給した状態を示している。図3は、被加工物10の表面に、加工電極14に取り付けたイオン交換体12aを接触又は近接させ、給電電極16を被加工物10に直接接触させて、加工電極14と給電電極16との間に電源17を介して電圧を印加しつつ、加工電極14と被加工物10との間に流体供給部19から超純水等の流体18を供給した状態を示している。
【0015】
超純水のような流体自身の抵抗値が大きい液体を使用する場合には、イオン交換体12aを被加工物10の表面に「接触させる」ことが好ましく、このようにイオン交換体12aを被加工物10の表面に接触させることにより、電気抵抗を低減させることができ、印加電圧も小さくて済み、消費電力も低減できる。したがって、本発明に係る加工における「接触」は、例えばCMPのように物理的なエネルギー(応力)を被加工物に与えるために「押し付ける」ものではない。
【0016】
これにより、超純水等の流体18中の水分子20をイオン交換体12a,12bで水酸化物イオン22と水素イオン24に解離し、例えば生成された水酸化物イオン22を、被加工物10と加工電極14との間の電界と超純水等の流体18の流れによって、被加工物10の加工電極14と対面する表面に供給して、ここでの被加工物10近傍の水酸化物イオン22の密度を高め、被加工物10の原子10aと水酸化物イオン22を反応させる。反応によって生成された反応物質26は、超純水18中に溶解し、被加工物10の表面に沿った超純水等の流体18の流れによって被加工物10から除去される。これにより、被加工物10の表面層の除去加工が行われる。
【0017】
このように、本加工法は純粋に被加工物との電気化学的相互作用のみにより被加工物の除去加工を行うものであり、CMPのような研磨部材と被加工物との物理的な相互作用及び研磨液中の化学種との化学的相互作用の混合による加工とは加工原理が異なるものである。この方法では、被加工物10の加工電極14と対面する部分が加工されるので、加工電極14を移動させることで、被加工物10の表面を所望の表面形状に加工することができる。
【0018】
なお、本発明に係る電解加工装置は、電気化学的相互作用による溶解反応のみにより被加工物の除去加工を行うため、CMPのような研磨部材と被加工物との物理的な相互作用及び研磨液中の化学種との化学的相互作用の混合による加工とは加工原理が異なるものである。したがって、材料の特性を損なわずに除去加工を行うことが可能であり、例えば上述したLow−k材に挙げられる機械的強度の小さい材料に対しても、物理的な相互作用を及ぼすことなく除去加工が可能である。また、通常の電解液を用いる電解加工装置と比較しても、加工液に500μS/cm以下の流体、好ましくは純水、更に好ましくは超純水を用いるため、被加工物表面への汚染も大幅に低減させることが可能であり、また加工後の廃液の処理も容易となる。
【0019】
また、電解加工においては、被加工物上の加工電極の存在頻度と印加電圧により加工量が決まる。したがって、被加工物の全面を一様に平坦に加工しようとする場合、加工電極の存在頻度を被加工物の全面に亘って均一にする必要がある。例えば、半導体基板のように被加工物が円板状であり、かつ加工電極も円形状で、その径が被加工物の径よりも小さい場合には、被加工物と加工電極とを相対運動させて、被加工物の全面に加工電極を存在させることによって、被加工物の全面を一様かつ均一に加工することができる。しかしながら、このような方法においても、被加工物表面内の位置によっては、加工電極の存在頻度が不均一となり、これが加工量の不均一性に繋がってしまう。加工電極の径が被加工物の径より大きい場合には、加工電極の存在頻度の均一性は増すものの、加工を行う部分が大型化し、電極が金属であることに起因した重量化が問題となる。また、イオン交換体と被加工物との接触状態により、接触端部において加工量のばらつきが生じやすい。
【0020】
本発明に係る電解加工装置によれば、加工電極が被加工物よりも大きな径を有しているので、高い加工速度を得ることができると同時に、電解加工中には、加工電極の運動中心が被加工物の外径よりも内側に位置するので、被加工物の表面における加工電極の存在頻度を可能な限り均一化することができる。また、加工を行う部分の大きさを最小限にすることができるので、装置全体を大幅に小型化及び軽量化することができる。ここで、加工電極がスクロール運動をする場合にはそのスクロール運動の中心、回転運動する場合にはその回転中心が、それぞれ加工電極の運動中心となる。
【0023】
本発明の第の態様は、略円板状の加工電極と、円板状の加工電極の外周部に配置された複数の給電電極と、前記被加工物を保持して前記加工電極に接触又は近接させる保持部と、前記被加工物と前記加工電極又は前記給電電極の少なくとも一方との間に配置されるイオン交換体と、前記加工電極と前記給電電極との間に電圧を印加する電源と、前記イオン交換体が配置された被加工物と加工電極又は給電電極の少なくとも一方との間に超純水、純水または電気伝導度が500μS/cm以下の液体を供給する流体供給部と、少なくとも1つの給電電極が常に前記被加工物に給電するように、前記保持部で保持した被加工物と前記加工電極とを相対移動させる駆動部とを備え、前記加工電極の径は、前記被加工物と前記加工電極との相対運動距離と前記被加工物の径との合計よりも大きく、かつ前記被加工物の径の2倍よりも小さいことを特徴とする電解加工装置である。
【0024】
本発明の第の態様は、略円板状で、下記の被加工物と加工電極との相対運動距離と被加工物の径との合計よりも大きく、かつ被加工物の径の2倍よりも小さい径を有する加工電極の外周部に複数の給電電極を配置し、円板状の被加工物と前記加工電極又は前記給電電極の少なくとも一方との間にイオン交換体を配置し、
前記加工電極と前記給電電極との間に電圧を印加し、前記被加工物を前記加工電極に接触又は近接させ、前記イオン交換体が配置された被加工物と加工電極又は給電電極の少なくとも一方との間に超純水、純水または電気伝導度が500μS/cm以下の液体を供給し、少なくとも1つの給電電極が常に前記被加工物に給電するように、前記被加工物と前記加工電極とを相対移動させて前記被加工物の表面を加工することを特徴とする電解加工方法である。
【0025】
給電電極が存在する領域では被加工物の加工を行うことができないため、給電電極が配置された領域の加工速度はそれ以外の領域と比較して低くなる。したがって、給電電極が加工速度に与える影響を小さくするためには、給電電極が占有する面積(領域)を小さくすることが好ましい。この観点から、本発明に係る電解加工装置では、小さな面積の給電電極を加工電極の外周部に複数配置し、このうちの少なくとも1つが相対運動中に被加工物に接触又は近接して給電を行うようにしている。このようにすれば、例えば、リング状の給電電極を加工電極の外周部に配置した場合に比べて加工されない領域を小さくすることができ、被加工物の外周部が加工されないまま残ってしまうことを防止することができる。
【0026】
本発明の好ましい一態様は、上記加工電極は、上記給電電極が配置された外周部に位置する外側加工電極と、上記外側加工電極の内側に位置する内側加工電極とを備えたことを特徴としている。好ましくは、上記電源は、上記外側加工電極と上記内側加工電極とに印加する電圧又は電流をそれぞれ制御する。このように、給電電極が加工速度に影響を与える部分と影響を与えない部分とに加工電極を分割し、これらの加工電極における加工速度を独立に制御することで、給電電極が存在する領域における加工速度の低下を防止することができる。すなわち、外側加工電極における加工速度を、内側加工電極における加工速度に対して相対的に高くすることにより、給電電極の存在による影響を抑えて加工電極の全面で均一な加工速度を実現することが可能となる。
【0029】
【発明の実施の形態】
以下、本発明の実施形態に係る電解加工装置及びこれを組み込んだ基板処理装置について図面を参照して詳細に説明する。なお、以下の説明では、被加工物として基板を使用し、電解加工装置で基板を加工するようにした例を示しているが、本発明を基板以外にも適用できることは言うまでもない。
【0030】
図4は、基板処理装置の構成を示す平面図である。図4に示すように、この基板処理装置は、例えば、図1(b)に示すように、表面に導電体膜(被加工物)としての銅膜6を有する基板Wを収納したカセットを搬出入する搬出入部としての一対のロード・アンロード部30と、基板Wを反転させる反転機32と、電解加工装置34とを備えている。これらの機器は直列に配置されており、これらの機器の間で基板Wを搬送して授受する搬送装置としての搬送ロボット36がこれらの機器と平行に配置されている。また、電解加工装置34による電解加工の際に、後述する加工電極と給電電極との間に印加する電圧又はこれらの間を流れる電流をモニタするモニタ部38がロード・アンロード部30に隣接して配置されている。
【0031】
図5は、基板処理装置内の電解加工装置34を模式的に示す縦断面図である。図5に示すように、電解加工装置34は、上下動可能かつ水平方向に揺動自在なアーム40と、アーム40の自由端に垂設されて基板Wを下向き(フェイスダウン)に吸着保持する基板保持部42と、基板保持部42の下方に配置される円板状の電極部44と、電極部44に接続される電源46とを備えている。
【0032】
アーム40は、揺動用モータ48に連結された揺動軸50の上端に取り付けられており、揺動用モータ48の駆動に伴って水平方向に揺動するようになっている。また、この揺動軸50は、上下方向に延びるボールねじ52に連結されており、ボールねじ52に連結された上下動用モータ54の駆動に伴ってアーム40とともに上下動するようになっている。
【0033】
基板保持部42は、基板保持部42で保持した基板Wと電極部44とを相対移動させる第1駆動部としての自転用モータ56に接続されており、この自転用モータ56の駆動に伴って回転(自転)するようになっている。また、上述したように、アーム40は上下動及び水平方向に揺動可能となっており、基板保持部42はアーム40と一体となって上下動及び水平方向に揺動可能となっている。
【0034】
電極部44の下方には、基板Wと電極部44とを相対移動させる第2駆動部としての中空モータ60が設置されており、この中空モータ60の主軸62には、この主軸62の中心から偏心した位置に駆動端64が設けられている。電極部44は、その中央において上記駆動端64に軸受(図示せず)を介して回転自在に連結されている。また、電極部44と中空モータ60との間には、周方向に3つ以上の自転防止機構が設けられている。
【0035】
図6(a)は本実施形態における自転防止機構を示す平面図、図6(b)は図6(a)のA−A線断面図である。図6(a)及び図6(b)に示すように、電極部44と中空モータ60との間には、周方向に3つ以上(図6(a)においては4つ)の自転防止機構66が設けられている。図6(b)に示すように、中空モータ60の上面と電極部44の下面の対応する位置には、周方向に等間隔に複数の凹所68,70が形成されており、これらの凹所68,70にはそれぞれ軸受72,74が装着されている。軸受72,74には、距離eだけずれた2つの軸体76,78の一端部がそれぞれ挿入されており、軸体76,78の他端部は連結部材80により互いに連結される。ここで、中空モータ60の主軸62の中心に対する駆動端64の偏心量も上述した距離eと同じになっている。したがって、電極部44は、中空モータ60の駆動に伴って、主軸62の中心と駆動端64との間の距離eを半径とした、自転を行わない公転運動、いわゆるスクロール運動(並進回転運動)を行うようになっている。
【0036】
図7は基板保持部42及び電極部44を模式的に示す縦断面図、図8は基板Wと電極部44との関係を示す平面図である。図8において、基板Wは点線で示されている。図7及び図8に示すように、電極部44は、基板Wの径よりも大きな径を有する略円板状の加工電極84と、この加工電極84の外周部に配置された複数の給電電極86と、加工電極84と給電電極86とを分離する絶縁体88とを備えている。図7に示すように、加工電極84の上面はイオン交換体90により、また給電電極86の上面はイオン交換体92によりそれぞれ覆われている。これらのイオン交換体90,92は一体に形成してもよい。なお、これらのイオン交換体90,92は図8では図示していない。
【0037】
本実施形態では、電極部44及び基板保持部42の大きさの関係で、電解加工中に電極部44の上方から電極部44の上面に流体の供給を行うことができない。したがって、本実施形態では、図7及び図8に示すように、加工電極84に、純水、より好ましくは超純水を供給する流体供給部としての複数の流体供給口84aを形成している。本実施形態においては、加工電極84の中心に対して放射状に複数の流体供給口84aが配置されている。これらの流体供給口84aは、中空モータ60の中空部の内部を延びる純水供給管82(図5参照)に接続されており、流体供給口84aから電極部44の上面に純水又は超純水が供給されるようになっている。
【0038】
