JP3235092B2 - Basic gas absorbing fiber and method for producing the same - Google Patents
Basic gas absorbing fiber and method for producing the sameInfo
- Publication number
- JP3235092B2 JP3235092B2 JP02183996A JP2183996A JP3235092B2 JP 3235092 B2 JP3235092 B2 JP 3235092B2 JP 02183996 A JP02183996 A JP 02183996A JP 2183996 A JP2183996 A JP 2183996A JP 3235092 B2 JP3235092 B2 JP 3235092B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- basic gas
- gas
- carboxyl group
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Gas Separation By Absorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Description
【0001】[0001]
【産業上の利用分野】塩基性ガスの吸収・放出を可逆的
に行い得て、吸収速度が早く、繰り返し使用にも耐える
塩基性ガス吸収繊維及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a basic gas absorbing fiber capable of reversibly absorbing and releasing a basic gas, having a high absorption rate, and enduring repeated use, and a method for producing the same.
【0002】[0002]
【従来の技術】近年、生活様式の変化、居住環境の高密
度化や機密性の高まり等により、悪臭が問題とされ、臭
いに対する要求が高まってきている。その中で、アンモ
ニア、トリメチルアミン等の塩基性ガスは、硫化水素や
メチルメルカプタンと並んで代表的な悪臭成分とされて
いる。2. Description of the Related Art In recent years, odors have become a problem due to changes in lifestyles, densification of living environments, and increased confidentiality, and demands for odors have been increasing. Among them, basic gases such as ammonia and trimethylamine are regarded as typical malodorous components along with hydrogen sulfide and methyl mercaptan.
【0003】消臭繊維としては消臭物質を繊維表面に付
着固定させたものや、活性炭繊維等が知られているが、
前者は耐久性や風合いなどに問題があり、後者は価格や
アンモニアに対する消臭性能に問題がある他、再生に高
温を要する、或いは化学再生の場合は薬品を必要とする
という欠点を有している。塩基性ガスに対する消臭繊維
としては、中和反応による消臭機構を利用したものが多
く知られているが、繊維に該反応に関わる物質を後加工
により付着させたものは基本的に大きな消臭能力が得ら
れない。また繊維中に官能基を導入する方法としては、
アクリル繊維中にカルボキシル基を導入する方法がある
が、この方法では官能基を増やすことによって繊維物性
が悪くなることから、機械的な繊維物性も兼備した消臭
能力の大きなものは得られていないのが実状である。[0003] As deodorizing fibers, those in which a deodorant substance is adhered and fixed on the fiber surface, activated carbon fibers and the like are known.
The former has problems in durability and texture, the latter has problems in price and deodorizing performance against ammonia, and has the disadvantage of requiring high temperature for regeneration or chemicals in the case of chemical regeneration. I have. As deodorizing fibers for basic gas, those utilizing a deodorizing mechanism by a neutralization reaction are widely known. However, fibers obtained by attaching a substance involved in the reaction to fibers by post-processing are basically large deodorizing fibers. No odor ability is obtained. Also, as a method of introducing a functional group into the fiber,
There is a method of introducing a carboxyl group into acrylic fiber, but with this method, fiber properties are deteriorated by increasing the number of functional groups, so that a large deodorant ability that combines mechanical fiber properties has not been obtained. This is the actual situation.
【0004】[0004]
【発明が解決しようとする課題】本発明の目的は、塩基
性ガスの吸収量が多く、吸収速度が速く、しかも取り扱
いが容易で、且つ各種形態に容易に加工し得る機械的物
性を有し、その上容易に再生し得る塩基性ガス吸収繊維
及びその製造方法を提供することである。SUMMARY OF THE INVENTION An object of the present invention is to provide a basic gas having a large amount of absorption, a high absorption rate, easy handling, and mechanical properties capable of being easily processed into various forms. Another object of the present invention is to provide a basic gas-absorbing fiber which can be easily regenerated and a method for producing the same.
【0005】[0005]
【課題を解決するための手段】上述した本発明の目的
は、ヒドラジン架橋による窒素含有量の増加が 1.0〜8.
