JP2003102594A - Vapor/liquid water absorption heat-generating bedding - Google Patents

Vapor/liquid water absorption heat-generating bedding

Info

Publication number
JP2003102594A
JP2003102594A JP2001302933A JP2001302933A JP2003102594A JP 2003102594 A JP2003102594 A JP 2003102594A JP 2001302933 A JP2001302933 A JP 2001302933A JP 2001302933 A JP2001302933 A JP 2001302933A JP 2003102594 A JP2003102594 A JP 2003102594A
Authority
JP
Japan
Prior art keywords
water
absorption
absorbing
fine particles
hygroscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001302933A
Other languages
Japanese (ja)
Inventor
Shinichiro Inatomi
伸一郎 稲富
Seiichi Ochi
清一 越智
Akihisa Nakagawa
明久 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2001302933A priority Critical patent/JP2003102594A/en
Publication of JP2003102594A publication Critical patent/JP2003102594A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a bedding having improved heat generation speed, heat generation temperature, heat generation retention properties, and dew condensation prevention properties when absorbing vapor or liquid water by giving vapor or liquid water-absorbing properties to the bedding. SOLUTION: In the bedding, a wadding and/or a side to which highly hygroscopic fine particles adhere is used. In the vapor/liquid water absorption heat- generating bedding, the maximum temperature increase when absorbing vapor or liquid water is 3 deg.C or higher, and preferably the heat generation when absorbing vapor water is retained for 30 minutes or longer and/or the heat generation when absorbing liquid water is retained at least for one minute. Further, the maximum temperature increase when absorbing liquid water is 8 deg.C or higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、寝具類に関し、特
に冬季などの冷温環境下で効果的な蓄熱保温性が達成で
きる吸湿/吸水発熱性能を有するふとん、クッション材
などの寝具類に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to beddings, and more particularly to beddings such as futons and cushioning materials having a moisture absorption / water absorption exothermic performance capable of achieving effective heat storage and heat retention under a cold environment such as winter.

【0002】[0002]

【従来の技術】保温性に着目した一般衣料、防寒衣料、
スポーツ衣料や低温倉庫用ユニホームなどが種々実用化
されている。従来の保温性改善手段としては、熱伝導度
の小さい空気層を増やすための中空断面繊維や極細繊維
を活用する方法、体熱を反射するアルミ蒸着、コーティ
ングもしくは金属スパッタリングの活用する方法、金属
酸化物やセラミックス練り込みによる遠赤外線効果を期
待する方法(特開昭63−105107号、特開昭7−
331584号など)、吸湿発熱性繊維を紡績、混繊等
により布帛、中綿に混用する方法(特開平6−2940
06号、特開平8−197661号ほか)やアクリル
酸、メタクリル酸などのビニル系モノマーのグラフト重
合法でカルボン酸末端を繊維表面もしくは内部に導入
し、ナトリウム塩化など金属塩化することで吸湿発熱性
を付与する方法などが種々提案されている。しかしなが
らこれらの方法はいずれも、発熱加温性が不十分であ
り、加えて、かかる吸湿/吸水発熱性を切り口とした効
果的な蓄熱保温性、結露防止性を発現する寝具は提案さ
れていない。
2. Description of the Related Art General clothing, cold clothing,
Various sports clothing and uniforms for low temperature warehouses have been put to practical use. Conventional methods for improving heat retention include the use of hollow cross-section fibers and ultrafine fibers to increase the air layer with low thermal conductivity, aluminum vapor deposition that reflects body heat, the use of coating or metal sputtering, and metal oxidation. A method of expecting a far infrared effect by kneading materials and ceramics (JP-A-63-105107, JP-A-7-
No. 331584), and a method of mixing a hygroscopic heat-generating fiber with a fabric or batting by spinning, mixing, or the like (JP-A-6-2940).
No. 06, JP-A-8-197661, etc.) or a vinyl monomer such as acrylic acid or methacrylic acid is introduced into the surface or inside of the fiber by a graft polymerization method to introduce a carboxylic acid terminal into the fiber or metal chloride such as sodium chloride. There have been various proposals for a method of imparting. However, none of these methods has sufficient heat-heating ability, and in addition, no bedding has been proposed that exhibits effective heat storage heat retention and dew condensation prevention by taking such moisture absorption / water absorption heat generation as a cut-off point. .

【0003】[0003]

【発明が解決しようとする課題】本発明は、優れた吸湿
もしくは吸水性を付与し、吸湿もしくは吸水時の発熱速
度、発熱温度、発熱保持性、結露防止性に優れる吸湿/
吸水発熱性寝具を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides excellent moisture absorption or water absorption and is excellent in heat generation rate, heat generation temperature, heat generation retention property, and dew condensation prevention property during moisture absorption or water absorption.
A water-absorbing and heat-generating bedding is provided.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を解決
するための技術構成は次のとおりである。すなわち、 1.高吸湿性微粒子が付着されてなる中綿及び/又は側
地を用いた寝具であり、吸湿及び/又は吸水時の最大温
度上昇が3℃以上であることを特徴とする吸湿/吸水発
熱性寝具。
The present invention has the following technical constitution for solving the above problems. That is, 1. A bedding using a batting and / or a side material to which highly hygroscopic fine particles are adhered, wherein the maximum temperature rise during moisture absorption and / or water absorption is 3 ° C. or higher, and a hygroscopic / water-absorption exothermic bedding.

【0005】2.吸湿時の発熱が30分以上、及び/又
は吸水時の発熱が1分以上保持されることを特徴とする
第1に記載の吸湿/吸水発熱性寝具。
2. The moisture-absorption / water-absorption exothermic bedding according to the first aspect, characterized in that heat generation during moisture absorption is maintained for 30 minutes or more and / or heat generation during water absorption is maintained for 1 minute or more.

【0006】3.吸水時の最大温度上昇が8℃以上であ
ることを特徴とする第1又は2に記載の吸湿/吸水発熱
性寝具。
3. 3. The moisture-absorption / water-absorption exothermic bedding according to the first or second aspect, wherein the maximum temperature rise during water absorption is 8 ° C. or higher.

【0007】4.高吸湿性微粒子が有機微粒子であるこ
とを特徴とする第1〜3のいずれかに記載の吸湿/吸水
発熱性寝具。
4. The hygroscopic / water-absorbing exothermic bedding according to any one of the first to third aspects, wherein the highly hygroscopic fine particles are organic fine particles.