本実施形態では、加工電極84を電源46の陰極に接続し、給電電極86を電源46の陽極に接続しているが、加工材料によっては、電源46の陰極に接続される電極を給電電極とし、陽極に接続される電極を加工電極としてもよい。すなわち、被加工材料が例えば銅やモリブデン、鉄である場合には、陰極側に電解加工作用が生じるため、電源46の陰極に接続した電極が加工電極となり、陽極に接続した電極が給電電極となる。一方、被加工材料が例えばアルミニウムやシリコンである場合には、陽極側で電解加工作用が生じるため、電源46の陽極に接続した電極が加工電極となり、陰極に接続した電極が給電電極となる。
【0039】
また、被加工物が錫酸化物やインジウム錫酸化物(ITO)などの導電性酸化物の場合には、被加工物を還元した後に、電解加工を行う。すなわち、図5において、電源46の陽極に接続した電極が還元電極となり、陰極に接続した電極が給電電極となって、導電性酸化物の還元を行う。続いて、先程給電電極であった電極を加工電極として、還元された導電性酸化物の加工を行う。あるいは、導電性酸化物の還元時の極性を反転させることによって還元電極を加工電極にしてもよい。又、被加工物を陰極にして、陽極電極を対向させることによっても導電性酸化物の除去加工ができる。
【0040】
なお、上記の例では、基板の表面に形成した導電体膜としての銅膜6を電解加工するようにした例を示しているが、基板の表面に成膜乃至付着した不要なルテニウム(Ru)膜も同様にして、すなわちルテニウム膜を陽極となし、陰極に接続した電極を加工電極として、電解加工(エッチング除去)することができる。
【0041】
電解加工中には、自転用モータ(第1駆動部)56を駆動して基板Wを回転させ、同時に中空モータ60(第2駆動部)を駆動して電極部44をスクロール中心O(図8参照)を中心としてスクロール運動させる。このように、基板保持部42に保持された基板Wと加工電極84とをスクロール領域S内で相対運動させて基板W(銅膜6)の全面の加工が行われる。本実施形態の電解加工装置34は、この相対運動中に、加工電極84の運動中心(本実施形態ではスクロール運動の中心O)が常に基板Wの外径よりも内側に位置するように構成されている。このように、加工電極84の径を基板Wの径よりも大きくし、かつ加工電極84の運動中心を常に基板Wの外径よりも内側に位置させることで、基板Wの表面における加工電極84の存在頻度を可能な限り均一化することができる。また、このように構成することで、電極部44の大きさを最小限にすることができるので、装置全体を大幅に小型化及び軽量化することができる。なお、加工電極84の径は、基板Wと加工電極84との相対運動距離(本実施形態ではスクロール半径e)と、基板Wの径との合計よりも大きいことが好ましく、また、基板Wの径の2倍よりも小さいことが好ましい。
【0042】
また、給電電極86が存在する領域では基板Wの加工を行うことができないため、給電電極86が配置された外周部の加工速度はそれ以外の領域と比較して低くなる。したがって、給電電極86が加工速度に与える影響を小さくするためには、給電電極86が占有する面積(領域)を小さくすることが好ましい。この観点から、本実施形態では、小さな面積の給電電極86を加工電極84の外周部に複数配置し、このうちの少なくとも1つが相対運動中に基板Wに接触又は近接して給電を行うようにしている。このようにすれば、例えば、リング状の給電電極を加工電極84の外周部に配置した場合に比べて加工されない領域を小さくすることができ、基板Wの外周部が加工されないまま残ってしまうことを防止することができる。
【0043】
次に、本実施形態における基板処理装置を用いた基板処理(電解加工)について説明する。まず、例えば、図1(b)に示すように、表面に導電体膜(被加工部)として銅膜6を形成した基板Wを収納したカセットをロード・アンロード部30にセットし、このカセットから1枚の基板Wを搬送ロボット36で取り出す。搬送ロボット36は、取り出した基板Wを必要に応じて反転機32に搬送し、基板Wの導電体膜(銅膜6)を形成した表面が下を向くように反転させる。
【0044】
搬送ロボット36は反転させた基板Wを受け取り、これを電解加工装置34に搬送し、基板保持部42に吸着保持させる。そして、アーム40を揺動させて基板Wを保持した基板保持部42を電極部44の直上方の加工位置まで移動させる。次に、上下動用モータ54を駆動して基板保持部42を下降させ、この基板保持部42で保持した基板Wを電極部44のイオン交換体90,92の表面に接触又は近接させる。この状態で、自転用モータ(第1駆動部)56を駆動して基板Wを回転させ、同時に中空モータ60(第2駆動部)を駆動して電極部44をスクロール中心Oを中心としてスクロール運動させる。このとき、加工電極84の流体供給口84aから基板Wとイオン交換体90,92との間に純水又は超純水を供給する。
【0045】
そして、電源46により加工電極84と給電電極86との間に所定の電圧を印加し、イオン交換体90,92により生成された水素イオン又は水酸化物イオンによって、加工電極(陰極)において基板Wの表面の導電体膜(銅膜6)の電解加工を行う。このとき、加工電極84と対面する部分において加工が進行するが、上述したように、基板Wと加工電極84とを相対移動させることにより基板Wの全面の加工を行っている。上述したように、加工電極84が基板Wより大きな径を有しており、また、上記相対運動中に、加工電極84の運動中心Oが常に基板Wの外径よりも内側に位置するようになっているので、基板Wの表面における加工電極84の存在頻度を可能な限り均一化することができる。また、このような構成により、電極部44の大きさを最小限にすることができ、装置全体を大幅に小型化及び軽量化することができる。
【0046】
電解加工中には、加工電極と給電電極との間に印加する電圧、又はこの間を流れる電流をモニタ部38でモニタして、エンドポイント(加工終点)を検知する。すなわち、同じ電圧(電流)を印加した状態で電解加工を行うと、材料によって流れる電流(印加される電圧)に違いが生じる。例えば、図9(a)に示すように、表面に材料Bと材料Aとを順次成膜した基板Wの該表面に電解加工を施したときに流れる電流をモニタすると、材料Aを電解加工している間は一定の電流が流れるが、異なる材料Bの加工に移行する時点で流れる電流が変化する。同様に、加工電極と給電電極との間に印加される電圧にあっても、図9(b)に示すように、材料Aを電解加工している間は一定の電圧が印加されるが、異なる材料Bの加工に移行する時点で印加される電圧が変化する。なお、図9(a)は、材料Bを電解加工するときの方が、材料Aを電解加工するときよりも電流が流れにくくなる場合を、図9(b)は、材料Bを電解加工するときの方が、材料Aを電解加工するときよりも電圧が高くなる場合の例を示している。これにより、この電流又は電圧の変化をモニタすることでエンドポイントを確実に検知することができる。
【0047】
なお、モニタ部38で加工電極と給電電極との間に印加する電圧、又はこの間を流れる電流をモニタして加工終点を検知するようにした例を説明したが、このモニタ部38で、加工中の基板の状態の変化をモニタして、任意に設定した加工終点を検知するようにしてもよい。この場合、加工終点は、被加工面の指定した部位について、所望の加工量に達した時点、又は加工量と相関関係を有するパラメータが所望の加工量に相当する量に達した時点を指す。このように、加工の途中においても、加工終点を任意に設定して検知できるようにすることで、多段プロセスでの電解加工が可能となる。
【0048】
例えば、基板が異材料に達した時に生じる摩擦係数の違いによる摩擦力の変化や、基板の表面の凹凸を平坦化する際、凹凸を除去したことにより生じる摩擦力の変化等を検出することで加工量を判断し、加工終点を検出することとしてもよい。また、被加工面の電気抵抗による発熱や、加工面と被加工面との間に液体(純水)の中を移動するイオンと水分子の衝突による発熱が生じ、例えば基板の表面に堆積した銅膜を定電圧制御で電解研磨する際には、電解加工が進み、バリア層や絶縁膜が露出するのに伴って、電気抵抗が大きくなり電流値が小さくなって発熱量が順に減少する。したがって、この発熱量の変化を検出することで加工量を判断し、加工終点を検出することとしてもよい。あるいは、異材料に達した時に生じる反射率の違いによる反射光の強度の変化を検出して、基板上の被加工膜の膜厚を検知し、これにより加工終点を検出してもよい。また、銅膜等の導電性膜の内部にうず電流を発生させ、基板の内部を流れるうず電流をモニタし、例えば周波数の変化を検出して、基板上の被加工膜の膜厚を検知し、これにより加工終点を検出してもよい。更に、電解加工にあっては、加工電極と給電電極との間を流れる電流値で加工レートが決まり、加工量は、この電流値と加工時間の積で求められる電気量に比例する。したがって、電流値と加工時間の積で求められる電気量を積算し、この積算値が所定の値に達したことを検出することで加工量を判断し、加工終点を検出してもよい。
【0049】
電解加工完了後、電源46の接続を切り、基板保持部42の回転と電極部44のスクロール運動を停止させ、しかる後、基板保持部42を上昇させ、アーム40を移動させて基板Wを搬送ロボット36に受け渡す。基板Wを受け取った搬送ロボット36は、必要に応じて反転機32に搬送して反転させた後、基板Wをロード・アンロード部30のカセットに戻す。
【0050】
ここで、電解加工中に基板Wとイオン交換体90,92との間に供給する純水は、例えば電気伝導度(1atm、25℃換算値、以下同じ)が10μS/cm以下の水であり、超純水は、例えば電気伝導度が0.1μS/cm以下の水である。このように電解質を含まない純水又は超純水を使用して電解加工を行うことで、基板Wの表面に電解質等の余分な不純物が付着したり、残留したりすることをなくすことができる。更に、電解によって溶解した銅イオン等が、イオン交換体90,92にイオン交換反応で即座に捕捉されるため、溶解した銅イオン等が基板Wの他の部分に再度析出したり、酸化されて微粒子となり基板Wの表面を汚染したりすることがない。
【0051】
また、純水又は超純水の代わりに電気伝導度500μS/cm以下の液体、例えば純水又は超純水に電解質を添加した電解液を使用してもよい。電解液を使用することで、電気抵抗を低減して消費電力を削減することができる。この電解液としては、例えば、NaClやNaSO等の中性塩、HClやHSO等の酸、更には、アンモニア等のアルカリなどの溶液を使用することができ、被加工物の特性によって適宜選択して使用することができる。
【0052】
更に、純水又は超純水の代わりに、純水又は超純水に界面活性剤等を添加して、電気伝導度が500μS/cm以下、好ましくは、50μS/cm以下、更に好ましくは、0.1μS/cm以下(比抵抗で10MΩ・cm以上)にした液体を使用してもよい。このように、純水又は超純水に界面活性剤を添加することで、基板Wとイオン交換体90,92の界面にイオンの移動を防ぐ一様な抑制作用を有する層を形成し、これによって、イオン交換(金属の溶解)の集中を緩和して被加工面の平坦性を向上させることができる。ここで、界面活性剤濃度は、100ppm以下が好ましい。なお、電気伝導度の値が高すぎると電流効率が下がり、加工速度が遅くなるが、500μS/cm以下、好ましくは、50μS/cm以下、更に好ましくは、0.1μS/cm以下の電気伝導度を有する液体を使用することで、所望の加工速度を得ることができる。
【0053】
また、電極部44のイオン交換体90,92は、例えば、アニオン交換能又はカチオン交換能を付与した不織布で構成することができる。カチオン交換体は、好ましくは強酸性カチオン交換基(スルホン酸基)を担持したものであるが、弱酸性カチオン交換基(カルボキシル基)を担持したものでもよい。また、アニオン交換体は、好ましくは強塩基性アニオン交換基(4級アンモニウム基)を担持したものであるが、弱塩基性アニオン交換基(3級以下のアミノ基)を担持したものでもよい。
【0054】
ここで、例えば強塩基アニオン交換能を付与した不織布は、繊維径20〜50μmで空隙率が約90%のポリオレフィン製の不織布に、γ線を照射した後グラフト重合を行う所謂放射線グラフト重合法により、グラフト鎖を導入し、次に導入したグラフト鎖をアミノ化して4級アンモニウム基を導入して作製される。導入されるイオン交換基の容量は、導入するグラフト鎖の量により決定される。グラフト重合を行うためには、例えばアクリル酸、スチレン、メタクリル酸グリシジル、更にはスチレンスルホン酸ナトリウム、クロロメチルスチレン等のモノマーを用い、これらのモノマー濃度、反応温度及び反応時間を制御することで、重合するグラフト量を制御することができる。したがって、グラフト重合前の素材の重量に対し、グラフト重合後の重量の比をグラフト率と呼ぶが、このグラフト率は、最大で500%が可能であり、グラフト重合後に導入されるイオン交換基は、最大で5meq/gが可能である。
【0055】
強酸性カチオン交換能を付与した不織布は、上記強塩基性アニオン交換能を付与する方法と同様に、繊維径20〜50μmで空隙率が約90%のポリオレフィン製の不織布に、γ線を照射した後グラフト重合を行う所謂放射線グラフト重合法により、グラフト鎖を導入し、次に導入したグラフト鎖を、例えば加熱した硫酸で処理してスルホン酸基を導入して作製される。また、加熱したリン酸で処理すればリン酸基が導入できる。ここでグラフト率は、最大で500%が可能であり、グラフト重合後に導入されるイオン交換基は、最大で5meq/gが可能である。
【0056】