0 重量%である架橋アクリル系繊維であって、残存ニト
リル基の一部には 2.0〜6.0m mol/g、好ましくは 3.0〜
6.0m mol/gのカルボキシル基が、残部にはアミド基が導
入されており、1g/d以上の引張強度を有する塩基性ガス
吸収繊維及び特許請求の範囲第2請求項記載の製造方法
により達成される。The object of the present invention is to increase the nitrogen content by hydrazine crosslinking from 1.0 to 8.
0% by weight of the crosslinked acrylic fiber, and 2.0 to 6.0 mmol / g, preferably 3.0 to
A carboxyl group of 6.0 mmol / g, and an amide group introduced into the remainder, achieved by a basic gas-absorbing fiber having a tensile strength of 1 g / d or more and a production method according to claim 2. Is done.
【0006】本発明は架橋アクリル系繊維であるが、そ
の出発アクリル系繊維としてはアクリロニトリル(以
下、ANという)を40重量%以上、好ましくは50重量%
以上含有するAN系重合体により形成された繊維であ
り、短繊維、トウ、糸、編織物、不織布等いずれの形態
のものでも良く、また、製造工程中途品、廃繊維などで
も構わない。AN系重合体は、AN単独重合、ANと他
のモノマーとの共重合体のいずれでも良く、他のモノマ
ーとしては、ハロゲン化ビニル及びハロゲン化ビニリデ
ン;(メタ)アクリル酸エステル(なお(メタ)の表記
は、該メタの語の付いたもの及び付かないものの両方を
表す);メタリルスルホン酸、p-スチレンスルホン酸等
のスルホン酸含有モノマー及びその塩;(メタ)アクリ
ル酸、イタコン酸等のカルボン酸含有モノマー及びその
塩;アクリルアミド、スチレン、酢酸ビニル等のその他
のモノマーが挙げられる。出発アクリル系繊維の製造手
段に限定はなく、適宜公知の手段が用いられる。The present invention is a crosslinked acrylic fiber. The starting acrylic fiber is acrylonitrile (hereinafter referred to as AN) in an amount of 40% by weight or more, preferably 50% by weight.
It is a fiber formed by the AN polymer contained above, and may be in any form such as a short fiber, a tow, a yarn, a knitted woven fabric, a nonwoven fabric, or an intermediate product in a manufacturing process, a waste fiber, or the like. The AN-based polymer may be either an AN homopolymer or a copolymer of AN and another monomer. Examples of the other monomer include vinyl halide and vinylidene halide; (meth) acrylate (and (meth) acrylate). Represents both those with and without the meta)); sulfonic acid-containing monomers such as methallyl sulfonic acid and p-styrene sulfonic acid and salts thereof; (meth) acrylic acid, itaconic acid, etc. And other salts such as acrylamide, styrene and vinyl acetate. The means for producing the starting acrylic fiber is not limited, and any known means may be used as appropriate.
【0007】該アクリル系繊維に、ヒドラジン架橋を導
入する方法としては、窒素含有量の増加が 1.0〜8.0 重
量%に調整しうる手段である限り採用できるが、ヒドラ
ジン濃度 6〜80重量%の水溶液、温度50〜120 ℃で 1〜
5 時間処理する手段が工業的に好ましい。ここで、窒素
含有量の増加とは原料アクリル系繊維の窒素含有量とヒ
ドラジン架橋アクリル系繊維の窒素含有量との差をい
う。なお、窒素含有量の増加が下限に満たない場合に
は、最終的に実用上満足し得る物性の繊維が得られな
い。また上限を超えると、最終的に塩基性ガスの充分な
吸収能力が得られない。本発明である該増加が 1.0〜8.
0 重量%となる条件については、反応の温度、濃度、時
間等の反応因子と窒素含有量の増加の関係を実験で明ら
かにすることにより、容易に決定出来る。ここに使用す
るヒドラジンとしては、水加ヒドラジン、硫酸ヒドラジ
ン、塩酸ヒドラジン、臭素酸ヒドラジン等が例示され
る。As a method of introducing hydrazine crosslinking into the acrylic fiber, any method can be adopted as long as the increase in nitrogen content can be adjusted to 1.0 to 8.0% by weight, but an aqueous solution having a hydrazine concentration of 6 to 80% by weight can be used. At a temperature of 50-120 ° C 1 ~
Means of treating for 5 hours are industrially preferred. Here, the increase in the nitrogen content refers to the difference between the nitrogen content of the raw acrylic fiber and the nitrogen content of the hydrazine cross-linked acrylic fiber. If the increase in the nitrogen content is less than the lower limit, fibers having practically satisfactory physical properties cannot be finally obtained. On the other hand, when the ratio exceeds the upper limit, a sufficient absorption capacity of the basic gas cannot be finally obtained. In the present invention, the increase is 1.0 to 8.