【0008】5.高吸湿性有機微粒子がポリスチレン
系、ポリアクリロニトリル系、ポリアクリル酸エステル
系、ポリメタクリル酸エステル系のいずれかのビニル系
重合体で、スルホン酸基、カルボン酸基、リン酸基ある
いは、それらの金属塩の少なくとも1種の親水基を有
し、かつジビニルベンゼン、トリアリルイソシアネート
またはヒドラジンのいずれかで架橋された架橋重合体で
ある第4に記載の吸湿/吸水発熱性寝具。
5. The highly hygroscopic organic fine particles are polystyrene-based, polyacrylonitrile-based, polyacrylic acid ester-based, or polymethacrylic acid ester-based vinyl polymers, and have sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, or their metals. The hygroscopic / water-absorbing exothermic bedding according to the fourth aspect, which is a cross-linked polymer having at least one hydrophilic group of a salt and cross-linked with any of divinylbenzene, triallyl isocyanate or hydrazine.

【0009】6.高吸湿性微粒子の平均粒子径が2μm
未満であることを特徴とする第1〜5のいずれかに記載
の吸湿/吸水発熱性寝具。
6. Highly hygroscopic fine particles have an average particle size of 2 μm
The moisture-absorption / water-absorption exothermic bedding according to any one of the first to fifth features, wherein

【0010】7.高吸湿性微粒子が親水性樹脂を介して
中綿あるいは側地に固定化されていることを特徴とする
第1〜6のいずれかに記載の吸湿/吸水発熱性寝具。
7. 7. The hygroscopic / water-absorbing heat-generating bedding according to any one of 1 to 6, wherein the highly hygroscopic fine particles are fixed to the batting or the side material via a hydrophilic resin.

【0011】8.高吸湿性微粒子と親水性樹脂の質量比
が1/1〜19/1であることを特徴とする第1〜7の
いずれかに記載の吸湿/吸水発熱性寝具。
8. 8. The hygroscopic / water-absorbing heat-generating bedding according to any one of 1 to 7, wherein the mass ratio of the highly hygroscopic fine particles and the hydrophilic resin is 1/1 to 19/1.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する.本発明における寝具とは、掛けふと
ん、肌掛けふとん、硬綿式敷きふとん、ベッドパッド、
敷きパッド、ベビー敷きふとん、マットレス、枕、クッ
ション材などである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. The bedding in the present invention, a quilt, a skin quilt, a hard cotton type quilt, a bed pad,
Bed pad, baby bed, mattress, pillow, cushion material.

【0013】本発明において吸湿/吸水加工を施す対象
は、短繊維及び編物、織物、不織布などの繊維構造体で
あり、その素材は、ポリエステル系、ポリアミド系、ポ
リアクリルニトリル系、ポリエチレン系、ポリプロピレ
ン系、ポリブチレンテレフタレート系、ポリテトラメチ
レンテレフタレート系、ポリウレタン系、ポリフェニレ
ンサルファイド系等の合成繊維、レーヨン、アセテート
等の化学繊維、木綿、麻、シルク、ウール、羽毛などの
天然繊維もしくはこれらの混用素材である。これらの繊
維及び繊維構造体は、寝具類の側地および中綿として用
いられる。
In the present invention, the objects to be subjected to moisture absorption / water absorption are fiber structures such as short fibers and knits, woven fabrics and nonwoven fabrics, and the materials thereof are polyester, polyamide, polyacrylonitrile, polyethylene and polypropylene. -Based, polybutylene terephthalate-based, polytetramethylene terephthalate-based, polyurethane-based, polyphenylene sulfide-based synthetic fibers, rayon, acetate and other chemical fibers, cotton, hemp, silk, wool, feathers and other natural fibers, or a mixture of these materials Is. These fibers and fiber structures are used as bedding and batting for bedding.

【0014】本発明の高吸湿性微粒子(高吸湿/吸水発
熱性微粒子とも表記する。)とは、吸湿又は吸水時に発
熱性を示す微粒子であれば、特に化学構造的に限定され
るものではない。例えば、吸湿性シリカなどの無機系、
もしくは吸湿性ポリウレタン系、ポリアミド系、ポリエ
ステル系およびポリアクリレート系などの種々の有機系
微粒子の適用が可能であるが、特に、高吸湿/吸水発熱
性有機微粒子が好ましく、例えば、ポリスチレン系、ポ
リアクリロニトリル系、ポリアクリル酸エステル系、ポ
リメタクリル酸エステル系のいずれかのビニル系重合体
で、スルホン酸基、カルボン酸基、リン酸基あるいは、
それらの金属塩の少なくとも1種の親水基を有し、かつ
ジビニルベンゼン、トリアリルイソシアネートまたはヒ
ドラジンのいずれかで架橋された架橋重合体微粒子であ
る。
The highly hygroscopic particles (also referred to as highly hygroscopic / water-absorbing exothermic particles) of the present invention are not particularly limited in terms of their chemical structure as long as they are particles that exhibit heat generation when they absorb or absorb water. . For example, inorganic type such as hygroscopic silica,
Alternatively, various organic fine particles such as hygroscopic polyurethane-based, polyamide-based, polyester-based, and polyacrylate-based can be applied, and particularly highly hygroscopic / water-absorbing exothermic organic fine particles are preferable, for example, polystyrene-based and polyacrylonitrile. System, polyacrylic acid ester-based, polymethacrylic acid ester-based vinyl polymer, sulfonic acid group, carboxylic acid group, phosphoric acid group, or
Crosslinked polymer fine particles having at least one hydrophilic group of those metal salts and crosslinked with either divinylbenzene, triallyl isocyanate or hydrazine.

【0015】高吸湿性微粒子の粒度は、吸湿/吸水発熱
速度/発熱効率、均一付着性、風合い及び耐磨耗性の点
から細かいほど望ましく、平均粒子径2μm未満がより
好ましい。
The particle size of the highly hygroscopic fine particles is preferably as small as possible from the viewpoint of moisture absorption / water absorption heat generation rate / heat generation efficiency, uniform adhesion, texture and abrasion resistance, and an average particle diameter of less than 2 μm is more preferable.

【0016】本発明の高吸湿性微粒子の付与方法は、繊
維に直接練り込む方法や編物、織物、不織布などの表層
にバインダー樹脂を介して付着させる方法が挙げられる
が、吸湿/吸水発熱速度/発熱効率の点から後者のバイ
ンダー樹脂を介する付着方法が好ましい。
Examples of the method for imparting highly hygroscopic fine particles of the present invention include a method of directly kneading into fibers and a method of adhering to the surface layer of knitted fabric, woven fabric, non-woven fabric or the like via a binder resin. From the viewpoint of heat generation efficiency, the latter method of attaching via a binder resin is preferable.

