JP2006009103A - Electrolytic processing apparatus and method for conditioning contact member - Google Patents

Electrolytic processing apparatus and method for conditioning contact member Download PDF

Info

Publication number
JP2006009103A
JP2006009103A JP2004188959A JP2004188959A JP2006009103A JP 2006009103 A JP2006009103 A JP 2006009103A JP 2004188959 A JP2004188959 A JP 2004188959A JP 2004188959 A JP2004188959 A JP 2004188959A JP 2006009103 A JP2006009103 A JP 2006009103A
Authority
JP
Japan
Prior art keywords
contact member
electrode
workpiece
contact
conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004188959A
Other languages
Japanese (ja)
Inventor
Ikutaro Nomichi
郁太郎 野路
Hozumi Yasuda
穂積 安田
Takeshi Iiizumi
健 飯泉
Itsuki Obata
厳貴 小畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2004188959A priority Critical patent/JP2006009103A/en
Priority to US10/592,673 priority patent/US20070187257A1/en
Priority to PCT/JP2005/005301 priority patent/WO2005090648A2/en
Priority to TW094108307A priority patent/TW200600618A/en
Publication of JP2006009103A publication Critical patent/JP2006009103A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To always satisfactorily perform uniform electrolytic processing without exerting adverse influence on working properties and the service life of a contact member. <P>SOLUTION: The subject electrolytic processing apparatus includes; a processing electrode 84 capable of bringing into contact with or closing to a workpiece W; a feeding electrode 86 for feeding electricity to the workpiece; a contact member 40 disposed between the workpiece and at least one of the processing electrode and the feeding electrode and is freely brought into contact with the workpiece; a power source 90 for applying voltage between the processing electrode and the feeding electrode; drive parts 62, 82 for relatively driving the workpiece and one of the processing electrode and the feeding electrode; liquid feeding parts 80a, 94 for feeding a fluid between the workpiece and one of the processing electrode and the feeding electrode; and a conditioning part 50 provided with a conditioner 48 which is brought into contact with the contact face of the contact member with the workpiece and performing the conditioning of the contact face. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば半導体ウエハ等の基板の表面に形成された導電性材料を加工したり、基板の表面に付着した不純物を除去したりするのに使用される電解加工装置及び該電解加工装置に備えられている接触部材のコンディショニング方法に関する。   The present invention relates to an electrolytic processing apparatus used for processing a conductive material formed on the surface of a substrate such as a semiconductor wafer or removing impurities adhering to the surface of the substrate, and the electrolytic processing apparatus. The present invention relates to a method for conditioning a contact member provided.

近年、半導体ウエハ等の基板上に回路を形成するための配線材料として、アルミニウムまたはアルミニウム合金に代えて、電気抵抗率が低くエレクトロマイグレーション耐性が高い銅(Cu)を用いる動きが顕著になっている。この種の銅配線は、基板の表面に設けた微細凹みの内部に銅を埋め込むことによって一般に形成される。この銅配線を形成する方法としては、化学気相成長法(CVD)、スパッタリング及びめっきといった手法があるが、いずれにしても、基板のほぼ全表面に銅を成膜して、化学機械的研磨(CMP)により不要の銅を除去するようにしている。   In recent years, as a wiring material for forming a circuit on a substrate such as a semiconductor wafer, the movement of using copper (Cu) having low electrical resistivity and high electromigration resistance instead of aluminum or an aluminum alloy has become prominent. . This type of copper wiring is generally formed by embedding copper in a fine recess provided on the surface of the substrate. Methods for forming this copper wiring include chemical vapor deposition (CVD), sputtering, and plating, but in any case, copper is deposited on almost the entire surface of the substrate, and chemical mechanical polishing is performed. Unnecessary copper is removed by (CMP).

図1(a)乃至図1(c)は、この種の銅配線基板Wの一製造例を工程順に示す。先ず、図1(a)に示すように、半導体素子が形成された半導体基材1上の導電層1aの上にSiOからなる酸化膜やLow−k材膜などの絶縁膜2が堆積され、リソグラフィ・エッチング技術によりコンタクトホール3と配線溝4が形成される。これらの上にTaN等からなるバリア膜5、更にその上に電解めっきの給電層としてのシード層7がスパッタリングやCVD等により形成される。 FIG. 1A to FIG. 1C show a manufacturing example of this type of copper wiring board W in the order of steps. First, as shown in FIG. 1A, an insulating film 2 such as an oxide film made of SiO 2 or a low-k material film is deposited on a conductive layer 1a on a semiconductor substrate 1 on which a semiconductor element is formed. Then, the contact hole 3 and the wiring groove 4 are formed by the lithography / etching technique. A barrier film 5 made of TaN or the like is formed thereon, and a seed layer 7 as a power feeding layer for electrolytic plating is formed thereon by sputtering or CVD.

そして、基板Wの表面に銅めっきを施すことで、図1(b)に示すように、半導体基板Wのコンタクトホール3及び配線溝4内に銅を充填するとともに、絶縁膜2上に銅膜6を堆積する。その後、化学機械的研磨(CMP)により、絶縁膜2上の銅膜6、シード層7及びバリア膜5を除去して、コンタクトホール3及び配線溝4内に充填させた銅膜6の表面と絶縁膜2の表面とをほぼ同一平面にする。これにより、図1(c)に示すように銅膜6からなる配線が形成される。   Then, by copper plating on the surface of the substrate W, the contact hole 3 and the wiring groove 4 of the semiconductor substrate W are filled with copper and a copper film is formed on the insulating film 2 as shown in FIG. 6 is deposited. Thereafter, the copper film 6, the seed layer 7 and the barrier film 5 on the insulating film 2 are removed by chemical mechanical polishing (CMP), and the surface of the copper film 6 filled in the contact hole 3 and the wiring groove 4 The surface of the insulating film 2 is substantially flush with the surface. As a result, a wiring made of the copper film 6 is formed as shown in FIG.

最近ではあらゆる機器の構成要素において微細化かつ高精度化が進み、サブミクロン領域での物作りが一般的となるにつれて、加工法自体が材料の特性に与える影響は益々大きくなっている。このような状況下においては、従来の機械加工のように、工具が被加工物を物理的に破壊しながら除去していく加工方法では、加工によって被加工物に多くの欠陥を生み出してしまうため、被加工物の特性が劣化してしまう。したがって、いかに材料の特性を損なうことなく加工を行うことができるかが問題となってくる。   In recent years, as the miniaturization and high precision have progressed in the components of all devices, and the manufacturing in the sub-micron region has become common, the influence of the processing method itself on the characteristics of the material has been increasing. Under such circumstances, the machining method in which the tool removes the workpiece while physically destroying it, as in conventional machining, because many defects are generated in the workpiece by machining. As a result, the properties of the workpiece are deteriorated. Therefore, it becomes a problem how the processing can be performed without impairing the characteristics of the material.

この問題を解決する手段として開発された特殊加工法に、化学研磨や電解加工、電解研磨がある。これらの加工方法は、従来の物理的な加工とは対照的に、化学的溶解反応を起こすことによって、除去加工等を行うものである。したがって、塑性変形による加工変質層や転位等の欠陥は発生せず、上述の材料の特性を損なわずに加工を行うといった課題が達成される。   Special processing methods developed as means for solving this problem include chemical polishing, electrolytic processing, and electrolytic polishing. In contrast to conventional physical processing, these processing methods perform removal processing and the like by causing a chemical dissolution reaction. Therefore, defects such as work-affected layers and dislocations due to plastic deformation do not occur, and the problem of performing processing without impairing the properties of the above-described materials is achieved.

例えば、CMP工程は、一般にかなり複雑な操作が必要で、制御も複雑となり、加工時間もかなり長い。更に、研磨後の基板の後洗浄を十分に行う必要があるばかりでなく、スラリーや洗浄液の排液処理のための負荷が大きい等の課題がある。このため、CMP自体を省略もしくはこの負荷を軽減することが強く求められていた。また、今後、層間絶縁膜も誘電率の小さいLow−k材に変わると予想され、そのLow−k材は、機械的強度が弱くCMPによるストレスに耐えられなくなる。従って、基板にストレスを与えることなく、平坦化できるようにしたプロセスが望まれている。   For example, the CMP process generally requires a considerably complicated operation, is complicated in control, and has a considerably long processing time. Furthermore, not only is it necessary to sufficiently perform post-cleaning of the substrate after polishing, but there are also problems such as a large load for draining the slurry and cleaning liquid. For this reason, there has been a strong demand to omit CMP itself or reduce this load. In the future, the interlayer insulating film is also expected to change to a low-k material having a low dielectric constant, and the low-k material has low mechanical strength and cannot withstand stress caused by CMP. Therefore, there is a demand for a process that enables planarization without applying stress to the substrate.

このような課題を解決する手段として、電極と被加工物の間に接触部材(例えばイオン交換体)を配置し、電解液として純水もしくは超純水のような電気抵抗の大きな液体を用いて加工を行うことで、被加工物に与える機械的ストレスをなくし、後洗浄も簡便な電解加工が提案されている(例えば、特許文献1参照)。   As means for solving such a problem, a contact member (for example, an ion exchanger) is disposed between the electrode and the workpiece, and a liquid having a large electric resistance such as pure water or ultrapure water is used as an electrolytic solution. There has been proposed electrolytic processing that eliminates mechanical stress applied to the workpiece by performing processing and that is easy for post-cleaning (see, for example, Patent Document 1).

これは、図2に示すように、被加工物10の表面に、加工電極14に取付けたイオン交換体(接触部材)12aと、給電電極16に取付けたイオン交換体(接触部材)12bとを接触乃至近接させ、加工電極14と給電電極16との間に電源17を介して電圧を印加しつつ、加工電極14及び給電電極16と被加工物10との間に液体供給部19から超純水等の加工用液体18を供給して、被加工物10の表面層の除去加工を行うようにしたものである。この電解加工によれば、超純水等の加工用液体18中の水分子20をイオン交換体12a,12bで水酸化物イオン22と水素イオン24に解離し、例えば生成された水酸化物イオン22を、被加工物10と加工電極14との間の電界と超純水等の加工用液体18の流れによって、被加工物10の加工電極14と対面する表面に供給して、ここでの被加工物10近傍の水酸化物イオン22の密度を高め、被加工物10の原子10aと水酸化物イオン22を反応させる。反応によって生成された反応物質26は、超純水等の加工用液体18中に溶解し、被加工物10の表面に沿った超純水等の加工用液体18の流れによって被加工物10から除去される。   As shown in FIG. 2, an ion exchanger (contact member) 12 a attached to the processing electrode 14 and an ion exchanger (contact member) 12 b attached to the feeding electrode 16 are provided on the surface of the workpiece 10. While being brought into contact or close to each other, a voltage is applied between the processing electrode 14 and the power supply electrode 16 via the power source 17, while the liquid supply unit 19 between the processing electrode 14, the power supply electrode 16 and the workpiece 10 is ultrapure. A processing liquid 18 such as water is supplied to remove the surface layer of the workpiece 10. According to this electrolytic processing, water molecules 20 in the processing liquid 18 such as ultrapure water are dissociated into hydroxide ions 22 and hydrogen ions 24 by the ion exchangers 12a and 12b, for example, generated hydroxide ions. 22 is supplied to the surface of the workpiece 10 facing the machining electrode 14 by the electric field between the workpiece 10 and the machining electrode 14 and the flow of the machining liquid 18 such as ultrapure water. The density of the hydroxide ions 22 in the vicinity of the workpiece 10 is increased, and the atoms 10a of the workpiece 10 and the hydroxide ions 22 are reacted. The reaction material 26 generated by the reaction is dissolved in the processing liquid 18 such as ultrapure water, and the work material 18 such as ultrapure water flows along the surface of the workpiece 10 from the work 10. Removed.

特開2003−145354号公報JP 2003-145354 A

例えば、イオン交換体からなる接触部材を被加工物に接触させて電解加工を行う電解加工では、接触部材と被加工物の被加工表面との接触部乃至その近傍において選択的に加工が進む。従って、加工レートや加工の面内均一性等の加工特性を常に良好に維持するためには、接触部材の被加工物との接触面の状態(平面度及び表面粗さ)を常に一定に保つことが望まれる。   For example, in the electrolytic processing in which electrolytic processing is performed by bringing a contact member made of an ion exchanger into contact with a workpiece, the processing selectively proceeds at or near the contact portion between the contact member and the processing surface of the workpiece. Therefore, in order to always maintain good processing characteristics such as processing rate and in-plane uniformity of processing, the state of contact surface (flatness and surface roughness) of the contact member with the workpiece is always kept constant. It is desirable.

