JP2003213445A - 被膜劣化がなくかつ歪取焼鈍後の磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法 - Google Patents

被膜劣化がなくかつ歪取焼鈍後の磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法

Info

Publication number
JP2003213445A
JP2003213445A JP2002018269A JP2002018269A JP2003213445A JP 2003213445 A JP2003213445 A JP 2003213445A JP 2002018269 A JP2002018269 A JP 2002018269A JP 2002018269 A JP2002018269 A JP 2002018269A JP 2003213445 A JP2003213445 A JP 2003213445A
Authority
JP
Japan
Prior art keywords
steel sheet
rolling
rolled
annealing
baking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002018269A
Other languages
English (en)
Inventor
Masaki Kono
正樹 河野
Yuka Komori
ゆか 小森
Akio Fujita
明男 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002018269A priority Critical patent/JP2003213445A/ja
Publication of JP2003213445A publication Critical patent/JP2003213445A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【課題】 需要家での歪取焼鈍を前提としたセミプロセ
ス無方向性電磁鋼板について、高磁束密度で低鉄損の優
れた磁気特性および優れた絶縁被膜特性を併せ持つ電磁
鋼板を効率的かつ安価に製造する。 【解決手段】 無方向性電磁鋼板用素材を、熱間圧延し
たのち、圧延と焼鈍を施して最終冷延板とし、ついで焼
鈍後、絶縁コーティング液を塗布、焼き付けたのち、調
質圧延を施すことからなるセミプロセス無方向性電磁鋼
板の製造方法において、上記絶縁コーティング液の焼き
付けに際し、誘導加熱により、片面当たりの目付量:0.
05〜3.0 g/m2で、かつ樹脂分:10〜60mass%を含む絶縁
被膜を焼き付け、その後ロール径が 550mm以下の圧延ロ
ールを用いて調質圧延を実施する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、被膜劣化がなくかつ歪
取焼鈍後の磁気特性に優れるセミプロセス無方向性電磁
鋼板の製造方法に関するものである。
【0002】
【従来の技術】モータ等のコア材料に利用される無方向
性電磁鋼板は、需要家でのコア製造に際し、歪取焼鈍を
必須としないフルプロセス電磁鋼板と、歪取焼鈍が必須
のセミプロセス電磁鋼板に大別される。このうち、セミ
プロセス電磁鋼板は、打ち抜き加工後に需要家において
歪取焼鈍が施されたのち、モータコア材として使用され
る。この歪取焼鈍は、剪断時の歪みを除去しかつ粒径等
の組織を改善するために実施されるもので、セミプロセ
ス電磁鋼板は、需要家でのこの歪取焼鈍を利用して初め
て所定の磁気特性が得られる製品のことである。
【0003】一般に、電磁鋼板は、熱延板から種々の途
中工程を経て最終冷延−焼鈍された焼鈍板に、絶縁被膜
を被覆して製品として出荷される。セミプロセス電磁鋼
板は、需要家での 750〜800 ℃程度の歪取焼鈍時に、事
前に導入された鋼板中の歪みを駆動力として、結晶粒を
成長させることにより鉄損の向上が図られる。なお、歪
みの導入は、通常、焼鈍後に10%以下程度の調質圧延を
施すことによって行われる。かような調質圧延板は、歪
取焼鈍時に粒径が粗大化するために、低Siの素材でも或
る程度の低鉄損化が可能である利点があるものの、その
反面、需要家での焼鈍が必要であるため、焼鈍炉を有し
ない需要家では従来使用されることはほとんどなかっ
た。
【0004】しかしながら、近年、コンプレッサーモー
タやマイクロモータおよび電気自動車駆動用モータ等の
極限のモータの効率向上手法として、歪取焼鈍が一般的
な鉄損向上手段として認識されつつある。特に、従来、
焼鈍炉を有しなかった需要家においても、焼鈍炉を新た
に設置して歪取焼鈍を実施するようになってきた。この
ような状況下において、歪取焼鈍を前提とした低鉄損の
セミプロセス電磁鋼板に対する需要が新たに増大しつつ
ある。
【0005】セミプロセス電磁鋼板の特性改善に関して
は、特公昭58−30925 号公報に開示の、調質圧延時のロ
ール径制御による透磁率の向上方法や、特開昭61−2641
31号公報に開示の、調質圧延速度制御による磁気特性改
善方法、特公昭56−43294 号公報に開示の、ロール表面
形状の制御による透磁率改善方法が知られている。
【0006】しかしながら、特公昭58−30925 号公報に
開示のロール径制御による透磁率向上方法では、容易に
透磁率μ15/60 (1.5T、60Hz時における透磁率)の向上
を可能とする一方、B50(5000 A/m時における磁束密
度、通常 1.6〜1.7 T)は歪取焼鈍前に比ベると0.01〜
0.02T程度低下する。これは、歪取焼鈍時の粒成長によ