【0017】バインダー樹脂としては、通常の含浸法、
パディング法、コーティング法、スプレー法に適用でき
るシリコン系、ウレタン系、アクリル系、ポリエステル
系などの樹脂が挙げられ、特に限定されないが、親水
性、透湿性に優れ、高吸湿/吸水発熱性微粒子の吸湿性
を阻害しないものが好ましい。また、これら高吸湿/吸
水発熱性微粒子と親水性樹脂バインダーの系に耐久性向
上のため各種架橋剤を併用しても良い。
As the binder resin, a usual impregnation method,
Examples include silicone-based, urethane-based, acrylic-based, polyester-based resins that can be applied to the padding method, coating method, and spray method, and are not particularly limited, but are excellent in hydrophilicity and moisture permeability, and have high moisture absorption / water absorption heat-generating fine particles. Those that do not impair hygroscopicity are preferred. Further, various crosslinking agents may be used in combination in the system of these highly hygroscopic / water-absorbing exothermic particles and the hydrophilic resin binder in order to improve durability.

【0018】本発明における高吸湿/吸水発熱性微粒子
と親水性樹脂の配合比及びこれらの付着量は、吸湿/吸
水発熱性に大きく影響する。親水性樹脂の親水レベルに
より高吸湿/吸水発熱性微粒子と親水性樹脂の配合比は
多少異なるが、1/1〜19/1の配合使用が望まし
く、特に、親水性樹脂の配合比率の小さいものほど、優
れた吸湿/吸水発熱性を発現させることができる。但
し、親水性樹脂が極端に少ない場合、もしくは併用しな
い場合は構造物表面に付着した高吸湿/吸水発熱性微粒
子の磨耗耐久性が低下し、脱落し易くなる。
The compounding ratio of the highly hygroscopic / water-absorbing exothermic fine particles and the hydrophilic resin and the amount of these adhering to each other greatly influence the hygroscopic / water-absorbing exothermicity. The compounding ratio of the highly hygroscopic / water-absorbing exothermic fine particles and the hydrophilic resin is slightly different depending on the hydrophilic level of the hydrophilic resin, but it is desirable to use the compounding ratio of 1/1 to 19/1, and particularly, the compounding ratio of the hydrophilic resin is small. The more excellent moisture absorption / water absorption exothermicity can be exhibited. However, when the hydrophilic resin is extremely small, or when the hydrophilic resin is not used in combination, the abrasion resistance of the highly hygroscopic / water-absorbing heat-generating fine particles adhered to the surface of the structure is deteriorated and the particles easily fall off.

【0019】本発明の吸湿/吸水発熱性繊維構造体の発
熱性は、物質の吸湿もしくは吸水時に産出する吸着反応
熱に基づくもので、繊維構造体に含まれる高吸湿/吸水
性微粒子の吸湿性能力及び又は吸水性能力及び付着量に
依存する。すなわち、高吸湿/吸水性微粒子で、しかも
細かいほど吸着水分による産熱は大きく、発熱速度も早
くなる。もちろん、かかる吸湿/吸水性は構造体基材単
独でも保有するため、より効果的な吸湿/吸水発熱性を
実現させるためには適用吸湿/吸水発熱性微粒子の吸湿
性は25%以上が望ましく、さらに好ましくは40%以
上である。したがって、効果的な吸湿/吸水発熱性を得
るためには、本発明の吸湿/吸水発熱性繊維構造体を出
来るだけ低吸湿率、更に好ましくは完全乾燥(絶乾)状
態に近い状態で保管することが肝要である。逆に、飽和
吸湿率以上に水分を吸着し、発熱が完了した繊維構造体
は、放熱冷却され当初の温度まで低下するが、再度、乾
燥して吸着水を取り除けば、元来の優れた吸湿/吸水発
熱性が再発現する。
The exothermicity of the moisture-absorbing / water-absorbing exothermic fiber structure of the present invention is based on the heat of adsorption reaction generated when the substance absorbs moisture or absorbs water, and the hygroscopic property of the highly hygroscopic / water-absorbing fine particles contained in the fiber structure. Capacity and / or water absorption capacity and amount of deposition. That is, the higher the moisture absorption / water absorption fine particles, and the finer the particles, the greater the heat production due to the adsorbed moisture and the faster the heat generation rate. Of course, since such a moisture absorption / water absorption is possessed by the structure base material alone, in order to realize more effective moisture absorption / water absorption exothermicity, the hygroscopicity of the applied moisture absorption / water absorption exothermic fine particles is preferably 25% or more, More preferably, it is 40% or more. Therefore, in order to obtain effective moisture absorption / water absorption exothermicity, the moisture absorption / water absorption exothermic fiber structure of the present invention is stored with a moisture absorption rate as low as possible, and more preferably in a state close to a completely dry (absolute dry) state. It is essential. Conversely, the fibrous structure that has adsorbed moisture above the saturated moisture absorption rate and has completed heat generation is cooled by heat dissipation and drops to the initial temperature, but if it is dried again to remove the adsorbed water, the original excellent moisture absorption is obtained. / Water absorption exothermicity is re-developed.

【0020】気相状態の吸湿発熱性が適度な速度で発熱
し、比較的長く発熱性を維持するのに対して、液相の吸
水発熱性は急速な発熱性が得られる反面、付着水の量が
多すぎると顕著な発熱効果が得られない場合もあるの
で、付着水量の管理が重要となる。
The moisture absorption exothermicity in the vapor phase heats up at an appropriate rate and maintains the exothermicity for a relatively long time, whereas the water absorption exothermicity in the liquid phase gives a rapid exothermicity, while the adsorbed water If the amount is too large, the remarkable heat generation effect may not be obtained, so it is important to control the amount of attached water.

【0021】本発明によれば、高吸湿/吸水発熱性微粒
子の種類及び付着量を最適化し、適正な親水性樹脂バイ
ンダーを介して付着させた繊維構造体は、吸湿及び又は
吸水時の最大温度上昇が3℃以上、好ましくは4℃以
上、より好ましくは5℃以上であり、さらには吸水時の
最大温度上昇が8℃以上であり、しかも吸湿時の発熱が
30分以上、吸水時の発熱が30秒以上、より好ましく
は1分以上保持される優れた吸湿/吸水発熱性が得られ
る。
According to the present invention, the type and amount of highly hygroscopic / water-absorbing exothermic particles are optimized, and the fibrous structure adhered via a proper hydrophilic resin binder has a maximum temperature at the time of moisture absorption and / or water absorption. The temperature rise is 3 ° C or higher, preferably 4 ° C or higher, more preferably 5 ° C or higher, the maximum temperature rise is 8 ° C or higher when absorbing water, and the heat generation when absorbing moisture is 30 minutes or longer and the heat generation when absorbing water. For 30 seconds or more, and more preferably for 1 minute or more, an excellent moisture / water absorption exothermic property is obtained.

