JP5056907B2 - Electric discharge machining apparatus and electric discharge machining method - Google Patents

Electric discharge machining apparatus and electric discharge machining method Download PDF

Info

Publication number
JP5056907B2
JP5056907B2 JP2010139110A JP2010139110A JP5056907B2 JP 5056907 B2 JP5056907 B2 JP 5056907B2 JP 2010139110 A JP2010139110 A JP 2010139110A JP 2010139110 A JP2010139110 A JP 2010139110A JP 5056907 B2 JP5056907 B2 JP 5056907B2
Authority
JP
Japan
Prior art keywords
discharge
voltage
machining
time
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010139110A
Other languages
Japanese (ja)
Other versions
JP2010194714A (en
Inventor
英隆 加藤木
達志 佐藤
慎吾 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010139110A priority Critical patent/JP5056907B2/en
Publication of JP2010194714A publication Critical patent/JP2010194714A/en
Application granted granted Critical
Publication of JP5056907B2 publication Critical patent/JP5056907B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

この発明は、放電加工装置および放電加工方法に関し、特に、放電加工状態の認識とその認識結果から加工軸の送り制御を行う技術に関するものである。   The present invention relates to an electric discharge machining apparatus and an electric discharge machining method, and more particularly to a technique for recognizing an electric discharge machining state and controlling feed of a machining axis based on the recognition result.

放電加工装置は、加工液中に設けられた工具電極と被加工物間に放電を生じさせて被加工物を加工液中で溶融除去するものである。
放電加工においては、放電が生じる工具電極と被加工物間(以下、加工間隙)に被加工物の溶融除去によって生じる加工屑が発生し、この加工屑は何らかの手段によって加工間隙より排除しないと、加工間隙の絶縁回復、放電の繰返しが正常な状態を保つことができなくなり、加工効率の低下、加工面性状の悪化等の悪影響があることは周知である。
The electric discharge machining apparatus is configured to generate an electric discharge between a tool electrode provided in a machining fluid and a workpiece to melt and remove the workpiece in the machining fluid.
In electric discharge machining, machining scrap generated by melting and removing the workpiece is generated between the tool electrode where the electric discharge occurs and the workpiece (hereinafter referred to as the machining gap), and if the machining scrap is not excluded from the machining gap by any means, It is well known that the insulation recovery of the machining gap and the repetition of electric discharge cannot be maintained in a normal state, and there are adverse effects such as a reduction in machining efficiency and deterioration of the machined surface properties.

加工屑の排除と加工間隙の維持のために放電加工装置では、放電電圧を検出してその時々刻々の放電電圧の変化に対して加工軸の制御を行う。例えば特公昭44−13195号公報などの方式では、特定のサンプリング時間内での平均電圧(Vg)を放電状態として扱い、予め設定しておいた目標平均電圧であるサーボ基準電圧(SV)と比較し、加工軸送り制御、つまり放電加工機でのサーボ制御を行うことで加工中の放電の安定性を維持している。
具体的には、工具電極と被加工物によって形成される加工間隙に検出線を設け、時々刻々の加工間隙の電圧を検出器で取得し、そのときの放電電圧をフィルタ回路に通して平均化、平滑化し、特定のサンプリング時間内で抽出したものを平均電圧(Vg)として扱い、軸制御装置上では予め定められたサーボ基準電圧(SV)と比較して比較した結果で検出された平均電圧が目標となる平均電圧より低いときは加工軸を加工方向とは逆方向に戻し、高いときは加工軸方向に送るようにするものである。
In order to eliminate the machining waste and maintain the machining gap, the electric discharge machining apparatus detects the discharge voltage and controls the machining axis with respect to the change in the discharge voltage every moment. For example, in the method of Japanese Patent Publication No. 44-13195, the average voltage (Vg) within a specific sampling time is treated as a discharge state and compared with a servo reference voltage (SV) which is a preset target average voltage. In addition, the stability of electric discharge during machining is maintained by performing machining axis feed control, that is, servo control by an electric discharge machine.
Specifically, a detection line is provided in the machining gap formed by the tool electrode and the workpiece, the voltage of the machining gap is obtained with a detector, and the discharge voltage at that time is passed through a filter circuit and averaged The average voltage detected as a result of comparison with the servo reference voltage (SV) determined in advance on the axis control device, which is smoothed and extracted within a specific sampling time as an average voltage (Vg) Is lower than the target average voltage, the machining axis is returned to the direction opposite to the machining direction, and when it is higher, the machining axis is sent in the machining axis direction.

加工軸制御を行うべく、極間状態を加工間隙の電圧変動からフィルタを通して検出する方法においては、サンプリング時間とフィルタ回路の時定数が密接であり、サンプリング時間よりも十分に小さい時定数にすると回路として外乱を受けやすく、少なくともフィルタ回路の時定数をサンプリング時間の2〜3倍にしようとすると、構成されたフィルタの充放電特性が影響して目標値との認差が生じてしまい(図8参照)、機械の固有振動特性と合わせてフィルタを設計することは非常に難しい問題である。
また、電圧の検出を行うためには検出線を必要とし、または、専用の検出線を必要としない場合でも検出線として電源からの供給線で併用する場合があるが、いずれの場合でも長さが長くなると、電気回路上ではL成分が増してしまい、加工間隙の状態と検出された電圧成分にはL成分を通しての電圧になることから、実際の加工状態とは異なってしまうといった問題がある。
In order to perform machining axis control, in the method of detecting the gap state from the voltage fluctuation of the machining gap through the filter, the sampling time and the time constant of the filter circuit are close, and if the time constant is sufficiently smaller than the sampling time, the circuit If at least the time constant of the filter circuit is set to 2 to 3 times the sampling time, the charge / discharge characteristics of the configured filter are affected, resulting in a difference from the target value (FIG. 8). Designing a filter with the natural vibration characteristics of the machine is a very difficult problem.
In addition, a detection line is required to detect the voltage, or even if a dedicated detection line is not required, the detection line may be used together with the supply line from the power supply. When the length becomes longer, the L component increases on the electric circuit, and the state of the machining gap and the detected voltage component become the voltage through the L component, which is different from the actual machining state. .

特開平6−262435号公報では、無負荷時間(Td)、パルス幅(Ton)、休止時間(Toff)はクロックパルスを用いてカウントする手段を備えた放電加工装置が開示された。
この方式では、放電を検出するフィルタ回路がなくなったことで上記問題点を解決できたかのように見えるが、制御対象がサーボ基準電圧(SV)自体であり、加工状態によってサーボ基準電圧(SV)を変えることは安定性の面では改善できるが、結果としてはサーボ基準電圧が高い、つまり加工効率が低下した状態での加工になり、加工速度が大幅に低下してしまうという問題がある。
Japanese Patent Application Laid-Open No. 6-262435 discloses an electric discharge machining apparatus having means for counting no-load time (Td), pulse width (Ton), and rest time (Toff) using a clock pulse.
In this method, it seems as if the above problem has been solved by eliminating the filter circuit that detects discharge, but the controlled object is the servo reference voltage (SV) itself, and the servo reference voltage (SV) is set depending on the machining state. The change can be improved in terms of stability, but as a result, there is a problem that the servo reference voltage is high, that is, the machining is performed in a state where the machining efficiency is lowered, and the machining speed is greatly reduced.

特開平7−246518号公報では、放電周波数と短絡回数をカウントし、その結果と別途決めておいた無負荷時間(Td)から放電ギャップ長を推定し制御する方式が開示されているが、パルス幅(Ton)に対して休止時間(Toff)と無負荷時間(Td)は長く、放電エネルギは小さい仕上げ加工を対象としているものに過ぎず、本技術を通常の加工に適用すると、無負荷時間を長くする必要があり、結果としては加工速度が低下してしまうといった問題が残る。   Japanese Patent Laid-Open No. 7-246518 discloses a method of counting the discharge frequency and the number of short circuits, and estimating and controlling the discharge gap length from the result and a separately determined no-load time (Td). The rest time (Toff) and the no-load time (Td) are long with respect to the width (Ton), and the discharge energy is only intended for small finishing. When this technology is applied to normal machining, the no-load time As a result, there remains a problem that the processing speed decreases.

特開平6−170645号公報では、同じように放電周波数をカウントし放電周波数のばらつきや放電の良否判定をファジィ推論によって補正し、適正な制御が行われるように状態変化と関連したメンバーシップ関数を用意して制御する手段を開示している。
この方式では特開平7−246518号公報の問題点であった例外的に不安定になってしまった場合にはどのように回避すべきかまで言及されているものの、メンバーシップ関数の定義ではその設計自体に多くのノウハウを必要とし、加工の安定性や結果はメンバーシップ関数そのものの影響が強くでてしまうことになる。
In Japanese Patent Laid-Open No. Hei 6-170645, similarly, the discharge frequency is counted, the variation in the discharge frequency and the determination of the quality of the discharge are corrected by fuzzy inference, and the membership function related to the state change is performed so that proper control is performed. A means for preparing and controlling is disclosed.
Although this method mentions how to avoid an exceptionally unstable situation that was a problem of Japanese Patent Laid-Open No. 7-246518, the definition of the membership function defines its design. A lot of know-how is required for itself, and the stability and results of machining are strongly influenced by the membership function itself.

特公昭44−13195号公報Japanese Patent Publication No. 44-13195 特開平6−262435号公報JP-A-6-262435 特開平7−246518号公報Japanese Patent Laid-Open No. 7-246518 特開平6−170645号公報JP-A-6-170645

然るに、従来の問題点とは放電間隙での放電状態が正確に検出できないことであり、フィルタ回路を使用する場合でも、放電周波数をカウンタにより検出して扱う場合でも、サーボ制御は極間の放電状態が正確に検出されれば基本的な制御自体は大きな違いはないことになる。   However, the conventional problem is that the discharge state in the discharge gap cannot be accurately detected. Servo control can be performed between the electrodes regardless of whether a filter circuit is used or the discharge frequency is detected by a counter. If the state is detected accurately, the basic control itself is not significantly different.

本発明は、上述の如き問題点に着目してなされたものであり、比較的簡単な装置構成であっても工具電極と被加工物とで構成される加工間隙の状態を、正しく検出し、放電状態に反映させ、その状態に合わせて時々刻々の変化に対応できるような加工軸の送り制御、所謂サーボ制御を行うものである。 The present invention has been made paying attention to the problems as described above, and correctly detects the state of the machining gap formed by the tool electrode and the workpiece even in a relatively simple apparatus configuration, The machining axis feed control, so-called servo control, is performed so that it is reflected in the discharge state and can be adapted to the momentary change according to the state.