なお、イオン交換体90,92の素材の材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン系高分子、又はその他有機高分子が挙げられる。また素材形態としては、不織布の他に、織布、シート、多孔質材、短繊維等が挙げられる。ここで、ポリエチレンやポリプロピレンは、放射線(γ線と電子線)を先に素材に照射する(前照射)ことで、素材にラジカルを発生させ、次にモノマーと反応させてグラフト重合することができる。これにより、均一性が高く、不純物が少ないグラフト鎖ができる。一方、その他の有機高分子は、モノマーを含浸させ、そこに放射線(γ線、電子線、紫外線)を照射(同時照射)することで、ラジカル重合することができる。この場合、均一性に欠けるが、ほとんどの素材に適用できる。
【0057】
このように、イオン交換体90,92をアニオン交換能又はカチオン交換能を付与した不織布で構成することで、純水又は超純水や電解液等の液体が不織布の内部を自由に移動して、不織布内部の水分解触媒作用を有する活性点に容易に到達することが可能となって、多くの水分子が水素イオンと水酸化物イオンに解離される。更に、解離によって生成した水酸化物イオンが純水又は超純水や電解液等の液体の移動に伴って効率良く加工電極84の表面に運ばれるため、低い印加電圧でも高電流が得られる。
【0058】
ここで、イオン交換体90,92をアニオン交換能又はカチオン交換能の一方を付与したもののみで構成すると、電解加工できる被加工材料が制限されるばかりでなく、極性により不純物が生成しやすくなる。そこで、アニオン交換能を有するアニオン交換体とカチオン交換能を有するカチオン交換体とを重ね合わせたり、イオン交換体90,92自体にアニオン交換能とカチオン交換能の双方の交換基を付与するようにしたりしてもよく、これにより、被加工材料の範囲を拡げるとともに、不純物を生成しにくくすることができる。
【0059】
また、電極は、電解反応により酸化又は溶出が一般に問題となる。このため、電極の素材として、炭素、比較的不活性な貴金属、導電性酸化物又は導電性セラミックスを使用することが好ましい。電極が酸化すると電極の電気抵抗値が増加し、印加電圧の上昇を招くが、白金などの酸化しにくい材料やイリジウムなどの導電性酸化物で電極表面を保護すれば、電極素材の酸化による導電性の低下を防止することができる。
【0060】
図10は、他の電解加工装置における基板保持部42及び電極部44aを模式的に示す断面図(図7相当図)である。この例の電極部44aは、前述の例と同様に、基板Wの径よりも大きな径を有する略円板状の加工電極84と、この加工電極84の外周部に配置された複数の給電電極86と、加工電極84と給電電極86とを分離する絶縁体88とを備えている。しかし、この例では、電極の上面にイオン交換体を有していない。また、加工電極84に、純水、より好ましくは超純水や電解液等の加工液を供給する流体供給部としての複数の流体供給口84aが加工電極84の中心に対して放射状に配置されている等の他の構成は前述の例と同様である。
【0061】
なお、この例では、電極表面にイオン交換体を載置しない場合を示しているが、電極と被加工物の間に、イオン交換体以外の部材を介在させるようにしもよい。その場合、スポンジなど通液性の部材を用いることにより、電極と被加工物の間の液体を介してイオンを移動させる。
【0062】
なお、電極と被加工物との間に部材を介さない場合は、被加工物と各電極との間の抵抗が、絶縁体88を挟んで互いに隣接する加工電極84と給電電極86との間の抵抗よりも小さくなるように被加工物と各電極間の距離及び絶縁体88を挟んだ加工電極84と給電電極86との間の距離を設定する必要がある。これにより、イオンの移動を隣り合う電極間よりも電極と被加工物との間で行わせるようにして、電流が給電電極→被加工物→加工電極に優先的に流れるようになる。
【0063】
この例の電解加工装置によって、基板Wの表面に成膜乃至付着した不要なルテニウム膜Ruをエッチング除去する時には、加工電極84及び給電電極86と基板Wの被加工部であるルテニウム膜Ruとの間に、例えば、ハロゲン化物を含んだ電解液を供給する。そして、電源の陽極を給電電極86に、陰極を加工電極84にそれぞれ接続し、これによって、基板Wの表面のルテニウム膜Ruを陽極となし、加工電極84を陰極となして、基板Wと加工電極84及び給電電極86との間に電解液を供給して加工電極84に対面している部位をエッチング除去する。
【0064】
ハロゲン化物を溶解させる溶媒としては、例えば、水またはアルコール類、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド等の有機溶媒が使用できる。加工するルテニウム膜の用途、加工後に必要となる洗浄、表面状態等により適宜選択すればよい。半導体製造に使われる基板に対しては、不純物の汚染を極力避けるために、純水を使用することが好ましく、超純水を使用することが更に好ましい。
【0065】
また、ハロゲン化物は、その溶液を電解液としたときに電気化学的相互作用によりルテニウム膜のエッチング加工が進行し、かつ、電解中に生成した化合物がルテニウムと反応し、反応物が電解液中に溶解するか、または揮発して除去されるものであればいずれでもよい。例えば、HCl、HBr、HIの水溶液のようなハロゲン化水素酸、HClO、HBrO、HIO、HClO、HBrO、HIOのようなハロゲンオキソ酸の水溶液、NaClO、KClO、NaClO、KClOのようなハロゲンオキソ酸塩の水溶液、NaCl、KClのような中性塩の水溶液を電解液として使用することができる。加工後のルテニウムの使用用途と残留物質の影響、ルテニウムの膜厚、ルテニウムの下地膜の特性等により適宜選択して使用すればよい。
【0066】
この電解加工装置においては、前述の例と同様に、基板ホルダを介して基板Wを加工電極84及び給電電極86に近接乃至接触させて回転させつつ、電極部44aをスクロール運動させるのであり、これにより、電気化学反応によりルテニウム膜がエッチング除去されるとともに、電解により生成したハロゲン化物とルテニウムが化学反応し、ルテニウム膜のエッチング除去が進行する。加工後の表面は、超純水供給ノズル(図示せず)より供給される超純水により洗浄される。
【0067】
ハロゲン化物の濃度は、1mg/l〜10g/l、好ましくは100mg/l〜1g/l程度である。ハロゲン化物の種類、加工時間、加工面積、陽極としたルテニウム膜と陰極とした加工電極との距離、電解電圧等は、電解加工後の基板の表面状態や廃液処理の能力等により適宜決めればよい。例えば、希薄濃度の電解液を使用して電解電圧を高くすることで、薬液使用量を削減することができ、電解液の濃度を高くすることで、加工速度を速くすることができる。
【0068】
上述の実施形態では、電極部44として、1つの部材により構成された加工電極84を備えたものを使用した例を説明したが、これに限られるものではない。例えば、図11に示すように、電極部44bとして、格子状に複数に分割した加工電極184を備えたものを使用してもよい。また、図12に示すように、電極部44cとして、リング状に複数に分割した加工電極284を備えたものを使用してもよい。これらの場合において、分割された加工電極を、電気的に一体に構成してもよく、あるいは絶縁体を介して電気的に分離して構成してもよい。加工電極を電気的に分離した場合には、個々の加工電極での加工速度を均一化することが容易ではないため、電極間の加工速度のバラツキを考慮した場合には、加工電極を1つの部材により構成することが好ましい。
【0069】
上述したように、1つの部材により構成された加工電極84を備えた電極部44においては、給電電極86が存在する領域では基板Wの加工を行うことができないため、給電電極86が配置された外周部の加工速度はそれ以外の領域と比較して低くなる。したがって、加工電極84の外周部の切欠き幅wと切欠き長さL(図8参照)を調整することで、基板Wの外周部の加工速度を制御することができる。ここで、図13に示すように、加工電極を絶縁体89を介して、給電電極86が加工速度に影響を与える部分、すなわち給電電極86が配置された外周部に位置する外側加工電極384aと、加工速度に影響を与えない部分、すなわち外側加工電極384aの内側に位置する内側加工電極384bとに分割した電極部44dを使用すれば、加工電極の全面で均一な加工速度を実現することができる。すなわち、給電電極86の存在による影響を考慮し、電源46により各加工電極384a,384bに印加する電圧等を調整して、外側加工電極384aにおける加工速度を、内側加工電極384bにおける加工速度に対して相対的に高くすることによって、加工電極の全面で均一な加工速度を実現することができる。
【0070】
また、上述の実施形態では、電極部44をスクロール運動させ、基板Wを回転させた例を説明したが、加工電極84と基板Wとを相対運動させることができれば、どのようなものであってもよい。例えば、電極部44と基板Wの双方を回転させることとしてもよい。この場合には、加工電極の運動中心は回転中心となる。また、上述の実施形態では基板保持部42が基板Wを下向き(フェイスダウン)に吸着保持する例を説明したが、これに限られるものではなく、例えば基板Wを上向き(フェイスアップ)に保持してもよい。
【0071】
これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
【0072】
【発明の効果】
上述したように、本発明によれば、基板等の被加工物に物理的な欠陥を与えて被加工物の特性を損なうことを防止しつつ、電気化学的作用によって、例えばCMPに代わる電解加工等を施すことができ、これによって、CMP処理そのものを省略したり、CMP処理の負荷を低減したり、更には基板等の被加工物の表面に付着した付着物を除去(洗浄)することができる。しかも、純水又は超純水のみを使用しても基板を加工することができ、これによって、基板の表面に電解質等の余分な不純物が付着したり、残留したりすることをなくして、加工除去加工後の洗浄工程を簡略化できるばかりでなく、廃液処理の負荷を極めて小さくすることができる。
【図面の簡単な説明】
【図1】銅配線基板の一製造例を工程順に示す図である。
【図2】加工電極及び給電電極を基板(被加工物)に近接させ、加工電極及び給電電極と基板(被加工物)との間に純水又は電気伝導度が500μS/cm以下の液体を供給するようにしたときの本発明による電解加工の原理の説明に付する図である。
【図3】加工電極のみにイオン交換体を取り付けて、加工電極と基板(被加工物)との間に液体を供給するようにしたときの本発明による電解加工の原理の説明に付する図である。
【図4】 板処理装置の構成を示す平面図である。
【図5】図4に示す基板処理装置の電解加工装置を模式的に示す縦断面図である。
【図6】図6(a)は図5の電解加工装置における自転防止機構を示す平面図、図6(b)は図6(a)のA−A線断面図である。
【図7】図5の電解加工装置における基板保持部及び電極部を模式的に示す縦断面図である。
【図8】図7の電極部と基板との関係を示す平面図である。
【図9】図9(a)は、異なる材料を成膜した基板の表面に電解加工を施したときに流れる電流と時間の関係を、図9(b)は、同じく印加される電圧と時間の関係をそれぞれ示すグラフである。
【図10】 他の電解加工装置における基板保持部及び電極を模式的に示す図である。
【図11】本発明の他の実施形態における電極部を示す平面図である。
【図12】本発明の他の実施形態における電極部を示す斜視図である。
【図13】本発明の他の実施形態における電極部を基板とともに示す平面図である。
【符号の説明】
6 銅膜(導電体膜)
7 シード層
10 被加工物
12a,12b イオン交換体
14 加工電極
16 給電電極
17 電源
18 超純水
19 流体供給部
20 水分子
22 水酸化物イオン
24 水素イオン
26 反応物質
30 ロード・アンロード部
32 反転機
34 電解加工装置
36 搬送ロボット
38 モニタ部
40 アーム
42 基板保持部
44,44a,44b,44c,44d 電極部
46 電源
48 揺動用モータ
50 揺動軸
52 ボールねじ
54 上下動用モータ
56 自転用モータ
60 中空モータ
62 主軸
64 駆動端
66 自転防止機構
68,70 凹所
72,74 軸受
76,78 軸体
80 連結部材
82 純水供給管
84,184,284,384a,384b 加工電極
86 給電電極
88,89 絶縁体
90,92 イオン交換体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolytic processing method and apparatus, and more particularly to an electrolytic process used for processing a conductive material formed on the surface of a substrate such as a semiconductor wafer or removing impurities attached to the surface of the substrate. The present invention relates to a processing method and apparatus.