しかしながら、交換前後における接触部材の被加工物との接触面の状態(平面度及び表面粗さ)のばらつきや接触部材の被加工物との接触面の使用に伴う劣化等により、接触部材の被加工物との接触面の状態が変化することがある。すると、接触部材に接触して電解加工される被加工物の加工レートや加工の面内均一性等の加工特性が接触部材の被加工物との接触面の状態の影響を受けて変化する。例えば、被加工物の被加工表面と接触部材との接触面積が変化すると、加工電極と給電電極との間に印加される電圧や被加工物と加工電極及び/または給電電極との間を流れる電流の分布が変化したり、流体の流入量等が変化したりして、加工特性や接触部材の寿命に悪影響を与える。特に、接触面積が小さい場合は、接触部材の被加工物との接触面に電流が集中して流れ、この結果、接触部材の表面に加工生成物が付着したり、局部的な発熱が生じて接触部材が融解したりする。また、被加工物と接触部材の接触圧力が変化して高くなると、被加工物の表面がダメージを受けて該表面にスクラッチ等が生じてしまう。   However, due to variations in the state (flatness and surface roughness) of the contact surface of the contact member with the workpiece before and after replacement, deterioration due to use of the contact surface of the contact member with the workpiece, etc. The state of the contact surface with the workpiece may change. Then, the processing characteristics such as the processing rate of the workpiece to be electrolytically processed in contact with the contact member and the in-plane uniformity of processing change under the influence of the state of the contact surface of the contact member with the workpiece. For example, when the contact area between the workpiece surface of the workpiece and the contact member changes, the voltage applied between the machining electrode and the power supply electrode and the flow between the workpiece and the machining electrode and / or the power supply electrode flow. The distribution of current changes or the amount of fluid inflow changes, which adversely affects machining characteristics and contact member life. In particular, when the contact area is small, current concentrates and flows on the contact surface of the contact member with the workpiece. As a result, processing products adhere to the surface of the contact member or local heat is generated. The contact member melts. Further, when the contact pressure between the workpiece and the contact member changes and becomes high, the surface of the workpiece is damaged and scratches or the like are generated on the surface.

本発明は、上記事情に鑑みて為されたもので、加工特性や接触部材の寿命に悪影響を与えることなく、常に良好で均一な電解加工を行うことができるようにした電解加工装置及び該電解加工装置に備えられている接触部材のコンディショニング方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an electrolytic processing apparatus capable of always performing good and uniform electrolytic processing without adversely affecting the processing characteristics and the life of the contact member, and the electrolytic process. It aims at providing the conditioning method of the contact member with which the processing apparatus is equipped.

請求項1に記載の発明は、被加工物に近接自在な加工電極と、前記被加工物に給電する給電電極と、前記被加工物と前記加工電極または前記給電電極との間の少なくとも一方に配置され前記被加工物と接触自在な接触部材と、前記加工電極と前記給電電極との間に電圧を印加する電源と、前記被加工物と前記加工電極または前記給電電極の少なくとも一方とを相対運動させる駆動部と、前記被加工物と前記加工電極または前記給電電極との間の少なくとも一方に流体を供給する流体供給部と、前記接触部材の前記被加工物との接触面に接触して該接触面のコンディショニングを行うコンディショナーを備えたコンディショニング部を有することを特徴とする電解加工装置である。   According to a first aspect of the present invention, at least one of a machining electrode that is close to the workpiece, a feeding electrode that feeds power to the workpiece, and the workpiece and the machining electrode or the feeding electrode is provided. A contact member that is arranged and freely contactable with the workpiece, a power source that applies a voltage between the machining electrode and the power supply electrode, and a relative relationship between the workpiece and at least one of the processing electrode or the power supply electrode. A contact portion that contacts the contact surface of the workpiece with the drive portion that moves, a fluid supply portion that supplies fluid to at least one of the workpiece and the processing electrode or the feeding electrode, and An electrolytic processing apparatus having a conditioning unit including a conditioner for conditioning the contact surface.

これにより、電解加工の際に被加工物に接触する接触部材の該被加工物との接触面を、この平面度及び表面粗さが所定値以下となるように、コンディショニング部のコンディショナーを介してコンディショニングすることができる。   Accordingly, the contact surface of the contact member that contacts the workpiece during electrolytic processing is contacted with the workpiece via the conditioner of the conditioning unit so that the flatness and the surface roughness are equal to or less than predetermined values. Can be conditioned.

請求項2に記載の発明は、被加工物に近接自在な加工電極と、前記被加工物に給電する給電電極と、前記被加工物と前記加工電極または前記給電電極との間の少なくとも一方に配置され前記被加工物と接触自在な接触部材と、前記加工電極と前記給電電極との間に電圧を印加する電源と、前記被加工物と前記加工電極または前記給電電極の少なくとも一方とを相対運動させる駆動部と、前記被加工物と前記加工電極または前記給電電極との間の少なくとも一方に流体を供給する流体供給部と、前記接触部材の前記被加工物との接触面に接触させて該接触面のコンディショニングするコンディショナーと前記被加工物の一方を選択的に保持する保持部を有することを特徴とする電解加工装置である。   According to a second aspect of the present invention, at least one of a machining electrode that is close to the workpiece, a feeding electrode that feeds power to the workpiece, and the workpiece and the machining electrode or the feeding electrode is provided. A contact member that is arranged and freely contactable with the workpiece, a power source that applies a voltage between the machining electrode and the power supply electrode, and a relative relationship between the workpiece and at least one of the processing electrode or the power supply electrode. A drive unit that moves, a fluid supply unit that supplies fluid to at least one of the workpiece and the processing electrode or the feeding electrode, and a contact surface of the contact member with the workpiece. An electrolytic processing apparatus comprising a conditioner for conditioning the contact surface and a holding portion for selectively holding one of the workpieces.

これにより、電解加工の際に被加工物を保持し電解加工後に基板の保持を解く保持部でコンディショナーを保持した状態で、このコンディショナーにあたかも電解加工を施すように操作することで、接触部材の被加工物との接触面を保持部で保持したコンディショナーでコンディショニングすることができる。   Thus, by operating the conditioner as if it is electrolytically processed in a state where the conditioner is held by the holding portion that holds the workpiece during electrolytic processing and releases the substrate after electrolytic processing, the contact member Conditioning can be performed with a conditioner in which the contact surface with the workpiece is held by a holding portion.

請求項3に記載の発明は、前記接触部材は、電解質を含む部材または絶縁体、またはこれらの任意の組合せからなることを特徴とする請求項1または2記載の電解加工装置である。
請求項4に記載の発明は、前記電解質は、固体電解質からなることを特徴とする請求項3記載の電解加工装置である。
The invention according to claim 3 is the electrolytic processing apparatus according to claim 1 or 2, wherein the contact member is made of a member including an electrolyte, an insulator, or any combination thereof.
The invention according to claim 4 is the electrolytic processing apparatus according to claim 3, wherein the electrolyte is made of a solid electrolyte.

請求項5に記載の発明は、前記固体電解質は、イオン交換体からなることを特徴とする請求項4記載の電解加工装置である。
このように、固体電解質としてイオン交換体を使用することで、超純水等の液体中の水分子の水酸化物イオンと水素イオンへの解離を促進して、水分子の解離量を増加させることができる。
請求項6に記載の発明は、前記接触部材は導電性パッドからなり、前記被加工物と前記加工電極または前記給電電極との間のいずれか一方に配置されることを特徴とする請求項1または2記載の電解加工装置である。
The invention according to claim 5 is the electrolytic processing apparatus according to claim 4, wherein the solid electrolyte is made of an ion exchanger.
Thus, by using an ion exchanger as a solid electrolyte, the dissociation of water molecules in a liquid such as ultrapure water into hydroxide ions and hydrogen ions is promoted, and the amount of dissociation of water molecules is increased. be able to.
The invention according to claim 6 is characterized in that the contact member is formed of a conductive pad, and is disposed between the workpiece and the processing electrode or the feeding electrode. Or it is the electrolytic processing apparatus of 2.

請求項7に記載の発明は、前記コンディショナーの少なくとも前記接触部材の接触面に接触する部位は、砥粒を固定した研磨体からなることを特徴とする請求項1乃至6のいずれかに記載の電解加工装置である。
砥粒を固定した研磨体(固定砥粒)で硬質な研磨面を構成することで、接触部材の被加工物との接触面に傷(スクラッチ)が発生するのを防止しつつ、安定した研磨速度と高い平坦度を得ることができる。しかも、研磨砥粒を含まない研磨液、純水、超純水または電気伝導度が500μm以下の液体を供給しつつコンディショニングを行うことができ、これによって、電解加工と同時に接触部材のコンディショニングを行うとともに、環境問題の負荷を低減することができる。
The invention according to claim 7 is characterized in that at least a portion of the conditioner that contacts the contact surface of the contact member is composed of a polishing body to which abrasive grains are fixed. Electrolytic processing device.
Stable polishing while preventing scratches from occurring on the contact surface of the contact member with the workpiece by forming a hard polishing surface with a polishing body (fixed abrasive) with fixed abrasive grains Speed and high flatness can be obtained. In addition, conditioning can be performed while supplying a polishing liquid that does not contain abrasive grains, pure water, ultrapure water, or a liquid having an electric conductivity of 500 μm or less, whereby the contact member is conditioned simultaneously with electrolytic processing. At the same time, the load of environmental problems can be reduced.

請求項8に記載の発明は、前記研磨体の前記接触部材の接触面に接触する研磨面の平坦度は100μm以下で、前記砥粒の直径は5μm以下であることを特徴とする請求項7記載の電解加工装置である。
これにより、接触部材の被加工物との接触面の平坦度が100μm以下、表面粗さが5μm以下となるように、接触部材をコンディショニングすることができる。
The invention according to claim 8 is characterized in that the flatness of the polishing surface that contacts the contact surface of the contact member of the polishing body is 100 μm or less, and the diameter of the abrasive grains is 5 μm or less. It is an electrolytic processing apparatus of description.
Accordingly, the contact member can be conditioned so that the flatness of the contact surface of the contact member with the workpiece is 100 μm or less and the surface roughness is 5 μm or less.

請求項9に記載の発明は、前記コンディショナーは、遊離砥粒を用いて研磨を行う研磨パッドからなることを特徴とする請求項1乃至6のいずれかに記載の電解加工装置である。
研磨パッドは、一般に剛性が低いが、高い剛性を有するものを使用することで、平坦度を高めることができる。
請求項10に記載の発明は、前記遊離砥粒の直径は、5μm以下であることを特徴とする請求項9記載の電解加工装置である。
The invention according to claim 9 is the electrolytic processing apparatus according to any one of claims 1 to 6, wherein the conditioner comprises a polishing pad that performs polishing using loose abrasive grains.
The polishing pad is generally low in rigidity, but the flatness can be increased by using a polishing pad having high rigidity.
The invention according to claim 10 is the electrolytic processing apparatus according to claim 9, wherein the diameter of the loose abrasive grains is 5 μm or less.

請求項11に記載の発明は、被加工物に接触して電解加工を行う接触部材の該被加工物との接触面にコンディショナーを接触させ、液体の存在下で、前記接触部材と前記コンディショナーとを相対的に移動させて接触部材のコンディショニングを行うことを特徴とする接触部材のコンディショニング方法である。
請求項12に記載の発明は、前記接触部材のコンディショニングを、接触部材を設置または交換した後、電解加工のインターバル時、または被加工物の電解加工と同時に行うことを特徴とする請求項11記載の接触部材のコンディショニング方法である。
The invention according to claim 11 is a method in which a conditioner is brought into contact with a contact surface of the contact member that performs electrolytic processing by contacting the workpiece, and the contact member and the conditioner are in the presence of a liquid. The contact member is conditioned by relatively moving the contact member to condition the contact member.
The invention according to claim 12 is characterized in that conditioning of the contact member is performed at an interval of electrolytic processing after the contact member is installed or replaced, or simultaneously with electrolytic processing of a workpiece. This is a method for conditioning a contact member.