この目的を達成するために、所定のサンプリング時間Ts内における加工の平均電圧Vgが、サーボ基準電圧SVとなるように加工軸制御を行う放電加工装置において、工具電極と被加工物との極間に電力を供給する電源手段と、この電源手段で供給された電力に基づき発生する上記極間での放電波形を検出する放電検出手段と、この放電波形において、所定のサンプリング時間内での放電発生回数Ndをカウントする放電発生回数カウンタ手段と、上記放電波形において、電源手段から供給される電圧印加にともなう放電が、予め設定した短絡電圧閾値Vshを下回る短絡放電の短絡回数N1をカウントする短絡発生回数カウンタ手段と、上記放電発生回数Nd、短絡回数N1、予め設定される無負荷電圧V0、パルス幅Ton、休止時間Toff、放電電圧eg、サンプリング時間Tsを用い、極間での想定平均電圧Vgsを演算する演算手段と、この演算手段により演算された上記想定平均電圧Vgsが、上記サンプリング時間Ts内でのサーボ基準電圧SVとなるように加工軸制御を行う電極位置制御手段と、を備えたものである。 In order to achieve this object, in an electric discharge machining apparatus that performs machining axis control so that the machining average voltage Vg within the predetermined sampling time Ts becomes the servo reference voltage SV, the gap between the tool electrode and the workpiece is determined. Power supply means for supplying power to the battery, discharge detection means for detecting a discharge waveform between the electrodes based on the power supplied by the power supply means, and generation of discharge within a predetermined sampling time in the discharge waveform A discharge occurrence counter that counts the number of times Nd, and a short-circuit occurrence that counts the number N1 of short-circuit discharges in which the discharge due to voltage application from the power supply means falls below a preset short-circuit voltage threshold Vsh in the discharge waveform Number counter means, discharge occurrence number Nd, short circuit number N1, preset no-load voltage V0, pulse width Ton, rest time Toff, discharge voltage eg, sample The calculation means for calculating the estimated average voltage Vgs between the poles using the measurement time Ts, and the estimated average voltage Vgs calculated by the calculation means so as to become the servo reference voltage SV within the sampling time Ts. Electrode position control means for performing machining axis control.

この発明によれば、比較的簡単な装置構成であっても工具電極と被加工物とで構成される加工間隙の状態を、正しく検出し、放電状態に反映させ、その状態に合わせて時々刻々の変化に対応できるような加工軸の送り制御、所謂サーボ制御を行うことができる。   According to the present invention, even with a relatively simple apparatus configuration, the state of the machining gap formed by the tool electrode and the workpiece is correctly detected, reflected in the discharge state, and momentarily according to the state. It is possible to perform machining axis feed control, so-called servo control, which can cope with changes in the angle.

実施の形態1における放電加工装置の概略構成を示す構成図である。It is a block diagram which shows schematic structure of the electric discharge machining apparatus in Embodiment 1. FIG. あるサンプリング時間における放電発生回数の検出について説明するための図である。It is a figure for demonstrating the detection of the frequency | count of discharge generation in a certain sampling time. ある放電現象を示す図である。It is a figure which shows a certain discharge phenomenon. 加工間隙の平均電圧と放電発生回数の関係を示した図でる。It is the figure which showed the relationship between the average voltage of a process gap | interval, and the frequency | count of discharge generation. 実際の加工間隙の平均電圧と放電発生回数の関係を示した図である。It is the figure which showed the relationship between the average voltage of an actual process space | interval, and the frequency | count of discharge generation. 実際の加工間隙の平均電圧と放電発生回数の関係を示した図である。It is the figure which showed the relationship between the average voltage of an actual process space | interval, and the frequency | count of discharge generation. 本発明における制御フローを示したフローチャートである。It is the flowchart which showed the control flow in this invention. 加工間隙電圧波形とフィルタ回路電圧波形の関係を示す図である。It is a figure which shows the relationship between a process gap voltage waveform and a filter circuit voltage waveform.

実施の形態1.
図1は、この発明の放電加工装置の実施の形態を示したものである。なお、本実施の形態では、X軸とY軸についてはワークテーブルが可動するものを例として説明を行うが、X軸とY軸は主軸側が可動する方式の放電加工装置でもよく、放電加工装置の軸機構や機械構成自体そのものが実施の形態に影響をおよぼすものではない。
Embodiment 1 FIG.
FIG. 1 shows an embodiment of an electric discharge machining apparatus according to the present invention. In this embodiment, the X axis and the Y axis will be described as an example in which the work table is movable. However, the X axis and the Y axis may be an electric discharge machining apparatus in which the main shaft side is movable. The shaft mechanism and the machine configuration itself do not affect the embodiment.

放電加工装置は、モータ1によりZ軸方向に駆動される主軸4と、モータ2によりX軸方向に駆動されるワークテーブル5と、モータ3によりY軸方向に駆動される主軸ワークテーブル6と、ワークテーブル5、6上に設置された加工槽7とを有しており、主軸4には工具電極8が取り付けられ、加工槽7内には加工液が注入されると共に、被加工物Wが配置される。
工具電極8と被加工物Wとは、加工液中で加工間隙をもって相対向し、工具電極8と被加工物Wの間に、電源装置9より電力が供給されることで放電が発生し、被加工物Wの溶融除去が行われる。
電極位置制御装置10は、加工プログラム等の加工条件が加工条件設定部11によって設定されると、そのプログラム内容にあわせてモータ1、モータ2、モータ3を制御して、各軸の位置制御やサーボ制御を行う。また、電極位置制御装置10は主軸4のジャンプ制御や工具電極8を被加工物Wに対して特定の軌跡を与えながら加工を行う揺動制御も行う。
The electric discharge machining apparatus includes a spindle 4 driven in the Z-axis direction by the motor 1, a work table 5 driven in the X-axis direction by the motor 2, a spindle work table 6 driven in the Y-axis direction by the motor 3, A machining tank 7 installed on the work tables 5 and 6, a tool electrode 8 is attached to the spindle 4, a machining fluid is injected into the machining tank 7, and a workpiece W is Be placed.
The tool electrode 8 and the workpiece W are opposed to each other in the machining fluid with a machining gap, and electric power is generated between the tool electrode 8 and the workpiece W by power supplied from the power supply device 9. The workpiece W is melted and removed.
When machining conditions such as a machining program are set by the machining condition setting unit 11, the electrode position control device 10 controls the motor 1, the motor 2, and the motor 3 according to the contents of the program, and controls the position of each axis. Servo control is performed. The electrode position control device 10 also performs jump control of the spindle 4 and swing control for performing processing while giving a specific locus to the workpiece W on the tool electrode 8.

加工条件設定部11では、放電加工を行うにあたって設定される基本的な加工条件である、放電電流(IP)、パルス幅(Ton)、休止時間(Toff)、印加電圧(V0)、サーボ基準電圧(SV)、ジャンプ制御設定(JUMP)、揺動制御設定(Orb)、目標加工位置(Zref)などが入力装置を用いて登録され記録される。
この他に、例えば、加工状態の判別として、正常な放電が発生しているときの放電電圧(eg)、異常放電電圧閾値(Vng)、短絡電圧閾値(Vsh)、最小無負荷時間(Tdo)、異常放電が発生したときに休止時間を延ばす制御を行ったときの休止時間(Toffs)を設定することも可能であり、また、既に加工対象の工具電極8の放電加工部になる加工面積(S)が分かっている場合には、加工面積(S)を入力することも可能である。これらの情報は、使用される条件毎に個別に設定可能し記憶させておくことが可能であり、電源装置9が所定の基本的な加工条件を呼び出したときには合わせて呼び出さ、各々の制御装置に読み込まれる。
In the machining condition setting unit 11, the basic machining conditions set for performing the electric discharge machining are the discharge current (IP), the pulse width (Ton), the pause time (Toff), the applied voltage (V0), and the servo reference voltage. (SV), jump control setting (JUMP), swing control setting (Orb), target machining position (Zref), etc. are registered and recorded using the input device.
In addition to this, for example, in order to determine the machining state, the discharge voltage (eg) when normal discharge is occurring, the abnormal discharge voltage threshold (Vng), the short-circuit voltage threshold (Vsh), and the minimum no-load time (Tdo) It is also possible to set a pause time (Toffs) when control is performed to extend the pause time when an abnormal discharge occurs, and a machining area (which is already an electric discharge machining portion of the tool electrode 8 to be machined ( If S) is known, it is also possible to input the processing area (S). These pieces of information can be individually set and stored for each condition to be used. When the power supply device 9 calls a predetermined basic processing condition, the information is called and stored in each control device. Is read.

放電検出回路13は、あるサンプリング時間(Ts)毎に、工具電極8と被加工物W間で発生した全放電発生回数(Nd)を記録し、検出結果は主演算装置12に転送される。
なお、転送後は、放電検出回路13が検出したそれぞれの値はリセットされ、次回のサンプリングが開始される。
また、放電検出回路13では、加工条件設定部11において、短絡電圧閾値(Vsh)が設定されている場合には、短絡電圧閾値(Vsh)に基づいて、閾値を下回った放電を短絡としてその回数(N1)を記録する。
同様に最小無負荷時間(Tdo)が設定されている場合には、それを下回った無負荷時間の放電を小無負荷放電回数(N2)、異常放電電圧閾値(Vng)が設定されている場合には、それを下回った放電を異常放電回数(N3)としてそれぞれ個別に記録する。
The discharge detection circuit 13 records the total number of discharge occurrences (Nd) generated between the tool electrode 8 and the workpiece W at every sampling time (Ts), and the detection result is transferred to the main arithmetic unit 12.
After the transfer, each value detected by the discharge detection circuit 13 is reset, and the next sampling is started.
Moreover, in the discharge detection circuit 13, when the short-circuit voltage threshold value (Vsh) is set in the machining condition setting unit 11, the number of times that the discharge below the threshold is short-circuited based on the short-circuit voltage threshold value (Vsh). Record (N1).
Similarly, when the minimum no-load time (Tdo) is set, the discharge of the no-load time below that is set to the number of small no-load discharges (N2) and the abnormal discharge voltage threshold (Vng) is set , The discharge below that is individually recorded as the number of abnormal discharges (N3).