The condition of 0% by weight can be easily determined by clarifying the relationship between the reaction factors such as the reaction temperature, concentration, and time and the increase in the nitrogen content through experiments. Examples of the hydrazine used here include hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine bromate and the like.
【0008】次に、加水分解反応により、ヒドラジン架
橋されずに残存しているニトリル基を実質的に消失さ
せ、 2.0〜6.0m mol/gのカルボキシル基と残部にアミド
基を導入する方法としては、アルカリ金属水酸化物、ア
ンモニア等の塩基性水溶液、或いは、硝酸、硫酸、塩酸
等の水溶液を含浸、又は該水溶液中に原料繊維を浸漬し
た状態で加熱処理する手段が挙げられる。本発明である
カルボキシル基量が 2.0〜6.0m mol/gとなる条件につい
ては、反応の温度、濃度、時間等の反応因子と導入され
るカルボキシル基量の関係を実験で明らかにすることに
より、容易に決定出来る。なお、前記架橋結合の導入と
同時に加水分解反応を行うことも出来る。ここにおい
て、塩基で加水分解した場合にはカルボキシル基をH型
にする必要がある。Next, a method of substantially eliminating a nitrile group remaining without hydrazine crosslinking by a hydrolysis reaction and introducing an amide group to a carboxyl group of 2.0 to 6.0 mmol / g and the remainder is as follows. And a means for impregnating a basic aqueous solution such as an alkali metal hydroxide or ammonia, or an aqueous solution such as nitric acid, sulfuric acid, or hydrochloric acid, or performing a heat treatment with the raw material fibers immersed in the aqueous solution. As for the conditions under which the amount of carboxyl groups of the present invention is 2.0 to 6.0 mmol / g, the relationship between reaction factors such as reaction temperature, concentration, and time and the amount of carboxyl groups introduced is clarified by experiments. Can be easily determined. In addition, a hydrolysis reaction can be performed simultaneously with the introduction of the cross-linking. Here, when hydrolyzed with a base, it is necessary to convert the carboxyl group to H-form.
【0009】カルボキシル基をH型にする方法として
は、上述した加水分解繊維を下記に例示する各種の酸性
水溶液に浸漬し、しかる後に乾燥する方法が好適に用い
られる。酸性水溶液としては、塩酸、酢酸、硝酸、硫酸
等の水溶液を挙げることが出来る。As a method for converting the carboxyl group into the H-form, a method is preferably used in which the above-mentioned hydrolyzed fiber is immersed in various acidic aqueous solutions exemplified below, and then dried. Examples of the acidic aqueous solution include aqueous solutions of hydrochloric acid, acetic acid, nitric acid, sulfuric acid and the like.
【0010】なお、カルボキシル基が上記下限に満たな
い場合には代表的な脱臭剤である活性炭と同レベルの吸
収能力が得られず、また上限を超えると、実用上満足し
得る繊維物性が得られない。When the carboxyl group is less than the above lower limit, the same level of absorption capacity as activated carbon as a typical deodorant cannot be obtained, and when the carboxyl group exceeds the upper limit, practically satisfactory fiber properties are obtained. I can't.
【0011】この様にして引張強度が1g/d以上で、塩基
性ガスの吸収能力に優れ、その吸収速度が速く、更に、
後述するように容易に再生することの出来る繊維を提供
することが出来る。即ち、この塩基性ガス吸収反応は可
逆反応であり、雰囲気の塩基性ガス濃度に応じて該繊維
単位量当たりのガス吸収量が決まるため、一度吸収した
塩基性ガスは、清浄な空気をあてることにより放出し、
該繊維の吸収能力を容易に再生することが出来るのであ
る。In this way, the tensile strength is 1 g / d or more, the basic gas absorption capacity is excellent, the absorption speed is high, and
As will be described later, a fiber that can be easily regenerated can be provided. That is, this basic gas absorption reaction is a reversible reaction, and the amount of gas absorbed per unit amount of the fiber is determined in accordance with the basic gas concentration in the atmosphere. Released by
The absorption capacity of the fiber can be easily regenerated.