り{111}集合組織が発達することが原因で、この現
象はトルク等を重視するモータ用材料(例えば、電気自
動車用モータ)には不適であり、更なる改良が必要とな
っている。また、特開昭61−264131号公報に開示のロー
ル速度を 500 m/min以上とする磁気特性改善方法は、非
常に高速の圧延が必要なため工業的にはコストが嵩み、
得られる特性も高磁束密度で低鉄損という近年の厳しい
要求にはもはや応えられなくなってきている。さらに、
特公昭56−43294 号公報に開示のロール表面形状の制御
による特性改善方法も、効果的ではあるが、得られる特
性は高磁束密度で低鉄損という近年の厳しい要求にはも
はや応えられなくなってきている。
【0007】以上、磁気特性上の問題に関して述べた
が、加えて上述の技術は、調質圧延後に絶縁コーティン
グを行うことが基本となっている。この場合、調質圧延
ラインと絶縁コーティング液の塗布・焼き付けラインを
必要とするため、工程的観点からはフルプロセス無方向
性電磁鋼板より高コストとなる要因を内在している。
【0008】これに対し、低コストのセミプロセス電磁
鋼板の製造に関して、特開昭54−43823 号公報におい
て、絶縁被膜を形成後に調質圧延を実施し、しかも絶縁
コーティング液の塗布・焼き付けと調質圧延を同時に同
一ラインで実施するという手法が提案された。この手法
は、縦型連続焼鈍炉(CAL)の潜熱を利用して絶縁被
膜を焼き付け、その後に調質圧延を実施する低コストの
セミプロセス電磁鋼板の製造方法であるが、潜熱を利用
するものであるため塗布温度が不安定となって被膜特性
のばらつきが生じることの他、塗布・焼き付け後に調質
圧延を行うため被膜の剥離や耐食性の劣化が問題とな
る。さらに、磁気特性は従来のセミプロセス材並みでし
かなく、近年の高磁束密度かつ低鉄損という厳しい要求
には応えられなくなっていた。
【0009】
【発明が解決しようとする課題】本発明は、上記の問題
を有利に解決するもので、需要家での歪取焼鈍を前提と
したセミプロセス無方向性電磁鋼板において、高磁束密
度で低鉄損という近年の厳しい要求にも十分に応え得る
磁気特性を有し、しかも絶縁被膜形成後に調質圧延を施
しても被膜の剥離等が生じることのない、優れた絶縁被
膜特性を併せ持つセミプロセス無方向性電磁鋼板の有利
な製造方法を提案することを目的とする。
【0010】
【課題を解決するための手段】さて、発明者らは、効率
的かつ安価に無方向性電磁鋼板を製造するためには、同
一ラインで焼鈍処理と絶縁コーティング処理と調質圧延
を実施する必要があると考えた。調質圧延後に絶縁コー
ティングを実施する場合、調質圧延の油除去等の設備を
必要とし、コスト高となるため、焼鈍→絶縁コーティン
グ→調質圧延の連続工程で高特性のセミプロセス電磁鋼
板を製造することができれば、最適である。そこで、上
記工程による製造を実現すべく鋭意検討を重ねた結果、
焼鈍後の絶縁コーティングの焼付方法を工夫し、かつ絶
縁被膜付き鋼板の調質圧延時のロール径や潤滑状態、鋼
板表面状態を調整すれば、絶縁被膜特性を劣化させるこ
となしに磁気特性に優れたセミプロセス電磁鋼板が製造
できるとの知見を得た。本発明は、上記の知見に立脚す
るものである。
【0011】すなわち、本発明の要旨構成は次のとおり
である。 1.無方向性電磁鋼板用素材を、熱間圧延し、必要に応
じて熱延板焼鈍を施したのち、圧延と焼鈍を施して最終
冷延板とし、ついで焼鈍後、絶縁コーティング液を塗
布、焼き付けたのち、調質圧延を施すことからなるセミ
プロセス無方向性電磁鋼板の製造方法において、上記絶
縁コーティング液の焼き付けに際し、誘導加熱により、
片面当たりの目付量:0.05〜3.0 g/m2で、かつ樹脂分:
10〜60mass%を含む絶縁被膜を焼き付け、その後ロール
径が 550mm以下の圧延ロールを用いて調質圧延を実施す
ることを特徴とする、被膜劣化がなくかつ歪取焼鈍後の
磁気特性に優れるセミプロセス無方向性電磁鋼板の製造
方法。
【0012】2.無方向性電磁鋼板用素材を、熱間圧延
し、必要に応じて熱延板焼鈍を施したのち、圧延と焼鈍
を施して最終冷延板とし、ついで焼鈍後、絶縁コーティ
ング液を塗布、焼き付けたのち、調質圧延を施すことか
らなるセミプロセス無方向性電磁鋼板の製造方法におい
て、上記絶縁コーティング液の焼き付けに際し、誘導加
熱により、片面当たりの目付量:0.2 〜3.0 g/m2で、か
つ樹脂分:15〜60mass%を含む絶縁被膜を焼き付け、そ
の後潤滑油を使用せずに、ロール径が 475mm以下でかつ
圧延後の鋼板表面粗さRaが 1.4μm 以下となるロール粗
度の圧延ロールを用いて調質圧延を実施することを特徴
とする、被膜劣化がなくかつ歪取焼鈍後の磁気特性に優
れるセミプロセス無方向性電磁鋼板の製造方法。
【0013】3.最終冷延板の焼鈍炉と、絶縁コーティ
ング液の塗布装置と、焼き付け装置と、調質圧延装置
が、この順番に設置された製造ラインで製造することを
特徴とする上記1または2に記載のセミプロセス無方向
性電磁鋼板の製造方法。
【0014】4.最終冷延板の焼鈍炉が縦型炉であるこ
とを特徴とする上記1〜3のいずれかに記載のセミプロ
セス無方向性電磁鋼板の製造方法。
【0015】
【発明の実施の形態】以下、本発明を由来するに至った
実験結果について説明する。さて、発明者らは、まず、
焼鈍→ロールコーター塗布→熱風炉焼付方式で、有機無
機混合絶縁被膜(固形分換算で、重クロム酸マグネシウ
ム:50mass%、アクリル・スチレン樹脂エマルション:
20mass%、ホウ酸:15mass%、エチレングリコール:15
mass%で、不揮発分:5mass%)、無機系絶縁被膜(リ