ここで、正常放電とは最小無負荷時間(Tdo)よりも長い無負荷時間(Td)を持ち、放電電圧(eg)が異常放電電圧閾値(Vng)よりも高いものである。
短絡とは、工具電極8と被加工物Wが接触した状態であり、このとき放電は発生しないが、工具電極8と被加工物Wが導通することで短絡電流が生じる。
短絡時には、0〜十数Vの短絡電圧が発生するため、短絡電圧閾値(Vsh)よりも下回った電圧は短絡として認識させている。
短絡は加工屑を介しても工具電極8と被加工物Wが導通する場合も考えられるが、加工間隙の状態として認識することは困難であるが、短絡が発生した場合には、物理的な接触になるため、ひどい場合には工具電極の変形につながり、また、軽微な場合でもシミなどの要因になり、加工面質を損なってしまう。
最小無負荷時間(Tdo)を設けているのは、短い無負荷時間の連続は、放電が発生した近傍で連続して行われていることを示し、この場合は放電が集中している状態になる。
放電の集中は局所的な消耗や加工になってしまい、加工面のウネリや形状転写の悪化を招く要因になる。
Here, the normal discharge has a no-load time (Td) longer than the minimum no-load time (Tdo), and the discharge voltage (eg) is higher than the abnormal discharge voltage threshold (Vng).
The short circuit is a state in which the tool electrode 8 and the workpiece W are in contact with each other. At this time, no discharge is generated, but a short circuit current is generated when the tool electrode 8 and the workpiece W are conducted.
Since a short-circuit voltage of 0 to several tens V is generated at the time of a short circuit, a voltage lower than the short-circuit voltage threshold (Vsh) is recognized as a short circuit.
Although a short circuit may be considered when the tool electrode 8 and the workpiece W are conducted even through the machining waste, it is difficult to recognize as a state of the machining gap, but when a short circuit occurs, Since it is in contact, it leads to deformation of the tool electrode in severe cases, and even if it is minor, it becomes a factor such as a stain and the quality of the machined surface is impaired.
The minimum no-load time (Tdo) is provided because the short no-load time is continuously performed in the vicinity of the occurrence of discharge, and in this case, the discharge is concentrated. Become.
Concentration of electric discharge results in local consumption and processing, and causes undulation on the processed surface and deterioration of shape transfer.

異常放電とは、短絡でもなく、短い無負荷時間でもないが、正常放電ではないものとし、一例として挙げると、無負荷時間は存在するが、無負荷時間中に印加電圧(V0)が設定値よりも降下して漏れ電流が流れた場合などであり、この場合は漏れ電流が発生したことからも明らかなように、加工間隙に電流が生じていることから絶縁回復不足であり、次の放電は集中放電や短絡になると考えられ、絶縁回復が行われない場合にはアークに移行し著しく加工面質を損なう。   Abnormal discharge is neither short-circuit nor short no-load time, but it is not normal discharge. For example, there is no-load time, but the applied voltage (V0) is the set value during no-load time. In this case, the current is generated in the machining gap, so that the insulation recovery is insufficient and the next discharge Is considered to be a concentrated discharge or short circuit, and when insulation recovery is not performed, it shifts to an arc and remarkably deteriorates the machined surface quality.

加工は、短絡や集中や異常放電が正常放電内に入り混じりながら進行し、それぞれは何が原因で発生するものなのかが定性的・定量的には未だ不明であり、現状では、加工内容や加工対象の材質などにより、それぞれの問題の重み付けをして、問題が発生して休止を延ばすなどすることで問題が継続することを抑制するような制御を行う場合には、それぞれの事象毎に設定された休止設定を使っている。   Processing progresses while short-circuiting, concentration, and abnormal discharge enter and mix in the normal discharge, and it is still unclear qualitatively and quantitatively what causes each of them. When control is performed to suppress the problem from continuing by weighting each problem according to the material to be processed, etc., and prolonging the pause, etc., for each event You are using the configured pause settings.

次に放電検出回路13の具体的動作について図2を用いて説明する。
図2(A)はあるサンプリング時間(Ts)における工具電極8と被加工物Wの加工間隙の放電状態を電圧と電流によって示している。
図2(B)は、極間に電圧がかかっている時間を示す電圧信号であり、無負荷電圧時間(Td)とパルス幅(Ton)時間分生成される。
この信号の逆は休止時間(Toff)ということになる。
Next, a specific operation of the discharge detection circuit 13 will be described with reference to FIG.
FIG. 2A shows the discharge state of the machining gap between the tool electrode 8 and the workpiece W at a certain sampling time (Ts) by voltage and current.
FIG. 2B shows a voltage signal indicating the time during which the voltage is applied between the electrodes, and is generated for the no-load voltage time (Td) and the pulse width (Ton) time.
The reverse of this signal is the pause time (Toff).

図2(C)は、極間で絶縁破壊が行われ、電流が生じている際のパルス幅(Ton)分の時間に相当する放電時間信号を示している。
図2(D)は図2(B)と図2(C)の差であり、無負荷電圧時間(Td)を示している。
図2(E)は加工条件設定部11で最小無負荷時間(Tdo)設定が行われているときに、無負荷電圧時間(Td)との比較を行うべく、休止時間(Toff)発生後に電圧が印加されたタイミングで発生させている比較用の信号である。
図2(F)は、無負荷電圧時間(Td)と最小無負荷時間(Tdo)を比較した結果で最小無負荷時間(Tdo)を下回った無負荷電圧時間(Td)の場合にはワンショットとして生成される。
図2(G)は加工条件設定部11で短絡電圧閾値(Vsh)設定が行われているときに、パルス幅(Ton)時間中に短絡電圧閾値(Vsh)と放電電圧(eg)を比較し、短絡電圧閾値(Vsh)を下回ったことが判定された場合に生成されるワンショット信号である。
ここで、短絡時には印加電圧が発生しないため、無負荷時間も短いことから小無負荷放電として認識されてしまうので、検出の際には小無負荷放電回数(N2)から短絡回数(N1)を引いておく必要がある。
FIG. 2C shows a discharge time signal corresponding to a time corresponding to the pulse width (Ton) when a dielectric breakdown occurs between the electrodes and a current is generated.
FIG. 2D shows the difference between FIG. 2B and FIG. 2C, and shows the no-load voltage time (Td).
FIG. 2E shows the voltage after the pause time (Toff) is generated in order to make a comparison with the no-load voltage time (Td) when the machining condition setting unit 11 sets the minimum no-load time (Tdo). Is a signal for comparison that is generated at the timing when is applied.
FIG. 2 (F) shows one shot when the no-load voltage time (Td) is less than the minimum no-load time (Tdo) as a result of comparing the no-load voltage time (Td) and the minimum no-load time (Tdo). Is generated as
FIG. 2 (G) shows a comparison between the short-circuit voltage threshold (Vsh) and the discharge voltage (eg) during the pulse width (Ton) time when the short-circuit voltage threshold (Vsh) is set by the processing condition setting unit 11. This is a one-shot signal that is generated when it is determined that the short-circuit voltage threshold (Vsh) has been exceeded.
Here, since no applied voltage is generated at the time of a short circuit, the no-load time is also short, so it is recognized as a small no-load discharge. It is necessary to pull it out.

図2(H)は加工条件設定部11で異常放電電圧閾値(ng)が設定されて、例えば、印加電圧(V0)と比較することとした場合に、図2(D)の信号と比較して無負荷時間中に異常放電電圧閾値(Vng)を下回ったことが判定された場合に生成されるワンショット信号である。   FIG. 2 (H) shows a case where the abnormal discharge voltage threshold (ng) is set by the machining condition setting unit 11 and is compared with the applied voltage (V0), for example, and compared with the signal of FIG. 2 (D). This is a one-shot signal that is generated when it is determined that the voltage falls below the abnormal discharge voltage threshold value (Vng) during the no-load time.

放電検出回路13では、図2(C)の信号をカウンタにより取込むことで全放電発生回数(Nd)として認識し、それぞれ短絡回数(N1)は図2(G)の信号、小無負荷放電回数(N2)は図2(F)から図2(G)の信号を引いた信号、異常放電回数(N3)は図2(H)の信号をそれぞれ取込んでカウンタで計測したものである。
ここで、正常放電(Nn)は全放電発生回数(Nd)から短絡回数(N1)と小無負荷放電回数(N2)と異常放電回数(N3)を引いたものである。
The discharge detection circuit 13 recognizes it as the total number of discharge occurrences (Nd) by taking the signal of FIG. 2C by a counter, and the number of short circuits (N1) is the signal of FIG. The number of times (N2) is obtained by subtracting the signal of FIG. 2 (G) from FIG. 2 (F), and the number of abnormal discharges (N3) is obtained by taking the signal of FIG.
Here, the normal discharge (Nn) is obtained by subtracting the number of short circuits (N1), the number of small no-load discharges (N2), and the number of abnormal discharges (N3) from the total number of discharges (Nd).

このように、本発明では、これまで加工間隙の状態を電圧変動として取込むことで評価していたものを各状態の事象をより定量的に把握することで、より正確な放電状態として認識し、加工軸送り制御に反映して行わんとするものである。
具体的には、放電検出回路13から取得したそれぞれの状態量については、これまで扱ってきた平均電圧に相当する量に変換して、その信号を元に加工軸送り制御を行うのである。
Thus, in the present invention, what has been evaluated by taking the state of the machining gap as a voltage fluctuation so far is recognized as a more accurate discharge state by more quantitatively grasping the event of each state. This is to be reflected in the machining axis feed control.
Specifically, each state quantity acquired from the discharge detection circuit 13 is converted into an amount corresponding to the average voltage handled so far, and machining axis feed control is performed based on the signal.

本実施の形態に係る加工軸の送り制御に関する考え方について説明する。
先ず、基本的な概念として、放電検出回路13で得られた全放電発生回数(Nd)が全て正常放電だったと仮定して、加工軸の送り制御を行う場合について説明する。あるサンプリング時間(Ts)における放電発生回数(Nd)がN回であったとする。
The concept regarding the machining axis feed control according to the present embodiment will be described.
First, as a basic concept, a case will be described in which the machining axis feed control is performed on the assumption that the total number of discharge occurrences (Nd) obtained by the discharge detection circuit 13 is all normal discharge. Assume that the number of discharge occurrences (Nd) in a certain sampling time (Ts) is N times.