【0012】ここで、特に高い引張強度を求める場合
は、後述するように出発アクリル系繊維として、二色性
比の高い繊維を選ぶのが良い。Here, when a particularly high tensile strength is required, it is preferable to select a fiber having a high dichroic ratio as the starting acrylic fiber as described later.
【0013】なお、アクリル系繊維を、ポンプ循環系を
備えた容器内に充填し、上記架橋結合の導入、加水分解
反応を逐次行う手段が、装置上、安全性、均一反応性等
の諸点から望ましい。かかる装置(ポンプ循環系を備え
た容器)の代表例としては、オーバーマイヤー染色機が
挙げられる。[0013] The means for filling the acrylic fiber into a container provided with a pump circulation system and successively introducing the above-mentioned cross-linking and carrying out the hydrolysis reaction is required in terms of safety, uniform reactivity, etc. on the apparatus. desirable. A typical example of such an apparatus (a container provided with a pump circulation system) is an Overmeyer dyeing machine.
【0014】また、実用上問題のない繊維物性と高度の
塩基性ガス吸収能力を兼ね備えた繊維を提供するために
は、特に下記性能を備えた出発アクリル系繊維を採用す
ることが望ましい。即ち、繊維を形成するAN系重合体
分子が充分に配向しておりコンゴーレッド(以下CRと
いう)二色性比が 0.4以上、更に好ましくは 0.5以上の
アクリル系繊維を選択することが望ましい。なお、CR
二色性比は、高分子化学23 (252) 193 (1966) 記載の方
法に従って求められるものである。In order to provide a fiber having practically no problem in fiber physical properties and a high basic gas-absorbing ability, it is particularly desirable to use a starting acrylic fiber having the following properties. That is, it is desirable to select an acrylic fiber in which the AN polymer molecules forming the fiber are sufficiently oriented and the dichroic ratio of Congo Red (hereinafter referred to as CR) is 0.4 or more, more preferably 0.5 or more. Note that CR
The dichroic ratio is determined according to the method described in Kobunshi Kagaku 23 (252) 193 (1966).
【0015】なお、かかるアクリル系繊維の製造手段に
限定はなく、上記CR二色性比が満たされる限り、適宜
公知の手段を用いることが出来るが、中でも全延伸倍率
を6倍以上、好ましくは8倍以上とし、かつ工程収縮率
を30%以下、好ましくは20%以下とする手段の採用によ
り工業的有利に所望のアクリル系繊維を作製することが
出来る。The means for producing such acrylic fibers is not limited, and any known means can be used as long as the above-mentioned CR dichroic ratio is satisfied. A desired acrylic fiber can be produced industrially and advantageously by adopting a means that is at least 8 times and the process shrinkage is at most 30%, preferably at most 20%.
【0016】更に、出発アクリル系繊維として、延伸後
であって熱処理前の繊維(AN系重合体の紡糸原液を常
法に従って紡糸し、延伸配向されてはいるが、乾燥緻密
化、湿熱緩和処理等の熱処理の施されていない繊維、中
でも湿式又は乾/湿式紡糸、延伸後の水膨潤ゲル状繊
維:水膨潤度30〜150 %)を使用することにより、反応
液中への繊維の分散性、繊維中への反応液の浸透性など
が改善され、以て架橋結合の導入や加水分解反応が均一
且つ速やかに行われるので望ましい。言うまでもない
が、水膨潤度とは乾燥繊維重量基準で表した含有又は付
着水分量の百分率である。Further, as a starting acrylic fiber, a fiber after drawing and before heat treatment (a spinning stock solution of an AN polymer is spun according to a conventional method and drawn and oriented, but is subjected to dry densification, wet heat relaxation treatment). Dispersibility of the fibers in the reaction solution by using fibers that have not been subjected to heat treatment, such as wet or dry / wet spinning and water-swelled gel-like fibers after stretching: the degree of water swelling is 30 to 150%. This is desirable because the permeability of the reaction solution into the fiber is improved, and the introduction of cross-linking and the hydrolysis reaction are performed uniformly and promptly. Needless to say, the degree of water swelling is a percentage of the amount of contained or attached water expressed on a dry fiber weight basis.
