JPH09141528A - Electro-chemical machining device - Google Patents

Electro-chemical machining device

Info

Publication number
JPH09141528A
JPH09141528A JP30483195A JP30483195A JPH09141528A JP H09141528 A JPH09141528 A JP H09141528A JP 30483195 A JP30483195 A JP 30483195A JP 30483195 A JP30483195 A JP 30483195A JP H09141528 A JPH09141528 A JP H09141528A
Authority
JP
Japan
Prior art keywords
electrode
workpiece
electrolytic solution
sludge
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30483195A
Other languages
Japanese (ja)
Inventor
Takaaki Nonaka
孝明 野中
Nobuhiko Nagai
暢彦 永井
Masayuki Nagata
雅亨 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP30483195A priority Critical patent/JPH09141528A/en
Publication of JPH09141528A publication Critical patent/JPH09141528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PROBLEM TO BE SOLVED: To make an electrode usable for a plurality of products of different shape and discharge sludge and hydrogen gas desirably. SOLUTION: An electrode part 4 disposed opposedly to a workpiece 3 disposed in an electrolyte vessel 2 is composed of a rotary electrode of bottomed cylinder shape with a large number of fine holes or slits formed to enable sludge to pass through, and a rotor of drill shape provided inside the rotary electrode. Sludge and gas generated in electrolyte 1 are sucked by a suction nozzle 7 above the rotary electrode, filtered by a filter 8 and discharged into the electrolyte vessel 2 by a pump 9 through an electrolyte passage. A DC power supply 5 applies combined voltage, obtained by superposing pulse voltage on the constant voltage value, between the workpiece 3 and the rotary electrode, and feed speed control mechanism 10, 11, 12, 13 control relative feed speed between the rotary electrode and the workpiece 3 according to the maximum value of a current flowing between the workpiece 3 and the rotary electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電解加工装置、詳
しくは、加工速度低下の原因となるスラッジおよび発生
ガスの排出機能を備えた電解加工装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic processing apparatus, and more particularly to an electrolytic processing apparatus having a function of discharging sludge and generated gas that cause a decrease in processing speed.

【0002】[0002]

【従来の技術】電解加工の原理は、図6に示すように、
電極20を直流電源30の−側、被加工物40を+側に
それぞれ接続し、電気分解の原理により被加工物40か
ら金属を溶出させて加工を行うことであるが、この加工
時に、溶出金属がスラッジとなるとともに電極20から
水素ガスが発生し、このスラッジおよび水素ガスによっ
て電流の流れが妨げられ加工が阻害されるという不具合
が発生する。
2. Description of the Related Art The principle of electrolytic processing is as shown in FIG.
The electrode 20 is connected to the − side of the DC power source 30 and the workpiece 40 is connected to the + side, respectively, and the metal is eluted from the workpiece 40 by the principle of electrolysis to perform the processing. The metal becomes sludge and hydrogen gas is generated from the electrode 20, and the sludge and hydrogen gas impede the flow of current, which hinders processing.

【0003】従来、電解加工は、特開昭63−1963
21号公報に示されるように、型荒加工後の仕上げ加工
などに使用されてきた。しかし、製品の形状に合うよう
に電極の形状を製作しているため、製品の形状ごとに、
異なる形状の電極が必要となり、電極の設計、製作に長
時間を要し、製品の変更に対する迅速な対応ができない
という問題がある。
Conventionally, electrolytic processing has been disclosed in Japanese Patent Laid-Open No. 63-1963.
As disclosed in Japanese Patent Publication No. 21, it has been used for finishing work after rough mold working. However, because the shape of the electrode is manufactured to match the shape of the product,
There is a problem in that electrodes of different shapes are required, it takes a long time to design and manufacture the electrodes, and it is not possible to quickly respond to product changes.