ン酸マグネシウム主剤)および有機絶縁被膜(アクリル
・エポキシ樹脂)の3種類の絶縁被膜を形成したのち、
別ラインで圧下率:4.5 %の調質圧延を行い、その直後
の被膜特性と歪取焼鈍(N2中にて 750℃,2hの焼鈍)
後の被膜特性および磁気特性について調査した。使用し
た鋼板は、0.25%Si−0.25%Mn− 0.2%Al−0.08%P組
成のスラブを、熱間圧延後、酸洗し、ついで冷間圧延
後、焼鈍したものを用いた。調質圧延時のロール径は 3
00mmφで、調質圧延後の鋼板の表面粗さは算術平均粗さ
Raで0.35μm であった。また各絶縁被膜の目付量は片面
当たり:0.8 g/m2とした。
【0016】なお、被膜特性は、耐食性によって評価す
るものとし、調質圧延後の耐食性は、JIS Z 2371に準拠
した塩水噴霧試験による7時間後の赤錆発生状況によっ
て、また歪取焼鈍後の耐食性は、恒温恒湿試験(温度:
50℃、湿度:80%、14日間)後の赤錆発生状況によっ
て、それぞれ評価した。得られた結果を表1に示す。
【0017】
【表1】
【0018】調質圧延後の鋼板表面をSEM 観察した結
果、有機無機混合絶縁被膜には被膜表面にクラックが入
っているのが見受けられ、これが耐食性が著しく劣化さ
せた原因と考えられる。なお、このクラックは、調質圧
延時に絶縁被膜が鋼板の伸びやロールによる圧縮の影響
を受けて入ったものと考えられる。同様に、無機絶縁被
膜も耐食性が著しく劣化した。この点、有機絶縁被膜
は、耐食性の劣化はほとんど見られなかった。表面の顕
微鏡写真で観察すると、有機絶縁被膜では外観に変化が
見られなかったのに対し、無機絶縁被膜では著しくクラ
ックが入っていた。
【0019】上記の結果から、発明者らは、調質圧延に
耐える絶縁被膜とするためには、絶縁被膜中の樹脂比率
を上げればよいと考えた。しかしながら、樹脂比率の上
昇は、周知のように歪取焼鈍後の耐食性の劣化をもたら
すため、樹脂比率を安易に上げることは難しい。
【0020】一方、歪取焼鈍後の磁気特性に関しては、
鉄損は被膜の種類によってあまり変化ないものの、磁束
密度は大きく変化し、樹脂系のものがとりわけ良好な磁
束密度を示した。この理由は、調質圧延時に鋼板中に導
入される歪みが被膜の種類によって変化し、樹脂層がB
50の向上に有利に寄与しているものと考えられる。一般
的には、特開昭61−264131号公報や特公昭56−43294 号
公報に示されるように、調質圧延時のロール径やロール
表面状態を変化させると鋼板に導入される歪みの状態が
変化し、結晶方位粒の回転やその後の歪取焼鈍時の回復
再結晶挙動に影響を与える結果、粒成長する集合組織が
変化するものと考えられる。これらの公知技術の場合、
ロール径が小さい場合は低圧下で好適な粒成長が得られ
たり、鋼板表面粗度を小さくすることにより透磁率の向
上が得られている。
【0021】今回の発明者らの樹脂コートによる現象
も、このような回復再結晶挙動に影響を与えるものと考
えられる。しかしながら、上述したように、歪取焼鈍後
の耐食性は劣化するため、何らかの改善策が必要であ
る。
【0022】以上の実験結果から、発明者らは、被膜中
に含有される樹脂を表層付近に偏析させることができれ
ば、調質圧延後および歪取焼鈍後の被膜特性(耐食性)
を劣化させることなく、歪取焼鈍後の磁気特性を高度に
保つことができるのではないかと考え、その手法につい
て再度検討を行った。すなわち、各種の焼付方法につい
て鋭意検討したところ、従来多用されていたガス炉,電
気炉のように被膜表面から焼き付けるのでなく、誘導加
熱により被膜の下層から、すなわち鋼板側から加熱すれ
ば、表層に樹脂が偏析し、調質圧延時の条件次第では調
質圧延後の被膜特性が改善され、また磁気特性も向上す
ることが究明されたのである。
【0023】上記の知見を得るに至った実験について以
下に述べる。実験は、前述の鋼板を利用し、またコーテ
ィング液としては有機無機混合絶縁コーティング液(固
形分換算で、重クロム酸マグネシウム:50mass%、アク
リル・スチレン樹脂エマルション:20mass%、ホウ酸:
15mass%、エチレングリコール:15mass%配合の水系塗
液(質量比で水:前記固形分=95:5)を用いた。上記
のコーティング液を、スクイズロールで鋼板の両面に塗
布後、誘導加熱(周波数:30 kHz、電流:43Aによって
加熱を実施し、4秒で 300℃まで昇温して焼き付けた。
目付量は片面当たり: 0.8g/m2とした。その後、圧下
率:4.5 %の調質圧延を無塗油で実施した。調質圧延時
のロール径は 300mmφで、調質圧延後の鋼板の表面粗さ
は算術平均粗さRaで0.28μm であった。調質圧延後の被
膜特性と歪取焼鈍(N2中にて 750℃,2hの焼鈍)後の
被膜特性および磁気特性ならびに調質圧延前の打抜性に
ついて調査した結果を、表2に示す。なお、打抜性は、
SKD 11ダイスを使用し、クリアランス:5%で連続打ち
抜き(打ち抜き油使用)を行い、バリ高さが50μm とな
るまでの打ち抜き回数で評価した。また、比較のため、
熱風乾燥炉で30秒間、 300℃まで加熱した鋼板について
も、同様の調査を行った。
【0024】
【表2】
【0025】同表に示したとおり、誘導加熱により絶縁
被膜を焼き付けた鋼板の調質圧延後および歪取焼鈍後の
耐食性はいずれも、調質圧延のない通常のフルプロセス
製品の耐食性と同等の特性を有している。これに対し、
従来の熱風炉で焼き付けた鋼板は、耐食性の劣化が著し
い。また、調質圧延前の打抜性も誘導加熱と熱風炉加熱
で差があり、誘導加熱の方が打抜性に優れる結果となっ
た。さらに、歪取焼鈍後の磁気特性は、誘導加熱による
方が熱風炉で焼き付けた場合に比べて高い磁束密度が得