【0017】[0017]
【作用】本発明に係る塩基性ガス吸収繊維並びに該製造
方法が高度の塩基性ガス吸収能力を有しつつ糸物性を兼
ね備える理由は、充分に解明するに至っていないが、概
ね次のように考えられる。The reason why the basic gas-absorbing fiber of the present invention and the manufacturing method have a high basic gas-absorbing ability and also have yarn physical properties has not been sufficiently elucidated, but is considered as follows. Can be
【0018】即ち、本発明に係る繊維は、AN系重合体
から出発していながら、実質的にニトリル基が消失して
いることから、ポリマー鎖に結合している側鎖は、ヒド
ラジンとの反応により生成した窒素を含有する架橋構造
と、ニトリル基の加水分解反応により生成したカルボキ
シル基と考えられる。当該繊維が塩基性ガスを吸収する
のは、カルボキシル基と塩基性ガスが酸・塩基反応によ
り結合するためであろう。この酸・塩基反応は可逆反応
であるので、該繊維の吸収能力は容易に再生される。こ
こで、高度の塩基性ガス吸収能力と糸物性を兼ね備える
ことが出来たのは、内部に架橋構造を有しているため
で、以てアクリル系繊維の糸状を形成するのに必須であ
るニトリル基を消失させカルボキシル基に変換しても、
糸物性が保持されるのだろう。That is, since the fiber according to the present invention is substantially free of nitrile groups while starting from an AN polymer, the side chain bonded to the polymer chain reacts with hydrazine. And a carboxyl group generated by a hydrolysis reaction of a nitrile group. The reason that the fiber absorbs the basic gas may be that the carboxyl group and the basic gas are combined by an acid-base reaction. Since the acid-base reaction is a reversible reaction, the absorption capacity of the fiber is easily regenerated. Here, it was possible to have both high basic gas absorption capacity and yarn physical properties because of the cross-linking structure inside, so that nitrile, which is essential for forming acrylic fiber yarns, Even if the group is lost and converted to a carboxyl group,
The yarn properties will be maintained.
【0019】また、加工性能を支えているのは、CR二
色性比に見られる配向構造に由来するところが大であろ
う。Further, the processing performance is likely to be largely attributable to the orientation structure seen in the CR dichroism ratio.
【0020】[0020]
【実施例】以下実施例により本発明を具体的に説明す
る。実施例中の百分率は、断りのない限り重量基準で示
す。また、ガスの吸収実験は全て大気圧下(1atm)で行な
った。The present invention will be described in detail with reference to the following examples. The percentages in the examples are given on a weight basis unless otherwise specified. All gas absorption experiments were performed under atmospheric pressure (1 atm).
【0021】なお、カルボキシル基量、塩基性ガス吸収
能力は以下の方法により求めた。The carboxyl group content and basic gas absorption capacity were determined by the following methods.
【0022】(1)カルボキシル基量 (m mol/g) 充分乾燥した供試繊維1gを精秤し (Ag)、これに 200ml
の水を加えた後、50℃に加温しながら1N塩酸水溶液を
添加してpH2にし、 0.1N苛性ソーダ水溶液で常法に従
って滴定曲線を求めた。該滴定曲線からカルボキシル基
に消費された苛性ソーダ水溶液消費量 (Bcc) を求め、
次式によってカルボキシル基量を算出した。 (カルボキシル基量 (m mol/g))= 0.1B/A(1) Carboxyl group content (m mol / g) 1 g of sufficiently dried test fiber was precisely weighed (Ag), and 200 ml
Was added thereto, and the mixture was adjusted to pH 2 by adding a 1N aqueous hydrochloric acid solution while heating to 50 ° C., and a titration curve was obtained with a 0.1N aqueous sodium hydroxide solution according to a conventional method. From the titration curve, the consumption amount (Bcc) of the aqueous sodium hydroxide solution consumed by the carboxyl group was determined,
The carboxyl group content was calculated by the following equation. (Amount of carboxyl group (m mol / g)) = 0.1B / A
【0023】(2)塩基性ガス吸収能力 乾燥した供試繊維所定量を所定容量の容器に入れ、20
℃、相対湿度65%で調温・調湿する。この後容器を密閉
して塩基性ガスを所定濃度となるよう注入し、2時間、
前記条件で放置した後、ガス検知管又は後述する方法に
よって容器内のガス濃度を測定した。この残ガス濃度と
初期ガス濃度との差により、繊維のガス吸収能力を評価
した。なお、高濃度のアンモニア濃度の測定は次のよう
に行った。上記容器内の気体を採取 (Cml) して水とと
もに振とうし、気体中のアンモニアを水に溶解させる。
この水溶液を0.01N塩酸で滴定し、中和に要する液量
(Dcc) を求める。これらの結果から、次式によってア
ンモニアガス濃度を算出した。 (アンモニアガス濃度 (ppm))=D×(測定温度に於け
る1mol 当たりの気体量 (lt) )/C×104 (2) Basic Gas Absorbing Capacity A predetermined amount of dried test fiber is placed in a container having a predetermined capacity, and
Temperature and humidity are controlled at ℃ and relative humidity of 65%. After that, the container is sealed and a basic gas is injected so as to have a predetermined concentration.