請求項13に記載の発明は、被加工物を着脱自在に保持する保持部でコンディショナーを保持し、被加工物に接触して電解加工を行う接触部材の該被加工物との接触面に前記コンディショナーを接触させ、液体の存在下で、前記接触部材と前記コンディショナーとを相対的に移動させて接触部材のコンディショニングを行うことを特徴とする接触部材のコンディショニング方法である。
請求項14に記載の発明は、前記接触部材のコンディショニングを、接触部材を設置または交換した後、または電解加工のインターバル時に行うことを特徴とする請求項13記載の接触部材のコンディショニング方法である。
According to a thirteenth aspect of the present invention, the conditioner is held by a holding portion that detachably holds the workpiece, and a contact member that performs electrolytic machining by contacting the workpiece is contacted with the workpiece. A contact member conditioning method, wherein a conditioner is brought into contact and the contact member and the conditioner are relatively moved in the presence of a liquid to condition the contact member.
The invention according to claim 14 is the method for conditioning a contact member according to claim 13, wherein the conditioning of the contact member is performed after the contact member is installed or replaced, or at an interval of electrolytic processing.

請求項15に記載の発明は、前記接触部材のコンディショニングにより、接触部材の前記被加工物との接触面の平坦度を100μm以下、接触面の表面粗さを5μm以下にすることを特徴とする請求項11乃至14のいずれかに記載の接触部材のコンディショニング方法である。   The invention according to claim 15 is characterized in that, by conditioning the contact member, the flatness of the contact surface of the contact member with the workpiece is set to 100 μm or less, and the surface roughness of the contact surface is set to 5 μm or less. It is a conditioning method of the contact member in any one of Claims 11 thru | or 14.

本発明によれば、電解加工の際に被加工物に接触する接触部材の該被加工物との接触面を、この平面度及び表面粗さが所定値以下となるように、コンディショナーを介してコンディショニングすることができ、これによって、接触部材の被加工物表面への接触状態を一定に保って、電解加工における加工特性の安定化や接触部材の長寿命化を図ることができる。   According to the present invention, the contact surface of the contact member that comes into contact with the workpiece during electrolytic processing is contacted with the workpiece via the conditioner so that the flatness and the surface roughness are not more than predetermined values. Conditioning can be performed, whereby the contact state of the contact member with the surface of the workpiece can be kept constant, and the processing characteristics in electrolytic processing can be stabilized and the life of the contact member can be extended.

以下、本発明の実施の形態に係る電解加工装置について、図面を参照して詳細に説明する。
図3は、本発明の実施の形態に係る電解加工装置を備えた基板処理装置の構成を示す平面図である。図3に示すように、この基板処理装置は、例えば、図1(b)に示すように、表面に導電体膜(被加工部)としての銅膜6を有する基板Wを収納したカセットを搬出入する搬出入部としての一対のロード・アンロード部30と、基板Wを反転させる反転機32と、電解加工装置34と、電解加工後の基板Wを洗浄・乾燥する洗浄部39を備えている。これらの機器は直列に配置されており、これらの機器の間で基板Wを搬送して授受する搬送装置としての搬送ロボット36がこれらの機器と平行に配置されている。また、電解加工装置34による電解加工の際に、後述する加工電極84と給電電極86との間に印加する電圧またはこれらの間を流れる電流をモニタするモニタ部38がロード・アンロード部30に隣接して配置されている。
Hereinafter, an electrolytic processing apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 3 is a plan view showing a configuration of the substrate processing apparatus including the electrolytic processing apparatus according to the embodiment of the present invention. As shown in FIG. 3, this substrate processing apparatus carries out a cassette containing a substrate W having a copper film 6 as a conductor film (processed part) on the surface, for example, as shown in FIG. A pair of loading / unloading sections 30 serving as loading / unloading sections, a reversing machine 32 for reversing the substrate W, an electrolytic processing apparatus 34, and a cleaning section 39 for cleaning and drying the substrate W after electrolytic processing are provided. . These devices are arranged in series, and a transfer robot 36 as a transfer device that transfers the substrate W between these devices and delivers it is arranged in parallel with these devices. In addition, a monitor unit 38 that monitors a voltage applied between a machining electrode 84 and a power supply electrode 86 (described later) or a current flowing between them during the electrolytic machining by the electrolytic machining apparatus 34 is provided in the load / unload unit 30. Adjacent to each other.

図4は、電解加工装置34を模式的に示す縦断面図、図5は、図4の平面図である。図4及び図5に示すように、電解加工装置34は、表面に接触部材40を取付けた電極部42と、基板保持部44で基板Wを着脱自在に保持して電極部42との間で基板Wに電解加工を行う電解加工部46と、接触部材40の表面(上面)をコンディショナー48でコンディショニングするコンディショニング部50を有している。   4 is a longitudinal sectional view schematically showing the electrolytic processing apparatus 34, and FIG. 5 is a plan view of FIG. As shown in FIGS. 4 and 5, the electrolytic processing apparatus 34 includes an electrode part 42 having a contact member 40 attached to the surface thereof, and a substrate holding part 44 detachably holding the substrate W between the electrode part 42 and the electrode part 42. An electrolytic processing unit 46 that performs electrolytic processing on the substrate W, and a conditioning unit 50 that conditions the surface (upper surface) of the contact member 40 with a conditioner 48 are provided.

この例では、電極部42として、基板保持部44で保持する基板Wの直径の2倍以上の直径を有するものを使用し、基板保持部44とコンディショナー48が電極部42の中心を挟んで左右に位置するようにして、基板Wの表面全域を電解加工し、電極部42の接触部材40を同時にコンディショニングできるようにした例を示している。   In this example, as the electrode part 42, an electrode part having a diameter twice or more as large as the diameter of the substrate W held by the substrate holding part 44 is used, and the substrate holding part 44 and the conditioner 48 are located on both sides of the center of the electrode part 42. In this example, the entire surface of the substrate W is electrolytically processed so that the contact member 40 of the electrode portion 42 can be conditioned at the same time.

電解加工部46は、上下動可能かつ水平方向に揺動自在なアーム52を備え、このアーム52の自由端に、表面を下向き(フェースダウン)して基板Wを吸着保持する基板保持部44が垂設されている。アーム52は、揺動用モータ54に連結された揺動軸56の上端に取付けられており、揺動用モータ54の駆動に伴って水平方向に揺動する。揺動軸56は、上下方向に延びるボールねじ58に連結されており、ボールねじ58に連結された上下動用モータ60の駆動に伴ってアーム52と共に上下動する。   The electrolytic processing unit 46 includes an arm 52 that can move up and down and swing in the horizontal direction, and a substrate holding unit 44 that holds the substrate W by suctioning the surface downward (face-down) at the free end of the arm 52. It is installed vertically. The arm 52 is attached to the upper end of the swing shaft 56 connected to the swing motor 54 and swings in the horizontal direction as the swing motor 54 is driven. The swing shaft 56 is connected to a ball screw 58 extending in the vertical direction, and moves up and down together with the arm 52 as the vertical movement motor 60 connected to the ball screw 58 is driven.

基板保持部44は、基板保持部44で保持した基板Wと電極部42とを相対移動させる第1駆動部としての自転用モータ62に接続されており、この自転用モータ62の駆動に伴って回転(自転)する。また、上述したように、アーム52は、上下動及び水平方向に揺動可能となっており、基板保持部44は、アーム52と一体となって上下動及び水平方向に揺動可能となっている。   The substrate holding unit 44 is connected to a rotation motor 62 as a first drive unit that relatively moves the substrate W held by the substrate holding unit 44 and the electrode unit 42. As the rotation motor 62 is driven, the substrate holding unit 44 is connected. Rotates (spins). Further, as described above, the arm 52 can move up and down and swing in the horizontal direction, and the substrate holder 44 can move up and down and swing in the horizontal direction integrally with the arm 52. Yes.

コンディショニング部50もほぼ同様に、上下動可能かつ水平方向に揺動自在なアーム64を備え、このアーム64の自由端に支持体66が垂設され、この支持体66の下面にコンディショナー48が取付けられている。アーム64は、揺動用モータ68に連結された揺動軸70の上端に取付けられており、揺動用モータ68の駆動に伴って水平方向に揺動する。揺動軸70は、上下方向に延びるボールねじ72に連結されており、ボールねじ72に連結された上下動用モータ74の駆動に伴ってアーム64と共に上下動する。   The conditioning unit 50 is also provided with an arm 64 that can move up and down and swing in the horizontal direction. A support 66 is suspended from the free end of the arm 64, and a conditioner 48 is attached to the lower surface of the support 66. It has been. The arm 64 is attached to the upper end of a swing shaft 70 connected to the swing motor 68 and swings in the horizontal direction as the swing motor 68 is driven. The swinging shaft 70 is connected to a ball screw 72 extending in the vertical direction, and moves up and down together with the arm 64 as the vertical movement motor 74 connected to the ball screw 72 is driven.

支持体66は、支持体66に取付けたコンディショナー48と電極部42とを相対移動させる駆動部としての自転用モータ76に接続されており、この自転用モータ76の駆動に伴って回転(自転)する。また、上述したように、アーム64は、上下動及び水平方向に揺動可能となっており、支持体66は、アーム64と一体となって上下動及び水平方向に揺動可能となっている。   The support 66 is connected to a rotation motor 76 as a drive unit that relatively moves the conditioner 48 attached to the support 66 and the electrode portion 42, and rotates (spins) as the rotation motor 76 is driven. To do. Further, as described above, the arm 64 can move up and down and swing in the horizontal direction, and the support 66 can move up and down and move in the horizontal direction integrally with the arm 64. .

コンディショナー48は、この例では、酸化セリウム(CeO)等の砥粒を、例えばフェノール樹脂等のバインダを用いて板状に固定した研磨体(固定砥粒)から構成されている。そして、この表面(下面)を研磨面48aとして、液体(研磨液)の存在下で、この研磨面48aを接触部材40の基板Wとの接触面(上面)40aに所定の圧力で押圧しつつ、コンディショナー48と接触部材40とを相対運動させることで、接触部材40の接触面40aの研磨によるコンディショニングを行う。 In this example, the conditioner 48 is composed of a polishing body (fixed abrasive grains) in which abrasive grains such as cerium oxide (CeO 2 ) are fixed in a plate shape using a binder such as phenol resin. Then, this surface (lower surface) is used as a polishing surface 48a, and in the presence of liquid (polishing liquid), the polishing surface 48a is pressed against the contact surface (upper surface) 40a of the contact member 40 with the substrate W with a predetermined pressure. Conditioning is performed by polishing the contact surface 40a of the contact member 40 by causing the conditioner 48 and the contact member 40 to move relative to each other.

このように、砥粒を固定した研磨体(固定砥粒)でコンディショナー48を構成することで、硬質な研磨面48aを得ることができ、これによって、接触部材40の基板Wとの接触面40aの表面に傷(スクラッチ)が発生するのを防止しつつ、該接触面40aを安定した研磨速度で研磨して、高い平坦度を得ることができる。しかも、研磨砥粒を含まない研磨液、純水、超純水または電気伝導度が500μm以下の液体を供給しつつ接触部材40のコンディショニングを行うことができ、これによって、基板Wの電解加工と接触部材40のコンディショニング(研磨)を同時に行うとともに、環境問題の負荷を低減することができる。   In this way, by forming the conditioner 48 with a polishing body (fixed abrasive grains) to which abrasive grains are fixed, a hard polishing surface 48a can be obtained, whereby the contact surface 40a of the contact member 40 with the substrate W is obtained. It is possible to obtain a high flatness by polishing the contact surface 40a at a stable polishing rate while preventing the surface from being scratched. Moreover, the contact member 40 can be conditioned while supplying a polishing liquid that does not contain abrasive grains, pure water, ultrapure water, or a liquid having an electric conductivity of 500 μm or less. While simultaneously conditioning (polishing) the contact member 40, it is possible to reduce the burden of environmental problems.

コンディショナー(研磨体)48の、接触部材40の接触面40aに接触する研磨面48aの平坦度は100μm以下で、固定される砥粒の直径は5μm以下であることが好ましい。これにより、接触部材40の基板Wとの接触面40aを、平坦度が100μm以下、表面粗さが5μm以下となるように、コンディショナー48でコンディショニング(研磨)することができる。   The flatness of the polishing surface 48a of the conditioner (polishing body) 48 that contacts the contact surface 40a of the contact member 40 is preferably 100 μm or less, and the diameter of the fixed abrasive grains is preferably 5 μm or less. Thus, the contact surface 40a of the contact member 40 with the substrate W can be conditioned (polished) by the conditioner 48 so that the flatness is 100 μm or less and the surface roughness is 5 μm or less.