[0002]
[Prior art]
In recent years, as a wiring material for forming a circuit on a substrate such as a semiconductor wafer, instead of aluminum or an aluminum alloy, a movement using copper (Cu) having low electrical resistivity and high electromigration resistance has become prominent. . This type of copper wiring is generally formed by embedding copper in a fine recess provided on the surface of the substrate. As a method of forming this copper wiring, there is a method such as chemical vapor deposition (CVD), sputtering and plating, but in any case, copper is formed on almost the entire surface of the substrate, Unnecessary copper is removed by chemical mechanical polishing (CMP).
[0003]
FIG. 1A to FIG. 1C show a manufacturing example of this type of copper wiring board W in the order of steps. As shown in FIG. 1A, SiO is formed on a conductive layer 1a on a semiconductor substrate 1 on which a semiconductor element is formed. 2 An insulating film 2 such as an oxide film or a low-k material film is deposited, and a contact hole 3 and a wiring groove 4 are formed by a lithography / etching technique. A barrier film 5 made of TaN or the like is formed thereon, and a seed layer 7 is formed thereon as a power feeding layer for electrolytic plating by sputtering, CVD, or the like.
[0004]
Then, by copper plating on the surface of the substrate W, as shown in FIG. 1B, the contact holes 3 and the grooves 4 of the semiconductor substrate 1 are filled with copper, and a copper film is formed on the insulating film 2. 6 is deposited. Thereafter, the copper film 6 and the seed layer 7 on the insulating film 2 are removed by chemical mechanical polishing (CMP), and the surface of the copper film 6 filled in the contact hole 3 and the wiring groove 4 and the insulating film 2 are removed. The surface of the surface is made substantially flush. As a result, a wiring made of the copper film 6 is formed as shown in FIG.
[0005]
In recent years, as the miniaturization and high precision have progressed in the components of all devices, and the manufacturing in the submicron region has become common, the influence of the processing method itself on the characteristics of the material has been increasing. Under such circumstances, the machining method in which the tool removes the workpiece while physically destroying it, as in conventional machining, because many defects are generated in the workpiece by machining. As a result, the properties of the workpiece are deteriorated. Therefore, it becomes a problem how the processing can be performed without impairing the characteristics of the material.
[0006]
Special processing methods developed as means for solving this problem include chemical polishing, electrolytic processing, and electrolytic polishing. In contrast to conventional physical processing, these processing methods perform removal processing and the like by causing a chemical dissolution reaction. Therefore, defects such as work-affected layers and dislocations due to plastic deformation do not occur, and the problem of performing processing without impairing the properties of the above-described materials is achieved.
[0007]
In recent years, white metal or its oxide has been proposed as an electrode material for forming a capacitor using a ferroelectric on a semiconductor substrate. Among these, ruthenium has a good film forming property, and thus is being studied as a highly feasible material.
[0008]
Here, ruthenium deposited or adhered to the peripheral edge and the back surface of the substrate other than the circuit forming portion is not only unnecessary, but also causes cross-contamination in the subsequent substrate transport, storage, and various processing steps. Degradation of the dielectric performance can also occur. Therefore, it is necessary to completely remove these after the ruthenium film forming process and the ruthenium film are subjected to some treatment. Furthermore, for example, when ruthenium is used as the electrode material of the capacitor, a step of removing a part of the ruthenium film formed on the circuit forming portion is necessary.
[0009]
[Problems to be solved by the invention]
For example, the CMP process generally requires a considerably complicated operation, is complicated in control, and has a considerably long processing time. Furthermore, not only is it necessary to sufficiently perform post-cleaning of the substrate after polishing, but there are also problems such as a large load for waste liquid treatment of slurry and cleaning liquid. Therefore, there is a strong demand for omitting CMP itself or reducing this load. In the future, it is expected that the insulating film will also be changed to a low-k material having a low dielectric constant. This low-k material is weak in strength and cannot withstand the stress caused by CMP. Therefore, there is a demand for a process that enables planarization without applying excessive stress to the substrate such as CMP.
[0010]
In addition, a process of cutting with CMP while plating, such as chemical mechanical electropolishing, has been announced, but by adding machining to the plating growth surface, it will also promote abnormal growth of plating. , Causing problems with film quality.
[0011]
The present invention has been made in view of such problems of the prior art. For example, the conductive material provided on the substrate surface is flattened while omitting the CMP process itself or reducing the load of the CMP process as much as possible. It is another object of the present invention to provide an electrolytic processing method and apparatus capable of processing (or cleaning) deposits adhered to the surface of a workpiece such as a substrate.
[0012]
[Means for Solving the Problems]
In order to solve such problems in the prior art, the first aspect of the present invention is: Almost disk-shaped A machining electrode; Disc shaped Arranged between a feeding electrode that feeds power to the workpiece, a holding portion that holds the workpiece and contacts or approaches the machining electrode, and at least one of the workpiece and the machining electrode or the feeding electrode An ion exchanger, a power source that applies a voltage between the processing electrode and the power supply electrode, and a workpiece on which the ion exchanger is disposed and at least one of the processing electrode or the power supply electrode Ultrapure water, pure water, or a liquid with an electric conductivity of 500 μS / cm or less And a drive unit that relatively moves the workpiece held by the holding unit and the machining electrode in a state where the center of motion of the machining electrode is located inside the outer diameter of the workpiece. And be prepared The diameter of the machining electrode is larger than the sum of the relative movement distance between the workpiece and the machining electrode and the diameter of the workpiece, and smaller than twice the diameter of the workpiece. This is an electrolytic processing apparatus.
[0013]
The second aspect of the present invention is: It is substantially disc-shaped and has a diameter that is larger than the sum of the relative movement distance between the workpiece and the machining electrode described below and the workpiece diameter, and smaller than twice the workpiece diameter. With machining electrode Disc shaped A power supply electrode for supplying power to the work piece, an ion exchanger disposed between the work piece and at least one of the processing electrode or the power supply electrode, and the work electrode and the power supply electrode between A voltage is applied to bring the workpiece into contact with or close to the machining electrode, and between the workpiece on which the ion exchanger is disposed and at least one of the machining electrode or the feeding electrode. Ultrapure water, pure water, or a liquid with an electric conductivity of 500 μS / cm or less In a state where the center of motion of the machining electrode is always located inside the outer diameter of the workpiece, the workpiece and the machining electrode are moved relative to each other to machine the surface of the workpiece. This is an electrolytic processing method.
[0014]
2 and 3 show the processing principle of the present invention. In FIG. 2, an ion exchanger 12 a attached to the machining electrode 14 and an ion exchanger 12 b attached to the feeding electrode 16 are brought into contact with or close to the surface of the workpiece 10, and the machining electrode 14 and the feeding electrode 16 are brought into contact with each other. A state in which a fluid 18 such as ultrapure water is supplied from the fluid supply unit 19 between the machining electrode 14 and the power supply electrode 16 and the workpiece 10 while a voltage is applied therebetween via the power supply 17 is shown. FIG. 3 shows that the ion exchanger 12a attached to the machining electrode 14 is brought into contact with or close to the surface of the workpiece 10, and the feeding electrode 16 is brought into direct contact with the workpiece 10, so that the machining electrode 14 and the feeding electrode 16 A state in which a fluid 18 such as ultrapure water is supplied from the fluid supply unit 19 between the machining electrode 14 and the workpiece 10 while a voltage is applied via the power source 17 during the period is shown.
[0015]
When using a liquid having a high resistance value, such as ultrapure water, it is preferable to “contact” the ion exchanger 12a with the surface of the workpiece 10, and thus the ion exchanger 12a is covered with the ion exchanger 12a. By bringing the workpiece 10 into contact with the surface, the electrical resistance can be reduced, the applied voltage can be reduced, and the power consumption can be reduced. Therefore, the “contact” in the processing according to the present invention is not “pressing” in order to give physical energy (stress) to the workpiece as in CMP, for example.
[0016]
Thereby, the water molecules 20 in the fluid 18 such as ultrapure water are dissociated into hydroxide ions 22 and hydrogen ions 24 by the ion exchangers 12a and 12b. For example, the generated hydroxide ions 22 are converted into workpieces. 10 is supplied to the surface of the workpiece 10 facing the machining electrode 14 by the electric field between the machining electrode 14 and the flow of a fluid 18 such as ultrapure water, and hydroxylated in the vicinity of the workpiece 10 here. The density of the object ions 22 is increased, and the atoms 10a of the workpiece 10 and the hydroxide ions 22 are reacted. The reactant 26 produced by the reaction is dissolved in the ultrapure water 18 and removed from the workpiece 10 by the flow of the fluid 18 such as ultrapure water along the surface of the workpiece 10. Thereby, the removal process of the surface layer of the to-be-processed object 10 is performed.
[0017]
As described above, this processing method purely performs the removal processing of the work piece only by the electrochemical interaction with the work piece, and the physical interaction between the polishing member such as CMP and the work piece. The processing principle is different from processing by mixing action and chemical interaction with chemical species in the polishing liquid. In this method, since the portion of the workpiece 10 that faces the machining electrode 14 is machined, the surface of the workpiece 10 can be machined into a desired surface shape by moving the machining electrode 14.
[0018]
In addition, since the electrolytic processing apparatus according to the present invention performs removal processing of a workpiece only by a dissolution reaction by electrochemical interaction, physical interaction and polishing between a polishing member such as CMP and the workpiece. The processing principle is different from processing by mixing chemical interaction with chemical species in the liquid. Therefore, it is possible to perform removal processing without damaging the properties of the material. For example, even a material with low mechanical strength, such as the Low-k material described above, can be removed without causing physical interaction. Processing is possible. Further, even when compared with an electrolytic processing apparatus using a normal electrolytic solution, a fluid of 500 μS / cm or less, preferably pure water, and more preferably ultrapure water is used as the processing solution, so that contamination on the surface of the workpiece is also caused. It can be greatly reduced, and processing of waste liquid after processing becomes easy.
[0019]
In electrolytic machining, the amount of machining is determined by the frequency of machining electrodes on the workpiece and the applied voltage. Therefore, when trying to process the entire surface of the workpiece uniformly and flatly, it is necessary to make the presence frequency of the processing electrode uniform over the entire surface of the workpiece. For example, if the work piece is disk-shaped and the machining electrode is circular and its diameter is smaller than the diameter of the work piece, such as a semiconductor substrate, the work piece and the work electrode are moved relative to each other. Thus, the entire surface of the workpiece can be processed uniformly and uniformly by making the processing electrode exist on the entire surface of the workpiece. However, even in such a method, depending on the position on the surface of the workpiece, the presence frequency of the processing electrode becomes non-uniform, which leads to non-uniformity in the processing amount. If the diameter of the processed electrode is larger than the diameter of the workpiece, the uniformity of the existence frequency of the processed electrode is increased, but the portion to be processed is enlarged, and the weight due to the electrode being a metal is a problem. Become. In addition, due to the contact state between the ion exchanger and the workpiece, the processing amount tends to vary at the contact end.