【0022】本発明の繊維構造体は、これらの優れた高
吸湿/吸水発熱性に加えて、抗菌防臭性、制菌性、消臭
性、ノネナール消臭性、pH緩衝性、制電性、SR防汚
性、耐酸性雨性の多機能性を発現させることもできる。
The fiber structure of the present invention has, in addition to these excellent high moisture / water absorption exothermic properties, antibacterial and deodorant properties, antibacterial properties, deodorizing properties, nonenal deodorizing properties, pH buffering properties, antistatic properties, It is also possible to develop multifunctional properties such as SR antifouling property and acid rain resistance.

【0023】以上により得られる側地及び/又は中綿を
寝具の少なくとも一部に用いることによりムレ感を低減
できる寝具が得られる。側地としては肌側にのみ使用す
ることも可能であり、中綿(敷きふとんの場合には巻き
綿)としては、上記加工を施していない中綿との混綿あ
るいは積層をして用いる事も出来る。掛けふとんの場合
には肌側に、敷きふとんの場合には寝床内の環境を良く
することを目的として肌側に、また結露防止のために用
いる場合にはフローリング側に用いると良い。
By using the side cloth and / or batting obtained as described above in at least a part of the bedding, a bedding which can reduce the feeling of stuffiness can be obtained. It is possible to use it only on the skin side as the side material, and as the batting (in the case of the spread futon, it is also possible to use it by mixing or laminating it with batting which has not been subjected to the above-mentioned processing. It is recommended to use it on the skin side in the case of a hanging futon, on the skin side for the purpose of improving the environment in the bed in the case of a flooring futon, and on the flooring side in case of using it to prevent dew condensation.

【0024】[0024]

【実施例】以下に実施例により本発明を詳細に説明する
が、本発明は、何らこれらに限定されるものではない。
以下で、単に部、%と記載したものは、質量基準を意味
する。また、本実施例における繊維構造体の測定、評価
は次の方法で行った。
The present invention is described in detail below with reference to examples, but the present invention is not limited to these.
Below, what is described simply as part and% means on a mass basis. Further, the measurement and evaluation of the fiber structure in this example were performed by the following methods.

【0025】<絶乾質量>サンプルを110℃×6時間
乾燥後、シリカゲル入りデシケーターに入れ、20℃、
65%RH環境下で調温後、質量測定を行った。 <吸湿性>20℃、65%RH環境下で24時間調温調
湿後の質量測定を行い、下記式から算出した。 吸湿率(%)={(吸湿質量−絶乾質量)/絶乾質量}
×100
<Absolute dry mass> After drying the sample at 110 ° C. for 6 hours, the sample was put in a desiccator containing silica gel and kept at 20 ° C.
After adjusting the temperature in a 65% RH environment, mass measurement was performed. <Hygroscopicity> The mass was measured after the temperature and humidity were adjusted for 24 hours in an environment of 20 ° C. and 65% RH, and calculated from the following formula. Moisture absorption rate (%) = {(moisture absorption mass-excess dry mass) / excess dry mass}
× 100

【0026】<吸湿発熱性>110℃×6時間乾燥後、
シリカゲル入りデシケーターに入れ、絶乾状態とした5
cm×5cmの測定サンプルに温度センサー(例えば安
立計器(株)製;540K MD−5型)を装着後、2
0℃、95%RH環境下(例えば硫酸カリウム飽和水溶
液入りデシケータ)での吸湿発熱性を温度記録計(例え
ば安立計器(株)製;DATA COLLECTOR
AM−7052型)で計測した。 <吸水発熱性>前記絶乾状態の5cm×5cmの測定サ
ンプルに温度センサーを装着後、20℃、65%RH環
境下で、サンプル質量の50%相当量のイオン交換水を
3〜5秒の間に均一に噴霧後、吸水発熱性を温度記録計
にて計測した。最大吸水発熱温度及び吸水前サンプル温
度以上の吸水発熱保持時間(分)で評価した。
<Heat absorption by moisture absorption> After drying at 110 ° C. for 6 hours,
Put in a desiccator containing silica gel and let it dry 5
After mounting a temperature sensor (for example, manufactured by Anritsu Keiki Co., Ltd .; 540K MD-5 type) on a measurement sample of cm × 5 cm, 2
A temperature recorder (for example, manufactured by Anritsu Keiki Co., Ltd .; DATA COLLECTOR) for moisture absorption and heat generation under 0 ° C. and 95% RH environment (for example, desiccator containing saturated aqueous solution of potassium sulfate).
AM-7052 type). <Water absorption exothermicity> After attaching a temperature sensor to the measurement sample of 5 cm x 5 cm in the absolutely dry state, ion-exchanged water equivalent to 50% of the sample mass for 3 to 5 seconds was placed in an environment of 20 ° C and 65% RH. After uniformly spraying in the meantime, the water absorption exothermicity was measured with a temperature recorder. The water absorption heat generation time and the water absorption heat generation retention time (minutes) above the maximum water absorption heat generation temperature and the sample temperature before water absorption were evaluated.

【0027】<結露性>10〜15リットルの内体積を
有するデシケーターに5cm×5cmのサンプルを投入
し、ふたを開けた状態で20℃、80%の室内に放置
し、調温・調湿した。24時間後、デシケーターのふた
を閉めて10℃に保たれた環境下に5分以内に移動させ
る。その1時間後にふたを開けサンプルの結露状態を確
認した。
<Dew Condensation> A 5 cm × 5 cm sample was put into a desiccator having an internal volume of 10 to 15 liters, and the lid was left open in a room at 20 ° C. and 80% for temperature control and humidity control. . After 24 hours, the desiccator lid is closed, and the desiccator is moved to the environment kept at 10 ° C. within 5 minutes. One hour after that, the lid was opened and the dew condensation state of the sample was confirmed.

【0028】[実施例1]ポリエチレンテレフタレート
系ポリエステル長繊維加工糸(165dtex/48
f)を経120本、横80本の平織り生地を通常リラッ
クス精練、分散染色、乾燥後、本発明の高吸湿/吸水発
熱性側地用の基布として用いた。
[Example 1] Polyethylene terephthalate-based polyester long-fiber processed yarn (165 dtex / 48)
A plain weave fabric having 120 pieces and 80 pieces in the width of f) was subjected to normal relaxing scouring, dispersion dyeing, and drying, and then used as a base fabric for the highly hygroscopic / water-absorbing exothermic lateral fabric of the present invention.