【0004】また、製品が大型化、複雑化するに従って
電極も大型化、複雑化し、加工時に発生するスラッジ、
水素ガスの排出が難しくなり、加工速度の低速化、加工
停止を招く。そのため、特開平3−32526号公報、
実公平2−61529号公報に示されるようにスラッ
ジ、水素ガスを排除する方法が考え出されているが、い
ずれも上記問題点を解決するまでには至っていない。
In addition, as the product becomes larger and more complicated, the electrode also becomes larger and more complicated, and sludge generated during processing,
It becomes difficult to discharge the hydrogen gas, which causes a reduction in processing speed and a stop in processing. Therefore, JP-A-3-32526,
As disclosed in Japanese Utility Model Publication No. 2-61529, a method of removing sludge and hydrogen gas has been devised, but none of them has solved the above problems.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の点に
かんがみ、電極を形状の異なる複数の製品に対して共通
して使用できるようにするとともにスラッジ、水素ガス
の排出を良好に行うことができる電解加工装置を提供す
ることを目的としてなされたものである。
In view of the above points, the present invention makes it possible to commonly use the electrodes for a plurality of products having different shapes, and to satisfactorily discharge sludge and hydrogen gas. The present invention has been made for the purpose of providing an electrolytic processing apparatus capable of performing the above.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、電極
を回転電極によって構成し、この回転電極と被加工物と
の相対的送り速度を制御するようにしたため、回転電極
を形状の異なる複数の製品に対して共通して使用するこ
とが可能になる。また、電解液槽内の電解液中に発生し
たスラッジおよび発生ガスを回転電極の上方で吸引し、
濾過し、電解液槽内に吐出するようにしたため、スラッ
ジ、発生ガスの排出が円滑なものとなり、加工速度の低
下を防止することができる。
According to a first aspect of the present invention, since the electrode is constituted by a rotary electrode and the relative feed speed between the rotary electrode and the workpiece is controlled, the rotary electrode has a different shape. It can be commonly used for multiple products. Further, the sludge and the generated gas generated in the electrolytic solution in the electrolytic solution tank are sucked above the rotating electrode,
Since the particles are filtered and discharged into the electrolytic solution tank, the sludge and the generated gas can be discharged smoothly, and a reduction in the processing speed can be prevented.

【0007】請求項2の発明は、回転電極を、スラッジ
が通過可能な多数の微細穴またはスリットが形成された
有底筒形状としたため、微細穴またはスリットを介して
スラッジおよび発生ガスは回転電極の内部に流入し、そ
の上方で吸引されるようになり、このため、スラッジ、
発生ガスの排出が円滑になる。
According to the second aspect of the present invention, since the rotary electrode has a bottomed cylindrical shape in which a large number of fine holes or slits through which sludge can pass are formed, the sludge and the generated gas are generated through the fine holes or slits. Will flow into the interior of the sludge and will be sucked up above it, which is why sludge,
The generated gas is discharged smoothly.

【0008】請求項3の発明は、回転電極をドリル形状
としたため、スラッジおよび発生ガスを回転電極の上方
へ導き、円滑に排出することができる。
According to the third aspect of the invention, since the rotary electrode has a drill shape, the sludge and the generated gas can be guided to above the rotary electrode and smoothly discharged.

【0009】請求項4の発明は、回転電極を、スラッジ
が通過可能な多数の微細穴またはスリットが形成された
有底筒形状とし、さらに、この回転電極の内部にドリル
形状の回転体を設けたため、回転体の回転動作によりス
ラッジおよび発生ガスを回転電極の内部に流入させ上方
へ導き円滑に排出することができる。
According to a fourth aspect of the present invention, the rotary electrode has a bottomed cylindrical shape having a large number of fine holes or slits through which sludge can pass, and a rotary body having a drill shape is provided inside the rotary electrode. Therefore, the sludge and the generated gas can be made to flow into the inside of the rotating electrode by the rotating operation of the rotating body and can be guided upward and smoothly discharged.