なお、例えば、不織布、スポンジまたは発泡ウレタン等の樹脂材料からなる研磨パッドでコンディショナーを構成し、遊離砥粒を用いて研磨(コンディショニング)を行うようにしてもよい。このような研磨パッドは、一般に剛性が低いが、高い剛性を有するものを使用することで、平坦度を高めることができる。また、直径が5μm以下の遊離砥粒を用いることで、接触部材40の基板Wとの接触面40aを、表面粗さが5μm以下となるようにコンディショニング(研磨)することができる。   For example, the conditioner may be constituted by a polishing pad made of a resin material such as nonwoven fabric, sponge, or urethane foam, and polishing (conditioning) may be performed using loose abrasive grains. Such a polishing pad generally has low rigidity, but the flatness can be increased by using a polishing pad having high rigidity. Further, by using loose abrasive grains having a diameter of 5 μm or less, the contact surface 40a of the contact member 40 with the substrate W can be conditioned (polished) so that the surface roughness is 5 μm or less.

コンディショナー48として研磨パッドを用いた場合は、例えば、研磨砥粒の材質や砥粒径、コンディショナー48の接触部材40の基板Wとの接触面40aへの接触圧力、コンディショナー48の接触部材40の基板Wとの接触面40aへの接触量、コンディショナー48と接触部材40との相対運動速度、及びコンディショニング時間(研磨時間)等でコンディショニング量(研磨量)が制御される。   When a polishing pad is used as the conditioner 48, for example, the material of the abrasive grains and the abrasive particle size, the contact pressure of the contact member 40 of the conditioner 48 on the contact surface 40a with the substrate W, the substrate of the contact member 40 of the conditioner 48, and the like. The amount of conditioning (polishing amount) is controlled by the amount of contact with W on the contact surface 40a, the relative movement speed between the conditioner 48 and the contact member 40, and the conditioning time (polishing time).

電極部42は、絶縁体からなる円板状のテーブル80と、テーブル80に直結されて該テーブル80を回転(自転)させる駆動部としての中空モータ82を有している。テーブル80の上面には、扇状の複数の加工電極84と給電電極86が表面(上面)を露出させて交互に埋設され、これらの加工電極84と給電電極86は、電解加工の際に基板Wの表面(下面)と接触するシート状の接触部材40で一体に覆われている。   The electrode unit 42 includes a disk-shaped table 80 made of an insulator, and a hollow motor 82 that is directly connected to the table 80 and serves as a drive unit that rotates (spins) the table 80. A plurality of fan-shaped machining electrodes 84 and power supply electrodes 86 are alternately embedded on the upper surface of the table 80 so that the surface (upper surface) is exposed. The machining electrodes 84 and the power supply electrodes 86 are formed on the substrate W during electrolytic processing. Is integrally covered with a sheet-like contact member 40 that comes into contact with the surface (lower surface) of the sheet.

加工電極84は、スリップリング88を介して電源90の陰極に接続され、給電電極86は、スリップリング88を介して電源90の陽極に接続される。例えば、銅を加工する場合においては、陰極側に電解加工作用が生じるので、陰極に接続した電極が加工電極となり、陽極に接続した電極が給電電極となる。一方、加工材料によっては、給電電極86を電源90の陰極に接続し、加工電極84を電源90の陽極に接続してもよい。例えば、被加工材料が例えばアルミニウムやシリコンである場合には、陽極側で電解加工作用が生じるため、電源の陽極に接続した電極が加工電極となり、陰極に接続した電極が給電電極となる。   The processing electrode 84 is connected to the cathode of the power source 90 via the slip ring 88, and the power supply electrode 86 is connected to the anode of the power source 90 via the slip ring 88. For example, in the case of processing copper, an electrolytic processing action occurs on the cathode side, so that the electrode connected to the cathode serves as a processing electrode and the electrode connected to the anode serves as a feeding electrode. On the other hand, depending on the processing material, the feeding electrode 86 may be connected to the cathode of the power source 90 and the processing electrode 84 may be connected to the anode of the power source 90. For example, when the material to be processed is, for example, aluminum or silicon, an electrolytic processing action occurs on the anode side. Therefore, the electrode connected to the anode of the power source becomes the processing electrode, and the electrode connected to the cathode becomes the power supply electrode.

ここで、加工電極84及び給電電極86は、電解反応により、酸化または溶出が一般に問題となる。このため、電極の素材として、電極に広く使用されている金属や金属化合物よりも、炭素、比較的不活性な貴金属、導電性酸化物または導電性セラミックスを使用することが好ましい。この貴金属を素材とした電極としては、例えば、下地の電極素材にチタンを用い、その表面にめっきやコーティングで白金またはイリジウムを付着させ、高温で焼結して安定化と強度を保つ処理を行ったものが挙げられる。セラミックス製品は、一般に無機物質を原料として熱処理によって得られ、各種の非金属・金属の酸化物・炭化物・窒化物などを原料として、様々な特性を持つ製品が作られている。この中に導電性を持つセラミックスもある。電極が酸化すると電極の電気抵抗値が増加し、印加電圧の上昇を招くが、このように、白金などの酸化しにくい材料やイリジウムなどの導電性酸化物で電極表面を保護することで、電極素材の酸化による導電性の低下を防止することができる。   Here, the processing electrode 84 and the feeding electrode 86 generally have a problem of oxidation or elution due to an electrolytic reaction. For this reason, it is preferable to use carbon, a comparatively inactive noble metal, a conductive oxide, or a conductive ceramic rather than the metal and metal compound which are widely used for an electrode as a raw material of an electrode. As an electrode made of this noble metal, for example, titanium is used as the base electrode material, platinum or iridium is attached to the surface by plating or coating, and sintering is performed at a high temperature to maintain stability and strength. Can be mentioned. Ceramic products are generally obtained by heat treatment using inorganic materials as raw materials, and products having various characteristics are made using various nonmetals, metal oxides, carbides and nitrides as raw materials. Some of these are conductive ceramics. When the electrode is oxidized, the electrical resistance value of the electrode increases, leading to an increase in applied voltage. Thus, by protecting the electrode surface with a material that is difficult to oxidize such as platinum or a conductive oxide such as iridium, the electrode is protected. A decrease in conductivity due to oxidation of the material can be prevented.

接触部材40は、この例では、電解質を有する部材、例えばイオン交換体から構成されている。このように、基板Wと加工電極84及び給電電極86との間にイオン交換体からなる接触部材40を挟むことで、加工速度を大幅に向上させることができる。つまり、超純水電気化学的加工は、超純水中の水酸化物イオンと被加工材料との化学的相互作用によるものである。しかし、超純水中に含まれる反応種である水酸化物イオン濃度は、常温・常圧状態で10−7mol/Lと微量であるため、除去加工反応以外の反応(酸化膜形成等)による除去加工効率の低下が考えられる。このため、除去加工反応を高効率で行うためには、水酸化物イオンを増加させる必要がある。そこで、水酸化物イオンを増加させる方法として、触媒材料により超純水の解離反応を促進させる方法があり、その有力な触媒材料としてイオン交換体が挙げられる。具体的には、イオン交換体中の官能基と水分子との相互作用により水分子の解離反応に関する活性化エネルギを低下させる。これによって、水の解離を促進させて、加工速度を向上させることができる。 In this example, the contact member 40 is made of a member having an electrolyte, such as an ion exchanger. In this way, by sandwiching the contact member 40 made of an ion exchanger between the substrate W and the processing electrode 84 and the power supply electrode 86, the processing speed can be greatly improved. That is, ultrapure water electrochemical processing is based on chemical interaction between hydroxide ions in ultrapure water and the material to be processed. However, since the hydroxide ion concentration, which is a reactive species contained in ultrapure water, is as small as 10 −7 mol / L at room temperature and pressure, reactions other than removal processing reactions (oxide film formation, etc.) It is conceivable that the removal processing efficiency is reduced by the above. For this reason, in order to perform the removal processing reaction with high efficiency, it is necessary to increase the hydroxide ions. Thus, as a method of increasing hydroxide ions, there is a method of promoting the dissociation reaction of ultrapure water with a catalyst material, and an ion exchanger is an effective catalyst material. Specifically, the activation energy related to the dissociation reaction of water molecules is reduced by the interaction between the functional groups in the ion exchanger and the water molecules. Thereby, dissociation of water is promoted, and the processing speed can be improved.

更に、この例では、電解加工の際に、イオン交換体からなる接触部材40が基板Wに接触するようにしている。イオン交換体からなる接触部材40と基板Wとが近接した状態では、この間隔の大きさにもよるが、電気抵抗がある程度大きいので、必要とする電流密度を与えようとした時の電圧が大きくなる。しかし、一方では、非接触であるため、基板Wの表面に沿った純水または超純水の流れが作り易く、基板表面での反応生成物を高効率で除去することができる。これに対して、イオン交換体からなる接触部材40を基板Wに接触させると、電気抵抗が極めて小さくなって、印加電圧も小さくて済み、消費電力も低減できる。   Further, in this example, the contact member 40 made of an ion exchanger is brought into contact with the substrate W during the electrolytic processing. In a state where the contact member 40 made of an ion exchanger and the substrate W are close to each other, although depending on the size of the gap, the electric resistance is large to some extent, so that the voltage when trying to give the required current density is large. Become. However, on the other hand, since it is non-contact, it is easy to make a flow of pure water or ultrapure water along the surface of the substrate W, and reaction products on the substrate surface can be removed with high efficiency. On the other hand, when the contact member 40 made of an ion exchanger is brought into contact with the substrate W, the electrical resistance becomes extremely small, the applied voltage can be reduced, and the power consumption can be reduced.

また、加工速度を上げるために電圧を上げて電流密度を大きくすると、電極と基板(被加工物)との間の抵抗が大きい場合では、放電が生じる場合がある。放電が生じると、被加工物表面にピッチングが起こり、加工面の均一性や平坦化が困難となる。これに対して、イオン交換体からなる接触部材40を基板Wに接触させると、電気抵抗が極めて小さいことから、このような放電が生じることを防止することができる。   Further, when the voltage is increased to increase the processing speed and the current density is increased, a discharge may occur when the resistance between the electrode and the substrate (workpiece) is large. When electric discharge occurs, pitching occurs on the surface of the workpiece, and the uniformity and flattening of the processed surface becomes difficult. On the other hand, when the contact member 40 made of an ion exchanger is brought into contact with the substrate W, the electrical resistance is extremely small, so that such discharge can be prevented from occurring.

この実施の形態にあっては、電極部42のテーブル80に設けた貫通孔80aを通して、電極部42の上面に、純水、好ましくは超純水を供給する。つまり、テーブル80の中央部には、純水、好ましくは超純水を供給する液体供給部としての貫通孔80aが設けられている。そして、この貫通孔80aは、中空モータ82の中空部の内部を延びる純水供給管92に接続されている。純水(超純水)は、この貫通孔80aを通して電極部42の上面に供給された後、接触部材40の全域に供給される。   In this embodiment, pure water, preferably ultrapure water is supplied to the upper surface of the electrode part 42 through a through hole 80 a provided in the table 80 of the electrode part 42. That is, a through-hole 80a as a liquid supply unit for supplying pure water, preferably ultrapure water, is provided at the center of the table 80. The through hole 80 a is connected to a pure water supply pipe 92 that extends inside the hollow portion of the hollow motor 82. Pure water (ultra-pure water) is supplied to the entire surface of the contact member 40 after being supplied to the upper surface of the electrode portion 42 through the through hole 80a.

更に、図5に示すように、電極部42の上方には、複数の供給口を有し、電極部42の直径方向に沿って延びて、電極部42の上面に、純水、好ましくは超純水を供給する液体供給部としての純水ノズル94が配置されている。これによって、純水、好ましくは超純水が電極部42の上下方向から同時に供給される。   Further, as shown in FIG. 5, a plurality of supply ports are provided above the electrode portion 42, extend along the diameter direction of the electrode portion 42, and pure water, preferably super A pure water nozzle 94 is disposed as a liquid supply unit that supplies pure water. Thereby, pure water, preferably ultrapure water is simultaneously supplied from the vertical direction of the electrode part 42.