【0029】次に高吸湿/吸水発熱性有機微粒子の製造
を次の方法で行った。メタクリル酸/p−スチレンスル
ホン酸ソーダ=70/30の水溶性重合体350部及び
硫酸ナトリウム35部を6500部の水に溶解し、櫂型
攪拌機付きの重合槽に仕込んだ。次に、アクリル酸メチ
ル2750部及びジビニルベンゼン330部に2,2'
−アゾビス−(2,4−ジメチルバレロニトリル)15
部を溶解して重合槽に仕込み、400rpmの攪拌下、
60℃で2時間重合し、重合率88%の共重合体を得
た。該重合体100部を水900部中に分散し、これに
110部の苛性ソーダを添加し、90℃、2.5時間反
応を行い、アクリル酸メチルのメチルエステル部を加水
分解することによりカルボキシル基4.6ミリ当量/g
を有した架橋重合体を得た。得られた重合体を水中に分
散し、洗浄、脱水後、粉砕、分級し、高吸湿/吸水発熱
性微粒子を得た。得られた高吸湿/吸水発熱性有機微粒
子の20℃、65%RH下での吸湿性は50%、平均粒
子径は0.8μmであった。
Next, highly hygroscopic / water-absorbing exothermic organic fine particles were produced by the following method. 350 parts of a water-soluble polymer of methacrylic acid / sodium p-styrenesulfonate = 70/30 and 35 parts of sodium sulfate were dissolved in 6500 parts of water and charged into a polymerization tank equipped with a paddle type stirrer. Next, 2,750 parts of methyl acrylate 2750 parts and divinylbenzene 330 parts were added.
-Azobis- (2,4-dimethylvaleronitrile) 15
Part was melted and charged into a polymerization tank, while stirring at 400 rpm,
Polymerization was carried out at 60 ° C. for 2 hours to obtain a copolymer having a polymerization rate of 88%. 100 parts of the polymer was dispersed in 900 parts of water, 110 parts of caustic soda was added thereto, and the reaction was carried out at 90 ° C. for 2.5 hours to hydrolyze the methyl ester part of methyl acrylate to obtain a carboxyl group. 4.6 meq / g
A crosslinked polymer having The obtained polymer was dispersed in water, washed, dehydrated, pulverized and classified to obtain highly hygroscopic / water-absorbing exothermic particles. The resulting highly hygroscopic / water-absorbing exothermic organic fine particles had a hygroscopicity of 50% at 20 ° C. and 65% RH and an average particle diameter of 0.8 μm.

【0030】かかる高吸湿/吸水発熱性微粒子20%を
含む水分散体95部に親水性樹脂バインダーとして、T
F−3500(花王社製親水性シリコン系バインダー;
固形分40%)4部およびアクアプレンWS105(明
成化学工業社製親水性ウレタン系バインダー;固形分4
0%)1部を加えた加工パディング液に前記基布を浸漬
し、マングルにて加工液ウエットピックアップ率100
%になるよう絞った後、120℃で乾燥後、180℃で
1分間乾熱セットして繊維構造体を得た。得られた繊維
構造体の吸湿/吸水発熱性の特性を表1に示す。未加工
品に比べ優れた吸湿発熱性/吸水発熱性が得られた。こ
の繊維構造体を側地として用いた掛けふとん(中綿:繊
度6.6dtex、繊維長64mm、中実丸断面ポリエ
ステル1.5kg、横1.5m、縦2m)を得た。この
掛けふとんは未加工品の繊維構造体を配置した掛けふと
んに比べ発熱速度、発熱温度、発熱保持時間の優れた吸
湿発熱性/吸水発熱性が得られ、保温性に優れるもので
あった。
As a hydrophilic resin binder, 95 parts of an aqueous dispersion containing 20% of such highly hygroscopic / water-absorbing exothermic fine particles was added as T.
F-3500 (Kao's hydrophilic silicone binder;
Solid content 40%) 4 parts and Aquaprene WS105 (Meissei Chemical Industry hydrophilic urethane binder; solid content 4)
0%) Immerse the above base cloth in the processing padding solution containing 1 part, and use a mangle to process the solution with a wet pickup rate of 100.
%, Then dried at 120 ° C. and dry-heat set at 180 ° C. for 1 minute to obtain a fiber structure. Table 1 shows the moisture absorption / water absorption exothermic properties of the obtained fibrous structure. Excellent heat absorption by moisture absorption / heat absorption by water absorption was obtained as compared with the unprocessed product. Using this fiber structure as a side fabric, a futon (filling: fineness 6.6 dtex, fiber length 64 mm, solid round cross section polyester 1.5 kg, width 1.5 m, length 2 m) was obtained. This hanging futon was excellent in heat retention and heat absorption as well as heat absorption rate, heat generation temperature, and heat generation retention time, which were superior to those of a futon in which an unprocessed fiber structure was arranged.

【0031】[実施例2]実施例2の基布は、前記実施
例1と同じものを用いた。
[Example 2] The same base fabric as in Example 1 was used as the base fabric of Example 2.

【0032】実施例2で用いる高吸湿/吸水発熱性有機
微粒子の製造を次の方法で行った。アクリロニトリル4
50部、アクリル酸メチル40部、p−スチレンスルホ
ン酸ソーダ16部及び水118部をオートクレーブに仕
込み、重合開始剤としてジ−tert−ブチルパーオキ
サイドを単量体全体に対して0.5%添加した後、密閉
し、次いで攪拌下において150℃で20分間重合反応
後、攪拌しながら約90℃まで冷却し、平均粒子径1.
4μm(光散乱光度計測定)の原料微粒子の水分散体を
得た。この水分散体に浴中濃度が35%になるようヒド
ラジンを加え、102℃で2時間架橋処理を行い、続い
て浴中濃度が10%になるよう苛性ソーダを加えて、1
02℃で5時間加水分解処理を行った後、流水中で透
析、脱塩、乾燥、粉砕、分級後、高吸湿/吸水発熱性有
機微粒子を得た。得られた高吸湿/吸水発熱性有機微粒
子の20℃、65%RH下での吸湿性は45%、平均粒
子径は0.9μmであった。
The highly hygroscopic / water-absorbing exothermic organic fine particles used in Example 2 were produced by the following method. Acrylonitrile 4
50 parts, 40 parts of methyl acrylate, 16 parts of sodium p-styrenesulfonate and 118 parts of water were charged into an autoclave, and 0.5% of di-tert-butyl peroxide was added as a polymerization initiator to the whole monomer. After that, the mixture was sealed, and then the polymerization reaction was carried out at 150 ° C. for 20 minutes under stirring, followed by cooling to about 90 ° C. with stirring to obtain an average particle size of 1.
An aqueous dispersion of raw material fine particles of 4 μm (measured by a light scattering photometer) was obtained. Hydrazine was added to this aqueous dispersion so that the concentration in the bath was 35%, crosslinking treatment was performed at 102 ° C. for 2 hours, and then caustic soda was added so that the concentration in the bath was 10%.
After hydrolyzing at 02 ° C. for 5 hours, dialysis in running water, desalting, drying, pulverization, and classification were performed to obtain highly hygroscopic / water-absorbing exothermic organic fine particles. The resulting highly hygroscopic / water-absorbing exothermic organic fine particles had a hygroscopicity of 45% at 20 ° C. and 65% RH, and an average particle diameter of 0.9 μm.