【0010】請求項5の発明は、回転体に、濾過された
電解液を下方へ向けて吐出させるための電解液通路を設
けたため、回転電極と被加工物との間の電流の流れが阻
害されず加工速度の高速化を図ることができる。
According to the fifth aspect of the present invention, the rotating body is provided with the electrolytic solution passage for discharging the filtered electrolytic solution downward, so that the current flow between the rotating electrode and the workpiece is obstructed. Instead, the processing speed can be increased.

【0011】請求項6の発明は、直流電源により、一定
電圧値にパルス電圧を重畳してなる合成電圧を被加工物
と回転電極との間に印加し、送り速度制御機構により、
合成電圧の印加により被加工物、回転電極間を流れる電
流の最大値に応じて、回転電極と被加工物との相対的送
り速度を制御するようにしたため、被加工物と回転電極
との間を流れる電流によって被加工物、回転電極間の間
隙を容易に検出でき、この間隙に応じた送り速度制御、
すなわち、回転電極または被加工物の送り速度を低速化
したり、送りを停止することができる。
According to a sixth aspect of the present invention, a direct-current power source applies a composite voltage obtained by superimposing a pulse voltage on a constant voltage value between the workpiece and the rotary electrode, and a feed speed control mechanism is used.
Since the relative feed speed between the rotating electrode and the workpiece is controlled according to the maximum value of the current flowing between the workpiece and the rotating electrode due to the application of the composite voltage, the distance between the workpiece and the rotating electrode is controlled. The gap between the work piece and the rotating electrode can be easily detected by the electric current flowing through, and the feed rate control according to this gap,
That is, the feed speed of the rotary electrode or the workpiece can be reduced or the feed can be stopped.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は、実施形態としての一実施例である
電解加工装置の全体構成図を示している。
FIG. 1 shows an overall configuration diagram of an electrolytic processing apparatus which is an example of the embodiment.

【0014】図1において、電解液例えば硝酸ナトリウ
ム水溶液1の入った電解液槽2の底に、被加工物3が固
定され、被加工物3の上方には、電極部4が被加工物3
に対向して配置されている。また、電極部4と被加工物
3との間には、電極部4が−側、被加工物3が+側とな
るよう直流電源5が接続されている。
In FIG. 1, a work piece 3 is fixed to the bottom of an electrolytic solution tank 2 containing an electrolytic solution, for example, a sodium nitrate aqueous solution 1, and an electrode portion 4 is provided above the work piece 3 to form the work piece 3.
Are located opposite to. Further, a DC power supply 5 is connected between the electrode portion 4 and the workpiece 3 such that the electrode portion 4 is on the − side and the workpiece 3 is on the + side.

【0015】電極部4は、図2に示すように、有底円筒
形状の回転電極41と、この回転電極41の内部に設け
られたドリル状の回転体42とを有する。回転電極41
には、電解液槽2内の電解液1中に発生するスラッジが
通過可能な微細穴またはスリットが全面または一部に形
成されている。回転電極41は、微細穴またはスリット
を設けたことによって発生する不具合、すなわち、回転
電極41を回転させない場合に微細穴またはスリットの
形状が被加工物3に転写される不具合、を解消しうる程
度の速度で回転装置6によって回転される。一方、回転
体42は、スラッジおよび発生ガス(水素ガス)を回転
電極41の内部に微細穴またはスリットを介して流入さ
せ上昇させるよう回転装置6によって回転される。
As shown in FIG. 2, the electrode section 4 has a bottomed cylindrical rotary electrode 41 and a drill-shaped rotary body 42 provided inside the rotary electrode 41. Rotating electrode 41
Has fine holes or slits through which sludge generated in the electrolytic solution 1 in the electrolytic solution tank 2 can pass. The rotating electrode 41 is capable of solving the problem caused by providing the fine hole or slit, that is, the problem that the shape of the fine hole or slit is transferred to the workpiece 3 when the rotating electrode 41 is not rotated. It is rotated by the rotating device 6 at a speed of. On the other hand, the rotating body 42 is rotated by the rotating device 6 so that the sludge and the generated gas (hydrogen gas) flow into the inside of the rotating electrode 41 through the fine holes or slits and are raised.