次に、この実施の形態における電解加工装置34を備えた基板処理装置を用いた基板処理(電解加工)について説明する。まず、例えば、図1(b)に示すように、表面に導電体膜(被加工部)として銅膜6を形成した基板Wを収納したカセットをロード・アンロード部30にセットし、このカセットから1枚の基板Wを搬送ロボット36で取出す。搬送ロボット36は、取出した基板Wを必要に応じて反転機32に搬送し、基板Wの導電体膜(銅膜6)を形成した表面が下を向くように反転させる。   Next, substrate processing (electrolytic processing) using the substrate processing apparatus provided with the electrolytic processing apparatus 34 in this embodiment will be described. First, for example, as shown in FIG. 1B, a cassette containing a substrate W on which a copper film 6 is formed as a conductor film (processed portion) on the surface is set in a load / unload unit 30. A single substrate W is taken out by the transfer robot 36. The transfer robot 36 transfers the taken-out substrate W to the reversing machine 32 as necessary, and reverses the substrate W so that the surface on which the conductive film (copper film 6) is formed faces downward.

搬送ロボット36は反転させた基板Wを受け取り、これを電解加工装置34に搬送し、基板保持部44に吸着保持させる。そして、電解加工部46のアーム52を移動させて基板Wを保持した基板保持部44を電極部42の上方の加工位置まで移動させる。次に、上下動用モータ60を駆動して基板保持部44を下降させて、この基板保持部44で保持した基板Wを電極部42の接触部材40の上面に所定の圧力で接触させる。   The transport robot 36 receives the inverted substrate W, transports it to the electrolytic processing apparatus 34, and sucks and holds it on the substrate holder 44. Then, the arm 52 of the electrolytic processing unit 46 is moved to move the substrate holding unit 44 holding the substrate W to a processing position above the electrode unit 42. Next, the vertical movement motor 60 is driven to lower the substrate holding portion 44, and the substrate W held by the substrate holding portion 44 is brought into contact with the upper surface of the contact member 40 of the electrode portion 42 with a predetermined pressure.

この接触部材40と基板Wとの接触圧力は、低接触圧力という観点から、13.7kPa(140gf/cm、2.0psi)以下、より好ましくは6.86kPa(70gf/cm、1.0psi)以下、更に好ましくは3.43Pa(35gf/cm、0.5psi)以下である。 Contact pressure between the contact member 40 and substrate W, from the viewpoint of low contact pressure, 13.7kPa (140gf / cm 2, 2.0psi) or less, more preferably 6.86kPa (70gf / cm 2, 1.0psi ) Or less, more preferably 3.43 Pa (35 gf / cm 2 , 0.5 psi) or less.

この状態で、自転用モータ62を駆動して、基板Wを基板保持部44と一体に回転(自転)させ、同時に、中空モータ82を駆動して、電極部42を回転(自転)させる。これによって、基板Wと電極部42を相対運動させる。このとき、純水供給管92及び電極部42のテーブル80に設けた貫通孔80aを通して、更には、純水ノズル94を通して、電極部42の上面に純水、好ましくは超純水等の流体を供給する。
なお、純水供給管92及び電極部42のテーブル80に設けた貫通孔80a、または純水ノズル94の一方を通して電極部42の上面に純水等を供給するようにしてもよい。またコンディショニング部50にあっては、支持体66及びコンディショナー48の内部を通して、電極部42に上面に純水等を供給するようにしてもよい。
In this state, the rotation motor 62 is driven to rotate (rotate) the substrate W integrally with the substrate holding portion 44, and at the same time, the hollow motor 82 is driven to rotate (rotate) the electrode portion 42. As a result, the substrate W and the electrode part 42 are moved relative to each other. At this time, a fluid such as pure water, preferably ultrapure water is applied to the upper surface of the electrode portion 42 through the pure water supply pipe 92 and the through hole 80a provided in the table 80 of the electrode portion 42, and further through the pure water nozzle 94. Supply.
Note that pure water or the like may be supplied to the upper surface of the electrode portion 42 through one of the pure water supply pipe 92 and the through hole 80 a provided in the table 80 of the electrode portion 42 or the pure water nozzle 94. In the conditioning unit 50, pure water or the like may be supplied to the upper surface of the electrode unit 42 through the inside of the support 66 and the conditioner 48.

そして、電源90により加工電極84と給電電極86との間に所定の電圧を印加して、固体電解質からなる接触部材(イオン交換体)40により生成された水素イオンまたは水酸化物イオンによって、加工電極84において基板Wの表面の導電体膜(銅膜6)の電解加工を行う。   Then, a predetermined voltage is applied between the processing electrode 84 and the power supply electrode 86 by the power source 90, and processing is performed by hydrogen ions or hydroxide ions generated by the contact member (ion exchanger) 40 made of a solid electrolyte. In the electrode 84, electrolytic processing of the conductor film (copper film 6) on the surface of the substrate W is performed.

電解加工中には、加工電極84と給電電極86との間に印加する電圧、またはこの間を流れる電流をモニタ部38でモニタして、エンドポイント(加工終点)を検知する。すなわち、同じ電圧(電流)を印加した状態で電解加工を行うと、材料によって流れる電流(印加される電圧)に違いが生じる。例えば、図6(a)に示すように、表面に材料Bと材料Aとを順次成膜した基板Wの該表面に電解加工を施したときに流れる電流をモニタすると、材料Aを電解加工している間は一定の電流が流れるが、異なる材料Bの加工に移行する時点で流れる電流が変化する。同様に、加工電極84と給電電極86との間に印加される電圧にあっても、図6(b)に示すように、材料Aを電解加工している間は一定の電圧が印加されるが、異なる材料Bの加工に移行する時点で印加される電圧が変化する。なお、図6(a)は、材料Bを電解加工するときの方が、材料Aを電解加工するときよりも電流が流れにくくなる場合を、図6(b)は、材料Bを電解加工するときの方が、材料Aを電解加工するときよりも電圧が高くなる場合の例を示している。これにより、この電流または電圧の変化をモニタすることでエンドポイントを確実に検知することができる。   During the electrolytic processing, the voltage applied between the processing electrode 84 and the power supply electrode 86 or the current flowing therebetween is monitored by the monitor unit 38 to detect the end point (processing end point). That is, when electrolytic processing is performed in the state where the same voltage (current) is applied, a difference occurs in the current (applied voltage) flowing depending on the material. For example, as shown in FIG. 6 (a), when the current that flows when the surface of the substrate W on which the material B and the material A are sequentially formed is subjected to electrolytic processing, the material A is electrolytically processed. While a constant current flows during the process, the current that flows at the time of transition to processing of a different material B changes. Similarly, even if the voltage is applied between the machining electrode 84 and the feeding electrode 86, a constant voltage is applied while the material A is electrolytically processed, as shown in FIG. 6B. However, the voltage applied at the time of shifting to processing of a different material B changes. 6A shows a case where the current is less likely to flow when the material B is electrolytically processed than when the material A is electrolytically processed. FIG. 6B shows the case where the material B is electrolytically processed. Shows an example where the voltage is higher than when the material A is electrolytically processed. Thus, the end point can be reliably detected by monitoring the change in the current or voltage.

なお、モニタ部38で加工電極84と給電電極86との間に印加する電圧、またはこの間を流れる電流をモニタして加工終点を検知するようにした例を説明したが、このモニタ部38で、加工中における基板の状態の変化をモニタして、任意に設定した加工終点を検知するようにしてもよい。この場合、加工終点は、被加工面の指定した部位について、所望の加工量に達した時点、または加工量と相関関係を有するパラメータが所望の加工量に相当する量に達した時点を指す。このように、加工の途中においても、加工終点を任意に設定して検知できるようにすることで、多段プロセスでの電解加工が可能となる。   In addition, although the monitor part 38 demonstrated the example which monitors the voltage applied between the process electrode 84 and the electric power feeding electrode 86, or the electric current which flows through this, and detected the process end point, in this monitor part 38, A change in the state of the substrate during processing may be monitored to detect an arbitrarily set processing end point. In this case, the processing end point indicates a point in time when a desired processing amount is reached or a parameter having a correlation with the processing amount reaches an amount corresponding to the desired processing amount for a specified portion of the processing surface. As described above, even during the machining, the machining end point can be arbitrarily set and detected so that the electrolytic machining can be performed in a multistage process.

例えば、基板が異材料に達したときに生じる摩擦係数の違いによる摩擦力の変化や、基板の表面の凹凸を平坦化する際、凹凸を除去したことにより生じる摩擦力の変化等を検出することで加工量を判断し、加工終点を検出することとしてもよい。また、被加工面の電気抵抗による発熱や、加工面と被加工面との間に液体(純水)の中を移動するイオンと水分子の衝突による発熱が生じ、例えば基板の表面に堆積した銅膜を定電圧制御でする際には、電解加工が進み、バリア層や絶縁膜が露出するのに伴って、電気抵抗が大きくなり電流値が小さくなって発熱量が順に減少する。したがって、この発熱量の変化を検出することで加工量を判断し、加工終点を検出することとしてもよい。あるいは、異材料に達した時に生じる反射率の違いによる反射光の強度の変化を検出して、基板上の被加工膜の膜厚を検知し、これにより加工終点を検出してもよい。   For example, detecting changes in frictional force due to differences in the coefficient of friction that occurs when the substrate reaches a different material, or changes in frictional force resulting from removing irregularities when flattening irregularities on the surface of the substrate It is also possible to determine the processing amount and detect the processing end point. In addition, heat generated due to electrical resistance of the work surface and heat generated by collision of ions and water molecules moving in the liquid (pure water) between the work surface and the work surface occurred, for example, deposited on the surface of the substrate. When the copper film is controlled at a constant voltage, the electrolytic processing proceeds, and as the barrier layer and the insulating film are exposed, the electrical resistance increases, the current value decreases, and the amount of heat generation decreases sequentially. Therefore, the processing amount may be determined by detecting the change in the heat generation amount, and the processing end point may be detected. Alternatively, it is also possible to detect a change in the intensity of reflected light due to a difference in reflectance that occurs when a different material is reached, detect the film thickness of the film to be processed on the substrate, and thereby detect the processing end point.

また、銅膜等の導電性膜の内部に渦電流を発生させ、基板の内部を流れる渦電流をモニタし、例えば周波数やインピーダンスの変化を検出して、基板上の被加工膜の膜厚を検知し、これにより加工終点を検出してもよい。更に、電解加工にあっては、加工電極と給電電極との間を流れる電流値で加工レートが決まり、加工量は、この電流値と加工時間の積で求められる電気量に比例する。したがって、電流値と加工時間の積で求められる電気量を積算し、この積算値が所定の値に達したことを検出することで加工量を判断し、加工終点を検出してもよい。   In addition, an eddy current is generated inside a conductive film such as a copper film, and the eddy current flowing inside the substrate is monitored. For example, a change in frequency or impedance is detected, and the film thickness of the film to be processed on the substrate is determined. It may be detected to detect the processing end point. Further, in the electrolytic machining, the machining rate is determined by the current value flowing between the machining electrode and the feeding electrode, and the machining amount is proportional to the amount of electricity obtained by the product of the current value and the machining time. Therefore, the machining end point may be detected by integrating the amount of electricity obtained by the product of the current value and the machining time, determining that the accumulated value has reached a predetermined value, and determining the machining end point.

この電解加工と同時に、必要に応じて、電極部42の接触部材40のコンディショナー48によるコンディショニングを行う。つまり、コンディショニング部50のアーム64を移動させて、支持体66に取付けたコンディショナー48を電極部42の上方のコンディショニング位置まで移動させる。次に、上下動用モータ74を駆動し、コンディショナー48を下降させて電極部42の接触部材40の基板Wとの接触面(上面)40aに所定の圧力で接触させ、同時に自転用モータ76を駆動して、コンディショナー48を回転(自転)させる。これにより、純水、好ましくは超純水の存在の下で、砥粒を固定した研磨体(固定砥粒)からなるコンディショナー48により接触部材40の基板Wとの接触面40aの研磨(コンディショニング)を行う。   Simultaneously with this electrolytic processing, conditioning by the conditioner 48 of the contact member 40 of the electrode part 42 is performed as needed. That is, the arm 64 of the conditioning unit 50 is moved to move the conditioner 48 attached to the support 66 to the conditioning position above the electrode unit 42. Next, the vertical movement motor 74 is driven, the conditioner 48 is lowered and brought into contact with the contact surface (upper surface) 40a of the contact member 40 of the electrode portion 42 with the substrate W at a predetermined pressure, and simultaneously the rotation motor 76 is driven. Then, the conditioner 48 is rotated (spinned). Thus, the contact surface 40a of the contact member 40 with the substrate W is polished (conditioning) by the conditioner 48 made of a polishing body (fixed abrasive grains) with abrasive grains fixed in the presence of pure water, preferably ultrapure water. I do.