【0033】かかる高吸湿/吸水発熱性微粒子20%を
含む水分散体95部に親水性樹脂バインダーとして、T
F−3500(花王社製親水性シリコン系バインダー;
固形分40%)5部を加えた加工パッディング液に前記
基布を浸漬し、マングルにて加工液ウエットピックアッ
プ率120%になるよう絞った後、120℃で乾燥後、
170℃で1分間乾熱セットして繊維構造体を得た。得
られた繊維構造体の吸湿/吸水発熱性の特性を表1に示
す。未加工品に比べ優れた吸湿発熱性/吸水発熱性が得
られた。この繊維構造体を側地として用いた掛けふとん
(中綿:繊度6.6dtex、繊維長64mm、中実丸
断面ポリエステル1.5kg、横1.5m、縦2m)を
得た。この掛けふとんは未加工品の繊維構造体を配置し
た掛けふとんに比べ発熱速度、発熱温度、発熱保持時間
の優れた吸湿発熱性/吸水発熱性が得られ、保温性に優
れるものであった。
As a hydrophilic resin binder, 95 parts of an aqueous dispersion containing 20% of such highly hygroscopic / water-absorbing exothermic fine particles was used as a hydrophilic resin binder.
F-3500 (Kao's hydrophilic silicone binder;
The above base cloth is dipped in a processing padding solution containing 5 parts of solid content (40%), squeezed with a mangle so that the processing solution wet pickup rate is 120%, and then dried at 120 ° C.
The fiber structure was obtained by dry heat setting at 170 ° C. for 1 minute. Table 1 shows the moisture absorption / water absorption exothermic properties of the obtained fibrous structure. Excellent heat absorption by moisture absorption / heat absorption by water absorption was obtained as compared with the unprocessed product. Using this fiber structure as a side fabric, a futon (filling: fineness: 6.6 dtex, fiber length: 64 mm, solid round cross section polyester: 1.5 kg, width: 1.5 m, length: 2 m) was obtained. This hanging futon was excellent in heat retention and heat absorption as well as heat absorption rate, heat generation temperature and heat generation retention time, which were superior to those of a futon in which an unprocessed fiber structure was arranged.

【0034】[実施例3]6.6デシテックス、繊維長
64mmカットの中空ポリエステル短繊維(立体捲縮
糸)を開繊、カード後、後工程に問題のないようニード
ルパンチを付与し、不織布(目付け=500g/m2
を得た。
[Example 3] A hollow polyester short fiber (three-dimensional crimped yarn) with 6.6 decitex and a fiber length of 64 mm cut was opened, and after carding, needle punching was applied so that there would be no problem in the subsequent step, and a nonwoven fabric ( Basis weight = 500 g / m 2 )
Got

【0035】次いで、実施例1で得られた高吸湿/吸水
発熱性有機微粒子20%を含む水分散体95部に、親水
性バインダーとして、TF−3500(花王社製造親水
性シリコン系バインダー;固形分40%)5部を加えた
加工パディング液に前記不織布を浸漬し、マングルにて
加工液ウエットピックアップ率100%になるよう絞っ
た後、120℃で乾燥後、170℃で1分間乾熱セット
して繊維構造体を得た。得られた繊維構造体の吸湿/吸
水発熱性の特性を表1に示す。未加工品に比べ優れた吸
湿発熱性/吸水発熱性が得られた。この繊維構造体を中
綿として用いた敷きパッド(側地は比較例1を使用、横
1m、縦2m)を得た。この敷きパッドは未加工品の繊
維構造体を配置した敷きパッドに比べ発熱速度、発熱温
度、発熱保持時間の優れた吸湿発熱性/吸水発熱性が得
られ、保温性に優れるものであった。
Then, 95 parts of an aqueous dispersion containing 20% of highly hygroscopic / water-absorbing exothermic organic fine particles obtained in Example 1 was added as a hydrophilic binder with TF-3500 (hydrophilic silicon binder manufactured by Kao Corporation; (40% min) The above non-woven fabric is dipped in 5 parts of processing padding solution, squeezed with a mangle so that the processing solution wet pickup rate is 100%, dried at 120 ° C, and set at 170 ° C for 1 minute dry heat. Then, a fiber structure was obtained. Table 1 shows the moisture absorption / water absorption exothermic properties of the obtained fibrous structure. Excellent heat absorption by moisture absorption / heat absorption by water absorption was obtained as compared with the unprocessed product. A spread pad using this fibrous structure as batting (comparative example 1 was used for the side fabric, width 1 m, length 2 m) was obtained. This spread pad was excellent in heat retention and heat absorption as well as heat absorption rate, heat generation temperature and heat generation retention time, which were superior to those of a spread pad in which an unprocessed fiber structure was arranged.

【0036】[実施例4]10番手綿紡績糸100%か
らなる平織りの生地を通常ののり抜き精練、過酸化水素
漂白、シルケット加工後、反応染料により染色、洗浄、
乾燥セットした織物を基布として用いた。
[Example 4] A plain-woven fabric made of 100% cotton spun yarn of 10th count was subjected to ordinary desizing, bleaching with hydrogen peroxide, mercerizing, dyeing with a reactive dye, washing,
The dry set woven fabric was used as the base fabric.