られることも判明した。
【0026】絶縁被膜を誘導加熱により焼き付けた鋼板
の調質圧延後の被膜耐食性が、調質圧延のない通常のフ
ルプロセス製品の耐食性と同等であった理由は明らかで
はないが、発明者らは、以下のように推定している。す
なわち、誘導加熱のようにコーティング下層から加熱し
た場合、樹脂が表層近傍に濃縮されて最表層樹脂量が多
くなる。調質圧延の際にはこの表層の樹脂が潤滑の役割
を担い、調質圧延時に被膜を破壊することなく圧着しな
がら伸ばすため、上述したような効果が得られたものと
考えられる。なお、表層に樹脂が濃化する現象は、調質
圧延前の打抜性に関して、誘導加熱により焼き付けた鋼
板の方が熱風乾燥を用いた場合よりも、打抜性が優れる
ことからも推測できる。
【0027】また、上記の実験において、磁気特性が向
上した理由は、表層の樹脂層が潤滑の効果を果たし、樹
脂:100 %に近い圧延時の歪み導入挙動を呈したものと
推定される。
【0028】
【作用】以下、本発明の構成要素について、その限定理
由を詳細に説明する。本発明の素材については、特に制
限されることはなく、従来から公知の無方向性電磁鋼板
に適用されるいかなる成分系も適用可能である。通常、
主にSi,Al,Mn等が添加され、硬さや電気抵抗率等の面
から必要に応じてCr,P,Ni,Cu,Cr等の利用が可能で
ある。なお、Alに関しては、AlNを形成し、焼鈍時の粒
成長性に大きく影響するため、 30ppm以下かまたは 0.1
mass%以上の添加が好ましい。また、Alが 30ppm以下の
場合に、AlNの析出を防止するためにBを100ppmを上限
に添加することは有利である。これらの成分比率は所望
する磁気特性に応じて決定すればよい。
【0029】また、析出物や介在物を構成する微量成分
であるC,N,S,Ti,Nb,Zr,Bも特に限定されない
が、調質圧延による粒成長性を改善するには、通常の電
磁鋼板の成分範囲であるC≦0.01mass%,N≦0.01mass
%,S≦0.01mass%,Ti≦0.005 mass%, Nb≦0.005 ma
ss%, Zr≦0.01mass%, B≦0.003 mass%の範囲とする
ことが磁気特性上好ましい。さらに、Sb,Sn,Cuなど従
来から知られている磁気特性を向上させる効果を有する
偏析元素なども規制するものではなく、必要に応じて添
加してもかまわない。
【0030】上記のような好適組成に成分調整したスラ
ブを、熱間圧延により熱延板とし、次工程で圧延(冷間
または温間圧延)が可能な板厚とする。この時の熱延板
厚は特に規制するものではないが、製造上可能な 0.8〜
3.0 mm程度とするのが好ましい。熱延後、必要に応じて
熱延板焼鈍を施してもよい。1000℃で1分程度の短時間
の連続焼鈍や 850℃で8h程度のコイル焼鈍の熱延板焼
鈍を施すことで、磁束密度の向上を図ることができる。
酸洗は、熱延板焼鈍前後に必要に応じて実施する。
【0031】上記の熱延板(熱延焼鈍板を含む)に、圧
延(冷間または温間圧延)と焼鈍を施して所定の板厚の
焼鈍板とする。この板厚は、特に制限されるものではな
いが、工業的に生産可能な 0.1〜0.9 mm厚程度とするの
が好ましい。また、圧延と焼鈍の回数についても規制さ
れることはなく、必要とされる磁気特性に応じて任意に
実施され得る。圧延時の温度も規制されるものではなく
300℃等の高温での圧延も可能である。
【0032】最終目標厚み(調質圧延の伸び率を考慮し
た)に圧延された鋼板を、焼鈍炉にて焼鈍した後に絶縁
被膜を被成する。絶縁コーティング液の塗布前に板温の
調整や洗浄等の表面欠陥除去処理を実施しても問題な
い。また、焼鈍温度が制限されることはないが、調質圧
延による効果を得るためには、鋼板の歪みが回復し始め
る 500℃以上での焼鈍が好ましい。絶縁コーティング液
の塗布前の板温は塗布・焼き付け後の外観等に問題がな
ければ限定されない。
【0033】塗布される絶縁コーティング液としては、
樹脂分が10〜60mass%混合されている必要がある。とい
うのは、樹脂分が10mass%に満たないとその後の誘導加
熱による樹脂の表層への濃化が生じにくくなり、圧延後
の被膜特性が劣化し、一方60mass%を超えると歪取焼鈍
後に樹脂分が飛散して耐食性の急激な低下を招くからで
ある。樹脂分の比率の決定は、熱分析装置を用い、N2
にて常温から 500℃までの絶縁被膜の重量減少分を測定
することにより簡易的に行った。
【0034】絶縁被膜用コーティング液の種類について
は、従来から開発されている各種のものが適用可能であ
る。例えば、少なくともクロム酸塩と樹脂を含むコーテ
ィング液、少なくともリン酸塩と樹脂を含むコーティン
グ液、少なくとも無機コロイドと樹脂を含むコーティン
グ液など、あらゆる種類のコーティング液が適用可能で
あるが、これらが樹脂と無機物とを含むことが重要であ
る。また、耐熱性や耐食性向上の目的でその他の成分を
添加することも可能である。カッコサ
【0035】樹脂の種類は特に規制するものではなく、
アクリル樹脂、エポキシ樹脂、ウレタン樹脂、フェノー
ル樹脂、スチレン樹脂、アミド樹脂、イミド樹脂、尿素
樹脂、酢酸ビニル樹脂、アルキッド樹脂、ポリオレフィ
ン樹脂、ポリエステル樹脂等の種々のものが適用可能で
あり、またこれらの単体、共重合体、混合物等種々の形
態で適用可能である。なお、塗布後の焼き付けが容易に
なる点で、水系樹脂は特に好適である。また、樹脂の形
態はどのようなものでもよく、エマルション樹脂、ディ
スパーション樹脂、サスペンション樹脂、粉末樹脂等の
種々の形態が考えられる。なお、粒径(固形分)をもた
ない完全な水溶性樹脂のみでは、表層濃化に多少影響す
るため、全樹脂量の50mass%以上を粒径をもつ樹脂(エ