【0016】電極部4の上側には、回転体42の回転動
作によって上昇してきたスラッジおよび発生ガスを吸引
する吸引ノズル7が設けられている。この吸引ノズル7
には、吸引されたスラッジを濾過するフィルタ8が接続
され、フィルタ8には、濾過された電解液1を電解液槽
2の内部に圧送するポンプ9が接続されている。電解液
槽2の内部への電解液1の吐出方法の1つとしては、図
2に示すように回転体42の回転軸42aに電解液の通
路42bを設け、回転体42の下方へ電解液1を吐出さ
せる方法がある。この方法によると、スラッジを含まな
い電解液1が回転電極41と被加工物3との間に吐出さ
れることから電流の流れが阻害されることがなくなり加
工速度の高速化を図ることができる。また、電解液1の
吐出により、電解液槽2内の電解液1の乱れが発生し、
スラッジを舞い上がらせ回転電極41の微細穴またはス
リットを介して回転電極41の内部に流入しやすくする
効果も奏する。
On the upper side of the electrode portion 4, a suction nozzle 7 for sucking the sludge and the generated gas raised by the rotating operation of the rotating body 42 is provided. This suction nozzle 7
A filter 8 for filtering the sucked sludge is connected to, and a pump 9 for pumping the filtered electrolytic solution 1 into the electrolytic solution tank 2 is connected to the filter 8. As one method of discharging the electrolytic solution 1 into the electrolytic solution tank 2, as shown in FIG. 2, a passage 42b for the electrolytic solution is provided on a rotating shaft 42a of the rotating body 42, and the electrolytic solution is provided below the rotating body 42. There is a method of ejecting 1. According to this method, the electrolytic solution 1 containing no sludge is discharged between the rotating electrode 41 and the workpiece 3, so that the flow of current is not obstructed and the processing speed can be increased. . In addition, the discharge of the electrolytic solution 1 causes disturbance of the electrolytic solution 1 in the electrolytic solution tank 2,
There is also an effect that sludge is made to rise and easily flows into the inside of the rotating electrode 41 through the fine holes or slits of the rotating electrode 41.

【0017】電極部4は、加工ヘッド10によって支持
されている。加工ヘッド10は、制御装置11からのZ
軸制御信号に従ってZ軸方向へ移動可能に構成され、電
極部4は加工ヘッド10のZ軸方向への移動に従ってZ
軸方向へ送られる。
The electrode portion 4 is supported by the processing head 10. The machining head 10 uses the Z from the control device 11.
The electrode unit 4 is configured to be movable in the Z-axis direction according to the axis control signal, and the electrode portion 4 is moved in the Z-axis direction according to the movement of the machining head 10 in the Z-axis direction.
It is sent in the axial direction.

【0018】電解液槽2は、XYテーブル12の上に固
定されている。XYテーブル12は、制御装置11から
のXY軸制御信号に従ってXY軸方向へ移動可能に構成
され、電解液槽2および被加工物3は、XYテーブル1
2のXY軸方向への移動に従ってXY軸方向へ送られ
る。
The electrolytic solution tank 2 is fixed on the XY table 12. The XY table 12 is configured to be movable in the XY axis directions according to the XY axis control signal from the control device 11, and the electrolytic solution tank 2 and the workpiece 3 are arranged in the XY table 1.
As the 2 moves in the XY axis directions, it is sent in the XY axis directions.