【0037】次いで、実施例1で得られた高吸湿/吸水
発熱性有機微粒子20%を含む水分散体90部に、親水
性バインダーとして、TF−3500(花王社製造親水
性シリコン系バインダー;固形分40%)3.5部およ
び繊維素反応型グリオキザール系樹脂(ジメチロールヒ
ドロキシエチレン尿素;固形分80%)6部、塩化マグ
ネシウム系酸性触媒0.5部を加えた加工パディング液
に前記基布を浸漬し、マングルにて加工液ピックアップ
率100%になるよう絞った後、120℃で乾燥後、1
70℃で1分間乾熱セットして繊維構造体を得た。得ら
れた繊維構造体の吸湿/吸水発熱性の特性を表1に示
す。未加工品に比べ優れた吸湿発熱性/吸水発熱性が得
られた。この繊維構造体を側地として用いた掛けふとん
(中綿:繊度6.6dtex、繊維長64mm、中実丸
断面ポリエステル1.5kg、横:1.5m、縦2m)
を得た。この掛けふとんは未加工品の繊維構造体を配置
した掛けふとんに比べ発熱速度、発熱温度、発熱保持時
間の優れた吸湿発熱性/吸水発熱性が得られ、保温性に
優れるものであった。
Next, 90 parts of an aqueous dispersion containing 20% of highly hygroscopic / water-absorbing exothermic organic fine particles obtained in Example 1 was used as a hydrophilic binder with TF-3500 (hydrophilic silicone binder manufactured by Kao Corporation; solid). 40%) 3.5 parts, fiber-reactive type glyoxal-based resin (dimethylol hydroxyethylene urea; solid content 80%) 6 parts, magnesium chloride-based acidic catalyst 0.5 parts, and the above-mentioned base cloth to the processing padding liquid. Dip and squeeze with a mangle so that the machining liquid pickup rate is 100%, then dry at 120 ° C and
A fibrous structure was obtained by dry heat setting at 70 ° C. for 1 minute. Table 1 shows the moisture absorption / water absorption exothermic properties of the obtained fibrous structure. Excellent heat absorption by moisture absorption / heat absorption by water absorption was obtained as compared with the unprocessed product. Hanging futon using this fiber structure as a side material (filling: fineness 6.6 dtex, fiber length 64 mm, solid round cross section polyester 1.5 kg, width: 1.5 m, length 2 m)
Got This hanging futon was excellent in heat retention and heat absorption as well as heat absorption rate, heat generation temperature and heat generation retention time, which were superior to those of a futon in which an unprocessed fiber structure was arranged.

【0038】[比較例1]実施例1に記載のポリエステ
ル長繊維加工糸使い平織り生地単独での結果を表1に示
す。実施例1、2に比べ吸湿/吸水発熱効果は見られな
かった。
[Comparative Example 1] Table 1 shows the results of the plain weave fabric alone using the polyester continuous fiber textured yarn described in Example 1. As compared with Examples 1 and 2, no moisture absorption / water absorption exothermic effect was observed.

【0039】[比較例2]実施例3に記載の中空ポリエ
ステル短繊維製不織布単独での結果を表1に示す。実施
例3に比べ吸湿/吸水発熱効果は見られなかった。
[Comparative Example 2] Table 1 shows the results of the hollow polyester short fiber nonwoven fabric described in Example 3 alone. As compared with Example 3, no moisture absorption / water absorption exothermic effect was observed.

【0040】[比較例3]実施例4に記載の綿紡績糸1
00%パイル織物単独での結果を表1に示す。多少の吸
湿/吸水発熱性が見られるものの実施例4に比べ劣るも
のであった。
Comparative Example 3 The cotton spun yarn 1 described in Example 4
The results for the 00% pile fabric alone are shown in Table 1. Although some heat absorption due to moisture absorption / water absorption was observed, it was inferior to that of Example 4.

【0041】[比較例4]実施例1の平織り生地を用
い、高吸湿/吸水発熱性微粒子20%を含む水分散体9
5部にアミノ変成シリコン樹脂バインダー(固形分40
%)5部を加えた加工液に基布を浸漬し、マングルにて
加工液ウエットピックアップ率100%になるよう絞っ
た後、120℃で乾燥後、180℃で1分間乾熱セット
して構造体を得た。得られた構造体の吸湿/吸水発熱性
の特性を表1に示す。実施例に比べ吸湿発熱性/吸水発
熱性が劣るものであった。
Comparative Example 4 Using the plain weave fabric of Example 1, an aqueous dispersion 9 containing 20% of highly hygroscopic / water-absorbing exothermic fine particles.
Amino-modified silicone resin binder (solid content 40 parts)
%) Soak the base cloth in 5 parts of the working fluid, squeeze it with a mangle so that the wet pick-up rate of the working fluid is 100%, dry it at 120 ° C, and dry heat set at 180 ° C for 1 minute to structure Got the body The moisture absorption / water absorption exothermic properties of the obtained structure are shown in Table 1. The exothermic heat of moisture absorption / exothermic heat of water absorption was inferior to those of the examples.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【発明の効果】本発明によれば、高吸湿発熱性微粒子を
少量の親水性樹脂を介して編物、織物、短繊維に付着さ
せることで、外部環境、人体もしくは人工的な湿気(水
蒸気)や水分(液体)を吸収して迅速かつ安定に発熱す
ることで、寝具に好適な吸湿/吸水発熱性構造体を簡便
に、かつ安定に得ることができる。
According to the present invention, the highly hygroscopic and exothermic fine particles are attached to the knitted fabric, the woven fabric, and the short fibers through a small amount of the hydrophilic resin, whereby the external environment, the human body or artificial moisture (water vapor) and By absorbing moisture (liquid) and quickly and stably generating heat, a moisture-absorbing / water-absorbing exothermic structure suitable for bedding can be obtained easily and stably.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) D06M 23/08 D06M 23/08 Fターム(参考) 3B096 AC16 AD04 3B102 BA12 4L031 AA02 AA04 AA05 AA14 AA17 AA18 AA20 AA22 AB34 BA33 DA21 4L033 AA02 AA03 AA05 AA07 AA08 AB07 AC07 AC15 CA13 CA18─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) D06M 23/08 D06M 23/08 F term (reference) 3B096 AC16 AD04 3B102 BA12 4L031 AA02 AA04 AA05 AA14 AA17 AA18 AA20 AA22 AB34 BA33 DA21 4L033 AA02 AA03 AA05 AA07 AA08 AB07 AC07 AC15 CA13 CA18