つまり、前述のように、電極部42の上面には純水、好ましくは超純水が供給されており、このため、コンディショナー48を接触部材40の接触面40aに所定の圧力で接触させ、コンディショナー48と接触部材40とを相対運動させることで、接触部材40の基板Wとの接触面40aのコンディショナー48による研磨(コンディショニング)を行うことができる。   That is, as described above, pure water, preferably ultrapure water, is supplied to the upper surface of the electrode portion 42. For this reason, the conditioner 48 is brought into contact with the contact surface 40a of the contact member 40 at a predetermined pressure. By relatively moving the contact member 48 and the contact member 40, the contact surface 40a of the contact member 40 with the substrate W can be polished (conditioning) by the conditioner 48.

このコンディショナー48による研磨(コンディショニング)は、コンディショナー48の接触部材40の接触面40aへの接触圧力、コンディショナー48の接触部材40の接触面40aへの接触量、コンディショナー48と接触部材40との相対運動速度で制御することができる。コンディショニング時の接触圧力及び接触量は、例えば仕上げ時に接触圧力及び接触量を小さくする等、コンディショニング中において、任意に変化させるようにしてもよい。   Polishing (conditioning) by the conditioner 48 includes contact pressure on the contact surface 40a of the contact member 40 of the conditioner 48, contact amount of the contact member 40 on the contact surface 40a of the conditioner 48, and relative movement between the conditioner 48 and the contact member 40. Can be controlled by speed. The contact pressure and contact amount during conditioning may be arbitrarily changed during conditioning, for example, the contact pressure and contact amount may be reduced during finishing.

そして、コンディショニング終了後、コンディショナー48の回転を停止させ、しかる後、コンディショナー48を上昇させ、アーム64を移動させて、コンディショナー48を基の位置に戻す。
なお、この例では、ボールねじの送り量でコンディショナー48の接触部材40の接触面40aへの接触圧力等を制御するようにしているが、シリンダを使用してコンディショナーを昇降させ、このシリンダの圧力を調整して接触部材40の接触面40aへの接触圧力等を制御してもよく、また両者を併用してもよい。
Then, after the conditioning is completed, the rotation of the conditioner 48 is stopped, and then the conditioner 48 is raised and the arm 64 is moved to return the conditioner 48 to the original position.
In this example, the contact pressure on the contact surface 40a of the contact member 40 of the conditioner 48 is controlled by the feed amount of the ball screw. However, the conditioner is moved up and down using a cylinder, and the pressure of this cylinder is controlled. May be adjusted to control the contact pressure on the contact surface 40a of the contact member 40, or both may be used in combination.

電解加工完了後、電源90の加工電極84及び給電電極86との接続を切り、基板保持部44及び電極部42の回転を停止させ、しかる後、基板保持部44を上昇させ、アーム52を移動させて、基板Wを搬送ロボット36に受渡す。基板Wを受け取った搬送ロボット36は、必要に応じて、基板Wを反転機32に搬送して反転させ、洗浄部39に搬送して洗浄乾燥し、乾燥後の基板Wをロード・アンロード部30のカセットに戻す。   After the electrolytic processing is completed, the connection between the processing electrode 84 and the power supply electrode 86 of the power supply 90 is disconnected, the rotation of the substrate holding portion 44 and the electrode portion 42 is stopped, and then the substrate holding portion 44 is raised and the arm 52 is moved. Then, the substrate W is delivered to the transfer robot 36. The transport robot 36 that has received the substrate W transports the substrate W to the reversing machine 32 and reverses it as necessary, transports the substrate W to the cleaning unit 39, performs cleaning and drying, and loads and unloads the dried substrate W. Return to 30 cassettes.

なお、例えば、接触部材40を設置した後で、この設置した接触部材40で電解加工を行う前や、接触部材40を交換した後で、交換後の接触部材40で電解加工を行う前、更には電解加工のインターバル時等に、接触部材40のコンディショニングのみを、電解加工と独立に行ってもよい。この場合、加工電極84と給電電極86との間に電圧を印加することなく、電極部42の上面に純水、好ましくは超純水を供給しつつ、コンディショナー48を接触部材40の接触面40aに所定の圧力で接触させ、コンディショナー48と接触部材40とを相対運動させる。   For example, after the contact member 40 is installed, before the electrolytic processing is performed with the installed contact member 40, after the contact member 40 is replaced, before the electrolytic processing is performed with the contact member 40 after replacement, Alternatively, only the conditioning of the contact member 40 may be performed independently of the electrolytic processing at an interval of the electrolytic processing. In this case, the conditioner 48 is connected to the contact surface 40 a of the contact member 40 while supplying pure water, preferably ultrapure water, to the upper surface of the electrode portion 42 without applying a voltage between the processing electrode 84 and the power supply electrode 86. The conditioner 48 and the contact member 40 are moved relative to each other at a predetermined pressure.

ここで、電解加工(及びコンディショニング)中に電極部42の上面に供給する純水は、例えば、電気伝導度(1atm,25℃換算、以下同じ)が10μS/cm以下の水であり、超純水は、例えば電気伝導度が0.1μS/cm以下の水である。このように電解質を含まない純水または超純水を使用して電解加工を行うことで、基板Wの表面に電解質等の余分な不純物が付着したり、残留したりすることをなくすことができる。更に、電解によって溶解した銅イオン等が、イオン交換体からなる接触部材40にイオン交換反応で即座に捕捉されるため、溶解した銅イオン等が基板Wの他の部分に再度析出したり、酸化されて微粒子となり基板Wの表面を汚染したりすることがない。   Here, the pure water supplied to the upper surface of the electrode part 42 during the electrolytic processing (and conditioning) is, for example, water having an electric conductivity (1 atm, converted at 25 ° C., the same applies hereinafter) of 10 μS / cm or less, and is ultrapure. The water is, for example, water having an electric conductivity of 0.1 μS / cm or less. By performing electrolytic processing using pure water or ultrapure water that does not contain an electrolyte in this way, it is possible to prevent the impurities such as the electrolyte from adhering to or remaining on the surface of the substrate W. . Further, since copper ions and the like dissolved by electrolysis are immediately captured by the ion exchange reaction in the contact member 40 made of an ion exchanger, the dissolved copper ions and the like are deposited again on other portions of the substrate W, or oxidized. As a result, the surface of the substrate W is not contaminated.

しかも、砥粒を固定した研磨体でコンディショナー48を構成することで、純水や超純水を供給しつつ、接触部材40のコンディショニングを行うことができ、これによって、基板Wの電解加工と接触部材40のコンディショニングを同時に行い、しかも環境問題の負荷を低減することができる。   In addition, by configuring the conditioner 48 with a polishing body in which the abrasive grains are fixed, the contact member 40 can be conditioned while supplying pure water or ultrapure water, thereby contacting the electrolytic processing of the substrate W. The member 40 can be conditioned at the same time, and the burden of environmental problems can be reduced.

純水または超純水の代わりに、電気伝導度500μS/cm以下の液体、例えば純水または超純水に電解質を添加した電解液を使用してもよい。電解液を使用することで、電気抵抗を低減して消費電力を削減することができる。この電解液としては、例えば、NaClやNaSO等の中性塩、HClやHSO等の酸、更には、アンモニア等のアルカリなどの溶液を使用することができ、被加工物の特性によって適宜選択して使用することができる。 Instead of pure water or ultrapure water, a liquid having an electric conductivity of 500 μS / cm or less, for example, an electrolytic solution obtained by adding an electrolyte to pure water or ultrapure water may be used. By using the electrolytic solution, electric resistance can be reduced and power consumption can be reduced. As this electrolytic solution, for example, a neutral salt such as NaCl or Na 2 SO 4 , an acid such as HCl or H 2 SO 4 , or an alkali such as ammonia can be used. Depending on the characteristics, it can be appropriately selected and used.

更に、純水または超純水の代わりに、純水または超純水に界面活性剤等を添加して、電気伝導度が500μS/cm以下、好ましくは、50μS/cm以下、更に好ましくは、0.1μS/cm以下(比抵抗で10MΩ・cm以上)にした液体を使用してもよい。このように、純水または超純水に界面活性剤を添加することで、基板Wと接触部材40の界面にイオンの移動を防ぐ一様な抑制作用を有する層を形成し、これによって、イオン交換(金属の溶解)の集中を緩和して被加工面の平坦性を向上させることができる。ここで、界面活性剤濃度は、100ppm以下が好ましい。   Furthermore, instead of pure water or ultrapure water, a surfactant or the like is added to pure water or ultrapure water, and the electric conductivity is 500 μS / cm or less, preferably 50 μS / cm or less, more preferably 0. A liquid having a specific resistance of 10 MΩ · cm or less may be used. In this way, by adding a surfactant to pure water or ultrapure water, a layer having a uniform suppressing action for preventing the movement of ions is formed at the interface between the substrate W and the contact member 40. The flatness of the work surface can be improved by reducing the concentration of exchange (dissolution of metal). Here, the surfactant concentration is preferably 100 ppm or less.

ここで、接触部材(イオン交換体)40としては、通水性に優れたものを使用することがより好ましい。純水または超純水が接触部材40を通過するように流すことで、水の解離反応を促進させる官能基(強酸性陽イオン交換材料ではスルホン酸基)に十分な水を供給して水分子の解離量を増加させ、水酸化物イオン(もしくはOHラジカル)との反応により発生した加工生成物(ガスも含む)を水の流れにより除去して、加工効率を高めることができる。   Here, as the contact member (ion exchanger) 40, it is more preferable to use a material excellent in water permeability. By supplying pure water or ultrapure water so as to pass through the contact member 40, sufficient water is supplied to the functional group (sulfonic acid group in the case of a strongly acidic cation exchange material) that promotes the dissociation reaction of water. The amount of dissociation can be increased, and the processing products (including gas) generated by the reaction with hydroxide ions (or OH radicals) can be removed by the flow of water to increase the processing efficiency.

上述した接触部材40を構成するイオン交換体は、例えば、アニオン交換基またはカチオン交換基を付与した不織布等で構成することができる。カチオン交換基部は、好ましくは強酸性カチオン交換基(スルホン酸基)を担持したものであるが、弱酸性カチオン交換基(カルボキシル基)を担持したものでもよい。また、アニオン交換基部は、好ましくは強塩基性アニオン交換基(4級アンモニウム基)を担持したものであるが、弱塩基性アニオン交換基(3級以下のアミノ基)を担持したものでもよい。   The ion exchanger which comprises the contact member 40 mentioned above can be comprised with the nonwoven fabric etc. which provided the anion exchange group or the cation exchange group, for example. The cation exchange group preferably has a strong acidic cation exchange group (sulfonic acid group), but may have a weak acidic cation exchange group (carboxyl group). The anion exchange group preferably has a strong basic anion exchange group (quaternary ammonium group), but may have a weak basic anion exchange group (tertiary or lower amino group).