マルション樹脂、デイスパーション樹脂、サスペンショ
ン樹脂、粉末樹脂等)とすることが好ましいが、本発明
はこれに限定されるものではない。なお、全固形分濃度
は特に規制するものではなく、目的とする目付量が得ら
れる比重とすればよいが、 0.5〜40mass%の範囲で特に
好適に適用できる。
【0036】これらのコーティング液を鋼板上に塗布す
る方法としては、どのような方法でも良く、ロールコー
ター法、バーコーター法、エアーナイフ法、スプレーコ
ーター法など各種の方法が適用可能である。
【0037】焼き付け方法については、鋼板側(コーテ
ィング下層)からの加熱が可能な誘導加熱方式とする。
この誘導加熱により、被膜表層に樹脂を濃化させること
が重要である。その際、誘導加熱の周波数や昇温速度な
どは特に制限されるものではなく、設備制約面での加熱
時間や効率、電磁鋼板性質(板厚、透磁率等)によって
適宜選択すればよい。従来から多用されてきたコーティ
ング表面から加熱する方式(ガス炉、電気炉など)で
は、昇温速度が速すぎると最表層が先に乾燥してしま
い、内部に低沸点物質(溶媒や反応生成物)が残存して
膨れ等の外観不良の原因となったのに対し、鋼板側から
加熱するとコーティング下層から焼き付けが進行するた
め、昇温速度が 150℃/s程度の超高速焼き付けでも、焼
き付け後の外観不良は全く発生しない。なお、コーティ
ング表面から加熱する手法(熱風炉、電気炉)について
も、誘導加熱で得られる上記効果が得られれば補助的に
使用しても良い。
【0038】上記した焼き付け被膜の膜厚は、片面当た
りの目付量(焼き付け後)で0.05〜3.0 g/m2とする必要
である。というのは、目付量が0.05g/m2に満たないと十
分な磁気特性の向上が望めず、しかも塗布が不均一にな
り易く部分的にコーティングされない箇所が生じ、歪取
焼鈍後に鋼板がスティックして実用に耐え得ない。一
方、目付量が 3.0g/m2を超えると、磁気特性的には問題
ないものの、被膜剥離が発生し易く、かつ鋼板の占積率
が低下する。
【0039】上記の絶縁被膜形成後、鋼板を調質圧延す
る。この調質圧延に際しては、ロール径が 550mm以下の
圧延ロールを用いることが重要である。というのは、ロ
ール径が 550mmを超えると誘導加熱により焼き付けた鋼
板であっても、歪みの導入形態が変化し磁気特性の向上
効果が小さくなり、また絶縁被膜も部分的に剥離し始め
るからである。なお、この剥離のロール径依存性は、圧
延ロールが大きくなることにより、ロールバイト内の時
間が増大して剥離を助長することによるものと考えられ
る。
【0040】この調質圧延における条件は、ロール径以
外に特に規制されるものではない。ロールの表面も、ブ
ライトロールや通常のショットダルや放電加工によるダ
ル、レーザー加工によるダル等の適用が可能である。圧
延張力や速度も特に規制されるものではない。圧延率も
通常使用される10%以下であれば問題なく適用すること
ができる。
【0041】圧延時の潤滑は、本発明では樹脂がその役
目を担っているので、圧延加工上は必ずしも必要ない
が、潤滑剤を用いるとさらに磁気特性の向上が認められ
る。従って、高特性とする際には必要に応じて使用可能
である。かような潤滑剤としては、通常使用される鉱物
油や天然油脂や合成エステルをベースオイルにしたエマ
ルジョンタイブの潤滑油や、調質圧延によく用いられる
防錆効果を有する無機塩や有機酸や有機・無機アミンを
含む界面活性剤を主剤にしたものが有利に適合する。
【0042】なお、需要家からの要求により、無潤滑で
の圧延が必要とされる場合がある。この場合は、樹脂の
潤滑効果を上げるために、絶縁被膜の樹脂添加量を15ma
ss%以上とし、また被膜付着量も0.2 g/m2以上とする必
要がある。また、圧延ロールについても、そのロール径
を475 mm以下とし、かつロール粗度を調整して調質圧延
後の鋼板表面粗さをRa≦1.4 μm とする必要がある。と
いうのは、ロール表面がダル状態となり圧延後の鋼板表
面粗さがRa>1.4 μm になるとロールバイト内での鋼板
とロールとの密着性が増すため、潤滑油なしでは被膜へ
のダメージが大きく、被膜剥離が生じるおそれが大き
く、一方ロール径が 475mmを超えると歪取焼鈍後の磁気
特性が、潤滑油を利用した場合に比較して幾分劣化する
からである。
【0043】上記の焼鈍から調質圧延までの一連の処理
を効率良く実施するためには、焼鈍炉から調質圧延装置
までは同一ライン内に設置することが最適である。すな
わち、鋼板焼鈍炉→塗布焼付炉→調質圧延機と同一ライ
ン化することにより、コストを上昇させることなしに、
生産性の向上を図ることができる。
【0044】さらに、焼鈍炉を縦型炉とすることで、よ
り一層の高生産性化と高特性のセミプロ材の生産が可能
となる。すなわち、通常、電磁鋼板において低鉄損材料
はSi含有量が多いが、Si含有量が多いと電磁鋼板の焼鈍
時に、ロールの表面酸化物に起因するピックアップとい
う凹状のへこみ欠陥が生じ易くなる。このため、Si含有
量の多い高級電磁鋼板では、ロール巻き付き力の小さい
水平式の焼鈍炉が使用されるのが普通である。しかしな
がら、かような水平式焼鈍炉は、制御上、通板速度が高
々200mpm程度にすぎず、高速通板ができないという問題
がある。本発明法は、高Si含有鋼を利用することなく、
低Si鋼においても従来の高Si鋼程度の鉄損化が可能なた
め、 300 mpm以上の高速通板が可能な縦型焼鈍炉を適用
することにより、従来得られなかった高生産性の下で磁
気特性に優れたセミプロセス電磁鋼板の製造が可能とな
る。
【0045】その後、必要に応じて表面油をワイピング