一回の放電は無負荷時間(Td)、パルス幅(Ton)、休止時間(Toff)で構成され、パルス幅(Ton)、休止時間(Toff)は加工条件設定部11で設定された値である。
無負荷時間(Td)は設定できるものではなく加工状態によって変化する量であり、平均電圧(Vg)による加工軸送り制御では、加工間隙の平均電圧(Vg)をサーボ基準電圧(SV)に保つように加工軸送り制御が行われ、図3に示すように、ある放電一回の平均電圧(Vg)は、

Figure 0005056907
で表すことができる。 Each discharge is composed of a no-load time (Td), a pulse width (Ton), and a pause time (Toff). The pulse width (Ton) and the pause time (Toff) are values set by the machining condition setting unit 11. is there.
The no-load time (Td) is not settable and is an amount that varies depending on the machining state. In machining axis feed control using the average voltage (Vg), the machining gap average voltage (Vg) is maintained at the servo reference voltage (SV). As shown in FIG. 3, the average voltage (Vg) for one discharge is as follows:
Figure 0005056907
Can be expressed as

ここで、平均電圧(Vg)をサーボ基準電圧(SV)に合わせるということは、パルス幅(Ton)、休止時間(Toff)、印加電圧(V0)は全て加工条件設定部11で設定される既知の値であり、放電電圧(eg)は工具電極8と被加工物Wの組合せや極性などによって決まる20〜30Vの値であることから、未知数である無負荷時間(Td)を一定にしようと制御することと同じであることが分かる。
このことから、加工状態を一定に制御しようとする理想的な場合には無負荷時間(Td)が同じであるとすると、あるサンプリング時間(Ts)における放電発生回数(Nd)が求まると、

Figure 0005056907
と表すことができる。 Here, adjusting the average voltage (Vg) to the servo reference voltage (SV) means that the pulse width (Ton), pause time (Toff), and applied voltage (V0) are all set by the machining condition setting unit 11. Since the discharge voltage (eg) is a value of 20 to 30 V determined by the combination and polarity of the tool electrode 8 and the workpiece W, an attempt is made to keep the no-load time (Td), which is an unknown, constant. It turns out that it is the same as controlling.
From this, if the no-load time (Td) is the same in an ideal case where the machining state is to be controlled to be constant, the number of occurrences of discharge (Nd) in a certain sampling time (Ts) is obtained.
Figure 0005056907
It can be expressed as.

つまり、あるサンプリング時間(Ts)における放電発生回数(Nd)が分かれば、そのときの無負荷時間(Td)は、

Figure 0005056907
となる。 That is, if the number of discharge occurrences (Nd) in a certain sampling time (Ts) is known, the no-load time (Td) at that time is
Figure 0005056907
It becomes.

式(1)はある放電一回の平均電圧としたが、あるサンプリング時間(Ts)中の平均電圧(Vg)はこの一回の放電の集まりがNd回あると考えればよいので、式(1)は式(3)を使うことで、

Figure 0005056907
と表すことができる。 Although the expression (1) is an average voltage for a certain discharge, the average voltage (Vg) during a certain sampling time (Ts) can be considered that there are Nd times of this discharge collection. ) Uses equation (3),
Figure 0005056907
It can be expressed as.

これにより加工間隙の電圧を検出することなく、放電発生回数(Nd)を検出するだけで放電の状態量となる、あるサンプリング時間(Ts)の平均電圧(Vg)を求めることが可能になり、この平均電圧(Vgs)を従来の検出した平均電圧(Vg)の代わりに加工軸送り制御に使うことで電気的な外乱に影響を受けない正確な状態量を反映した加工軸送り制御がなされることになる。   This makes it possible to obtain an average voltage (Vg) for a certain sampling time (Ts), which is a state quantity of discharge only by detecting the number of occurrences of discharge (Nd) without detecting the voltage of the machining gap, By using this average voltage (Vgs) for machining axis feed control instead of the conventional detected average voltage (Vg), machining axis feed control that reflects accurate state quantities that are not affected by electrical disturbance is performed. It will be.

式(4)により、加工間隙の平均電圧は放電発生回数(Nd)の一次式で表された。
これは、サンプリング時間(Ts)の平均電圧(Vg)が印加電圧(V0)と同じ値であるときには、放電発生回数(Nd)は0、つまり、放電が発生しなかったことを表し、あるサンプリング時間(Ts)の平均電圧(Vg)が0、つまり短絡している場合は、式(4)、または、式(3)から、

Figure 0005056907
であることが分かる。 From the equation (4), the average voltage of the machining gap was expressed by a linear equation of the number of discharge occurrences (Nd).
This means that when the average voltage (Vg) of the sampling time (Ts) is the same value as the applied voltage (V0), the number of occurrences of discharge (Nd) is 0, that is, no discharge has occurred. When the average voltage (Vg) of time (Ts) is 0, that is, short-circuited, from the formula (4) or the formula (3),
Figure 0005056907
It turns out that it is.

しかし、式(5)のときの放電発生回数(Nd)が発生しえる最大の放電発生回数(Ndmax)だとは言えない。
何故なら、実際には、決まったパルス幅(Ton)と休止時間(Toff)の元では、無負荷時間(Td)が0の場合にパルス幅(Ton)と休止時間(Toff)だけの繰返しで発生する最大の放電回数が決定してしまい、式(1)において無負荷時間(Td)が0だとした場合には、

Figure 0005056907
であり、この平均電圧(Vg)のときにも放電発生回数は最大の放電発生回数(Ndmax)になるので、式(4)は印加電圧(V0)から式(6)の範囲までが比例関係にあり、それ以上は式(5)で表される放電発生回数(Nd)を超えることがない。
つまり図4に示される関係にある。 However, it cannot be said that the number of occurrences of discharge (Nd) in Equation (5) is the maximum number of occurrences of discharge (Ndmax) that can occur.
This is because, in practice, when the no-load time (Td) is 0 under the fixed pulse width (Ton) and the pause time (Toff), the pulse width (Ton) and the pause time (Toff) are repeated. When the maximum number of discharges to be generated is determined and the no-load time (Td) is 0 in the equation (1),
Figure 0005056907
Even when this average voltage (Vg) is used, the number of discharge occurrences is the maximum number of discharge occurrences (Ndmax). Therefore, equation (4) is proportional to the range of applied voltage (V0) to equation (6). No more than the number of occurrences of discharge (Nd) represented by the formula (5).
That is, there is a relationship shown in FIG.

つまり、あるサンプリング時間(Ts)の平均電圧(Vg)が0から式(6)までの範囲では放電発生回数(Nd)が最大の放電発生回数(Ndmax)で同じになってしまい、全放電発生回数(Nd)を全て正常放電として扱った場合には、この領域においては正確な平均電圧(Vgs)を算出することができない限界になる。   That is, when the average voltage (Vg) of a certain sampling time (Ts) is in the range from 0 to Equation (6), the number of discharge occurrences (Nd) becomes the same at the maximum number of discharge occurrences (Ndmax), and all discharges are generated. When all the times (Nd) are handled as normal discharge, there is a limit that an accurate average voltage (Vgs) cannot be calculated in this region.

本発明における方式の問題点は、全放電発生回数(Nd)を全て正常放電として扱った場合には、あるサンプリング時間(Ts)の平均電圧(Vg)が0から式(6)までの範囲で正確に平均電圧(Vg)を認識することができないということになるが、この範囲では無負荷時間(Td)が短い小無負荷放電か、または、短絡のいずれか、または両方が混在した状態が頻発している状態にあるということが分かるので、この二つの状態を認識して反映させれば良いことになり、式(6)から無負荷時間(Td)が0の状態がこの領域なので、実際には短絡がどの程度発生したかを認識すれば良いということになる。   The problem with the method of the present invention is that when the total number of discharge occurrences (Nd) is handled as normal discharge, the average voltage (Vg) for a certain sampling time (Ts) is in the range from 0 to Equation (6). This means that the average voltage (Vg) cannot be recognized accurately, but in this range there is a state where either a small no-load discharge with a short no-load time (Td) or a short circuit or both are mixed. Since it can be seen that there are frequent occurrences, it is only necessary to recognize and reflect these two states, and since the state where the no-load time (Td) is 0 from this equation (6), In practice, it is sufficient to recognize how much a short circuit has occurred.

そこで、放電検出回路13では加工条件設定部11で決められた短絡電圧閾値(Vsh)を下回った放電を短絡回数(N1)として測定している。この短絡回数(N1)の全放電発生回数(Nd)における依存度が分かればよいことになり、式(2)は、

Figure 0005056907
と表せる。 Therefore, the discharge detection circuit 13 measures the discharge that is below the short-circuit voltage threshold (Vsh) determined by the machining condition setting unit 11 as the number of short-circuits (N1). It is only necessary to know the dependency of the number of short circuits (N1) on the total number of discharges (Nd).
Figure 0005056907
It can be expressed.

また、短絡時には無負荷時間(Td)が無かった場合で、短絡電圧(Vsh)が生じていたと考えると、式(4)は式(7)から、

Figure 0005056907
と表すことができる。 Further, when there is no no-load time (Td) at the time of a short circuit and it is considered that a short circuit voltage (Vsh) has occurred, Equation (4) can be expressed by Equation (7) as follows:
Figure 0005056907
It can be expressed as.

短絡が発生したときには短絡電圧はほとんどの場合0Vであり、短絡電圧閾値(Vsh)を0Vとすると、式(8)は、

Figure 0005056907
とすることができる。 When a short circuit occurs, the short circuit voltage is almost 0V, and assuming that the short circuit voltage threshold (Vsh) is 0V, equation (8) is
Figure 0005056907
It can be.

これにより、あるサンプリング時間(Ts)の平均電圧(Vgs)を求めるに当たって、全放電発生回数(Nd)中に短絡回数(N1)が混在した場合でも正しく平均電圧換算できることになる。   Thus, when obtaining the average voltage (Vgs) for a certain sampling time (Ts), the average voltage can be correctly converted even when the number of short-circuits (N1) is mixed in the total number of discharges (Nd).