ここで、例えば強塩基アニオン交換基を付与した不織布は、繊維径20〜50μmで空隙率が約90%のポリオレフィン製の不織布に、γ線を照射した後グラフト重合を行ういわゆる放射線グラフト重合法により、グラフト鎖を導入し、次に導入したグラフト鎖をアミノ化して第4級アンモニウム基を導入して作製される。導入されるイオン交換基の容量は、導入するグラフト鎖の量により決定される。グラフト重合を行うためには、例えばアクリル酸、スチレン、メタクリル酸グリシジル、更にはスチレンスルホン酸ナトリウム、クロロメチルスチレン等のモノマーを用い、これらのモノマー濃度、反応温度及び反応時間を制御することで、重合するグラフト量を制御することができる。したがって、グラフト重合前の素材の重量に対し、グラフト重合後の重量の比をグラフト率と呼ぶが、このグラフト率は、最大で500%が可能であり、グラフト重合後に導入されるイオン交換基は、最大で5meq/gが可能である。   Here, for example, a nonwoven fabric provided with a strong base anion exchange group is produced by a so-called radiation graft polymerization method in which a polyolefin nonwoven fabric having a fiber diameter of 20 to 50 μm and a porosity of about 90% is irradiated with γ rays and then graft polymerization is performed. The graft chain is introduced, and then the introduced graft chain is aminated to introduce a quaternary ammonium group. The capacity of the ion exchange group to be introduced is determined by the amount of graft chains to be introduced. In order to perform the graft polymerization, for example, using monomers such as acrylic acid, styrene, glycidyl methacrylate, sodium styrenesulfonate, chloromethylstyrene, and the like, by controlling the monomer concentration, reaction temperature, and reaction time, The amount of grafting to be polymerized can be controlled. Therefore, the ratio of the weight after graft polymerization to the weight of the material before graft polymerization is called the graft ratio. This graft ratio can be up to 500%, and the ion exchange groups introduced after the graft polymerization are A maximum of 5 meq / g is possible.

強酸性カチオン交換基を付与した不織布は、上記強塩基性アニオン交換基を付与する方法と同様に、繊維径20〜50μmで空隙率が約90%のポリオレフィン製の不織布に、γ線を照射した後グラフト重合を行ういわゆる放射線グラフト重合法により、グラフト鎖を導入し、次に導入したグラフト鎖を、例えば加熱した硫酸で処理してスルホン酸基を導入して作製される。また、加熱したリン酸で処理すればリン酸基が導入できる。ここでグラフト率は、最大で500%が可能であり、グラフト重合後に導入されるイオン交換基は、最大で5meq/gが可能である。   The nonwoven fabric provided with the strongly acidic cation exchange group was irradiated with γ-rays on a polyolefin nonwoven fabric having a fiber diameter of 20 to 50 μm and a porosity of about 90% in the same manner as the method of providing the strongly basic anion exchange group. The graft chain is introduced by a so-called radiation graft polymerization method in which post-graft polymerization is performed, and then the introduced graft chain is treated with, for example, heated sulfuric acid to introduce a sulfonic acid group. Moreover, a phosphoric acid group can be introduce | transduced if it processes with the heated phosphoric acid. Here, the graft ratio can be 500% at the maximum, and the ion exchange group introduced after the graft polymerization can be 5 meq / g at the maximum.

なお、接触部材(イオン交換体)40の素材の材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン系高分子、またはその他有機高分子が挙げられる。また素材形態としては、不織布の他に、織布、シート、多孔質材、短繊維等が挙げられる。ここで、ポリエチレンやポリプロピレンは、放射線(γ線と電子線)を先に素材に照射する(前照射)ことで、素材にラジカルを発生させ、次にモノマーと反応させてグラフト重合することができる。これにより、均一性が高く、不純物が少ないグラフト鎖ができる。一方、その他の有機高分子は、モノマーを含浸させ、そこに放射線(γ線、電子線、紫外線)を照射(同時照射)することで、ラジカル重合することができる。この場合、均一性に欠けるが、ほとんどの素材に適用できる。   In addition, as a material of the raw material of the contact member (ion exchanger) 40, polyolefin-type polymers, such as polyethylene and a polypropylene, or other organic polymers are mentioned. Moreover, as a raw material form, a woven fabric, a sheet | seat, a porous material, a short fiber, etc. other than a nonwoven fabric are mentioned. Here, polyethylene and polypropylene can be subjected to graft polymerization by generating radicals in the material by first irradiating the material with radiation (γ rays and electron beams) (pre-irradiation) and then reacting with the monomer. . Thereby, a graft chain having high uniformity and few impurities can be formed. On the other hand, other organic polymers can be radically polymerized by impregnating the monomer and irradiating (simultaneously irradiating) radiation (γ rays, electron beams, ultraviolet rays). In this case, it is not uniform, but can be applied to most materials.

このように、接触部材(イオン交換体)40をアニオン交換基またはカチオン交換基を付与した不織布で構成することで、純水または超純水や電解液等の液体が不織布の内部を自由に移動して、不織布内部の水分解触媒作用を有する活性点に容易に到達することが可能となって、多くの水分子が水素イオンと水酸化物イオンに解離される。更に、解離によって生成した水酸化物イオンが純水または超純水や電解液等の液体の移動に伴って効率良く運ばれるため、低い印加電圧でも高電流が得られる。   In this way, the contact member (ion exchanger) 40 is composed of a nonwoven fabric provided with an anion exchange group or a cation exchange group, so that liquid such as pure water, ultrapure water, or an electrolytic solution can freely move inside the nonwoven fabric. Thus, it becomes possible to easily reach the active point having a water decomposition catalytic action inside the nonwoven fabric, and many water molecules are dissociated into hydrogen ions and hydroxide ions. Furthermore, since the hydroxide ions generated by the dissociation are efficiently carried with the movement of liquid such as pure water, ultrapure water, or electrolytic solution, a high current can be obtained even at a low applied voltage.

ここで、接触部材(イオン交換体)40をアニオン交換基またはカチオン交換基の一方を付与したもののみで構成すると、電解加工できる被加工材料が制限されるばかりでなく、極性により不純物が生成しやすくなる。そこで、アニオン交換基を有するアニオン交換体とカチオン交換基を有するカチオン交換体とを重ね合わせたり、イオン交換基部自体にアニオン交換基とカチオン交換基の双方の交換基を付与するようにしたりしてもよく、これにより、被加工材料の範囲を拡げるとともに、不純物を生成しにくくすることができる。   Here, if the contact member (ion exchanger) 40 is composed only of an anion exchange group or a cation exchange group, not only the work material that can be electrolytically processed but also impurities are generated depending on the polarity. It becomes easy. Therefore, an anion exchanger having an anion exchange group and a cation exchanger having a cation exchange group are overlapped, or both the anion exchange group and the cation exchange group are added to the ion exchange group itself. As a result, the range of the material to be processed can be expanded, and impurities can be hardly generated.

本発明は、種々の電解加工装置に適用でき、加工液、接触部材の組合せは、種々に適用可能である。イオン交換体の他に、例えば内部に電解液を保持したセラミック含浸材で電解質を有する部材を構成してもよい。また、接触部材として、絶縁体または導電性パッド、更にはこれらと電解質を有する部材を任意に組合せたものを使用してもよい。   The present invention can be applied to various electrolytic processing apparatuses, and various combinations of processing liquids and contact members can be applied. In addition to the ion exchanger, for example, a member having an electrolyte may be configured with a ceramic impregnated material holding an electrolytic solution therein. Further, as the contact member, an insulator or a conductive pad, or an arbitrary combination of these and a member having an electrolyte may be used.

この例によれば、電解加工の際に基板Wに接触する接触部材40の該基板Wとの接触面40aを、この平面度及び表面粗さが所定値以下となるように、コンディショニング部50のコンディショナー48を介してコンディショニングすることで、交換前後における接触部材40の基板Wとの接触面40aの状態(平面度及び表面粗さ)のばらつきや接触部材40の基板Wとの接触面40aの使用に伴う劣化等により、接触部材40の基板Wとの接触面40aの状態が変化することを防止することができる。これによって、接触部材40の基板W表面への接触状態を一定に保って、電解加工における加工特性の安定化や接触部材40の長寿命化を図ることができる。   According to this example, the contact surface 40a of the contact member 40 that contacts the substrate W at the time of electrolytic processing is applied to the conditioning unit 50 so that the flatness and the surface roughness are not more than predetermined values. By conditioning through the conditioner 48, variations in the state (flatness and surface roughness) of the contact surface 40a of the contact member 40 with the substrate W before and after replacement and use of the contact surface 40a of the contact member 40 with the substrate W are used. It is possible to prevent a change in the state of the contact surface 40a of the contact member 40 with the substrate W due to deterioration accompanying the above. As a result, the contact state of the contact member 40 on the surface of the substrate W can be kept constant, and the processing characteristics in the electrolytic processing can be stabilized and the life of the contact member 40 can be extended.

図7は、本発明の他の実施の形態の電解加工装置を示す。この図7に示す電解加工装置の図4及び図5に示す電解加工装置と異なる点は、コンディショニング部50を省略し、基板Wとほぼ同じ形状とした、例えば砥粒を固定した研磨体からなるコンディショナー96を別途用意して、基板保持部44で基板Wとコンディショナー96を選択的に保持できるようにした点である。   FIG. 7 shows an electrolytic processing apparatus according to another embodiment of the present invention. The electrolytic processing apparatus shown in FIG. 7 is different from the electrolytic processing apparatus shown in FIGS. 4 and 5 in that the conditioning unit 50 is omitted and the polishing body is formed in a shape substantially the same as that of the substrate W, for example, with a fixed abrasive. A conditioner 96 is prepared separately so that the substrate holding part 44 can selectively hold the substrate W and the conditioner 96.

つまり、この例は、基板保持部44で基板Wを保持し、電極部42の上面に純水等を供給しながら、基板保持部44で保持した基板Wを電極部42の接触部材40に所定の圧力で接触させつつ、基板Wと電極部42を相対運動させる。同時に、電源90により加工電極84と給電電極86との間に所定の電圧を印加することで電解加工を行う。そして、基板保持部44でコンディショナー96を保持し、電極部42の上面に純水等を供給しながら、基板保持部44で保持したコンディショナー96を電極部42の接触部材40に所定の圧力で接触させつつ、基板Wと電極部42を相対運動させることで、接触部材40のコンディショニング(研磨)を行う。   That is, in this example, the substrate W is held by the substrate holding unit 44 and the substrate W held by the substrate holding unit 44 is supplied to the contact member 40 of the electrode unit 42 while supplying pure water or the like to the upper surface of the electrode unit 42. The substrate W and the electrode part 42 are moved relative to each other while being brought into contact with each other. At the same time, electrolytic processing is performed by applying a predetermined voltage between the processing electrode 84 and the feeding electrode 86 by the power supply 90. Then, the conditioner 96 is held by the substrate holding unit 44 and the conditioner 96 held by the substrate holding unit 44 is brought into contact with the contact member 40 of the electrode unit 42 with a predetermined pressure while supplying pure water or the like to the upper surface of the electrode unit 42. In addition, the contact member 40 is conditioned (polished) by relatively moving the substrate W and the electrode portion 42.

この例によれば、接触部材40のコンディショニングを基板Wの電解加工と同時に行うことはできず、例えば、接触部材40を設置した後で、この設置した接触部材40で電解加工を行う前や、接触部材40を交換した後で、交換後の接触部材40で電解加工を行う前、更には電解加工のインターバル時等に、接触部材40のコンディショニングのみを電解加工と独立に行うのであるが、コンディショニング部を省略することで、構造の簡素化を図ることができる。   According to this example, conditioning of the contact member 40 cannot be performed simultaneously with the electrolytic processing of the substrate W. For example, after the contact member 40 is installed, before the electrolytic processing is performed with the installed contact member 40, After the contact member 40 is replaced, before the electrolytic processing is performed with the replaced contact member 40, and further, at the interval of the electrolytic processing, only the conditioning of the contact member 40 is performed independently of the electrolytic processing. By omitting the part, the structure can be simplified.

銅配線基板の一製造例を工程順に示す図である。It is a figure which shows one manufacture example of a copper wiring board in order of a process. 加工電極及び給電電極を基板(被加工物)に近接させ、加工電極及び給電電極と基板(被加工物)との間に純水等の液体を供給して電解加工を行う電解加工の原理の説明に付する図である。Based on the principle of electrolytic processing in which a machining electrode and a feeding electrode are brought close to a substrate (workpiece) and a liquid such as pure water is supplied between the machining electrode and the feeding electrode and the substrate (workpiece) to perform electrolytic machining. It is a figure attached to description. 本発明の実施の形態における電解加工装置を備えた基板処理装置の構成を示す平面図である。It is a top view which shows the structure of the substrate processing apparatus provided with the electrolytic processing apparatus in embodiment of this invention. 図3に示す電解加工装置を模式的に示す縦断正面図である。It is a vertical front view which shows typically the electrolytic processing apparatus shown in FIG. 図4の平面図である。FIG. 5 is a plan view of FIG. 4. (a)は、異なる材料を成膜した基板の表面に電解加工を施したときに流れる電流と時間の関係を、(b)は、同じく印加される電圧と時間の関係をそれぞれ示すグラフである。(A) is the graph which shows the relationship between the electric current which flows when the surface of the board | substrate which formed the different material into a film is electrolytically processed, and time, (b) is the graph which respectively shows the relationship between the applied voltage and time. . 本発明の他の実施の形態の電解加工装置を模式的に示す縦断正面図である。It is a vertical front view which shows typically the electrolytic processing apparatus of other embodiment of this invention.