により除去したり、一般冷延材のように需要家からの要
求に応じて防錆油を塗布したり、あるいは圧延ままの表
面状態で需要家に供給される。需要家での歪取焼鈍の温
度や雰囲気等の条件は制限されないが、通常は 700〜80
0 ℃程度の温度で焼鈍されることが望ましい。
【0046】
【実施例】実施例1 表3に示す鋼記号Aの組成になる鋼塊を、1200℃に加熱
後、熱間圧延により板厚:2.3 mmの熱延板とし、ついで
冷間圧延により板厚:0.524mm に仕上げた後、800℃, 1
8sの焼鈍を施した。ついで、表4に示すコーティング
液A(重クロム酸アルミニウムとアクリル・スチレン樹
脂エマルジョンを主とする無機有機混合塗液)とB液
(アルミナ複合シリカとエポキシ樹脂を主とする無機有
機混合塗液)を、表5に示す塗布水準にてフルリバース
の3ロールミルで塗布したのち、熱風炉または誘導加熱
炉(装置能力 20 kW、30 kHzで使用)で 200℃の焼き付
けを行い、乾燥した。コーティングA液においては目付
量と樹脂量を変化させ、またコーティングB液において
は主に樹脂量を変化させた。誘導加熱の際には、2秒で
200℃まで昇温し、一方熱風炉では20秒で 200℃まで昇
温して焼き付けた。その後、ロール径:300 mmφの調質
圧延機で 4.5%の歪み(鋼板表面粗度Ra:0.24μm )を
付与した絶縁被膜付きの電磁鋼板を、エプスタイン試験
片サイズに剪断したのち、N2中にて2hの歪取焼鈍を行
った。
【0047】かくして得られた製品板の被膜特性および
磁気特性について調べた結果を表6に示す。なお、被膜
特性は、調質圧延後の被膜密着性ならびに調質圧延後お
よび歪取焼鈍後の耐食性で評価した。また、磁気特性
は、圧延方向(L方向)および圧延直角方向(C方向)
の磁気特性を測定し、それらの平均値で示した。なお、
磁気特性に関しては、調質圧延を施さない 0.5mm厚の冷
延焼鈍板の磁気特性と比較した。
【0048】ここに、被膜密着性は、絶縁被膜付きの電
磁鋼板を20mmφ曲げし、湾曲部にセロテープ(登録商
標)を貼着し、ついで剥がした後の絶縁被膜の付着状況
で評価した。また、調質圧延後の耐食性は、JIS Z 2371
に準拠した塩水噴霧試験による7時間後の赤錆発生状況
によって評価した。さらに、歪取焼鈍後の耐食性は、恒
温恒湿試験(温度:50℃、湿度:80%、14日間)後の赤
錆発生状況によって評価した。
【0049】
【表3】
【0050】
【表4】
【0051】
【表5】
【0052】
【表6】
【0053】表5,6に示したとおり、熱風炉で焼き付
けた後、調質圧延を施したものは、被膜特性が劣り、ま
た歪取焼鈍後においてもB50が1.72T前後と低かった。
これに対し、誘導加熱によって焼き付けた場合の被膜特
性は、潤滑の有無に係わらず良好で、また磁気特性にも
優れていた。但し、樹脂量や目付量が適正範囲を逸脱し
た場合には、被膜特性や磁気特性の劣化が生じた。
【0054】実施例2 表3に示す鋼記号Bの組成になる鋼塊を、1150℃に加熱
後、熱間圧延により板厚:1.6 mmの熱延板とし、ついで
冷間圧延により板厚:0.524mm に仕上げた後、740℃, 1
5sの焼鈍を実施した。ついで、表4に示すコーティン
グ液A(重クロム酸アルミニウムとアクリル・スチレン
樹脂エマルジョンを主とする無機有機混合塗液)を、表
7に示す塗布水準にてフルリバースの3ロールミルで塗
布したのち、熱風炉または誘導加熱炉(装置能力 20 k
W、30 kHzで使用)で 200℃の焼き付けを行い、乾燥し
た。誘導加熱の際には、2秒で 200℃まで昇温し、熱風
炉では 250℃の熱風を吹き付け、20秒で 200℃まで昇温
して焼き付けた。その後、ロール径が60mm, 100mm, 300
mm, 475mm, 560mmφの調質圧延機で 4.5%の歪み(鋼板
表面粗度Ra:0.24μm )を与えた。その際、ロール粗度
を種々に変化させて鋼板の表面粗さをRaで0.19μm, 1.2
μm, 2.0μm 程度に制御し、潤滑油の有無による被膜特
性と磁気特性への影響について調査した。ついで、得ら
れた絶縁被膜付きの電磁鋼板を、エプスタイン試験片サ
イズに剪断したのち、N2中にて2hの歪取焼鈍を行っ
た。かくして得られた製品板の被膜特性および磁気特性
を、実施例1と同様にして調べた結果を表8に示す。
【0055】
【表7】
【0056】
【表8】
【0057】表8に示したとおり、誘導加熱により焼き
付けした場合には優れた被膜特性を得ることができた。
しかしながら、潤滑の有無に係わらず、ロール径が 550
mmを超えた場合には、磁気特性の劣化を招いた。さら
に、潤滑なしの場合、樹脂含有量を15mass%以上とし、
目付量を0.2 g/m2以上とすることで被膜特性の劣化を防
止することができ、磁気特性も潤滑有りの場合とほぼ同
等のものを得ることができた。
【0058】
【発明の効果】かくして、本発明によれば、需要家での
歪取焼鈍を前提としたセミプロセス無方向性電磁鋼板に
ついて、高磁束密度で低鉄損の優れた磁気特性および優
れた絶縁被膜特性を併せ持つ電磁鋼板を効率的かつ安価
に製造することが可能となり、当該鋼板を使用すること
により種々のモータでの効率向上が図られるものと期待
される。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 明男 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K026 AA03 AA22 BB10 CA22 CA27 CA39 DA02 EB11 4K033 SA01 TA03 5E041 AA02 BC08 CA04 HB14 NN05