工具電極8にΦ10mmの銅、被加工物Wには鋼材を用いて、加工軸送り制御を従来方法として表1に示す試験条件で加工を行った際の加工間隙の平均電圧(Vg)と全放電発生回数(Nd)との関係を図5に示す。   The tool electrode 8 is made of copper having a diameter of 10 mm, and the workpiece W is made of steel, and the machining axial feed control is performed by the conventional method under the test conditions shown in Table 1 and the average voltage (Vg) of the machining gap and the total voltage. The relationship with the number of discharge occurrences (Nd) is shown in FIG.

表1

Figure 0005056907
Table 1
Figure 0005056907

図5において、直線はこのグラフに式(9)を当てはめたものであり本発明による加工軸送り制御で使用する平均電圧(Vgs)が正しければ、サンプリング時間(Ts)毎の平均電圧(Vg)としてプロットした全放電発生回数(Nd)が直線上に乗ることになるが、試験結果からは両者がほぼ等しいことが分かった。
すなわち、本発明で新たに作成した平均電圧(Vgs)を従来の加工軸送り制御の平均電圧(Vg)の代わりに使用可能であることが分かる。
In FIG. 5, the straight line is obtained by applying the equation (9) to this graph. If the average voltage (Vgs) used in the machining axis feed control according to the present invention is correct, the average voltage (Vg) for each sampling time (Ts). The total number of occurrences of discharge (Nd) plotted as is on a straight line, but the test results showed that both were almost equal.
That is, it can be seen that the average voltage (Vgs) newly created in the present invention can be used instead of the average voltage (Vg) of the conventional machining axis feed control.

次に、正常放電以外の放電を認識した場合に、休止時間(Toff)を伸ばして(Toffs)とすることにより加工の安定化を図る制御が従来より行われておるが、該休止時間の延長を行った場合における式(9)の補正について説明する。
放電検出回路13で取得される短絡回数(N1)と小無負荷放電回数(N2)と異常放電回数(N3)を考慮しているので、正常放電以外の放電状態を把握することは可能である。
Next, when a discharge other than normal discharge is recognized, control has been conventionally performed to stabilize the processing by extending the pause time (Toff) to (Toffs). The correction of the equation (9) when performing the above will be described.
Since the number of short circuits (N1), the number of small no-load discharges (N2), and the number of abnormal discharges (N3) acquired by the discharge detection circuit 13 are taken into account, it is possible to grasp the discharge state other than normal discharge. .

基本的には、休止時間を延ばす休止制御が何回行われたのかが分かれば良く、短絡による休止制御での休止をToffs1、小無負荷放電による休止制御での休止をToffs2、異常放電による休止制御での休止をToffs3とすると、あるサンプリング時間(Ts)での休止成分がどの程度寄与していたかが分かればよいので、式(7)は、

Figure 0005056907
と表され、これにより式(9)は、
Figure 0005056907
と表せる。 Basically, it is only necessary to know how many times the pause control to extend the pause time is performed. The pause in the pause control by short circuit is Toffs1, the pause in the pause control by small no-load discharge is Toffs2, and the pause by abnormal discharge. Assuming that the pause in the control is Toffs3, it is sufficient to know how much the pause component at a certain sampling time (Ts) contributed.
Figure 0005056907
As a result, equation (9) becomes
Figure 0005056907
It can be expressed.

一般化するために、休止制御を行う種類がnあり、休止制御時の休止時間がそれぞれToffnだったとすると、

Figure 0005056907
と表せる。 For generalization, if there are n types of suspension control and the suspension time at the suspension control is Toffn,
Figure 0005056907
It can be expressed.

これを反映して式(9)は、

Figure 0005056907
と表すことができる。 Reflecting this, equation (9) becomes
Figure 0005056907
It can be expressed as.

すなわち、短絡、小無負荷放電、異常放電以外にも休止制御を行った場合にも対応できることが示せた。
工具電極8にΦ10mmの銅、被加工物Wには鋼材を用いて、加工軸送り制御を従来方法として表2に示す試験条件で加工を行い、異常放電を認識させた制御で式(8)により平均電圧(Vgs)を認識させたもの(a)と、異常放電を認識させた制御で式(11)により平均電圧(Vgs)を認識させたもの(b)と、全放電発生回数(Nd)との関係を図6に示す。
That is, it has been shown that it is possible to cope with a case where pause control is performed in addition to short circuit, small no-load discharge, and abnormal discharge.
The tool electrode 8 is made of copper having a diameter of 10 mm, and the work piece W is made of steel, and machining is performed under the test conditions shown in Table 2 using machining axis feed control as a conventional method. In which the average voltage (Vgs) is recognized (a), the control in which the abnormal discharge is recognized (b) in which the average voltage (Vgs) is recognized by the equation (11), and the total number of discharges (Nd 6 is shown in FIG.

表2

Figure 0005056907
Table 2
Figure 0005056907

図6において、直線はこのグラフに式(11)を当てはめたものであり、本発明による加工軸送り制御で使用する平均電圧(Vgs)が正しければ、サンプリング時間(Ts)毎の平均電圧(Vg)としてプロットした全放電発生回数(Nd)が直線上に乗ることになる。
図に示される加工結果では、前者の加工では休止制御が入ることで、正しい平均電圧(Vgs)が認識されていないだけでなく、全放電発生回数(Nd)が0のときにも平均電圧(Vgs)が0Vとなり、本来、全放電発生回数(Nd)が0とは加工間隙には印加電圧(V0)がかかっている状態、所謂、オープン状態となるはずであるが、そうならない場合もある。
短絡とオープン状態では大きな違いがあるのだが、式(11)で休止制御を考慮すれば、後者のように正しく平均電圧を認識することが可能になった。
In FIG. 6, the straight line is obtained by applying Equation (11) to this graph. If the average voltage (Vgs) used in the machining axis feed control according to the present invention is correct, the average voltage (Vg) for each sampling time (Ts) is shown. The total number of discharge occurrences (Nd) plotted as) is on a straight line.
In the machining results shown in the figure, in the former machining, not only the correct average voltage (Vgs) is not recognized, but also the average voltage (Nd) is zero when the total discharge occurrence number (Nd) is zero. Vgs) is 0 V, and when the total number of discharge occurrences (Nd) is 0, the applied gap (V0) is applied to the machining gap, that is, the so-called open state should be, but there are cases where this is not the case. .
Although there is a big difference between the short circuit and the open state, it is now possible to correctly recognize the average voltage as in the latter if the pause control is taken into account in Equation (11).

休止制御の一例としては、図2で示したように印加電圧(V0)が無負荷時間(Td)中に降下した場合、放電検出回路が異常放電として認識しすると、異常放電回数(N3)を増やす。電源装置9はこれに伴い休止制御を行い、休止時間(Toff)を異常放電用の休止時間(Toff3)に変更するように制御を行う。また、並行して短絡や小無負荷放電に対しても休止制御を行った場合も同様であり、このような休止制御が行われた際には、式(11)で示したようにして、休止時間の延長を考慮した正確な平均電圧(Vgs)を認識する。
また、異常放電の定義は様々あり、現状の放電加工機においても検出手段や認識方法などが異なるが、異常放電が認識された場合は上述したように休止制御が行われることがほとんどであり、検出手段や認識方法が異なった場合でも、異常放電後に休止制御が行われる手段であれば、休止制御が行われた場合でも加工間隙の平均電圧を正しく認識させることが可能である。
As an example of the pause control, when the applied voltage (V0) drops during the no-load time (Td) as shown in FIG. 2, if the discharge detection circuit recognizes the abnormal discharge, the number of abnormal discharges (N3) is calculated. increase. Accordingly, the power supply device 9 performs stop control, and performs control to change the stop time (Toff) to the stop time for abnormal discharge (Toff3). The same applies to the case where the pause control is performed for the short circuit and the small no-load discharge in parallel, and when such a pause control is performed, as shown in Expression (11), Recognize an accurate average voltage (Vgs) that takes into account extended pause times.
In addition, there are various definitions of abnormal discharge, and even in the current electric discharge machine, the detection means and the recognition method are different, but when abnormal discharge is recognized, the rest control is mostly performed as described above, Even if the detection means and the recognition method are different, if the pause control is performed after abnormal discharge, the average voltage of the machining gap can be correctly recognized even if the pause control is performed.

次に、本発明における実施の形態1の制御フローチャートを図7に示す。
従来の直接加工間隙の放電電圧を検出しフィルタ回路から平均電圧(Vg)を生成して加工軸送り制御を行う場合のフローチャートを図7(a)、本発明での放電発生回数から平均電圧(Vgs)を生成して加工軸送り制御を行う場合のフローチャートを図7(b)に記す。
基本的な制御フローに違いはなく、加工軸送り制御を電極位置制御装置10で行う場合の基準となる信号をフィルタ回路から生成する(従来:a)か、放電検出回路13で認識した放電発生回数から生成する(本発明:b)かの違いである。
制御としては、休止制御を行う加工を行っているかいないかで制御フローが分かれ、休止制御を行っているならば式(11)に基づき平均電圧(Vgs)を演算し、休止制御を行っていないならば式(9)に基づき平均電圧(Vg)を求めるものである。
Next, FIG. 7 shows a control flowchart of the first embodiment of the present invention.
FIG. 7A is a flowchart for detecting the discharge voltage of the conventional direct machining gap and generating the average voltage (Vg) from the filter circuit to perform machining axis feed control. FIG. FIG. 7B shows a flowchart when the machining axis feed control is performed by generating (Vgs).
There is no difference in the basic control flow, and a signal used as a reference when machining axis feed control is performed by the electrode position control device 10 is generated from a filter circuit (conventional: a), or discharge generation recognized by the discharge detection circuit 13 It is the difference of generating from the number of times (the present invention: b).
As the control, the control flow is divided depending on whether or not the processing for performing the pause control is performed. If the pause control is being performed, the average voltage (Vgs) is calculated based on the equation (11), and the pause control is not performed. Then, the average voltage (Vg) is obtained based on the equation (9).