[0020]
According to the electrolytic processing apparatus according to the present invention, since the processing electrode has a larger diameter than the workpiece, a high processing speed can be obtained, and at the same time, the center of motion of the processing electrode can be obtained during the electrolytic processing. Is located on the inner side of the outer diameter of the workpiece, the frequency of the processing electrodes on the surface of the workpiece can be made as uniform as possible. In addition, since the size of the portion to be processed can be minimized, the entire apparatus can be greatly reduced in size and weight. Here, when the machining electrode performs a scrolling motion, the center of the scrolling motion, and when the machining electrode rotates, the rotational center becomes the motion center of the machining electrode.
[0023]
First of the present invention 3 The aspect of Almost disk-shaped A machining electrode; Disc shaped At least one of a plurality of power feeding electrodes arranged on the outer periphery of the machining electrode, a holding part for holding the workpiece to contact or approach the machining electrode, and the workpiece and the machining electrode or the feeding electrode At least one of an ion exchanger disposed between the power supply for applying a voltage between the processing electrode and the power supply electrode, a workpiece on which the ion exchanger is disposed, and a processing electrode or a power supply electrode. Between Ultrapure water, pure water, or a liquid with an electric conductivity of 500 μS / cm or less And a drive unit that relatively moves the workpiece held by the holding unit and the machining electrode so that at least one feeding electrode always feeds power to the workpiece. The diameter of the machining electrode is larger than the sum of the relative movement distance between the workpiece and the machining electrode and the diameter of the workpiece, and smaller than twice the diameter of the workpiece. This is an electrolytic processing apparatus.
[0024]
First of the present invention 4 The aspect of It is substantially disc-shaped and is larger than the sum of the relative movement distance between the workpiece and the machining electrode described below and the workpiece diameter, and smaller than twice the workpiece diameter. A plurality of feeding electrodes are arranged on the outer periphery of the machining electrode having a diameter, Disc shaped An ion exchanger is disposed between the workpiece and at least one of the processing electrode or the feeding electrode,
A voltage is applied between the machining electrode and the feeding electrode, the workpiece is brought into contact with or close to the machining electrode, and at least one of the workpiece, the machining electrode, or the feeding electrode on which the ion exchanger is arranged Between Ultrapure water, pure water, or a liquid with an electric conductivity of 500 μS / cm or less And processing the surface of the workpiece by relatively moving the workpiece and the machining electrode so that at least one feeding electrode always feeds power to the workpiece. It is a processing method.
[0025]
Since the workpiece cannot be processed in the region where the power supply electrode exists, the processing speed of the region where the power supply electrode is arranged is lower than the other regions. Therefore, in order to reduce the influence of the power supply electrode on the processing speed, it is preferable to reduce the area (region) occupied by the power supply electrode. From this point of view, in the electrolytic processing apparatus according to the present invention, a plurality of power supply electrodes having a small area are arranged on the outer periphery of the processing electrode, and at least one of them is in contact with or close to the work piece during relative motion to supply power. Like to do. In this way, for example, the region that is not processed can be reduced as compared with the case where the ring-shaped feeding electrode is disposed on the outer peripheral portion of the processing electrode, and the outer peripheral portion of the workpiece remains unprocessed. Can be prevented.
[0026]
In a preferred aspect of the present invention, the processing electrode includes an outer processing electrode positioned on an outer peripheral portion where the feeding electrode is disposed, and an inner processing electrode positioned inside the outer processing electrode. Yes. Preferably, the power source controls a voltage or a current applied to the outer machining electrode and the inner machining electrode, respectively. As described above, the processing electrode is divided into a portion where the power supply electrode affects the processing speed and a portion where the power supply electrode does not affect, and the processing speed in these processing electrodes is independently controlled, so that in the region where the power supply electrode exists. A reduction in processing speed can be prevented. That is, by making the machining speed at the outer machining electrode relatively higher than the machining speed at the inner machining electrode, it is possible to suppress the influence of the presence of the feeding electrode and realize a uniform machining speed on the entire surface of the machining electrode. It becomes possible.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention Embodiment of Electrolytic processing apparatus and substrate processing apparatus incorporating the same In place This will be described in detail with reference to the drawings. In the following description, an example is shown in which a substrate is used as a workpiece and the substrate is processed by an electrolytic processing apparatus, but it goes without saying that the present invention can be applied to other than the substrate.
[0030]
Figure 4 , Group It is a top view which shows the structure of a plate processing apparatus. As shown in FIG. 4, this substrate processing apparatus carries out a cassette containing a substrate W having a copper film 6 as a conductor film (workpiece) on the surface, for example, as shown in FIG. A pair of loading / unloading sections 30 serving as loading / unloading sections, a reversing machine 32 for reversing the substrate W, and an electrolytic processing apparatus 34 are provided. These devices are arranged in series, and a transfer robot 36 as a transfer device that transfers the substrate W between these devices and delivers it is arranged in parallel with these devices. In addition, a monitor unit 38 for monitoring a voltage applied between a machining electrode and a power supply electrode, which will be described later, or a current flowing between them, is adjacent to the load / unload unit 30 during electrolytic machining by the electrolytic machining apparatus 34. Are arranged.
[0031]
FIG. 5 is a longitudinal sectional view schematically showing the electrolytic processing apparatus 34 in the substrate processing apparatus. As shown in FIG. 5, the electrolytic processing apparatus 34 has an arm 40 that can move up and down and can swing in the horizontal direction, and is suspended from a free end of the arm 40 to hold the substrate W downward (face-down). A substrate holding unit 42, a disk-shaped electrode unit 44 disposed below the substrate holding unit 42, and a power source 46 connected to the electrode unit 44 are provided.
[0032]
The arm 40 is attached to the upper end of the swing shaft 50 connected to the swing motor 48, and swings in the horizontal direction as the swing motor 48 is driven. The swing shaft 50 is connected to a ball screw 52 extending in the vertical direction, and moves up and down together with the arm 40 as the vertical movement motor 54 connected to the ball screw 52 is driven.
[0033]
The substrate holding unit 42 is connected to a rotation motor 56 as a first driving unit that relatively moves the substrate W held by the substrate holding unit 42 and the electrode unit 44. It is designed to rotate (spin). Further, as described above, the arm 40 can move up and down and swing in the horizontal direction, and the substrate holder 42 can move up and down and swing in the horizontal direction integrally with the arm 40.
[0034]
A hollow motor 60 as a second drive unit that moves the substrate W and the electrode unit 44 relative to each other is installed below the electrode unit 44, and the main shaft 62 of the hollow motor 60 extends from the center of the main shaft 62. A drive end 64 is provided at an eccentric position. The electrode portion 44 is rotatably connected to the drive end 64 via a bearing (not shown) at the center thereof. Further, three or more rotation prevention mechanisms are provided in the circumferential direction between the electrode portion 44 and the hollow motor 60.
[0035]
FIG. 6A is a plan view showing a rotation prevention mechanism in the present embodiment, and FIG. 6B is a cross-sectional view taken along line AA of FIG. As shown in FIGS. 6A and 6B, there are three or more rotation prevention mechanisms (four in FIG. 6A) in the circumferential direction between the electrode portion 44 and the hollow motor 60. 66 is provided. As shown in FIG. 6B, a plurality of recesses 68 and 70 are formed at equal intervals in the circumferential direction at corresponding positions on the upper surface of the hollow motor 60 and the lower surface of the electrode portion 44. Bearings 72 and 74 are mounted at the locations 68 and 70, respectively. One end portions of two shaft bodies 76 and 78 shifted by a distance e are inserted into the bearings 72 and 74, respectively, and the other end portions of the shaft bodies 76 and 78 are connected to each other by a connecting member 80. Here, the amount of eccentricity of the drive end 64 with respect to the center of the main shaft 62 of the hollow motor 60 is also the same as the distance e described above. Therefore, as the hollow motor 60 is driven, the electrode portion 44 has a revolving motion that does not rotate with a distance e between the center of the main shaft 62 and the drive end 64 as a radius, so-called scroll motion (translational rotation motion). Is supposed to do.
[0036]
FIG. 7 is a longitudinal sectional view schematically showing the substrate holding part 42 and the electrode part 44, and FIG. 8 is a plan view showing the relationship between the substrate W and the electrode part 44. In FIG. 8, the substrate W is indicated by a dotted line. As shown in FIGS. 7 and 8, the electrode portion 44 includes a substantially disc-shaped processing electrode 84 having a diameter larger than the diameter of the substrate W, and a plurality of feeding electrodes arranged on the outer peripheral portion of the processing electrode 84. 86, and an insulator 88 that separates the processing electrode 84 and the power supply electrode 86. As shown in FIG. 7, the upper surface of the processing electrode 84 is covered with an ion exchanger 90, and the upper surface of the power supply electrode 86 is covered with an ion exchanger 92. These ion exchangers 90 and 92 may be integrally formed. These ion exchangers 90 and 92 are not shown in FIG.
[0037]
In the present embodiment, fluid cannot be supplied from above the electrode portion 44 to the upper surface of the electrode portion 44 during electrolytic processing due to the size of the electrode portion 44 and the substrate holding portion 42. Therefore, in this embodiment, as shown in FIGS. 7 and 8, a plurality of fluid supply ports 84a as fluid supply portions for supplying pure water, more preferably ultrapure water, are formed in the processing electrode 84. . In the present embodiment, a plurality of fluid supply ports 84 a are arranged radially with respect to the center of the processing electrode 84. These fluid supply ports 84a are connected to a pure water supply pipe 82 (see FIG. 5) extending inside the hollow portion of the hollow motor 60, and pure water or ultrapure water is connected to the upper surface of the electrode portion 44 from the fluid supply port 84a. Water is supplied.
[0038]
In this embodiment, the machining electrode 84 is connected to the cathode of the power supply 46 and the power supply electrode 86 is connected to the anode of the power supply 46. However, depending on the processing material, the electrode connected to the cathode of the power supply 46 is used as the power supply electrode. The electrode connected to the anode may be a processed electrode. That is, when the material to be processed is, for example, copper, molybdenum, or iron, an electrolytic processing action occurs on the cathode side. Therefore, the electrode connected to the cathode of the power supply 46 becomes the processing electrode, and the electrode connected to the anode serves as the feeding electrode. Become. On the other hand, when the material to be processed is, for example, aluminum or silicon, an electrolytic processing action occurs on the anode side. Therefore, the electrode connected to the anode of the power supply 46 becomes the processing electrode, and the electrode connected to the cathode becomes the power supply electrode.
[0039]
When the workpiece is a conductive oxide such as tin oxide or indium tin oxide (ITO), electrolytic processing is performed after reducing the workpiece. That is, in FIG. 5, the electrode connected to the anode of the power source 46 serves as a reduction electrode, and the electrode connected to the cathode serves as a feeding electrode to reduce the conductive oxide. Subsequently, the reduced conductive oxide is processed using the electrode that was previously the power supply electrode as the processing electrode. Alternatively, the reduction electrode may be a processed electrode by reversing the polarity during reduction of the conductive oxide. Also, the conductive oxide can be removed by using the workpiece as a cathode and facing the anode electrode.
[0040]
In the above example, the copper film 6 as the conductor film formed on the surface of the substrate is subjected to electrolytic processing. However, unnecessary ruthenium (Ru) deposited or adhered to the surface of the substrate. Similarly, the film can be electrolytically processed (etched away) using the ruthenium film as the anode and the electrode connected to the cathode as the processing electrode.