【0019】直流電源5から被加工物3、回転電極41
を経て直流電源5に至る電流通路には、電流を検出する
ための電流検出器13が設けられている。電流検出器1
3には、制御装置11が接続されている。
From the DC power source 5 to the workpiece 3, the rotary electrode 41
A current detector 13 for detecting a current is provided in the current path through the DC power supply 5 via the. Current detector 1
A control device 11 is connected to 3.

【0020】制御装置11は、電流検出器13による電
流検出値に基づいて直流電源5、加工ヘッド10、XY
テーブル12および電極交換装置14を制御するもので
あり、具体的には、図3に示すように、直流電源5の電
源電圧が、一定電圧値にパルス電圧を重畳させた合成電
圧となるよう、当該パルス電圧を発生するパルス発生回
路11aと、所定電流値IL、H が設定された電流設定
回路11bと、電流設定回路11bの電流設定値IL、
H と電流検出器13から入力されてくる電流検出値とを
比較し、その比較結果に応じて加工ヘッド10およびX
Yテーブル12のモータの駆動回路15に制御信号を出
力する比較演算回路11cとを備えて構成される。比較
演算回路11cは、具体的には、図4に示すように、極
間ギャップすなわち回転電極41と被加工物3との間の
間隙が減少することによって電流検出値Iが電流設定値
L を超えるようになると回転電極41のZ軸方向への
送り速度を低速にし、また、図4に具体的には図示して
いないが、電流検出値Iが電流設定値IH を超えると回
転電極41のZ軸方向への送りを停止させるよう制御す
る。したがって、本実施例の電解加工装置における制御
系は、図5に示すように構成される。
The control device 11 controls the DC power source 5, the machining head 10, and the XY based on the current detection value of the current detector 13.
The table 12 and the electrode exchanging device 14 are controlled. Specifically, as shown in FIG. 3, the power source voltage of the DC power source 5 is a combined voltage obtained by superimposing a pulse voltage on a constant voltage value. A pulse generation circuit 11a that generates the pulse voltage, a current setting circuit 11b in which predetermined current values I L and I H are set, and current setting values I L and I of the current setting circuit 11b.
H and the current detection value input from the current detector 13 are compared, and the machining head 10 and X are compared according to the comparison result.
The Y table 12 is configured to include a comparison operation circuit 11c that outputs a control signal to the motor drive circuit 15 of the Y table 12. Specifically, as shown in FIG. 4, the comparison calculation circuit 11c reduces the current detection value I to the current setting value I L by reducing the gap between the electrodes, that is, the gap between the rotating electrode 41 and the workpiece 3. If the current detection value I exceeds the current set value I H , the feed speed of the rotary electrode 41 in the Z-axis direction is reduced when the current exceeds the current setting value I H. It is controlled to stop the feeding of 41 in the Z-axis direction. Therefore, the control system in the electrolytic processing apparatus of this embodiment is configured as shown in FIG.