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 無方向性電磁鋼板用素材を、熱間圧延
    し、必要に応じて熱延板焼鈍を施したのち、圧延と焼鈍
    を施して最終冷延板とし、ついで焼鈍後、絶縁コーティ
    ング液を塗布、焼き付けたのち、調質圧延を施すことか
    らなるセミプロセス無方向性電磁鋼板の製造方法におい
    て、 上記絶縁コーティング液の焼き付けに際し、誘導加熱に
    より、片面当たりの目付量:0.05〜3.0 g/m2で、かつ樹
    脂分:10〜60mass%を含む絶縁被膜を焼き付け、その後
    ロール径が 550mm以下の圧延ロールを用いて調質圧延を
    実施することを特徴とする、被膜劣化がなくかつ歪取焼
    鈍後の磁気特性に優れるセミプロセス無方向性電磁鋼板
    の製造方法。
  2. 【請求項2】 無方向性電磁鋼板用素材を、熱間圧延
    し、必要に応じて熱延板焼鈍を施したのち、圧延と焼鈍
    を施して最終冷延板とし、ついで焼鈍後、絶縁コーティ
    ング液を塗布、焼き付けたのち、調質圧延を施すことか
    らなるセミプロセス無方向性電磁鋼板の製造方法におい
    て、 上記絶縁コーティング液の焼き付けに際し、誘導加熱に
    より、片面当たりの目付量:0.2 〜3.0 g/m2で、かつ樹
    脂分:15〜60mass%を含む絶縁被膜を焼き付け、その後
    潤滑油を使用せずに、ロール径が 475mm以下でかつ圧延
    後の鋼板表面粗さRaが 1.4μm 以下となるロール粗度の
    圧延ロールを用いて調質圧延を実施することを特徴とす
    る、被膜劣化がなくかつ歪取焼鈍後の磁気特性に優れる
    セミプロセス無方向性電磁鋼板の製造方法。
  3. 【請求項3】 最終冷延板の焼鈍炉と、絶縁コーティン
    グ液の塗布装置と、焼き付け装置と、調質圧延装置が、
    この順番に設置された製造ラインで製造することを特徴
    とする請求項1または2に記載のセミプロセス無方向性
    電磁鋼板の製造方法。
  4. 【請求項4】 最終冷延板の焼鈍炉が縦型炉であること
    を特徴とする請求項1〜3のいずれかに記載のセミプロ
    セス無方向性電磁鋼板の製造方法。
JP2002018269A 2002-01-28 2002-01-28 被膜劣化がなくかつ歪取焼鈍後の磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法 Pending JP2003213445A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002018269A JP2003213445A (ja) 2002-01-28 2002-01-28 被膜劣化がなくかつ歪取焼鈍後の磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002018269A JP2003213445A (ja) 2002-01-28 2002-01-28 被膜劣化がなくかつ歪取焼鈍後の磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法