本実施の形態によれば、従来からの問題点が検出線の特性やノイズにあるとすると、本発明の手法であれば、平均電圧を直接検出するのではなく、加工軸送り制御を全放電発生回数(Nd)から算出する平均電圧(Vgs)用いるため、従来技術の課題であった、フィルタ回路をなくすことが可能になっただけでなく、専用の電圧検出線も排除し、ノイズ成分などの悪影響を排除し、正しい平均電圧(Vg)で加工軸送り制御が実現できることになる。
その結果、加工面の精度向上等に大きく寄与する。
また、平均電圧(Vgs)が小さくなる場合などでは、短絡発生回数(N1)を考慮して、全放電発生回数(Nd)から減ずる方式により、加工間隙の平均電圧を正しく検出できるができる。
According to the present embodiment, assuming that the conventional problem lies in the characteristics of the detection line and noise, the method of the present invention does not directly detect the average voltage but directly controls the machining axis feed control. Since the average voltage (Vgs) calculated from the number of occurrences (Nd) is used, not only the filter circuit, which was a problem of the conventional technology, can be eliminated, but also a dedicated voltage detection line is eliminated, noise components, etc. Therefore, machining axis feed control can be realized with the correct average voltage (Vg).
As a result, it greatly contributes to improving the accuracy of the processed surface.
In addition, when the average voltage (Vgs) becomes small, the average voltage of the machining gap can be correctly detected by subtracting from the total number of discharge occurrences (Nd) in consideration of the number of occurrences of short circuit (N1).

なお、本発明の実施形態は形彫放電加工機を使用した例であるが、放電現象を判断して平均電圧(Vg)から加工軸送り制御を行うものであれば送り機構の差異はあるものの、同じ概念により制御可能になると言える。   Although the embodiment of the present invention is an example using a sculpting electric discharge machine, there is a difference in the feed mechanism as long as the machining axis feed control is performed from the average voltage (Vg) by judging the discharge phenomenon. It can be said that it can be controlled by the same concept.

実施の形態2.
次に、本発明の実施の形態2として、本発明による加工軸送り制御を行う放電加工装置での小無負荷時間(Tdo)の設定に関して説明する。
加工条件設定部11では加工中に発生する小無負荷放電が集中放電に移行することを懸念して小無負荷時間(Tdo)を設定することが可能であり、放電検出回路13では実施の形態1で説明した如く、この小無負荷時間(Tdo)と一回毎の放電加工の無負荷時間(Td)を比較している。
Embodiment 2. FIG.
Next, as Embodiment 2 of the present invention, setting of a small no-load time (Tdo) in an electric discharge machining apparatus that performs machining axis feed control according to the present invention will be described.
The machining condition setting unit 11 can set a small no-load time (Tdo) in consideration of the fact that a small no-load discharge generated during machining shifts to a concentrated discharge. As described in FIG. 1, the small no-load time (Tdo) is compared with the no-load time (Td) of each electric discharge machining.

一般に、小無負荷放電の多い加工は集中放電しやすくなりアークに移行しやすいため、無負荷時間(Td)はある程度の余裕を持った設定にする必要がある。
反面、この無負荷時間(Td)自体は放電が発生することが無いため、長すぎると加工効率が低下してしまう。
このため、加工速度を向上させようとした場合には、休止時間(Toff)を小さくする以外にサーボ基準電圧(SV)を小さくして、結果的に無負荷時間(Td)を小さくすることが行われる。
このことから、集中放電が発生しない程度に無負荷時間(Td)を小さく設定できれば理想的な加工速度が得られることになる。
In general, since machining with a large amount of small no-load discharge tends to cause concentrated discharge and easily shift to an arc, the no-load time (Td) needs to be set with a certain margin.
On the other hand, since this no-load time (Td) itself does not generate electric discharge, if it is too long, the processing efficiency is lowered.
For this reason, when trying to improve the machining speed, the servo reference voltage (SV) can be reduced in addition to reducing the pause time (Toff), resulting in a reduction in the no-load time (Td). Done.
For this reason, an ideal machining speed can be obtained if the no-load time (Td) can be set small enough so that concentrated discharge does not occur.

その他、加工速度を向上させる場合に必要になる要素の一つに、加工中の平均電流密度(Id)がある。
これは、加工部の面積、即ち、工具電極8の面積あたりに投入できるエネルギ量は、工具電極8と被加工物Wの組合せによってほぼ決定され、この平均電流密度(Id)を超えなければほとんどの場合は安定した加工が維持されることが知られている。
加工を行う場合、工具電極8の面積(S)と加工条件設定部11で設定される加工条件のうち、放電電流(IP)、パルス幅(Ton)、休止時間(Toff)、サーボ基準電圧(SV)、印加電圧(V0)が分かれば、式(1)から加工中の目標となる無負荷時間(Td)が計算され、加工中の平均電流密度(Id)は、

Figure 0005056907
として表され、単位面積あたりのエネルギ投入量が計算される。 In addition, one of the factors required for improving the processing speed is the average current density (Id) during processing.
This is because the area of the processed portion, that is, the amount of energy that can be input per area of the tool electrode 8 is almost determined by the combination of the tool electrode 8 and the workpiece W, and almost does not exceed this average current density (Id). In this case, it is known that stable processing is maintained.
When performing machining, among the area (S) of the tool electrode 8 and the machining conditions set by the machining condition setting unit 11, the discharge current (IP), the pulse width (Ton), the pause time (Toff), the servo reference voltage ( SV) and applied voltage (V0), the target no-load time (Td) during processing is calculated from the equation (1), and the average current density (Id) during processing is
Figure 0005056907
The energy input per unit area is calculated.

様々な実験結果から、工具電極8に銅と被加工物Wに鉄鋼材を用い、工具電極8側をプラス極性として加工を行う場合には、工具電極8の形状にもよるが平均電流密度(Id)は5〜15A/cmを超えなければ加工が安定することが知られている。
同様に、工具電極8にグラファイトと被加工物Wに鉄鋼材を用い、工具電極8側をプラス極性として加工を行う場合には、工具電極8の形状にもよるが平均電流密度(Id)は2〜5A/cmを超えなければ加工が安定することが知られている。
同様に、工具電極8に銅タングステン合金と被加工物Wに超硬合金を用い、工具電極8側をマイナス極性として加工を行う場合には、工具電極8の形状にもよるが平均電流密度(Id)は3〜10A/cmを超えなければ加工が安定することが知られている。
From various experimental results, when using copper for the tool electrode 8 and a steel material for the workpiece W and machining with the tool electrode 8 side having a positive polarity, the average current density (depending on the shape of the tool electrode 8). It is known that if Id) does not exceed 5-15 A / cm 2 , the processing is stable.
Similarly, when processing is performed using graphite for the tool electrode 8 and a steel material for the workpiece W, with the tool electrode 8 side having a positive polarity, the average current density (Id) depends on the shape of the tool electrode 8. It is known that the processing is stable unless it exceeds 2 to 5 A / cm 2 .
Similarly, when machining is performed using a copper tungsten alloy for the tool electrode 8 and a cemented carbide for the workpiece W and the tool electrode 8 side having a negative polarity, the average current density (depending on the shape of the tool electrode 8). It is known that if Id) does not exceed 3 to 10 A / cm 2 , the processing is stable.

本発明における放電加工装置の加工条件設定部11で基本的な加工条件設定以外に、加工対象の被加工物Wの面積(S)が入力されたときには、式(14)から設定された放電電流(IP)、パルス幅(Ton)、休止時間(Toff)が決まれば目標になる無負荷時間(Td)が決まり、その結果を式(1)に適用することで、加工条件で設定されるべきサーボ基準電圧(SV)が決定される。
このとき計算される無負荷時間(Td)を限界無負荷時間(Tds)とすればこの値を小無負荷時間(Tdo)として扱えば集中放電のときの危険状態を感知できる。
実際に適正な小無負荷時間(Tdo)を求めるために、表3に示される条件で加工を行った。
In addition to the basic machining condition setting in the machining condition setting unit 11 of the electric discharge machining apparatus according to the present invention, when the area (S) of the workpiece W to be machined is input, the discharge current set from the equation (14) If (IP), pulse width (Ton), and pause time (Toff) are determined, the target no-load time (Td) is determined, and the result should be applied to equation (1) to be set according to the processing conditions. A servo reference voltage (SV) is determined.
If the no-load time (Td) calculated at this time is the limit no-load time (Tds), if this value is handled as a small no-load time (Tdo), a dangerous state at the time of concentrated discharge can be sensed.
In order to actually obtain an appropriate small no-load time (Tdo), processing was performed under the conditions shown in Table 3.

表3

Figure 0005056907
Table 3
Figure 0005056907

工具電極8には10mm角の銅タングステン、被加工物Wに超硬合金を使用し、電極側の極性をマイナスとした加工において、荒加工条件を表2(No.1)に示すような条件で加工を行う場合、平均電流密度(Id)を10A/cmとすれば、サーボ基準電圧(SV)は40Vで限界無負荷時間(Tds)は60μsecである。
この試験では、小無負荷時間(Tdo)を設定せず、限界無負荷時間(Tds)を下回った無負荷時間(Td)の放電が発生しても休止制御を行わないものとして行うと、大きなアークには移行することはなかったが、加工面には黒くなったシミが残り、電極の角部には局所的に大きく消耗した個所が見られた。
そこで、小無負荷時間(Tdo)を変化させることによる加工状態の変化を観察すべく、小無負荷時間(Tdo)を限界無負荷時間(Tds)と同じ60μsec(No.2)、10μsec(No.3)、20μsec(No.4)と設定として、小無負荷放電(Tdo)が2回連続で発生したときには、休止時間(Toff)を一つ多く入れる休止制御のもとで試験を行った。
The conditions shown in Table 2 (No. 1) for roughing conditions in machining with 10 mm square copper tungsten for the tool electrode 8 and cemented carbide for the workpiece W, with the polarity on the electrode side negative. In the case of processing at, if the average current density (Id) is 10 A / cm 2 , the servo reference voltage (SV) is 40 V and the limit no-load time (Tds) is 60 μsec.
In this test, if a small no-load time (Tdo) is not set, and no discharge control is performed even if a discharge of a no-load time (Td) below the limit no-load time (Tds) occurs, Although there was no transfer to the arc, black spots were left on the machined surface, and there were spots where the electrodes were heavily consumed locally at the corners of the electrodes.
Therefore, in order to observe the change of the machining state by changing the small no-load time (Tdo), the small no-load time (Tdo) is the same as the limit no-load time (Tds) 60 μsec (No. 2), 10 μsec (No .3) As a setting of 20 μsec (No. 4), when a small no-load discharge (Tdo) occurred twice in succession, the test was performed under a pause control in which one pause time (Toff) was added. .