【0021】以上説明したように、本実施例の電解加工
装置によると、電極を回転電極41によって構成し、こ
の回転電極41と被加工物3との相対的送り速度を制御
するようにしたため、回転電極41を形状の異なる複数
の製品に対して共通して使用することが可能になる。ま
た、電解液槽2内の電解液1中に発生したスラッジおよ
び発生ガスを回転電極41の上方で吸引し、濾過し、電
解液槽2内に吐出するようにしたため、スラッジ、発生
ガスの排出が円滑なものとなり、加工速度の低下を防止
することができる。また、回転電極41を、スラッジが
通過可能な多数の微細穴またはスリットが形成された有
底筒形状としたため、微細穴またはスリットを介してス
ラッジおよび発生ガスは回転電極41の内部に流入し、
その上方で吸引されるようになり、このため、スラッ
ジ、発生ガスの排出が円滑になる。また、回転電極41
の内部にドリル形状の回転体42を設けたため、回転体
42の回転動作によりスラッジおよび発生ガスを回転電
極41の内部に流入させ上方へ導き円滑に排出すること
ができる。また、回転体42に、濾過された電解液1を
下方へ向けて吐出させるための通路42bを設けたた
め、回転電極41と被加工物3との間の電流の流れが阻
害されず加工速度の高速化を図ることができる。また、
直流電源5により、一定電圧値にパルス電圧を重畳して
なる合成電圧を被加工物3と回転電極41との間に印加
し、送り速度制御機構10、11、12、13、15に
より、合成電圧の印加により被加工物3、回転電極41
間を流れる電流の最大値に応じて、回転電極41と被加
工物3との相対的送り速度を制御するようにしたため、
被加工物3と回転電極41との間を流れる電流によって
被加工物3、回転電極41間の間隙を容易に検出でき、
この間隙に応じた送り速度制御、すなわち、回転電極4
1または被加工物3の送り速度を低速化したり、送りを
停止することができる。
As described above, according to the electrolytic processing apparatus of this embodiment, the electrode is constituted by the rotary electrode 41, and the relative feed speed between the rotary electrode 41 and the workpiece 3 is controlled. The rotating electrode 41 can be commonly used for a plurality of products having different shapes. Further, since the sludge and the generated gas generated in the electrolytic solution 1 in the electrolytic solution tank 2 are sucked above the rotary electrode 41, filtered, and discharged into the electrolytic solution tank 2, the sludge and the generated gas are discharged. Is smooth, and a reduction in processing speed can be prevented. Further, since the rotary electrode 41 has a bottomed cylindrical shape in which a large number of fine holes or slits through which sludge can pass are formed, sludge and generated gas flow into the rotary electrode 41 through the fine holes or slits,
The gas is sucked above it, so that the sludge and the generated gas are discharged smoothly. In addition, the rotating electrode 41
Since the drill-shaped rotating body 42 is provided inside, the rotary operation of the rotating body 42 allows the sludge and the generated gas to flow into the inside of the rotating electrode 41 to be guided upward and smoothly discharged. In addition, since the passage 42b for discharging the filtered electrolytic solution 1 downward is provided in the rotating body 42, the flow of current between the rotating electrode 41 and the workpiece 3 is not hindered, and the processing speed is improved. The speed can be increased. Also,
The DC power source 5 applies a combined voltage obtained by superimposing a pulse voltage to a constant voltage value between the workpiece 3 and the rotary electrode 41, and the feed speed control mechanisms 10, 11, 12, 13, 15 combine the combined voltages. Workpiece 3 and rotating electrode 41 by applying voltage
Since the relative feed speed between the rotary electrode 41 and the workpiece 3 is controlled according to the maximum value of the current flowing between the two,
The gap between the workpiece 3 and the rotating electrode 41 can be easily detected by the current flowing between the workpiece 3 and the rotating electrode 41,
Feed speed control according to this gap, that is, the rotary electrode 4
It is possible to slow down the feed speed of 1 or the workpiece 3, or to stop the feed.

【0022】なお、回転体42を省略し、濾過機構7、
8、9、42a、42bのみによってスラッジおよび発
生ガスを吸引する構成としてもよい。また、回転体41
を省略するとともに電極として有底筒状の回転電極41
の代わりにドリル形状の回転電極42、42aを用いる
ようにしても、上記実施例と同様な効果を奏することが
できる。また、有底筒状の回転電極41は、図示したよ
うな円筒形状に限定されるものではなく、有底中空な直
方体形状のものであってもよい。また、加工ヘッド10
をXY軸方向にも移動可能に構成してもよい。
The rotating body 42 is omitted, and the filtering mechanism 7,
The sludge and the generated gas may be sucked by only 8, 9, 42a and 42b. In addition, the rotating body 41
And a cylindrical rotating electrode 41 with a bottom as an electrode
Even if the rotary electrodes 42 and 42a having a drill shape are used instead of the above, the same effect as that of the above-described embodiment can be obtained. Further, the bottomed cylindrical rotary electrode 41 is not limited to the cylindrical shape as shown in the figure, and may be a hollow rectangular parallelepiped shape with a bottom. Further, the processing head 10
May be configured to be movable also in the XY axis directions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例による電解加工装置の全体構成図FIG. 1 is an overall configuration diagram of an electrolytic processing apparatus according to an embodiment.