[0041]
During the electrolytic processing, the rotation motor (first driving unit) 56 is driven to rotate the substrate W, and at the same time, the hollow motor 60 (second driving unit) is driven to move the electrode unit 44 to the scroll center O (FIG. 8). Scroll around the center. In this way, the entire surface of the substrate W (copper film 6) is processed by relatively moving the substrate W held by the substrate holding portion 42 and the processing electrode 84 within the scroll region S. The electrolytic processing apparatus 34 of the present embodiment is configured such that the center of motion of the processing electrode 84 (the center of scroll motion O in the present embodiment) is always located inside the outer diameter of the substrate W during this relative motion. ing. In this way, the diameter of the processing electrode 84 is made larger than the diameter of the substrate W, and the center of motion of the processing electrode 84 is always positioned inside the outer diameter of the substrate W, so Can be made as uniform as possible. Moreover, since the size of the electrode portion 44 can be minimized by configuring in this way, the entire apparatus can be greatly reduced in size and weight. The diameter of the processing electrode 84 is preferably larger than the total of the relative movement distance (the scroll radius e in the present embodiment) between the substrate W and the processing electrode 84 and the diameter of the substrate W. It is preferably smaller than twice the diameter.
[0042]
In addition, since the substrate W cannot be processed in the region where the power supply electrode 86 exists, the processing speed of the outer peripheral portion where the power supply electrode 86 is disposed is lower than the other regions. Therefore, in order to reduce the influence of the power supply electrode 86 on the processing speed, it is preferable to reduce the area (region) occupied by the power supply electrode 86. From this point of view, in this embodiment, a plurality of power supply electrodes 86 having a small area are arranged on the outer peripheral portion of the machining electrode 84, and at least one of them is in contact with or close to the substrate W during relative motion. ing. In this way, for example, the region that is not processed can be reduced as compared with the case where the ring-shaped power supply electrode is disposed on the outer peripheral portion of the processing electrode 84, and the outer peripheral portion of the substrate W remains unprocessed. Can be prevented.
[0043]
Next, substrate processing (electrolytic processing) using the substrate processing apparatus in the present embodiment will be described. First, for example, as shown in FIG. 1B, a cassette containing a substrate W on which a copper film 6 is formed as a conductor film (processed portion) on the surface is set in a load / unload unit 30. A single substrate W is taken out by the transfer robot 36. The transfer robot 36 transfers the taken out substrate W to the reversing machine 32 as necessary, and reverses the substrate W so that the surface on which the conductive film (copper film 6) is formed faces downward.
[0044]
The transport robot 36 receives the inverted substrate W, transports it to the electrolytic processing apparatus 34, and holds it by suction on the substrate holder 42. Then, the arm 40 is swung to move the substrate holding portion 42 holding the substrate W to a processing position immediately above the electrode portion 44. Next, the vertical movement motor 54 is driven to lower the substrate holding portion 42, and the substrate W held by the substrate holding portion 42 is brought into contact with or close to the surfaces of the ion exchangers 90 and 92 of the electrode portion 44. In this state, the rotation motor (first driving unit) 56 is driven to rotate the substrate W, and at the same time, the hollow motor 60 (second driving unit) is driven to scroll the electrode unit 44 around the scroll center O. Let At this time, pure water or ultrapure water is supplied between the substrate W and the ion exchangers 90 and 92 from the fluid supply port 84 a of the processing electrode 84.
[0045]
Then, a predetermined voltage is applied between the processing electrode 84 and the feeding electrode 86 by the power source 46, and the substrate W is formed on the processing electrode (cathode) by hydrogen ions or hydroxide ions generated by the ion exchangers 90 and 92. Electrolytic processing of the conductor film (copper film 6) on the surface is performed. At this time, processing proceeds at the portion facing the processing electrode 84, but as described above, the entire surface of the substrate W is processed by moving the substrate W and the processing electrode 84 relative to each other. As described above, the machining electrode 84 has a larger diameter than the substrate W, and the movement center O of the machining electrode 84 is always located inside the outer diameter of the substrate W during the relative movement. Therefore, the existence frequency of the processing electrode 84 on the surface of the substrate W can be made as uniform as possible. Further, with such a configuration, the size of the electrode portion 44 can be minimized, and the entire apparatus can be greatly reduced in size and weight.
[0046]
During the electrolytic machining, the voltage applied between the machining electrode and the feeding electrode or the current flowing therebetween is monitored by the monitor unit 38 to detect the end point (machining end point). That is, when electrolytic processing is performed in the state where the same voltage (current) is applied, a difference occurs in the current (applied voltage) flowing depending on the material. For example, as shown in FIG. 9 (a), when the current flowing when the surface of the substrate W on which the material B and the material A are sequentially formed is subjected to electrolytic processing is monitored, the material A is electrolytically processed. While a constant current flows during the process, the current that flows at the time of transition to processing of a different material B changes. Similarly, even if the voltage is applied between the machining electrode and the feeding electrode, as shown in FIG. 9B, a constant voltage is applied while the material A is electrolytically processed. The voltage applied at the time of shifting to processing of a different material B changes. 9A shows a case where the current is less likely to flow when the material B is electrolytically processed than when the material A is electrolytically processed. FIG. 9B shows the case where the material B is electrolytically processed. Shows an example where the voltage is higher than when the material A is electrolytically processed. Thereby, the end point can be reliably detected by monitoring the change in the current or voltage.
[0047]
In addition, although the monitor part 38 demonstrated the example which monitors the voltage applied between a process electrode and a power supply electrode, or the electric current which flows through this, and detected the process end point, this monitor part 38 is under processing. A change in the state of the substrate may be monitored to detect an arbitrarily set processing end point. In this case, the processing end point indicates a point in time when a desired processing amount is reached or a parameter having a correlation with the processing amount reaches an amount corresponding to the desired processing amount for a specified portion of the processing surface. As described above, even during the machining, the machining end point can be arbitrarily set and detected so that the electrolytic machining can be performed in a multistage process.
[0048]
For example, by detecting the change in friction force caused by the difference in friction coefficient that occurs when the substrate reaches a different material, or by detecting the change in friction force caused by removing the unevenness when flattening the unevenness on the surface of the substrate. It is good also as judging the amount of processing and detecting the processing end point. In addition, heat generated due to electrical resistance of the work surface and heat generated by collision of ions and water molecules moving in the liquid (pure water) between the work surface and the work surface occurred, for example, deposited on the surface of the substrate. When electrolytic polishing of a copper film is performed with constant voltage control, as the electrolytic process proceeds and the barrier layer and the insulating film are exposed, the electrical resistance increases, the current value decreases, and the amount of heat generation decreases sequentially. Therefore, the processing amount may be determined by detecting the change in the heat generation amount, and the processing end point may be detected. Alternatively, it is also possible to detect a change in the intensity of reflected light due to a difference in reflectance that occurs when a different material is reached, detect the film thickness of the film to be processed on the substrate, and thereby detect the processing end point. In addition, an eddy current is generated inside a conductive film such as a copper film, and the eddy current flowing inside the substrate is monitored. For example, a change in frequency is detected to detect the film thickness of the film to be processed on the substrate. Thus, the processing end point may be detected. Further, in the electrolytic machining, the machining rate is determined by the current value flowing between the machining electrode and the feeding electrode, and the machining amount is proportional to the amount of electricity obtained by the product of the current value and the machining time. Therefore, the machining end point may be detected by integrating the amount of electricity obtained by the product of the current value and the machining time, determining that the accumulated value has reached a predetermined value, and determining the machining end point.
[0049]
After completion of the electrolytic processing, the power supply 46 is disconnected, the rotation of the substrate holding part 42 and the scroll movement of the electrode part 44 are stopped, and then the substrate holding part 42 is raised and the arm 40 is moved to transport the substrate W. Transfer to the robot 36. The transport robot 36 that has received the substrate W transports the substrate W to the reversing machine 32 and reverses it as necessary, and then returns the substrate W to the cassette of the load / unload unit 30.
[0050]
Here, the pure water supplied between the substrate W and the ion exchangers 90 and 92 during electrolytic processing is, for example, water having an electric conductivity (1 atm, 25 ° C. converted value, the same shall apply hereinafter) of 10 μS / cm or less. Ultrapure water is, for example, water having an electric conductivity of 0.1 μS / cm or less. In this way, by performing electrolytic processing using pure water or ultrapure water that does not contain an electrolyte, it is possible to prevent the impurities such as the electrolyte from adhering to or remaining on the surface of the substrate W. . Further, since copper ions and the like dissolved by electrolysis are immediately captured by the ion exchangers 90 and 92 by an ion exchange reaction, the dissolved copper ions and the like are again deposited on other parts of the substrate W or oxidized. It becomes fine particles and does not contaminate the surface of the substrate W.
[0051]
Instead of pure water or ultrapure water, a liquid having an electric conductivity of 500 μS / cm or less, for example, an electrolytic solution obtained by adding an electrolyte to pure water or ultrapure water may be used. By using the electrolytic solution, electric resistance can be reduced and power consumption can be reduced. Examples of the electrolytic solution include NaCl and Na 2 SO 4 Neutral salt such as HCl and H 2 SO 4 A solution such as an acid such as ammonia or an alkali such as ammonia can be used, and can be selected and used as appropriate depending on the properties of the workpiece.
[0052]
Furthermore, instead of pure water or ultrapure water, a surfactant or the like is added to pure water or ultrapure water, and the electric conductivity is 500 μS / cm or less, preferably 50 μS / cm or less, more preferably 0. A liquid having a specific resistance of 10 MΩ · cm or less may be used. In this way, by adding a surfactant to pure water or ultrapure water, a layer having a uniform suppressing action for preventing the movement of ions is formed at the interface between the substrate W and the ion exchangers 90 and 92. Therefore, the concentration of ion exchange (dissolution of metal) can be relaxed and the flatness of the work surface can be improved. Here, the surfactant concentration is preferably 100 ppm or less. If the value of electrical conductivity is too high, the current efficiency is lowered and the processing speed is slowed down, but the electrical conductivity is 500 μS / cm or less, preferably 50 μS / cm or less, more preferably 0.1 μS / cm or less. A desired processing speed can be obtained by using a liquid having
[0053]
Moreover, the ion exchangers 90 and 92 of the electrode part 44 can be comprised with the nonwoven fabric which provided the anion exchange ability or the cation exchange ability, for example. The cation exchanger is preferably one that bears a strongly acidic cation exchange group (sulfonic acid group), but may be one that bears a weak acid cation exchange group (carboxyl group). The anion exchanger is preferably one carrying a strong basic anion exchange group (quaternary ammonium group), but may be one carrying a weak basic anion exchange group (tertiary or lower amino group).
[0054]
Here, for example, a nonwoven fabric imparted with a strong base anion exchange ability is a so-called radiation graft polymerization method in which a polyolefin nonwoven fabric having a fiber diameter of 20 to 50 μm and a porosity of about 90% is irradiated with γ rays and then graft polymerization is performed. The graft chain is introduced, and then the introduced graft chain is aminated to introduce a quaternary ammonium group. The capacity of the ion exchange group to be introduced is determined by the amount of graft chains to be introduced. In order to perform the graft polymerization, for example, using monomers such as acrylic acid, styrene, glycidyl methacrylate, sodium styrenesulfonate, chloromethylstyrene, and the like, by controlling the monomer concentration, reaction temperature, and reaction time, The amount of grafting to be polymerized can be controlled. Therefore, the ratio of the weight after graft polymerization to the weight of the material before graft polymerization is called the graft ratio. This graft ratio can be up to 500%, and the ion exchange groups introduced after the graft polymerization are A maximum of 5 meq / g is possible.
[0055]
The non-woven fabric imparted with strong acid cation exchange ability was irradiated with γ rays on a non-woven fabric made of polyolefin having a fiber diameter of 20 to 50 μm and a porosity of about 90%, in the same manner as the method for imparting strong basic anion exchange ability. A graft chain is introduced by a so-called radiation graft polymerization method in which post-graft polymerization is performed, and then the introduced graft chain is treated with, for example, heated sulfuric acid to introduce a sulfonic acid group. Moreover, a phosphoric acid group can be introduce | transduced if it processes with the heated phosphoric acid. Here, the graft ratio can be 500% at the maximum, and the ion exchange group introduced after the graft polymerization can be 5 meq / g at the maximum.