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 高吸湿性微粒子が付着されてなる中綿及
び/又は側地を用いた寝具であり、吸湿及び/又は吸水
時の最大温度上昇が3℃以上であることを特徴とする吸
湿/吸水発熱性寝具。
1. A bedclothing using batting and / or lateral material to which highly hygroscopic fine particles are adhered, wherein the maximum temperature rise during moisture absorption and / or water absorption is 3 ° C. or higher. Water absorbing and heat generating bedding.
【請求項2】 吸湿時の発熱が30分以上、及び/又は
吸水時の発熱が1分以上保持されることを特徴とする請
求項1に記載の吸湿/吸水発熱性寝具。
2. The moisture-absorption / water-absorption exothermic bedding according to claim 1, wherein the heat generation during moisture absorption is maintained for 30 minutes or more, and / or the heat generation during water absorption is maintained for 1 minute or more.
【請求項3】 吸水時の最大温度上昇が8℃以上である
ことを特徴とする請求項1又は2に記載の吸湿/吸水発
熱性寝具。
3. The moisture-absorbing / water-absorbing exothermic bedding according to claim 1, wherein the maximum temperature rise during water absorption is 8 ° C. or higher.
【請求項4】 高吸湿性微粒子が有機微粒子であること
を特徴とする請求項1〜3のいずれかに記載の吸湿/吸
水発熱性寝具。
4. The hygroscopic / water-absorbing exothermic bedding according to claim 1, wherein the highly hygroscopic fine particles are organic fine particles.
【請求項5】 高吸湿性有機微粒子がポリスチレン系、
ポリアクリロニトリル系、ポリアクリル酸エステル系、
ポリメタクリル酸エステル系のいずれかのビニル系重合
体で、スルホン酸基、カルボン酸基、リン酸基あるい
は、それらの金属塩の少なくとも1種の親水基を有し、
かつジビニルベンゼン、トリアリルイソシアネートまた
はヒドラジンのいずれかで架橋された架橋重合体である
請求4に記載の吸湿/吸水発熱性寝具。
5. The highly hygroscopic organic fine particles are polystyrene-based,
Polyacrylonitrile-based, polyacrylic ester-based,
Any vinyl polymer of polymethacrylic acid ester type, having a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, or at least one hydrophilic group of metal salts thereof,
The hygroscopic / water-absorbing exothermic bedding according to claim 4, which is a cross-linked polymer cross-linked with either divinylbenzene, triallyl isocyanate or hydrazine.
【請求項6】 高吸湿性微粒子の平均粒子径が2μm未
満であることを特徴とする請求項1〜5のいずれかに記
載の吸湿/吸水発熱性寝具。
6. The hygroscopic / water-absorbing exothermic bedding according to claim 1, wherein the highly hygroscopic fine particles have an average particle diameter of less than 2 μm.
【請求項7】 高吸湿性微粒子が親水性樹脂を介して中
綿又は側地に固定化されていることを特徴とする請求項
1〜6のいずれかに記載の吸湿/吸水発熱性寝具。
7. The hygroscopic / water-absorbing exothermic bedding according to any one of claims 1 to 6, wherein the highly hygroscopic fine particles are fixed to the batting or the side fabric via a hydrophilic resin.
【請求項8】 高吸湿性微粒子と親水性樹脂の質量比が
1/1〜19/1であることを特徴とする請求項1〜7
のいずれかに記載の吸湿/吸水発熱性寝具。
8. The mass ratio of the highly hygroscopic fine particles to the hydrophilic resin is 1/1 to 19/1.
The hygroscopic / water-absorbing exothermic bedding according to any one of 1.
JP2001302933A 2001-09-28 2001-09-28 Vapor/liquid water absorption heat-generating bedding Pending JP2003102594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001302933A JP2003102594A (en) 2001-09-28 2001-09-28 Vapor/liquid water absorption heat-generating bedding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001302933A JP2003102594A (en) 2001-09-28 2001-09-28 Vapor/liquid water absorption heat-generating bedding

Publications (1)

Publication Number Publication Date
JP2003102594A true JP2003102594A (en) 2003-04-08

Family

ID=19123097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001302933A Pending JP2003102594A (en) 2001-09-28 2001-09-28 Vapor/liquid water absorption heat-generating bedding

Country Status (1)

Country Link
JP (1) JP2003102594A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009135173A2 (en) * 2008-05-02 2009-11-05 Tempra Technologies, Inc. Thermal blanket
KR20140033417A (en) * 2011-06-30 2014-03-18 도요보 가부시키가이샤 Batting
CN113293619A (en) * 2021-05-31 2021-08-24 江苏金太阳纺织科技股份有限公司 Moisture-absorbing and heat-generating finishing agent, preparation method and application

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009135173A2 (en) * 2008-05-02 2009-11-05 Tempra Technologies, Inc. Thermal blanket
WO2009135173A3 (en) * 2008-05-02 2010-02-25 Tempra Technologies, Inc. Thermal blanket
KR20140033417A (en) * 2011-06-30 2014-03-18 도요보 가부시키가이샤 Batting
KR101647546B1 (en) 2011-06-30 2016-08-10 도요보 가부시키가이샤 Batting
CN113293619A (en) * 2021-05-31 2021-08-24 江苏金太阳纺织科技股份有限公司 Moisture-absorbing and heat-generating finishing agent, preparation method and application
CN113293619B (en) * 2021-05-31 2023-02-17 江苏金太阳纺织科技股份有限公司 Moisture-absorbing and heat-generating finishing agent, preparation method and application

Similar Documents

Publication Publication Date Title
KR101161466B1 (en) Slowly moisture-absorbing and -releasing crosslinked acrylic fiber
JP2003193371A (en) Textile product for bedding or interior
CN103930611A (en) Moisture-absorbing deodorizing fibers, method for producing fibers, and fiber structure comprising fibers
JP2004324023A (en) Fibrous structural material
JP4264800B2 (en) Moisture absorption / water absorption exothermic structure
JP3629871B2 (en) Odor prevention material
JP2003102594A (en) Vapor/liquid water absorption heat-generating bedding
JP2003102784A (en) Moisture/water absorbing exothermic diaper
JP2003093529A (en) Hygroscopic/water absorbing heating mask
JP3271692B2 (en) Acid / basic gas absorbing fiber and its structure
JP3912578B2 (en) Moisture absorption / water absorption exothermic structure for interlining
JP2002235278A (en) Contact cold sensory fiber, textile product, and method for producing the same
JP3369508B2 (en) Hygroscopic fiber
JP4759898B2 (en) Diving suit
WO2018061369A1 (en) Batting
JP2004169240A (en) Fiber structure
JP2003129312A (en) Ski suit
JP2003119606A (en) Sportswear
JP6247801B1 (en) Batting
JP3716984B2 (en) Method for producing hygroscopic fiber
JP2003155609A (en) Emergency human body warming garment for prevention from death by drowning
JP2003096610A (en) Moisture/water-absorbing exothermic cold proofing outfit
JP3235092B2 (en) Basic gas absorbing fiber and method for producing the same
JP2003093427A (en) Medical heating poultice cloth material
JP2003105657A (en) Internal material of shoe having hygroscopic and pyrogenic property