【図2】電極部の一部切欠斜視図FIG. 2 is a partially cutaway perspective view of an electrode part.

【図3】制御系統図[Figure 3] Control system diagram

【図4】送り速度制御を説明するための波形図FIG. 4 is a waveform diagram for explaining feed rate control.

【図5】送り速度制御を説明するためのフローチャートFIG. 5 is a flowchart for explaining feed rate control.

【図6】電解加工の原理図[Figure 6] Principle of electrolytic processing

【符号の説明】[Explanation of symbols]

1 電解液 2 電解液槽 3 被加工物 5 直流電源 7、8、9、42b 濾過機構 10、11、12、13 送り速度制御機構 41 回転電極 42 回転体 1 Electrolyte 2 Electrolyte Tank 3 Workpiece 5 DC Power Supply 7, 8, 9, 42b Filtration Mechanism 10, 11, 12, 13 Feed Speed Control Mechanism 41 Rotating Electrode 42 Rotating Body

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電解液槽と、 前記電解液槽内に配置された被加工物と対向配置される
回転電極と、 前記電解液槽内の電解液中に発生するスラッジおよび発
生ガスを前記回転電極の上方で吸引し、濾過し、前記電
解液槽内に吐出する濾過機構と、 前記被加工物と前記回転電極との間に電圧を印加する直
流電源と、 前記被加工物と前記回転電極との相対的送り速度を制御
する送り速度制御機構とを備えることを特徴とする電解
加工装置。
1. An electrolytic solution tank, a rotating electrode arranged to face a workpiece arranged in the electrolytic solution tank, and sludge and generated gas generated in the electrolytic solution in the electrolytic solution tank for rotating the electrolytic solution. A filtering mechanism that suctions above the electrode, filters, and discharges into the electrolytic solution tank; a DC power supply that applies a voltage between the workpiece and the rotating electrode; the workpiece and the rotating electrode. And a feed rate control mechanism for controlling the relative feed rate of the electrolytic processing apparatus.
【請求項2】 前記回転電極は、スラッジが通過可能な
多数の微細穴またはスリットが形成された有底筒形状を
していることを特徴とする請求項1に記載の電解加工装
置。
2. The electrolytic processing apparatus according to claim 1, wherein the rotary electrode has a bottomed cylindrical shape having a large number of fine holes or slits through which sludge can pass.
【請求項3】 前記回転電極は、ドリル形状をしている
ことを特徴とする請求項1に記載の電解加工装置。
3. The electrolytic processing apparatus according to claim 1, wherein the rotary electrode has a drill shape.
【請求項4】 前記回転電極は、スラッジが通過可能な
多数の微細穴またはスリットが形成された有底筒形状を
しており、この回転電極の内部にドリル形状の回転体が
設けられていることを特徴とする請求項1に記載の電解
加工装置。
4. The rotating electrode has a bottomed cylindrical shape in which a large number of fine holes or slits through which sludge can pass are formed, and a drill-shaped rotating body is provided inside the rotating electrode. The electrolytic processing apparatus according to claim 1, wherein:
【請求項5】 前記回転体は、濾過された電解液を下方
へ向けて吐出させるための電解液通路を有することを特
徴とする請求項4に記載の電解加工装置。
5. The electrolytic processing apparatus according to claim 4, wherein the rotating body has an electrolytic solution passage for discharging the filtered electrolytic solution downward.
【請求項6】 前記直流電源は、一定電圧値にパルス電
圧を重畳してなる合成電圧を前記被加工物と前記回転電
極との間に印加し、前記送り速度制御機構は、前記合成
電圧の印加により前記被加工物、回転電極間を流れる電
流の最大値に応じて、前記回転電極と前記被加工物との
相対的送り速度を制御することを特徴とする請求項1〜
5のいずれかに記載の電解加工装置。
6. The DC power source applies a composite voltage formed by superimposing a pulse voltage on a constant voltage value between the workpiece and the rotary electrode, and the feed speed control mechanism controls the composite voltage of the composite voltage. The relative feed speed between the rotary electrode and the workpiece is controlled according to a maximum value of a current flowing between the workpiece and the rotary electrode by application.
The electrolytic processing apparatus according to any one of 5 above.
JP30483195A 1995-11-22 1995-11-22 Electro-chemical machining device Pending JPH09141528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30483195A JPH09141528A (en) 1995-11-22 1995-11-22 Electro-chemical machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30483195A JPH09141528A (en) 1995-11-22 1995-11-22 Electro-chemical machining device