[0056]
Examples of the material of the ion exchangers 90 and 92 include polyolefin polymers such as polyethylene and polypropylene, and other organic polymers. Moreover, as a raw material form, a woven fabric, a sheet | seat, a porous material, a short fiber, etc. other than a nonwoven fabric are mentioned. Here, polyethylene and polypropylene can be subjected to graft polymerization by generating radicals in the material by first irradiating the material with radiation (γ rays and electron beams) (pre-irradiation) and then reacting with the monomer. . Thereby, a graft chain having high uniformity and few impurities can be formed. On the other hand, other organic polymers can be radically polymerized by impregnating the monomer and irradiating (simultaneously irradiating) radiation (γ rays, electron beams, ultraviolet rays). In this case, it is not uniform, but can be applied to most materials.
[0057]
In this way, by configuring the ion exchangers 90 and 92 with a nonwoven fabric provided with anion exchange capacity or cation exchange capacity, liquid such as pure water, ultrapure water, or electrolytic solution can freely move inside the nonwoven fabric. Thus, it becomes possible to easily reach an active site having a water decomposition catalytic action inside the nonwoven fabric, and many water molecules are dissociated into hydrogen ions and hydroxide ions. Furthermore, since the hydroxide ions generated by the dissociation are efficiently transported to the surface of the processing electrode 84 as the liquid such as pure water, ultrapure water, or electrolytic solution moves, a high current can be obtained even at a low applied voltage.
[0058]
Here, if the ion exchangers 90 and 92 are configured only with an anion exchange ability or a cation exchange ability, not only the work material that can be electrolytically processed is limited, but also impurities are likely to be generated depending on the polarity. . Therefore, an anion exchanger having an anion exchange ability and a cation exchange ability having a cation exchange ability are overlapped, or both anion exchange ability and cation exchange ability are given to the ion exchangers 90 and 92 themselves. As a result, the range of the material to be processed can be expanded, and impurities can be hardly generated.
[0059]
In addition, oxidation or elution of the electrode generally causes a problem due to an electrolytic reaction. For this reason, it is preferable to use carbon, a relatively inert noble metal, a conductive oxide, or a conductive ceramic as the electrode material. When the electrode is oxidized, the electrical resistance value of the electrode increases and the applied voltage increases. However, if the electrode surface is protected with a material that is difficult to oxidize such as platinum or a conductive oxide such as iridium, the conductivity due to the oxidation of the electrode material The fall of property can be prevented.
[0060]
FIG. , Other electric It is sectional drawing (FIG. 7 equivalent view) which shows typically the board | substrate holding | maintenance part 42 and the electrode part 44a in a solution processing apparatus. This example Similarly to the above-described example, the electrode portion 44a includes a substantially disc-shaped processing electrode 84 having a diameter larger than the diameter of the substrate W, and a plurality of power supply electrodes 86 arranged on the outer peripheral portion of the processing electrode 84. And an insulator 88 that separates the processing electrode 84 and the power supply electrode 86. But, This example Then, the ion exchanger is not provided on the upper surface of the electrode. Further, a plurality of fluid supply ports 84 a as fluid supply parts for supplying the processing electrode 84 with pure water, more preferably, processing liquid such as ultrapure water or electrolytic solution, are arranged radially with respect to the center of the processing electrode 84. Other configurations are the same as those in the above example.
[0061]
In addition, This example Although the case where the ion exchanger is not placed on the electrode surface is shown, a member other than the ion exchanger may be interposed between the electrode and the workpiece. In that case, ions are moved through the liquid between the electrode and the workpiece by using a liquid-permeable member such as a sponge.
[0062]
When no member is interposed between the electrode and the workpiece, the resistance between the workpiece and each electrode is between the machining electrode 84 and the feeding electrode 86 adjacent to each other with the insulator 88 interposed therebetween. It is necessary to set the distance between the workpiece and each electrode and the distance between the processing electrode 84 and the power supply electrode 86 with the insulator 88 interposed therebetween so as to be smaller than the resistance. Thereby, the movement of ions is performed between the electrode and the workpiece rather than between the adjacent electrodes, and the current flows preferentially from the feeding electrode → the workpiece → the machining electrode.
[0063]
This example When the unnecessary ruthenium film Ru deposited or attached to the surface of the substrate W is removed by etching using the electrolytic processing apparatus, the processing electrode 84 and the power supply electrode 86 and the ruthenium film Ru that is the processed portion of the substrate W are interposed between them. For example, an electrolytic solution containing a halide is supplied. Then, the anode of the power source is connected to the feeding electrode 86 and the cathode is connected to the processing electrode 84, whereby the ruthenium film Ru on the surface of the substrate W is made the anode and the processing electrode 84 is made the cathode, and the substrate W and the processing are processed. The electrolyte solution is supplied between the electrode 84 and the power supply electrode 86 to remove the portion facing the processing electrode 84 by etching.
[0064]
As the solvent for dissolving the halide, for example, water or an organic solvent such as alcohols, acetonitrile, dimethylformamide, dimethyl sulfoxide can be used. What is necessary is just to select suitably by the use of the ruthenium film | membrane to process, the washing | cleaning required after a process, a surface state, etc. In order to avoid contamination of impurities as much as possible, it is preferable to use pure water, and it is more preferable to use ultrapure water for a substrate used for semiconductor manufacturing.
[0065]
In addition, when the halide is used as an electrolytic solution, the etching process of the ruthenium film proceeds by electrochemical interaction, and the compound generated during electrolysis reacts with ruthenium, and the reaction product is contained in the electrolytic solution. Any one may be used as long as it dissolves in water or is volatilized and removed. For example, hydrohalic acid such as an aqueous solution of HCl, HBr, HI, HClO 3 , HBrO 3 , HIO 3 , Aqueous solutions of halogen oxo acids such as HClO, HBrO, HIO, NaClO 3 , KClO 3 An aqueous solution of a halogen oxoacid salt such as NaClO or KClO or an aqueous solution of a neutral salt such as NaCl or KCl can be used as the electrolyte. What is necessary is just to select suitably by the use application of the ruthenium after a process, the influence of a residual substance, the film thickness of ruthenium, the characteristic of a ruthenium base film, etc.
[0066]
In this electrolytic processing apparatus, similarly to the above-described example, the electrode portion 44a is scrolled while rotating the substrate W in proximity to or in contact with the processing electrode 84 and the feeding electrode 86 via the substrate holder. As a result, the ruthenium film is etched away by an electrochemical reaction, and the halide generated by electrolysis and the ruthenium react chemically, and the ruthenium film is removed by etching. The processed surface is washed with ultrapure water supplied from an ultrapure water supply nozzle (not shown).
[0067]
The concentration of the halide is 1 mg / l to 10 g / l, preferably about 100 mg / l to 1 g / l. The type of halide, processing time, processing area, distance between the ruthenium film as the anode and the processing electrode as the cathode, the electrolytic voltage, etc. may be appropriately determined according to the surface condition of the substrate after electrolytic processing, the ability of waste liquid treatment, etc. . For example, the amount of chemical solution used can be reduced by increasing the electrolysis voltage using a dilute electrolyte, and the processing speed can be increased by increasing the concentration of the electrolyte.
[0068]
In the above-described embodiment, the electrode unit 4 4 and And although the example using what was provided with the processing electrode 84 comprised by one member was demonstrated, it is not restricted to this. For example, as shown in FIG. 11, the electrode portion 44b may be provided with a processing electrode 184 divided into a plurality of grids. Moreover, as shown in FIG. 12, you may use the thing provided with the process electrode 284 divided | segmented into the ring shape as the electrode part 44c. In these cases, the divided processing electrodes may be configured to be electrically integrated or may be configured to be electrically separated via an insulator. When the machining electrodes are electrically separated, it is not easy to equalize the machining speed of each machining electrode. Therefore, when considering the variation in machining speed between the electrodes, one machining electrode is used. It is preferable to comprise by a member.
[0069]
As described above, the electrode unit 4 including the machining electrode 84 configured by one member. 4 In this case, since the substrate W cannot be processed in the region where the power supply electrode 86 exists, the processing speed of the outer peripheral portion where the power supply electrode 86 is disposed is lower than the other regions. Therefore, the processing speed of the outer peripheral portion of the substrate W can be controlled by adjusting the notch width w and the notch length L (see FIG. 8) of the outer peripheral portion of the processing electrode 84. Here, as shown in FIG. 13, the machining electrode is connected to the portion where the feeding electrode 86 influences the machining speed via the insulator 89, that is, the outer machining electrode 384 a located at the outer peripheral portion where the feeding electrode 86 is disposed. If the electrode portion 44d divided into a portion that does not affect the processing speed, that is, the inner processing electrode 384b located inside the outer processing electrode 384a is used, a uniform processing speed can be realized on the entire surface of the processing electrode. it can. That is, in consideration of the influence due to the presence of the power supply electrode 86, the voltage applied to each machining electrode 384a, 384b by the power source 46 is adjusted, and the machining speed at the outer machining electrode 384a is set to the machining speed at the inner machining electrode 384b. Therefore, a uniform processing speed can be realized on the entire surface of the processing electrode.
[0070]
Further, in the above-described embodiment, the example in which the electrode portion 44 is scrolled and the substrate W is rotated has been described. However, as long as the processing electrode 84 and the substrate W can be moved relative to each other, what is the case? Also good. For example, both the electrode unit 44 and the substrate W may be rotated. In this case, the center of motion of the machining electrode is the center of rotation. In the above-described embodiment, the example in which the substrate holding unit 42 sucks and holds the substrate W downward (face-down) has been described. However, the present invention is not limited to this. For example, the substrate W is held upward (face-up). May be.
[0071]
Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.
[0072]
【The invention's effect】
As described above, according to the present invention, an electrochemical process, for example, in place of CMP, is performed by electrochemical action while preventing physical damage to a workpiece such as a substrate and damaging the properties of the workpiece. As a result, the CMP process itself can be omitted, the load of the CMP process can be reduced, and the deposits attached to the surface of the workpiece such as the substrate can be removed (cleaned). it can. Moreover, the substrate can be processed even using pure water or ultrapure water alone, thereby preventing extra impurities such as electrolyte from adhering to or remaining on the surface of the substrate. Not only can the cleaning process after removal processing be simplified, but also the waste liquid treatment load can be extremely reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of manufacturing a copper wiring board in the order of processes.
FIG. 2 shows that a processing electrode and a feeding electrode are brought close to a substrate (workpiece), and pure water or a liquid having an electric conductivity of 500 μS / cm or less is placed between the processing electrode and the feeding electrode and the substrate (workpiece). It is a figure attached | subjected to description of the principle of the electrolytic processing by this invention when it was made to supply.
FIG. 3 is a diagram for explaining the principle of electrolytic processing according to the present invention when an ion exchanger is attached only to a processing electrode and liquid is supplied between the processing electrode and a substrate (workpiece). It is.
[Fig. 4] Base It is a top view which shows the structure of a plate processing apparatus.
5 is a longitudinal sectional view schematically showing an electrolytic processing apparatus of the substrate processing apparatus shown in FIG.
6 (a) is a plan view showing a rotation prevention mechanism in the electrolytic processing apparatus of FIG. 5, and FIG. 6 (b) is a cross-sectional view taken along line AA of FIG. 6 (a).
7 is a longitudinal sectional view schematically showing a substrate holding part and an electrode part in the electrolytic processing apparatus of FIG. 5. FIG.
8 is a plan view showing a relationship between an electrode portion and a substrate in FIG. 7;
FIG. 9 (a) shows the relationship between the current flowing when electrolytic processing is performed on the surface of a substrate on which a different material is formed, and FIG. 9 (b) shows the same applied voltage and time. It is a graph which shows each relationship.
FIG. 10 other It is a figure which shows typically the board | substrate holding part and electrode in an electrolytic processing apparatus.
FIG. 11 is a plan view showing an electrode portion according to another embodiment of the present invention.
FIG. 12 is a perspective view showing an electrode portion according to another embodiment of the present invention.
FIG. 13 is a plan view showing an electrode portion together with a substrate in another embodiment of the present invention.