Publications (1)

Publication Number Publication Date
JP2003213445A true JP2003213445A (ja) 2003-07-30

Family

ID=27653684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002018269A Pending JP2003213445A (ja) 2002-01-28 2002-01-28 被膜劣化がなくかつ歪取焼鈍後の磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法

Country Status (1)

Country Link
JP (1) JP2003213445A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049854A1 (ja) * 2018-09-03 2020-03-12 Jfeスチール株式会社 絶縁被膜付き電磁鋼板およびその製造方法
CN114207158A (zh) * 2019-07-31 2022-03-18 杰富意钢铁株式会社 无方向性电磁钢板及其制造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049854A1 (ja) * 2018-09-03 2020-03-12 Jfeスチール株式会社 絶縁被膜付き電磁鋼板およびその製造方法
EP3808871A4 (en) * 2018-09-03 2021-08-25 JFE Steel Corporation ELECTROMAGNETIC STEEL SHEET ON WHICH IS FIXED AN INSULATING COATING FILM, AND PROCESS FOR PRODUCING IT
RU2770738C1 (ru) * 2018-09-03 2022-04-21 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из электротехнической стали, имеющий изолирующую пленку, и способ его изготовления
CN114207158A (zh) * 2019-07-31 2022-03-18 杰富意钢铁株式会社 无方向性电磁钢板及其制造方法

Similar Documents

Publication Publication Date Title
WO2011114178A1 (en) Process for the production of grain oriented electrical steel
JP6954464B2 (ja) 無方向性電磁鋼板の製造方法
WO2019225529A1 (ja) 無方向性電磁鋼板およびその製造方法
JP7176221B2 (ja) 無方向性電磁鋼板およびその製造方法
WO2013051042A1 (en) Process for the production of grain-oriented magnetic sheet with a high level of cold reduction
JP7284393B2 (ja) 方向性電磁鋼板の製造方法
JP7164071B1 (ja) 無方向性電磁鋼板
JP2003213445A (ja) 被膜劣化がなくかつ歪取焼鈍後の磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法
JP2012006128A (ja) 化成処理性に優れた高張力鋼板の製造方法およびその製造装置
JP3352904B2 (ja) 無方向性電磁鋼板の製造方法
JPS6114214B2 (ja)
JP7338812B1 (ja) 方向性電磁鋼板の製造方法
JP7164070B1 (ja) 無方向性電磁鋼板
JP7255761B1 (ja) 方向性電磁鋼板の製造方法
JP2003253334A (ja) 磁気特性および打ち抜き性に優れた方向性電磁鋼板の製造方法
WO2023074908A1 (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板
JP3358138B2 (ja) 等方的磁気特性の優れたセミプロセス無方向性電磁鋼板の製造方法
JP2001279400A (ja) 被膜密着性に優れた無方向性電磁鋼板およびその製造方法
JPH08269553A (ja) 磁気特性の優れた一方向性電磁鋼板の製造方法
CN115135780A (zh) 方向性电磁钢板的制造方法
JP2578040B2 (ja) 超高珪素電磁鋼板の製造方法
JP2562255B2 (ja) 表面性状を制御した超高珪素電磁鋼板の安定的な製造方法
JP3685004B2 (ja) 熱延鋼板およびその製造方法
TW201414849A (zh) 壓縮機馬達用無方向性電磁鋼片及其製造方法
JP2003027139A (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051125

A131 Notification of reasons for refusal

Effective date: 20051206

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060328