Publications (1)

Publication Number Publication Date
JPH09141528A true JPH09141528A (en) 1997-06-03

Family

ID=17937791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30483195A Pending JPH09141528A (en) 1995-11-22 1995-11-22 Electro-chemical machining device

Country Status (1)

Country Link
JP (1) JPH09141528A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002910A (en) * 2002-05-30 2004-01-08 Ebara Corp Electrolytic working method and apparatus
JP2004060027A (en) * 2002-07-31 2004-02-26 Ebara Corp Electro-chemical machining method and apparatus
JP2011039017A (en) * 2009-08-10 2011-02-24 Chemical Yamamoto:Kk Electrolytic polishing device of sample for analysis
KR20190134225A (en) * 2018-05-25 2019-12-04 조선대학교산학협력단 Electro - Chemical Machining including an electrolytic solution collector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002910A (en) * 2002-05-30 2004-01-08 Ebara Corp Electrolytic working method and apparatus
JP2004060027A (en) * 2002-07-31 2004-02-26 Ebara Corp Electro-chemical machining method and apparatus
JP2011039017A (en) * 2009-08-10 2011-02-24 Chemical Yamamoto:Kk Electrolytic polishing device of sample for analysis
KR20190134225A (en) * 2018-05-25 2019-12-04 조선대학교산학협력단 Electro - Chemical Machining including an electrolytic solution collector

Similar Documents

Publication Publication Date Title
EP1593449B1 (en) Distributed arc electroerosion
US7394040B2 (en) Electromachining process and apparatus
Yan An adaptive control system with self-organizing fuzzy sliding mode control strategy for micro wire-EDM machines
JPH09141528A (en) Electro-chemical machining device
JPS62255013A (en) Electro-chemical machining device
US3371022A (en) Low-electrolyte-pressure electro-chemical machining
KR890000196A (en) Electrolytic Processing Equipment
JP3842377B2 (en) Electric discharge machining control method and apparatus
WO2019164605A1 (en) Methods and systems for electrochemical machining
JPH01205918A (en) Finishing work through electrolytic working
JP5494459B2 (en) Electrolytic processing method and electrolytic processing apparatus
JP2887635B2 (en) Wire cut electric discharge machining method
EP4299224A1 (en) Methods and systems of electrochemical machining
JP2879124B2 (en) Finishing method by electrolytic processing
JPH01115516A (en) Electrochemical machine
JPH0332526A (en) Electric discharge machining method
JPH02139124A (en) Electolytic finishing method
JP3058308B2 (en) Wire cut electric discharge machining method
JP2023184508A (en) Methods and systems of electrochemical machining
US20190270154A1 (en) Two-fluid device for electroerosion
JPH09248717A (en) Controller of wire electric discharging machine
JPS63306825A (en) Machining gap control device for electro-chemical machine
JPH01228725A (en) Working method of electrolytic finish
JP5056907B2 (en) Electric discharge machining apparatus and electric discharge machining method
JP4530591B2 (en) Air EDM method