符号の説明Explanation of symbols

30 ロード・アンロード部
32 反転機
34 電解加工装置
38 モニタ部
39 洗浄部
40 接触部材(イオン交換体)
40a 接触面
42 電極部
44 基板保持部
46 電解加工部
48,96 コンディショナー
48a 研磨面
50 コンディショニング部
52,64 アーム
54,68 揺動用モータ
56,70 揺動軸
58,72 ボールねじ
60,74 上下動用モータ
62,76 自転用モータ
66 支持体
80 テーブル
80a 貫通孔
82 中空モータ
84 加工電極
86 給電電極
90 電源
92 純水供給管
94 純水ノズル
30 Loading / Unloading Section 32 Reversing Machine 34 Electrolytic Processing Device 38 Monitor Section 39 Cleaning Section 40 Contact Member (Ion Exchanger)
40a Contact surface 42 Electrode unit 44 Substrate holding unit 46 Electrolytic processing unit 48, 96 Conditioner 48a Polishing surface 50 Conditioning unit 52, 64 Arm 54, 68 Oscillating motor 56, 70 Oscillating shaft 58, 72 Ball screw 60, 74 For vertical movement Motors 62, 76 Motor for rotation 66 Support body 80 Table 80a Through hole 82 Hollow motor 84 Processing electrode 86 Feed electrode 90 Power source 92 Pure water supply pipe 94 Pure water nozzle

Claims (15)

被加工物に近接自在な加工電極と、
前記被加工物に給電する給電電極と、
前記被加工物と前記加工電極または前記給電電極との間の少なくとも一方に配置され前記被加工物と接触自在な接触部材と、
前記加工電極と前記給電電極との間に電圧を印加する電源と、
前記被加工物と前記加工電極または前記給電電極の少なくとも一方とを相対運動させる駆動部と、
前記被加工物と前記加工電極または前記給電電極との間の少なくとも一方に流体を供給する流体供給部と、
前記接触部材の前記被加工物との接触面に接触して該接触面のコンディショニングを行うコンディショナーを備えたコンディショニング部を有することを特徴とする電解加工装置。
A machining electrode that is freely accessible to the workpiece;
A feeding electrode for feeding power to the workpiece;
A contact member that is disposed on at least one of the workpiece and the processing electrode or the power feeding electrode and is freely contactable with the workpiece;
A power source for applying a voltage between the machining electrode and the power supply electrode;
A drive unit that relatively moves the workpiece and at least one of the processing electrode or the feeding electrode;
A fluid supply unit that supplies fluid to at least one of the workpiece and the processing electrode or the power supply electrode;
An electrolytic processing apparatus comprising: a conditioning unit including a conditioner that contacts a contact surface of the contact member with the workpiece to condition the contact surface.
被加工物に近接自在な加工電極と、
前記被加工物に給電する給電電極と、
前記被加工物と前記加工電極または前記給電電極との間の少なくとも一方に配置され前記被加工物と接触自在な接触部材と、
前記加工電極と前記給電電極との間に電圧を印加する電源と、
前記被加工物と前記加工電極または前記給電電極の少なくとも一方とを相対運動させる駆動部と、
前記被加工物と前記加工電極または前記給電電極との間の少なくとも一方に流体を供給する流体供給部と、
前記接触部材の前記被加工物との接触面に接触させて該接触面のコンディショニングするコンディショナーと前記被加工物の一方を選択的に保持する保持部を有することを特徴とする電解加工装置。
A machining electrode that is freely accessible to the workpiece;
A feeding electrode for feeding power to the workpiece;
A contact member that is disposed on at least one of the workpiece and the processing electrode or the power feeding electrode and is freely contactable with the workpiece;
A power source for applying a voltage between the machining electrode and the power supply electrode;
A drive unit that relatively moves the workpiece and at least one of the processing electrode or the feeding electrode;
A fluid supply unit that supplies fluid to at least one of the workpiece and the processing electrode or the power supply electrode;
An electrolytic processing apparatus comprising: a conditioner that contacts a contact surface of the contact member with the workpiece and conditioning the contact surface; and a holding portion that selectively holds one of the workpieces.
前記接触部材は、電解質を含む部材または絶縁体、またはこれらの任意の組合せからなることを特徴とする請求項1または2記載の電解加工装置。   The electrolytic processing apparatus according to claim 1, wherein the contact member is formed of a member including an electrolyte, an insulator, or any combination thereof. 前記電解質は、固体電解質からなることを特徴とする請求項3記載の電解加工装置。   The electrolytic processing apparatus according to claim 3, wherein the electrolyte is made of a solid electrolyte. 前記固体電解質は、イオン交換体からなることを特徴とする請求項4記載の電解加工装置。   The electrolytic processing apparatus according to claim 4, wherein the solid electrolyte is made of an ion exchanger. 前記接触部材は導電性パッドからなり、前記被加工物と前記加工電極または前記給電電極との間のいずれか一方に配置されることを特徴とする請求項1または2記載の電解加工装置。   The electrolytic processing apparatus according to claim 1, wherein the contact member is formed of a conductive pad and is disposed between the workpiece and the processing electrode or the power supply electrode. 前記コンディショナーの少なくとも前記接触部材の接触面に接触する部位は、砥粒を固定した研磨体からなることを特徴とする請求項1乃至6のいずれかに記載の電解加工装置。   The electrolytic processing apparatus according to claim 1, wherein at least a portion of the conditioner that comes into contact with the contact surface of the contact member is made of a polishing body to which abrasive grains are fixed. 前記研磨体の前記接触部材の接触面に接触する研磨面の平坦度は100μm以下で、前記砥粒の直径は5μm以下であることを特徴とする請求項7記載の電解加工装置。   The electrolytic processing apparatus according to claim 7, wherein a flatness of a polishing surface that contacts a contact surface of the contact member of the polishing body is 100 μm or less, and a diameter of the abrasive grains is 5 μm or less. 前記コンディショナーは、遊離砥粒を用いて研磨を行う研磨パッドからなることを特徴とする請求項1乃至6のいずれかに記載の電解加工装置。   The electrolytic processing apparatus according to claim 1, wherein the conditioner includes a polishing pad that performs polishing using loose abrasive grains. 前記遊離砥粒の直径は、5μm以下であることを特徴とする請求項9記載の電解加工装置。   The electrolytic processing apparatus according to claim 9, wherein a diameter of the loose abrasive is 5 μm or less. 被加工物に接触して電解加工を行う接触部材の該被加工物との接触面にコンディショナーを接触させ、
液体の存在下で、前記接触部材と前記コンディショナーとを相対的に移動させて接触部材のコンディショニングを行うことを特徴とする接触部材のコンディショニング方法。
A conditioner is brought into contact with the contact surface of the contact member that performs electrolytic machining in contact with the workpiece,
A contact member conditioning method, wherein the contact member is conditioned by relatively moving the contact member and the conditioner in the presence of a liquid.
前記接触部材のコンディショニングを、接触部材を設置または交換した後、電解加工のインターバル時、または被加工物の電解加工と同時に行うことを特徴とする請求項11記載の接触部材のコンディショニング方法。   12. The method for conditioning a contact member according to claim 11, wherein the conditioning of the contact member is performed at an interval of electrolytic processing after the installation or replacement of the contact member or simultaneously with electrolytic processing of the workpiece. 被加工物を着脱自在に保持する保持部でコンディショナーを保持し、
被加工物に接触して電解加工を行う接触部材の該被加工物との接触面に前記コンディショナーを接触させ、
液体の存在下で、前記接触部材と前記コンディショナーとを相対的に移動させて接触部材のコンディショニングを行うことを特徴とする接触部材のコンディショニング方法。
Hold the conditioner with a holding part that holds the work piece in a removable manner.
Contacting the conditioner with the contact surface with the workpiece of a contact member that performs electrochemical machining in contact with the workpiece;
A contact member conditioning method, wherein the contact member is conditioned by relatively moving the contact member and the conditioner in the presence of a liquid.
前記接触部材のコンディショニングを、接触部材を設置または交換した後、または電解加工のインターバル時に行うことを特徴とする請求項13記載の接触部材のコンディショニング方法。   14. The method for conditioning a contact member according to claim 13, wherein the conditioning of the contact member is performed after the contact member is installed or replaced, or at an interval of electrolytic processing. 前記接触部材のコンディショニングにより、接触部材の前記被加工物との接触面の平坦度を100μm以下、接触面の表面粗さを5μm以下にすることを特徴とする請求項11乃至14のいずれかに記載の接触部材のコンディショニング方法。   The conditioning of the contact member reduces the flatness of the contact surface of the contact member with the workpiece to 100 μm or less and the surface roughness of the contact surface to 5 μm or less. A method for conditioning a contact member as described.
JP2004188959A 2004-03-19 2004-06-25 Electrolytic processing apparatus and method for conditioning contact member Withdrawn JP2006009103A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004188959A JP2006009103A (en) 2004-06-25 2004-06-25 Electrolytic processing apparatus and method for conditioning contact member
US10/592,673 US20070187257A1 (en) 2004-03-19 2005-03-16 Electrolytic processing apparatus and electrolytic processing method
PCT/JP2005/005301 WO2005090648A2 (en) 2004-03-19 2005-03-16 Electrolytic processing apparatus and electrolytic processing method
TW094108307A TW200600618A (en) 2004-03-19 2005-03-18 Electrolytic processing apparatus and electrolytic processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004188959A JP2006009103A (en) 2004-06-25 2004-06-25 Electrolytic processing apparatus and method for conditioning contact member

Publications (1)

Publication Number Publication Date
JP2006009103A true JP2006009103A (en) 2006-01-12

Family

ID=35776664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004188959A Withdrawn JP2006009103A (en) 2004-03-19 2004-06-25 Electrolytic processing apparatus and method for conditioning contact member

Country Status (1)

Country Link
JP (1) JP2006009103A (en)

Similar Documents

Publication Publication Date Title
JP4043234B2 (en) Electrolytic processing apparatus and substrate processing apparatus
US7655118B2 (en) Electrolytic processing apparatus and method
US20070187257A1 (en) Electrolytic processing apparatus and electrolytic processing method
US7101465B2 (en) Electrolytic processing device and substrate processing apparatus
US20040256237A1 (en) Electrolytic processing apparatus and method
JP3933520B2 (en) Substrate processing apparatus and substrate processing method
JP2008524434A (en) Flattening method and flattening apparatus
JP2006009103A (en) Electrolytic processing apparatus and method for conditioning contact member
JP4310085B2 (en) Electrolytic machining method and apparatus
JP4172945B2 (en) Method and apparatus for regenerating ion exchanger for electrolytic processing
US7563356B2 (en) Composite processing apparatus and method
JP4233331B2 (en) Electrolytic machining method and apparatus
JP2003175422A (en) Electrochemical machining device and electrochemical machining method
JP4127361B2 (en) Electrolytic processing equipment
JP4130073B2 (en) Ion exchanger regeneration method and regeneration apparatus
JP2006013177A (en) Apparatus and method for electrolytic processing
JP2005153142A (en) Electrochemical machining apparatus
JP2007284795A (en) Electrode structure and electrolytic processing device
JP4274714B2 (en) Processing apparatus and processing method
JP2004002910A (en) Electrolytic working method and apparatus
JP2003297804A (en) Substrate processing device and method
JP2005264268A (en) Electrochemical machining device and electrochemical machining method
JP2004255479A (en) Electrochemical machining method and electrochemical machining device
JP2006002245A (en) Electrolytic processing apparatus and electrolytic processing method
JP2005054205A (en) Electrochemical machining apparatus and electrochemical machining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

A761 Written withdrawal of application

Effective date: 20090807

Free format text: JAPANESE INTERMEDIATE CODE: A761