表2に示す如く、No.2の条件では、加工面や電極消耗には問題が無かったが、加工時間が1割以上遅くなり、No.4の条件では、加工面や電極消耗に問題が無く速度を向上させることができた。
この結果から、小無負荷時間(Tdo)は限界無負荷時間(Tds)の0〜1.0倍程度の値を設定し、望ましくは0.3〜0.5倍程度で設定すれば良好な加工が実現できると考えられる。
つまり、限界無負荷時間(Tds)と同じ放電が連続した場合でもその状態では電流密度の制限を越えることがなく、この状態の無負荷時間(Td)の放電に対して休止制御を行った場合には、かえって加工速度が低下してしまう。
小無負荷放電は連続することで集中放電に移行すると考えれば、限界無負荷時間(Tds)よりも小さい無負荷時間(Td)の放電が連続することが危険であると考えられる。
このため、本実験では限界無負荷時間(Tds)の1/3程度が良好であったと考えられる。
As shown in Table 2, no. Under condition 2, there was no problem with the machined surface and electrode consumption, but the machining time was 10% slower, and under condition No.4, there was no problem with the machined surface and electrode consumption and the speed could be improved. It was.
From this result, the small no-load time (Tdo) is preferably set to a value of about 0 to 1.0 times the limit no-load time (Tds), preferably about 0.3 to 0.5 times. It is thought that processing can be realized.
In other words, even when the same discharge as the limit no-load time (Tds) continues, the current density limit is not exceeded in that state, and the pause control is performed for the discharge in the no-load time (Td) in this state. However, the processing speed is rather reduced.
If small no-load discharge is considered to shift to concentrated discharge by being continuous, it is considered dangerous that discharge of no-load time (Td) smaller than the limit no-load time (Tds) continues.
For this reason, it is considered that about 1/3 of the limit no-load time (Tds) was good in this experiment.

なお、この実験では本発明による加工軸送り制御を行ったが、加工結果の良かったNo.4の試験を従来の加工軸送り制御で加工を行った(No.5)ところ、ほぼ同じような加工結果ではあったが、本発明による加工軸送り制御の方が結果は良好であった。
これは、加工中の平均電圧を正しく認識して加工軸送り制御に反映できたからと考えられる。
In this experiment, the machining axis feed control according to the present invention was performed. When the test No. 4 was machined by the conventional machining axis feed control (No. 5), the machining axis feed control according to the present invention showed better results although the machining results were almost the same.
This is probably because the average voltage during machining was correctly recognized and reflected in the machining axis feed control.

同様にして、工具電極8には10mm角の銅、被加工物Wに鉄系鋼材を使用し、電極側の極性をマイナスとした加工において、仕上加工条件を表2(No.6)に示すような条件で加工を行う場合、平均電流密度(Id)を10A/cmとしたときには、限界無負荷時間(Tds)はマイナスとなってしまい、電流密度を超えることで加工に異常が発生することは無いということが分かる。
このため、小無負荷放電での休止制御は行わないこととした。
このような小さい加工エネルギの場合には、加工間隙が小さくなるので短絡の心配が最も大きいため、サーボ基準電圧(SV)は印加電圧(V0)の1/2よりもある程度大きめの値を設定し、加工間隙に余裕を持たせ、休止制御については短絡が一回発生した場合に行うこととして実験を行った。
Similarly, finishing machining conditions are shown in Table 2 (No. 6) in machining in which 10 mm square copper is used for the tool electrode 8 and ferrous steel material is used for the workpiece W and the polarity on the electrode side is negative. When processing is performed under such conditions, if the average current density (Id) is 10 A / cm 2 , the limit no-load time (Tds) becomes negative, and abnormalities occur in processing when the current density is exceeded. You can see that there is nothing.
For this reason, it was decided not to perform pause control with small no-load discharge.
In the case of such small machining energy, the machining gap is small and there is the greatest concern about short circuit. Therefore, the servo reference voltage (SV) is set to a value somewhat larger than 1/2 of the applied voltage (V0). The experiment was conducted by giving a margin to the machining gap and performing the pause control when a short circuit occurred once.

本発明における加工軸送り制御では仕上加工でも良好な結果を得ることができた。従来方式(No.7)では、加工中の短絡が若干多く、その結果として消耗の増加と加工面でのシミが見られた。
これは、従来方式ではフィルタ回路を用いた平均電圧(Vg)であることから、急に短絡が発生した場合には0Vになるまでにフィルタ回路の時定数による遅れのために、電圧変動の認識にも遅れが生じたためと考えられ、新方式ではフィルタ回路の時定数に依存しないため、短絡が発生した直後に認識し、加工軸送り制御に反映できたためと考えられる。限界無負荷時間(Tds)が0以下の場合にはあえて小無負荷放電での休止制御を行わなくとも良いことが分かった。
面積(S)が小さくなった場合や放電電流(IP)やパルス幅(Ton)が大きくなり、限界無負荷時間(Tds)が大きくなった場合には、荒加工と同様に限界無負荷時間(Tds)の0.3〜0.5倍程度の小無負荷時間(Tdo)を設定すればよい。
In the machining axis feed control according to the present invention, good results could be obtained even in finish machining. In the conventional method (No. 7), there were some shorts during machining, resulting in increased wear and spots on the machined surface.
Since this is an average voltage (Vg) using a filter circuit in the conventional method, if a short-circuit occurs suddenly, it will be recognized as a voltage fluctuation due to a delay due to the time constant of the filter circuit until it reaches 0V. This is also because there was a delay, and because the new method does not depend on the time constant of the filter circuit, it was recognized immediately after the occurrence of the short circuit and was reflected in the machining axis feed control. It has been found that when the limit no-load time (Tds) is 0 or less, it is not necessary to perform pause control with a small no-load discharge.
When the area (S) becomes small, the discharge current (IP) or the pulse width (Ton) becomes large, and the limit no-load time (Tds) becomes large, the limit no-load time ( A small no-load time (Tdo) that is about 0.3 to 0.5 times (Tds) may be set.

実施の形態3.
異常放電での休止制御方法を元に、逆に正常放電が継続して、電流密度(Id)を超えていないような場合で休止時間(Toff)を狭めることを施行することも可能である。
例えば、正常放電が5回連続で発生したときのタイミングで認識信号が生成され、そのときは休止時間を狭めるとした場合、正常放電が5回連続で発生した回数を休止短縮回数(N4)とし、休止時間を短縮休止(Toff4)と予め設定しておくことで、休止短縮回数(N4)をあるサンプリング時間(Ts)毎に放電検出回路13で検出し、式(13)を用いた平均電圧(Vgs)の算出を行うことで、短絡、小無負荷放電、異常放電だけでなく、安定状態で休止を短くするような制御が行われた場合にも適用できる。
Embodiment 3 FIG.
On the other hand, based on the pause control method in abnormal discharge, it is possible to reduce the pause time (Toff) when normal discharge continues and the current density (Id) is not exceeded.
For example, if a recognition signal is generated at the timing when normal discharge occurs five times continuously, and if the pause time is narrowed at that time, the number of times normal discharge occurs five times is set as the pause reduction number (N4). By setting the pause time as shortened pause (Toff4) in advance, the number of pause reduction times (N4) is detected by the discharge detection circuit 13 at every sampling time (Ts), and the average voltage using equation (13) By calculating (Vgs), the present invention can be applied not only to short-circuiting, small no-load discharge, and abnormal discharge, but also to control that shortens the pause in a stable state.

以上のように、加工軸送り制御を全放電発生回数(Nd)から算出する平均電圧(Vgs)を用いた平均電圧方式にすることで、従来と同じ制御が可能であることが確認され、放電発生回数のカウンタを用いることで、従来技術の課題であった、フィルタ回路をなくすことが可能になっただけでなく、専用の電圧検出線も排除し、ノイズ成分などの悪影響を排除することが可能になった。
また、平均電圧(Vgs)が小さくなる場合などでは、短絡発生回数(N1)を考慮して、全放電発生回数(Nd)から減ずる方式により、加工間隙の平均電圧を正しく検出できることが分かった。
As described above, it is confirmed that the same control as before can be performed by using the average voltage method using the average voltage (Vgs) calculated from the total number of discharge occurrences (Nd) for the machining axis feed control. By using the counter of the number of occurrences, it is possible not only to eliminate the filter circuit, which was a problem of the prior art, but also to eliminate the dedicated voltage detection line and eliminate adverse effects such as noise components. It became possible.
It was also found that when the average voltage (Vgs) is small, the average voltage of the machining gap can be detected correctly by subtracting from the total number of discharges (Nd) in consideration of the number of short circuits (N1).

さらに、加工軸送り制御において、電流密度(Id)から算出した限界無負荷時間(Tds)の0〜1.0倍の範囲で、望ましくは0.3〜0.5倍の時間を小無負荷時間(Tdo)として休止制御を行うことで、良好な加工結果を得ることができる。
さらにまた、正常放電以外を認識して休止制御を行う場合でも、正しい平均電圧を算出して加工が行われるだけでなく、安定状態で休止を短くするような制御が行われた場合においても正確な平均電圧が算出し加工を行うことができる。
Further, in the machining axis feed control, a small unloaded time is preferably 0 to 1.0 times the limit unloaded time (Tds) calculated from the current density (Id), preferably 0.3 to 0.5 times. By performing pause control as the time (Tdo), a good machining result can be obtained.
Furthermore, even when the rest control is performed by recognizing other than the normal discharge, not only the correct average voltage is calculated and the machining is performed, but also when the control that shortens the rest in a stable state is performed. An average voltage can be calculated and processed.

1、2、3 モータ、4 主軸、5、6 ワークテーブル、7 加工槽、8 工具電極、9 電源装置 10 電極位置制御装置、11 加工条件設定部、12 主演算装置、13 放電検出回路、14 放電発生回数カウンタ、15 短絡発生回数カウンタ、16 小無負荷時間放電発生回数カウンタ、17 電圧降下無負荷放電発生回数カウンタ。   1, 2, 3 Motor, 4 Spindle 5, 6 Worktable, 7 Machining tank, 8 Tool electrode, 9 Power supply device 10 Electrode position control device, 11 Machining condition setting unit, 12 Main arithmetic unit, 13 Discharge detection circuit, 14 Discharge occurrence counter, 15 Short circuit occurrence counter, 16 Small no load time discharge occurrence counter, 17 Voltage drop no load discharge occurrence counter.

Claims (8)

所定のサンプリング時間Ts内における加工の平均電圧Vgが、サーボ基準電圧SVとなるように加工軸制御を行う放電加工装置において、
工具電極と被加工物との極間に電力を供給する電源手段と、
この電源手段で供給された電力に基づき発生する上記極間での放電波形を検出する放電検出手段と、
この放電波形において、所定のサンプリング時間内での放電発生回数Ndをカウントする放電発生回数カウンタ手段と、
上記放電波形において、電源手段から供給される電圧印加にともなう放電が、予め設定した短絡電圧閾値Vshを下回る短絡放電の短絡回数N1をカウントする短絡発生回数カウンタ手段と、
上記放電発生回数Nd、短絡回数N1、予め設定される無負荷電圧V0、パルス幅Ton、休止時間Toff、放電電圧eg、サンプリング時間Tsを用い、
Figure 0005056907
に基づき、極間での想定平均電圧Vgsを演算する演算手段と、
この演算手段により演算された上記想定平均電圧Vgsが、上記サンプリング時間Ts内でのサーボ基準電圧SVとなるように加工軸制御を行う電極位置制御手段と、
を備えた放電加工装置。
In an electric discharge machining apparatus that performs machining axis control so that the machining average voltage Vg within a predetermined sampling time Ts becomes the servo reference voltage SV,
Power supply means for supplying power between the electrode between the tool electrode and the workpiece;
A discharge detection means for detecting a discharge waveform between the electrodes generated based on the power supplied by the power supply means;
In this discharge waveform, a discharge occurrence number counter means for counting the number of discharge occurrences Nd within a predetermined sampling time,
In the discharge waveform, a short-circuit occurrence number counter unit that counts the number N1 of short-circuit discharges in which the discharge accompanying the voltage application supplied from the power supply unit falls below a preset short-circuit voltage threshold Vsh;
Using the above discharge occurrence number Nd, short circuit number N1, preset no-load voltage V0, pulse width Ton, pause time Toff, discharge voltage eg, sampling time Ts,
Figure 0005056907
Based on the calculation means for calculating the assumed average voltage Vgs between the poles,
Electrode position control means for performing machining axis control so that the assumed average voltage Vgs calculated by the calculation means becomes the servo reference voltage SV within the sampling time Ts;
EDM machine equipped with.
正常放電以外の放電発生、或いは正常放電の連続に基づく休止時間制御を考慮して想定平均電圧Vgsを求めることを特徴とする請求項1に記載の放電加工装置。 The electric discharge machining apparatus according to claim 1, wherein an assumed average voltage Vgs is obtained in consideration of rest time control based on occurrence of electric discharge other than normal electric discharge or normal electric discharge. 演算手段は、休止時間制御を行う種類の回数をNn、休止制御時の休止時間をToffnとし、
Figure 0005056907
に基づき想定平均電圧Vgsを演算することを特徴とする請求項2に記載の放電加工装置。
The calculation means sets Nn as the number of types of pause time control, and Toffn as the pause time during pause control.
Figure 0005056907
The electric discharge machining apparatus according to claim 2, wherein an assumed average voltage Vgs is calculated based on the calculation.
正常放電以外の放電は、電源手段から供給される電圧印加にともなう放電が予め設定した短絡電圧閾値Vshを下回る短絡放電、電源手段から供給される電圧印加から予め設定した小無負荷時間Tdo以内に放電に移行する小無負荷時間放電、電源手段から供給される電圧印加が予め設定した異常放電閾値Vngを下回る放電電圧となる異常放電とすることを特徴とする請求項2または3に記載の放電加工装置。 The discharge other than the normal discharge is a short-circuit discharge in which the discharge accompanying the voltage application supplied from the power supply means falls below a preset short-circuit voltage threshold Vsh, or within a preset small no-load time Tdo from the voltage application supplied from the power supply means. The discharge according to claim 2 or 3, wherein the discharge is a small no-load time discharge that shifts to a discharge, or an abnormal discharge in which a voltage applied from a power supply means is a discharge voltage that falls below a preset abnormal discharge threshold Vng. Processing equipment. 小無負荷放電Tdoは、平均電流密度Idに基づき算出した限界無負荷時間Tdsの0.3〜0.5倍の時間とすることを特徴とする請求項4に記載の放電加工装置。 The electric discharge machining apparatus according to claim 4, wherein the small no-load discharge Tdo is set to 0.3 to 0.5 times the limit no-load time Tds calculated based on the average current density Id. 所定のサンプリング時間Ts内での平均加工電圧Vgが、サーボ基準電圧SVとなるように加工軸制御を行う放電加工方法において、
工具電極と被加工物との極間に供給された電力に基づき発生する放電波形を検出する工程と、
この放電波形において、所定のサンプリング時間Ts内での放電発生回数Ndをカウントする工程と、
上記放電波形において、電源手段から供給される電圧印加にともなう放電が、予め設定した短絡電圧閾値Vshを下回る短絡放電の短絡回数N1をカウントする工程と、
上記放電発生回数Nd、短絡回数N1、予め設定される無負荷電圧V0、パルス幅Ton、休止時間Toff、放電電圧eg、サンプリング時間Tsを用い、
Figure 0005056907
に基づき、極間での想定平均電圧Vgsを演算する工程と、
この演算された上記想定平均電圧Vgsが、上記サンプリング時間内Tsでのサーボ基準電圧SVとなるように加工軸制御を行う工程と、
を備えた放電加工方法。
In an electric discharge machining method that performs machining axis control so that an average machining voltage Vg within a predetermined sampling time Ts becomes a servo reference voltage SV,
Detecting a discharge waveform generated based on the power supplied between the electrode between the tool electrode and the workpiece;
In this discharge waveform, a step of counting the number Nd of discharge occurrences within a predetermined sampling time Ts;
In the above discharge waveform, a step of counting the number N1 of short-circuits of the short-circuit discharge in which the discharge accompanying the voltage application supplied from the power supply means falls below a preset short-circuit voltage threshold Vsh;
Using the above discharge occurrence number Nd, short circuit number N1, preset no-load voltage V0, pulse width Ton, pause time Toff, discharge voltage eg, sampling time Ts,
Figure 0005056907
A step of calculating an assumed average voltage Vgs between the electrodes based on
A step of controlling the machining axis so that the calculated average voltage Vgs thus calculated becomes the servo reference voltage SV within the sampling time Ts;
An electric discharge machining method comprising:
正常放電以外の放電発生、或いは正常放電の連続に基づく休止時間制御を考慮して想定平均電圧Vgsを求めることを特徴とする請求項6に記載の放電加工方法。 The electric discharge machining method according to claim 6, wherein the assumed average voltage Vgs is obtained in consideration of rest time control based on occurrence of electric discharge other than normal electric discharge or normal electric discharge. 演算工程では、休止時間制御を行う種類の回数をNn、休止制御時の休止時間をToffnとし、
Figure 0005056907
に基づき想定平均電圧Vgsを演算することを特徴とする請求項6に記載の放電加工方法。
In the calculation process, the number of types of pause time control is Nn, the pause time during pause control is Toffn,
Figure 0005056907
The electric discharge machining method according to claim 6, wherein an assumed average voltage Vgs is calculated based on the calculation.
JP2010139110A 2010-06-18 2010-06-18 Electric discharge machining apparatus and electric discharge machining method Expired - Lifetime JP5056907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010139110A JP5056907B2 (en) 2010-06-18 2010-06-18 Electric discharge machining apparatus and electric discharge machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010139110A JP5056907B2 (en) 2010-06-18 2010-06-18 Electric discharge machining apparatus and electric discharge machining method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005517355A Division JP4605017B2 (en) 2004-01-29 2004-01-29 Electric discharge machining apparatus and electric discharge machining method

Publications (2)

Publication Number Publication Date
JP2010194714A JP2010194714A (en) 2010-09-09
JP5056907B2 true JP5056907B2 (en) 2012-10-24

Family

ID=42819979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010139110A Expired - Lifetime JP5056907B2 (en) 2010-06-18 2010-06-18 Electric discharge machining apparatus and electric discharge machining method

Country Status (1)

Country Link
JP (1) JP5056907B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126537A (en) * 1980-03-05 1981-10-03 Hitachi Seiko Ltd Gap control method for spark machining device
JPS6420925A (en) * 1987-07-13 1989-01-24 Inst Tech Precision Elect Monitor for electric discharge machining condition
JP2000015524A (en) * 1998-06-30 2000-01-18 Makino Milling Mach Co Ltd Control method and device of electrical discharge machine
JP3856603B2 (en) * 1999-08-27 2006-12-13 株式会社牧野フライス製作所 Wire electric discharge machining method and apparatus

Also Published As

Publication number Publication date
JP2010194714A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP4605017B2 (en) Electric discharge machining apparatus and electric discharge machining method
Yan et al. Surface quality improvement of wire-EDM using a fine-finish power supply
US8168914B2 (en) Electric-discharge-machining power supply apparatus and electric discharge machining method
Hoang et al. A new approach for micro-WEDM control based on real-time estimation of material removal rate
JP6063068B2 (en) Wire electric discharge machine
JP3808444B2 (en) Control device for wire electric discharge machine
JP2011016172A (en) Wire-cut electric discharge machine having function to suppress local production of streaks during finish machining
JP2013154461A (en) Wire electric discharge machine for detecting machining state and determining average voltage between poles
JP2017042858A (en) Wire electric discharge machine for making the gap distance constant
EP3251778B1 (en) Wire electric discharge machine
JPH0653032U (en) Equipment for cleaning the erosion zone during electrolytic corrosion drilling
JP5409963B1 (en) EDM machine
JPWO2004022275A1 (en) Wire electrical discharge machine
JPWO2011145217A1 (en) Wire electrical discharge machine
JP5056907B2 (en) Electric discharge machining apparatus and electric discharge machining method
EP0526089B1 (en) Electric discharge machining apparatus
EP4219054A1 (en) Wire electric discharge machine, and control method for wire electric discharge machine
JP5510616B1 (en) EDM machine
JP2007253260A (en) Electrical discharge machining control method and electrical discharge machining control device
JPH10296538A (en) Electrical discharge machining device
JP3335741B2 (en) Small hole electric discharge machine
JPH01103228A (en) Controller for wire electric discharge machine
WO2022097596A9 (en) Wire electrical discharge machining apparatus and control method for wire electrical discharge machining apparatus
JP2976223B2 (en) Processing machine adaptive control device
JPH0276624A (en) Electric discharge machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5056907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term