[Explanation of symbols]
6 Copper film (conductor film)
7 Seed layer
10 Workpiece
12a, 12b ion exchanger
14 Processing electrode
16 Feeding electrode
17 Power supply
18 Ultrapure water
19 Fluid supply unit
20 water molecules
22 Hydroxide ion
24 Hydrogen ion
26 Reactant
30 Load / Unload Club
32 reversing machine
34 Electrolytic processing equipment
36 Transfer robot
38 Monitor section
40 arms
42 Substrate holder
44, 44a, 44b, 44c, 44d Electrode part
46 Power supply
48 Swing motor
50 Oscillating shaft
52 Ball screw
54 Motor for vertical movement
56 Motor for rotation
60 Hollow motor
62 Spindle
64 Drive end
66 Anti-rotation mechanism
68,70 recess
72,74 bearings
76,78 shaft
80 connecting members
82 Pure water supply pipe
84,184,284,384a, 384b Processing electrode
86 Feeding electrode
88,89 insulator
90,92 ion exchanger

Claims (8)

略円板状の加工電極と、
円板状の被加工物に給電する給電電極と、
前記被加工物を保持して前記加工電極に接触又は近接させる保持部と、
前記被加工物と前記加工電極又は前記給電電極の少なくとも一方との間に配置されるイオン交換体と、
前記加工電極と前記給電電極との間に電圧を印加する電源と、
前記イオン交換体が配置された被加工物と加工電極又は給電電極の少なくとも一方との間に超純水、純水または電気伝導度が500μS/cm以下の液体を供給する流体供給部と、
前記加工電極の運動中心が前記被加工物の外径よりも内側に位置した状態で、前記保持部で保持した被加工物と前記加工電極を相対移動させる駆動部とを備え、
前記加工電極の径は、前記被加工物と前記加工電極との相対運動距離と前記被加工物の径との合計よりも大きく、かつ前記被加工物の径の2倍よりも小さいことを特徴とする電解加工装置。
A substantially disc-shaped processing electrode;
A feeding electrode for feeding a disk-shaped workpiece;
A holding unit that holds the workpiece and contacts or approaches the processing electrode;
An ion exchanger disposed between the workpiece and at least one of the processing electrode or the feeding electrode;
A power source for applying a voltage between the machining electrode and the power supply electrode;
A fluid supply unit that supplies ultrapure water, pure water, or a liquid having an electric conductivity of 500 μS / cm or less between a workpiece on which the ion exchanger is disposed and at least one of a processing electrode or a feeding electrode;
Wherein in a state where the center of movement is located inside the outer diameter of the workpiece machining electrode, Bei example a drive unit for relatively moving the machining electrode and the workpiece held by the holding portion,
The diameter of the machining electrode is larger than the sum of the relative movement distance between the workpiece and the machining electrode and the diameter of the workpiece, and smaller than twice the diameter of the workpiece. Electrolytic processing equipment.
略円板状の加工電極と、
円板状の加工電極の外周部に配置された複数の給電電極と、
前記被加工物を保持して前記加工電極に接触又は近接させる保持部と、
前記被加工物と前記加工電極又は前記給電電極の少なくとも一方との間に配置されるイオン交換体と、
前記加工電極と前記給電電極との間に電圧を印加する電源と、
前記イオン交換体が配置された被加工物と加工電極又は給電電極の少なくとも一方との間に超純水、純水または電気伝導度が500μS/cm以下の液体を供給する流体供給部と、
少なくとも1つの給電電極が常に前記被加工物に給電するように、前記保持部で保持した被加工物と前記加工電極とを相対移動させる駆動部とを備え、
前記加工電極の径は、前記被加工物と前記加工電極との相対運動距離と前記被加工物の径との合計よりも大きく、かつ前記被加工物の径の2倍よりも小さいことを特徴とする電解加工装置。
A substantially disc-shaped processing electrode;
A plurality of feeding electrodes arranged on the outer periphery of the disk-shaped processing electrode;
A holding unit that holds the workpiece and contacts or approaches the processing electrode;
An ion exchanger disposed between the workpiece and at least one of the processing electrode or the feeding electrode;
A power source for applying a voltage between the machining electrode and the power supply electrode;
A fluid supply unit that supplies ultrapure water, pure water, or a liquid having an electric conductivity of 500 μS / cm or less between a workpiece on which the ion exchanger is disposed and at least one of a processing electrode or a feeding electrode;
As at least one feeding electrode always supplies power to the workpiece, Bei example and a driving unit for relatively moving the said machining electrode and the workpiece held by the holding portion,
The diameter of the machining electrode is larger than the sum of the relative movement distance between the workpiece and the machining electrode and the diameter of the workpiece, and smaller than twice the diameter of the workpiece. Electrolytic processing equipment.
前記加工電極は、前記給電電極が配置された外周部に位置する外側加工電極と、前記外側加工電極の内側に位置する内側加工電極とを備えたことを特徴とする請求項に記載の電解加工装置。The processing electrode is electrolyte according to claim 2, wherein the feeding electrode is provided with an outer working electrode positioned on the outer peripheral portion arranged, and an inner working electrode located inside of the outer working electrode Processing equipment. 前記電源は、前記外側加工電極と前記内側加工電極とに印加する電圧又は電流をそれぞれ制御することを特徴とする請求項に記載の電解加工装置。The electrolytic processing apparatus according to claim 3 , wherein the power source controls a voltage or a current applied to the outer processing electrode and the inner processing electrode, respectively. 前記駆動部は、前記加工電極をスクロール運動または回転運動させることを特徴とする請求項1乃至4のいずれかに記載の電解加工装置。The electrolytic processing apparatus according to claim 1, wherein the driving unit causes the machining electrode to scroll or rotate. 略円板状で、下記の被加工物と加工電極との相対運動距離と被加工物の径との合計よりも大きく、かつ被加工物の径の2倍よりも小さい径を有する加工電極と円板状の被加工物に給電する給電電極とを配置し、
前記被加工物と前記加工電極又は前記給電電極の少なくとも一方との間にイオン交換体を配置し、
前記加工電極と前記給電電極との間に電圧を印加し、
前記被加工物を前記加工電極に接触又は近接させ、
前記イオン交換体が配置された被加工物と加工電極又は給電電極の少なくとも一方との間に超純水、純水または電気伝導度が500μS/cm以下の液体を供給し、
前記加工電極の運動中心が常に前記被加工物の外径よりも内側に位置した状態で、前記被加工物と前記加工電極とを相対移動させて前記被加工物の表面を加工することを特徴とする電解加工方法。
A machining electrode having a substantially disc shape and having a diameter that is greater than the sum of the relative movement distance between the workpiece and the machining electrode described below and the workpiece diameter, and less than twice the diameter of the workpiece; A power supply electrode for supplying power to a disk-shaped workpiece;
An ion exchanger is disposed between the workpiece and at least one of the processing electrode or the feeding electrode,
A voltage is applied between the machining electrode and the feeding electrode,
Bringing the workpiece into contact with or close to the machining electrode;
Supplying ultrapure water, pure water, or a liquid having an electric conductivity of 500 μS / cm or less between a workpiece on which the ion exchanger is disposed and at least one of a processing electrode or a feeding electrode;
The surface of the workpiece is machined by relatively moving the workpiece and the machining electrode in a state where the center of motion of the machining electrode is always located inside the outer diameter of the workpiece. Electrolytic processing method.
略円板状で、下記の被加工物と加工電極との相対運動距離と被加工物の径との合計よりも大きく、かつ被加工物の径の2倍よりも小さい径を有する加工電極の外周部に複数の給電電極を配置し、
円板状の被加工物と前記加工電極又は前記給電電極の少なくとも一方との間にイオン交換体を配置し、
前記加工電極と前記給電電極との間に電圧を印加し、
前記被加工物を前記加工電極に接触又は近接させ、
前記イオン交換体が配置された被加工物と加工電極又は給電電極の少なくとも一方との間に超純水、純水または電気伝導度が500μS/cm以下の液体を供給し、
少なくとも1つの給電電極が常に前記被加工物に給電するように、前記被加工物と前記加工電極とを相対移動させて前記被加工物の表面を加工することを特徴とする電解加工方法。
A machining electrode having a substantially disk shape and having a diameter larger than the sum of the relative movement distance between the workpiece and the machining electrode described below and the workpiece diameter and less than twice the diameter of the workpiece. A plurality of feeding electrodes are arranged on the outer periphery,
An ion exchanger is disposed between the disk-shaped workpiece and at least one of the processing electrode or the feeding electrode,
A voltage is applied between the machining electrode and the feeding electrode,
Bringing the workpiece into contact with or close to the machining electrode;
Supplying ultrapure water, pure water, or a liquid having an electric conductivity of 500 μS / cm or less between a workpiece on which the ion exchanger is disposed and at least one of a processing electrode or a feeding electrode;
An electrolytic machining method characterized by machining the surface of the workpiece by relatively moving the workpiece and the machining electrode so that at least one feeding electrode always feeds power to the workpiece.
前記加工電極をスクロール運動または回転運動させて前記被加工物と前記加工電極とを相対移動させることを特徴とする請求項6または7記載の電解加工方法。8. The electrolytic machining method according to claim 6, wherein the workpiece and the machining electrode are moved relative to each other by scrolling or rotating the machining electrode.
JP2003011660A 2002-05-17 2003-01-20 Electrolytic machining method and apparatus Expired - Fee Related JP4233331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003011660A JP4233331B2 (en) 2002-05-17 2003-01-20 Electrolytic machining method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002142411 2002-05-17
JP2003011660A JP4233331B2 (en) 2002-05-17 2003-01-20 Electrolytic machining method and apparatus

Publications (2)

Publication Number Publication Date
JP2004043952A JP2004043952A (en) 2004-02-12
JP4233331B2 true JP4233331B2 (en) 2009-03-04

Family

ID=31719451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003011660A Expired - Fee Related JP4233331B2 (en) 2002-05-17 2003-01-20 Electrolytic machining method and apparatus

Country Status (1)

Country Link
JP (1) JP4233331B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026931A1 (en) * 2005-09-02 2007-03-08 Ebara Corporation Electrochemical machining method and electrochemical machining apparatus
WO2018066297A1 (en) * 2016-10-07 2018-04-12 東京エレクトロン株式会社 Electrolytic treatment tool and electrolytic treatment method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064799A (en) * 1999-08-27 2001-03-13 Yuzo Mori Electrolytic working method and device
JP2001160545A (en) * 1999-12-02 2001-06-12 Okamoto Machine Tool Works Ltd Method for chemically and mechanically polishing platinum layer on semiconductor substrate
JP2002093761A (en) * 2000-09-19 2002-03-29 Sony Corp Polishing method, polishing system, plating method and plating system

Also Published As

Publication number Publication date
JP2004043952A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
US7655118B2 (en) Electrolytic processing apparatus and method
CN100334691C (en) Substrate processing apparatus and substrate processing method
KR100849202B1 (en) Electrolytic processing device and substrate processing apparatus
US20070187259A1 (en) Substrate processing apparatus and method
US7101465B2 (en) Electrolytic processing device and substrate processing apparatus
US20060091005A1 (en) Electolytic processing apparatus
US20050155868A1 (en) Electrolytic processing apparatus and electrolytic processing method
JP4233331B2 (en) Electrolytic machining method and apparatus
JP2008160134A (en) Method for substrate treatment
JP2008524434A (en) Flattening method and flattening apparatus
JP3933520B2 (en) Substrate processing apparatus and substrate processing method
US20040256237A1 (en) Electrolytic processing apparatus and method
JP4310085B2 (en) Electrolytic machining method and apparatus
JP4127361B2 (en) Electrolytic processing equipment
JP2004002910A (en) Electrolytic working method and apparatus
JP4409807B2 (en) Substrate processing method
JP4130073B2 (en) Ion exchanger regeneration method and regeneration apparatus
JP2004084054A (en) Electrolytic processing method and device
JP2003275605A (en) Regeneration method for ion exchanger and regeneration apparatus therefor
JP2004255479A (en) Electrochemical machining method and electrochemical machining device
JP2006013177A (en) Apparatus and method for electrolytic processing
JP2005199401A (en) Electrochemical machining device and method
JP2006128576A (en) Electrolytic processing apparatus and method therefor
JP2006009103A (en) Electrolytic processing apparatus and method for conditioning contact member
JP2005054205A (en) Electrochemical machining apparatus and electrochemical machining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees