JP2007253260A - Electrical discharge machining control method and electrical discharge machining control device - Google Patents

Electrical discharge machining control method and electrical discharge machining control device Download PDF

Info

Publication number
JP2007253260A
JP2007253260A JP2006078508A JP2006078508A JP2007253260A JP 2007253260 A JP2007253260 A JP 2007253260A JP 2006078508 A JP2006078508 A JP 2006078508A JP 2006078508 A JP2006078508 A JP 2006078508A JP 2007253260 A JP2007253260 A JP 2007253260A
Authority
JP
Japan
Prior art keywords
machining
discharge
workpiece
electrode
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006078508A
Other languages
Japanese (ja)
Inventor
Masahito Kamiya
聖人 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006078508A priority Critical patent/JP2007253260A/en
Publication of JP2007253260A publication Critical patent/JP2007253260A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent deterioration of processing efficiency, and prevent failure of a processing shape of a workpiece. <P>SOLUTION: This device comprises electrical discharge pulse number count means counting a number of electrical discharge for a predetermined sampling period in a spacing together with application of a voltage from processing voltage supply means for applying a pulse voltage to a spacing between an electrode and a workpiece, a table, in which a processing volume by electrical discharge is registered according to materials of the electrode and the workpiece, shaft transferring volume detection means detecting a processing advancing volume in a processing advancing direction in the predetermined sampling period together with processing of the spacing, side electrical discharge judgment means calculating the processing volume according to the processing advancing volume detected by the shaft transferring volume detection means based on a projection area of the workpiece opposed to the electrode and density of the workpiece, and comparing it with an actual processing volume obtained by multiplying a number of electrical discharge counted by the electrical pulse number count means with the processing volume by electrical discharge so as to detect a proportion of side electrical discharge, and side electrical discharge avoiding means changing processing conditions of the electrode and the workpiece according to the proportion of the side electrical discharge by the side electrical discharge determination means. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、細穴放電加工、形彫放電加工に関し、所定形状に加工すべく放電加工が行われる際に、加工精度低下につながる側面方向への放電発生を検出する放電加工制御方法及び、その側面放電の割合をもとに対応制御を行う放電加工装置に関する。   The present invention relates to a fine hole electric discharge machining and a sculpted electric discharge machining, and when an electric discharge machining is performed to machine into a predetermined shape, an electric discharge machining control method for detecting the occurrence of electric discharge in the side direction leading to a reduction in machining accuracy, and its The present invention relates to an electric discharge machining apparatus that performs corresponding control based on a ratio of side surface discharge.

一般に、電極と被加工物とを所定間隙離間して対向配置し、電極と被加工物の両極間に放電電圧を印加して、極間に放電は発生されるとともに、電極と被加工物を相対移動させて被加工物に対し加工を行い、電極の形状を被加工物に転写して所望の形状に加工をする放電加工装置が存在する。
このような放電加工装置において、加工の進行に伴い極間に蓄積される加工屑等が電極の側面方向に分布することにより、加工屑を介して放電が行われる二次放電が起こった場合、実際の加工方向とは異なる側面方向での放電現象が発生してしまい、加工時間の増大、加工形状の不具合が発生する。
そこで、被加工物と電極との間隙距離及び正常放電回数に基づき、所定間隙距離以上離れている場合の正常放電は側面での無効放電と検出し、制御因子を調整する放電加工装置が特開昭55−96227号公報に開示されている。
In general, an electrode and a workpiece are arranged opposite to each other with a predetermined gap therebetween, and a discharge voltage is applied between both electrodes of the electrode and the workpiece to generate a discharge between the electrodes. There exists an electric discharge machining apparatus that processes a workpiece by relatively moving the workpiece, transfers the shape of the electrode to the workpiece, and processes the workpiece into a desired shape.
In such an electric discharge machining apparatus, when processing discharge etc. accumulated between the electrodes along with the progress of processing is distributed in the side surface direction of the electrode, when secondary discharge occurs through the processing scrap, An electric discharge phenomenon occurs in a side surface direction different from the actual machining direction, resulting in an increase in machining time and a defect in the machining shape.
Therefore, based on the gap distance between the workpiece and the electrode and the number of normal discharges, an electric discharge machining apparatus that detects normal discharge as invalid discharge on the side surface when the gap distance is more than a predetermined gap distance and adjusts the control factor is disclosed in JP This is disclosed in Japanese Patent Laid-Open No. 55-96227.

特開昭55−96227号公報JP-A-55-96227

従来の放電加工装置では、被加工物と電極との間隙距離を検出し、この間隙距離に応じて加工進行方向の放電か、側面放電かを検出し、制御を行っているが、間隙距離がある閾値50μm以上大きくなった場合に側面放電を検出するため、それまでの区間ではいくら側面放電が発生しようとも、検出できず加工形状の不具合等が発生する問題があった。
また、放電加工では加工形状、条件設定、液処理の仕方などで間隙距離が変化するため、上記の閾値を小さく設定した場合、側面放電を誤検出してしまう問題もある。
In the conventional electric discharge machining apparatus, the gap distance between the workpiece and the electrode is detected, and the discharge is detected in the machining progress direction or the side discharge depending on the gap distance. Since the side discharge is detected when the threshold value is larger than 50 μm, there is a problem that, regardless of how much the side discharge occurs in the previous section, it cannot be detected and a defect in the machining shape occurs.
Moreover, since the gap distance changes depending on the machining shape, condition setting, liquid processing method, etc. in electric discharge machining, there is a problem that side discharge is erroneously detected when the above threshold value is set small.

この発明は上述のような課題を解決するためになされたもので、側面放電を検出し、適切な対応制御を実施することで、側面放電を抑制し、加工進行方向以外で放電が発生し、加工効率が低下することを緩和することができ、また側面放電による被加工物の加工形状不具合を防止することができるものである。   This invention was made in order to solve the problems as described above, and by detecting the side discharge and performing appropriate response control, the side discharge is suppressed, and a discharge occurs in a direction other than the processing progress direction, It is possible to mitigate a reduction in processing efficiency and to prevent a processing shape defect of the workpiece due to side discharge.

この発明は、電極と被加工物との間隙にパルス電圧を印加する加工電圧供給手段と、この加工電圧供給手段からの電圧印加に伴い、上記間隙での放電回数を所定サンプリング期間計数する放電パルス数カウント手段と、上記電極及び被加工物の材質に応じて、放電による加工量が予め登録されたテーブルと、上記間隙の加工に伴い、上記所定サンプリング期間における加工進行方向への加工進行量を検出する軸送り量検出手段と、上記電極と対向する被加工物の投影面積、被加工物の密度に基づき、上記軸送り量検出手段で検出された加工進行量に応じた加工量を演算し、上記放電パルス数カウント手段で計数された放電回数に放電による加工量を乗じた実加工量と比較することにより、側面放電の割合を検出する側面放電判定手段と、この側面放電判定手段による側面放電の割合に応じて、電極と被加工物との加工条件を変更する側面放電回避手段と、を備えたものである。   The present invention provides a machining voltage supply means for applying a pulse voltage to a gap between an electrode and a workpiece, and a discharge pulse for counting the number of discharges in the gap with a predetermined sampling period in accordance with the voltage application from the machining voltage supply means. Depending on the number counting means, the electrode and the material of the workpiece, a table in which the machining amount by discharge is registered in advance, and the machining progress amount in the machining progress direction in the predetermined sampling period accompanying the machining of the gap Based on the detected axial feed amount detecting means, the projected area of the workpiece facing the electrode, and the density of the workpiece, the machining amount corresponding to the machining progress detected by the axial feed amount detecting means is calculated. A side discharge determination means for detecting a ratio of side discharge by comparing the actual number of discharges counted by the number of discharges counted by the discharge pulse number counting means with the amount of machining by discharge; and Depending on the ratio of the side surface discharge by a surface discharge determination unit, those having a side discharge avoiding means for changing the machining conditions between the electrode and the workpiece, the.

この発明は上述のように、側面放電を検出し、その対応制御を行うことで、側面放電が引き起こす加工効率の低下や側面放電による形状不具合による被加工物の品質低下を抑制することができ、放電加工装置における生産性の向上を図ることができる。   As described above, the present invention can detect the side discharge and perform the corresponding control, thereby suppressing the reduction in processing efficiency caused by the side discharge and the quality deterioration of the workpiece due to the shape defect due to the side discharge, The productivity in the electric discharge machining apparatus can be improved.

実施の形態1.
本実施の形態では、放電1発あたりの加工(除去)量がある程度定まることを利用し、放電発生回数を乗じることにより、放電加工にも伴う総加工量を演算し、この総加工量と、放電加工による加工進行方向への加工進行量と、加工進行方向への投影面積との関係(加工進行量×投影面積×被加工物の密度)より求める加工進行方向への加工量とを比較することにより、加工進行方向以外の側面放電に基づく加工の割合を求め、放電加工制御に反映させるものである。
Embodiment 1 FIG.
In the present embodiment, by utilizing the fact that the amount of machining (removal) per discharge is determined to some extent, by multiplying the number of occurrences of electrical discharge, the total amount of machining associated with electric discharge machining is calculated, Compare the machining progress amount in the machining progress direction by electric discharge machining and the machining amount in the machining progress direction obtained from the relationship between the machining progress direction in the machining progress direction and the projected area in the machining progress direction (machining progress amount × projected area × workpiece density). Thus, the machining ratio based on the side surface discharge other than the machining progress direction is obtained and reflected in the electric discharge machining control.

図1は、本実施の形態における放電加工装置を示すブロック構成図である。
電極1は主軸に設けられたサーボアンプに基づきZ軸方向への加工進行方向への位置決めが行われ、加工電源4により印加されたパルス電圧に基づき、電極1及び被加工物2との極間で放電が発生し、被加工物2が所定形状に加工される。
そして、加工中においては、平均電圧検出部5により極間の平均電圧を検出し、予め定められたサーボ基準電圧と比較することにより、平均電圧が高い場合に電極1を加工進行方向へ移動させ、平均電圧が引く場合に極間距離を大きくする方向に制御されている。
FIG. 1 is a block configuration diagram showing an electric discharge machining apparatus according to the present embodiment.
The electrode 1 is positioned in the machining progress direction in the Z-axis direction based on a servo amplifier provided on the main shaft, and based on the pulse voltage applied by the machining power supply 4, the distance between the electrode 1 and the workpiece 2 is The electric discharge is generated and the workpiece 2 is processed into a predetermined shape.
During machining, the average voltage detection unit 5 detects the average voltage between the electrodes, and compares it with a predetermined servo reference voltage to move the electrode 1 in the machining progress direction when the average voltage is high. When the average voltage is pulled, the distance between the electrodes is controlled to increase.

放電パルス数カウント部6は、極間電圧を読み取り、有効な放電を検出し放電パルス数をカウントする例えば特開平5−293714号公報に開示されるようなカウント部分であり、カウントした放電発生回数を側面放電判定部8に出力する。
軸送り量検出部7は、放電位置を検出するためのものであり、エンコーダの値やリニアスケールの値に基づき、被加工物2に対し、どのぐらい加工が進行したかを検出し、側面放電判定部8に出力する。
加工データ入力部9は、電極材質、被加工物材質、被加工物2の加工進行方向からみた加工面積に相当する表面積データ(投影面積)、を入力し、また加工機上で設定される放電加工電流、放電パルス幅、休止時間、極間電圧、平均電圧、ジャンプ速度、ジャンプアップ量、ジャンプダウン時間を決定する部分である。特に表面積のデータはCADなどの図面データを読み込むことにより自動的に算出する機能を持つ。
The discharge pulse number counting unit 6 is a counting part that reads an inter-electrode voltage, detects an effective discharge, and counts the number of discharge pulses, for example, as disclosed in JP-A-5-293714. Is output to the side surface discharge determination unit 8.
The shaft feed amount detection unit 7 is for detecting the discharge position, detects how much machining has progressed on the workpiece 2 based on the encoder value and the linear scale value, and discharges the side surface. Output to the determination unit 8.
The machining data input unit 9 inputs electrode material, workpiece material, and surface area data (projected area) corresponding to the machining area of the workpiece 2 as seen from the machining progress direction, and discharge set on the machine This is the part that determines the machining current, discharge pulse width, pause time, interelectrode voltage, average voltage, jump speed, jump-up amount, and jump-down time. In particular, the surface area data has a function of automatically calculating by reading drawing data such as CAD.

側面放電判定部8は、加工データ入力部9により予め入力された電極材、被加工物材の組み合わせに応じて、放電一発あたりの加工重量を加工電流と放電パルス幅から計算できる計算式、もしくは加工電流と放電パルス幅ごとにテーブルを有しており、この部分で放電パルス数と放電一発あたりの加工重量よりあるサンプリング期間中の加工重量を算出する。
この放電一発あたりの加工重量mは、電流値Ipとパルス幅τpより式1で求まる。
m = A・Ip・τp ・・・式1
ここで、銅電極と鋼材の組み合わせの場合は、A=1.5×102、B=1.5となり、グラファイト電極と鋼材の組み合わせの場合は、A=1.17×102、B=1.5となる。
The side surface discharge determination unit 8 is a calculation formula that can calculate the machining weight per discharge from the machining current and the discharge pulse width according to the combination of the electrode material and workpiece material input in advance by the machining data input unit 9. Alternatively, a table is provided for each machining current and discharge pulse width, and the machining weight during a sampling period is calculated from the number of discharge pulses and the machining weight per discharge.
The processing weight m per discharge is obtained from the current value Ip and the pulse width τp using Equation 1.
m = A · Ip B · τp Equation 1
Here, in the case of the combination of the copper electrode and the steel material, A = 1.5 × 10 2 and B = 1.5, and in the case of the combination of the graphite electrode and the steel material, A = 1.17 × 10 2 and B = 1.5.

また、式1でなくても、あらかじめ実験計測した電流値とパルス幅に対する放電一発あたりの加工重量を電極材と被加工材ごとにもつことでサンプリング区間あたりの加工重量を求めることができる。
また一方でCADデータより求められた投影面積と、軸送り量検出部7から出力された所定のサンプリング期間内の加工進行方向への加工進行量より、加工体積を算出し、さらに被加工物の密度より加工重量を求めることも可能である。
Even if it is not Formula 1, the processing weight per sampling section can be obtained by having the processing weight per discharge for the current value and pulse width measured experimentally in advance for each electrode material and workpiece.
On the other hand, the processing volume is calculated from the projected area obtained from the CAD data and the processing progress amount in the processing progress direction within the predetermined sampling period output from the axial feed amount detection unit 7, and further the workpiece volume is calculated. It is also possible to obtain the processing weight from the density.

側面放電判定部8による実放電回数に基づく実際の総加工重量Mrと、加工進行方向への軸送りから計算した加工重量Mcとの比較の結果、Mc/Mr <0.7ならば側面放電が発生し、指定する加工進行方向へ寄与しない加工がなされていたと判断できる。
すなわち、この加工量の比を側面放電発生率として算出することができる。
As a result of comparison between the actual total processing weight Mr based on the actual number of discharges by the side discharge determination unit 8 and the processing weight Mc calculated from the axial feed in the processing progress direction, if Mc / Mr <0.7, side discharge occurs. Therefore, it can be determined that machining that does not contribute to the designated machining progress direction has been performed.
That is, this processing amount ratio can be calculated as the side discharge rate.

側面放電発生率の情報から、側面放電回避部10が、側面放電を抑制するようにジャンプアップ量や目標平均電圧を変更する等行ない、対応制御を行う。
例えば、0.3 ≦ Mc/Mr < 0.7の場合は、ジャンプアップ量を上げ、Mc/Mr < 0.3であれば平均電圧の設定を−10Vとする対応制御を行う。なお、Mc/Mr < 0.7状態が続いていれば、さらにジャンプアップ量の増加や平均電圧の低下の対応制御を実施する。
また対応制御を実行した前後での側面放電率を確認し、Mc/Mr(対応制御後)≧ 1.2×Mc/Mr(対応制御前)であれば、側面放電抑制に効果的であると判断して、そのまま対応制御を実行する。なお、一般的に加工深さが側面放電と原因となることが多いことから、対応制御は継続して行う。
一方、Mc/Mr (対応制御後)< 1.2×Mc/Mr(対応制御前)ならば、対応制御は効果的でないと判断して対応制御前の状態に戻し、他の対応制御を実行する。
From the side discharge occurrence rate information, the side discharge avoiding unit 10 performs the corresponding control by changing the jump-up amount and the target average voltage so as to suppress the side discharge.
For example, when 0.3 ≦ Mc / Mr <0.7, the jump-up amount is increased, and when Mc / Mr <0.3, corresponding control is performed so that the average voltage is set to −10V. If the state of Mc / Mr <0.7 continues, corresponding control for increasing the jump-up amount and decreasing the average voltage is performed.
Also, the side discharge rate before and after executing the corresponding control is confirmed, and if Mc / Mr (after the corresponding control) ≧ 1.2 × Mc / Mr (before the corresponding control), it is judged to be effective for suppressing the side discharge. Then, the corresponding control is executed as it is. In general, since the processing depth often causes side discharge, the corresponding control is continuously performed.
On the other hand, if Mc / Mr (after corresponding control) <1.2 × Mc / Mr (before corresponding control), it is determined that the corresponding control is not effective, and the state before the corresponding control is restored, and another corresponding control is executed.

図2は、対応制御実行の例を示した図である。
区間Aでは、側面放電率は大きくなく、効果的な放電がなされている。
区間Bでは、加工深さが深くなるなどの要因で加工屑の排出効果が低くなり、徐々に側面放電率が増加している。
区間Cでは、側面放電率がしきい値30%を超え、対応制御1ジャンプアップ量を上げるが実行されている。
区間Dでは、対応制御1が実行後の側面放電率を検出し、対応制御1実行前の値と比較する。この場合、対応制御1の効果が得られなかったので、区間Eにて他の対応制御2平均電圧を下げるを実行する。
対応制御2実行後、同様に側面放電率を比較し、側面放電率が低下したことを確認したため、それ以後制御後の状態で加工を実施する。
FIG. 2 is a diagram illustrating an example of response control execution.
In the section A, the side surface discharge rate is not large and an effective discharge is performed.
In the section B, the effect of discharging machining scraps is reduced due to factors such as a deeper processing depth, and the side surface discharge rate gradually increases.
In section C, the side discharge rate exceeds the threshold value of 30% and the response control 1 jump-up amount is increased.
In section D, response control 1 detects the side discharge rate after execution and compares it with the value before execution of response control 1. In this case, since the effect of the response control 1 was not obtained, the other response control 2 average voltage is lowered in the section E.
After executing the corresponding control 2, the side surface discharge rates were similarly compared to confirm that the side surface discharge rate was lowered. Thereafter, the processing is performed in the state after the control.

本実施の形態によれば、このように側面放電の割合を自動認識し、その値が一定の値を超えたとき、側面放電を抑制する手段を講じることで側面放電の割合を下げ、加工進行方向に対し効率的な放電加工を実施し、加工形状の不具合も防ぐことができるようになる。
なお、従来技術と比較しても底面間隙距離が大きくなっていなくても側面放電の割合を検出できることにより、高速に対応制御を実施することができるため、加工形状の不具合を防止でき、加工効率もあがる。
今回の検出方法では放電一発あたりの加工量を基準としているので、放電状態により変わる間隙距離から判断する方法より正確に判断することができる。
また、複数の対応制御を持つことでより効果的に側面放電を抑制できる効果がある。
これらの処理は自動的に行われるため、オペレータは簡単な材料や加工面積の入力だけで、効率のよい加工が可能となる効果がある。
According to this embodiment, the rate of side discharge is automatically recognized in this way, and when the value exceeds a certain value, the rate of side discharge is reduced by taking measures to suppress side discharge, and the processing proceeds Efficient electric discharge machining is performed in the direction, and defects in the machining shape can be prevented.
Compared to the conventional technology, the ratio of side discharge can be detected even if the bottom gap distance is not large, so that it is possible to control the response at high speed, so that it is possible to prevent defects in the machining shape and machining efficiency. Also go up.
Since this detection method is based on the machining amount per discharge, it can be determined more accurately than the method of determining from the gap distance that changes depending on the discharge state.
Moreover, there exists an effect which can suppress a side surface discharge more effectively by having several correspondence control.
Since these processes are automatically performed, there is an effect that the operator can perform efficient processing only by inputting a simple material and processing area.

放電加工装置の構成を示すブロック図である。It is a block diagram which shows the structure of an electric discharge machining apparatus. 放電加工装置の動作を説明するためのタイムチャートである。It is a time chart for demonstrating operation | movement of an electric discharge machining apparatus.

符号の説明Explanation of symbols

1 電極、2 被加工物、3サーボアンプ、4 加工電流供給手段、5 極間平均電圧検出手段、6 放電パルス数カウント手段、7 軸送り量検出手段、8 側面放電判定手段、9 加工データ入力手段、10 側面放電回避手段。   1 electrode, 2 workpiece, 3 servo amplifier, 4 machining current supply means, 5 pole average voltage detection means, 6 discharge pulse number counting means, 7 axis feed amount detection means, 8 side discharge judgment means, 9 machining data input Means, 10 Side discharge avoidance means.

Claims (5)

電極と被加工物との間隙にパルス電圧を印加する加工電圧供給手段と、
この加工電圧供給手段からの電圧印加に伴い、上記間隙での放電回数を所定サンプリング期間計数する放電パルス数カウント手段と、
上記電極及び被加工物の材質に応じて、放電による加工量が予め登録されたテーブルと、
上記間隙の加工に伴い、上記所定サンプリング期間における加工進行方向への加工進行量を検出する軸送り量検出手段と、
上記電極と対向する被加工物の投影面積、被加工物の密度に基づき、上記軸送り量検出手段で検出された加工進行量に応じた加工量を演算し、上記放電パルス数カウント手段で計数された放電回数に放電による加工量を乗じた実加工量と比較することにより、側面放電の割合を検出する側面放電判定手段と、
この側面放電判定手段による側面放電の割合に応じて、電極と被加工物との加工条件を変更する側面放電回避手段と、
を備えたことを特徴とする放電加工装置。
Machining voltage supply means for applying a pulse voltage to the gap between the electrode and the workpiece;
With the voltage application from the machining voltage supply means, a discharge pulse number counting means for counting the number of discharges in the gap for a predetermined sampling period;
According to the material of the electrode and workpiece, a table in which the machining amount by discharge is registered in advance,
Along with the machining of the gap, an axial feed amount detecting means for detecting a machining progress amount in the machining progress direction in the predetermined sampling period;
Based on the projected area of the workpiece facing the electrode and the density of the workpiece, the machining amount corresponding to the machining progress detected by the axial feed amount detection means is calculated, and counted by the discharge pulse number counting means. Side discharge determination means for detecting the ratio of the side discharge by comparing with the actual machining amount obtained by multiplying the number of discharges performed by the machining amount by discharge;
Side discharge avoiding means for changing the processing conditions of the electrode and the workpiece according to the ratio of the side discharge by the side discharge determination means,
An electrical discharge machining apparatus comprising:
放電による加工量が予め登録されたテーブルは、電極及び被加工物における極間の電気条件に応じて、加工量が予め登録されていることを特徴とする請求項1に記載の放電加工装置。   The electrical discharge machining apparatus according to claim 1, wherein the machining amount is registered in advance in the table in which the machining amount by electric discharge is registered in advance according to an electrical condition between the electrodes and the workpiece. 側面放電回避手段は、側面放電の割合30%を閾値として加工条件の変更を行うことを特徴とする請求項1または2に記載の放電加工装置。   The electric discharge machining apparatus according to claim 1, wherein the side surface discharge avoiding unit changes the machining conditions with a side surface discharge ratio of 30% as a threshold value. 側面放電回避手段による加工条件変更として、電極のジャンプ上昇量を制御することを特徴とする請求項3に記載の放電加工装置。   4. The electric discharge machining apparatus according to claim 3, wherein the amount of jumping of the electrode is controlled as the machining condition change by the side surface discharge avoiding means. 電極と被加工物との間隙にパルス電圧印加に伴い、上記間隙での放電回数を所定サンプリング期間計数する放電パルス数カウント工程と、
上記電極及び被加工物の材質に応じて、放電による加工量が予め登録されたテーブルと、
上記間隙の加工に伴い、上記所定サンプリング期間における加工進行方向への加工進行量を検出する軸送り量検出工程と、
上記電極と対向する被加工物の投影面積、被加工物の密度に基づき、上記軸送り量検出工程で検出された加工進行量に応じた加工量を演算し、上記放電パルス数カウント工程で計数された放電回数に予め電極及び被加工物の材質に応じて登録された放電による加工量を乗じた実加工量と比較することにより、側面放電の割合を検出する側面放電判定工程と、
この側面放電判定工程による側面放電の割合に応じて、電極と被加工物との加工条件を変更する側面放電回避工程と、
を備えたことを特徴とする放電加工方法。
A discharge pulse number counting step of counting the number of discharges in the gap for a predetermined sampling period with application of a pulse voltage to the gap between the electrode and the workpiece,
According to the material of the electrode and workpiece, a table in which the machining amount by discharge is registered in advance,
Along with the machining of the gap, an axial feed amount detection step for detecting a machining progress amount in the machining progress direction in the predetermined sampling period;
Based on the projected area of the workpiece facing the electrode and the density of the workpiece, a machining amount corresponding to the machining progress detected in the axial feed amount detection step is calculated and counted in the discharge pulse number counting step. A side discharge determination step of detecting a rate of side discharge by comparing the actual number of discharges multiplied by the amount of machining by discharge previously registered according to the material of the electrode and workpiece,
In accordance with the ratio of the side surface discharge in the side surface discharge determination step, the side surface discharge avoiding step for changing the processing conditions of the electrode and the workpiece,
An electrical discharge machining method comprising:
JP2006078508A 2006-03-22 2006-03-22 Electrical discharge machining control method and electrical discharge machining control device Pending JP2007253260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006078508A JP2007253260A (en) 2006-03-22 2006-03-22 Electrical discharge machining control method and electrical discharge machining control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006078508A JP2007253260A (en) 2006-03-22 2006-03-22 Electrical discharge machining control method and electrical discharge machining control device

Publications (1)

Publication Number Publication Date
JP2007253260A true JP2007253260A (en) 2007-10-04

Family

ID=38627997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078508A Pending JP2007253260A (en) 2006-03-22 2006-03-22 Electrical discharge machining control method and electrical discharge machining control device

Country Status (1)

Country Link
JP (1) JP2007253260A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102922063A (en) * 2012-10-26 2013-02-13 江苏技术师范学院 Electric spark milling device and method
CN106238836A (en) * 2016-08-19 2016-12-21 苏州电加工机床研究所有限公司 The processing pulse micromanagement method of electric spark digitized pulse power supply
WO2020031246A1 (en) * 2018-08-07 2020-02-13 三菱電機株式会社 Electrical discharge machining device and machining energy control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102922063A (en) * 2012-10-26 2013-02-13 江苏技术师范学院 Electric spark milling device and method
CN106238836A (en) * 2016-08-19 2016-12-21 苏州电加工机床研究所有限公司 The processing pulse micromanagement method of electric spark digitized pulse power supply
WO2020031246A1 (en) * 2018-08-07 2020-02-13 三菱電機株式会社 Electrical discharge machining device and machining energy control method

Similar Documents

Publication Publication Date Title
US10259062B2 (en) Pulse and gap control for electrical discharge machining equipment
JP6227599B2 (en) Wire electrical discharge machine with constant distance between poles
JP5602331B1 (en) Wire electric discharge machining apparatus, wire electric discharge machining method and control apparatus
JP6063068B2 (en) Wire electric discharge machine
JP2006123065A (en) Control device for wire electric discharge machine
EP2272613B1 (en) Wire-cut electric discharge machine with function to suppress local production of streaks during finish machining
JP4693933B2 (en) Control device for wire cut electric discharge machine
JP4605017B2 (en) Electric discharge machining apparatus and electric discharge machining method
JP2007253260A (en) Electrical discharge machining control method and electrical discharge machining control device
JP4970476B2 (en) Wire cut electric discharge machine
JP6734321B2 (en) Wire electric discharge machine and electric discharge method
US10493547B2 (en) Wire electrical discharge machining device
WO2011145217A1 (en) Wire electric discharge machining device
JP2011093035A (en) Electric discharge machining device
KR20180025822A (en) Wire electrical discharge machine
JP5062368B2 (en) Wire electrical discharge machine
JP2012115962A (en) Electrical discharge machining device
JP5307696B2 (en) Wire cut electric discharge machining method and wire cut electric discharge machining apparatus
JP5361783B2 (en) Die-sinker electrical discharge machine and jump control method
JPH10296538A (en) Electrical discharge machining device
JP5056907B2 (en) Electric discharge machining apparatus and electric discharge machining method
KR101760138B1 (en) The auto control method and control equipment of servo in electric dischargemachine
WO2002034443A1 (en) Wire electric discharge machine
JP3335741B2 (en) Small hole electric discharge machine
JP5930913B2 (en) Wire electrical discharge machine