After being left under the above conditions, the gas concentration in the container was measured by a gas detection tube or a method described later. From the difference between the residual gas concentration and the initial gas concentration, the gas absorption capacity of the fiber was evaluated. The measurement of the high-concentration ammonia concentration was performed as follows. The gas in the container is collected (Cml), shaken with water, and the ammonia in the gas is dissolved in the water.
This aqueous solution is titrated with 0.01N hydrochloric acid, and the amount of liquid required for neutralization
(Dcc). From these results, the ammonia gas concentration was calculated by the following equation. (Ammonia gas concentration (ppm)) = D × (gas amount per mol at the measurement temperature (lt)) / C × 10 4
【0024】AN90%及びアクリル酸メチル(以下、M
Aという)10%からなるAN系重合体(30℃ジメチルホ
ルムアミド中での極限粘度[η]:1.2 )10部を48%の
ロダンソーダ水溶液90部に溶解した紡糸原液を、常法に
従って紡糸、延伸(全延伸倍率;10倍)した後、乾球/
湿球=120℃/60℃の雰囲気下で乾燥(工程収縮率14%)
して単繊維繊度1.5dの原料繊維I(CR二色性比0.58)
を得た。AN 90% and methyl acrylate (hereinafter referred to as M
A) 10% of an AN polymer (intrinsic viscosity [η] in dimethylformamide at 30 ° C .: 1.2) of 10% was dissolved in 90 parts of a 48% aqueous solution of rodan soda, and a spinning stock solution was spun and drawn according to a conventional method. (Total stretching ratio: 10 times), then dry ball /
Wet bulb = Dry under an atmosphere of 120 ° C / 60 ° C (process shrinkage 14%)
Raw fiber I with a single fiber fineness of 1.5 d (CR dichroic ratio 0.58)
I got
【0025】原料繊維Iを表1に示した条件でヒドラジ
ン処理、加水分解処理を行い、1N塩酸水溶液に30分浸
漬して酸処理を行った。これを脱水、水洗、乾燥し、繊
維No. 1〜7を得た。得られた繊維の特性値を表1に、
塩基性ガス吸収能力を表2に示した。なお、測定条件は
次の通りである。アンモニア:ガス初濃度 2000ppm、繊
維重量 0.3g 、容器容量 1400ml 。トリメチルアミン:
ガス初濃度 100ppm 、繊維重量 6g 、容器容量 3lt。The raw fiber I was subjected to a hydrazine treatment and a hydrolysis treatment under the conditions shown in Table 1, and was immersed in a 1N hydrochloric acid aqueous solution for 30 minutes to carry out an acid treatment. This was dehydrated, washed with water, and dried to obtain Fiber Nos. 1 to 7. Table 1 shows the characteristic values of the obtained fibers.
Table 2 shows the basic gas absorption capacity. The measurement conditions are as follows. Ammonia: Gas initial concentration 2000ppm, fiber weight 0.3g, container capacity 1400ml. Trimethylamine:
Gas initial concentration 100ppm, fiber weight 6g, container capacity 3lt.
【0026】[0026]
【表1】 [Table 1]
【0027】[0027]
【表2】 [Table 2]
【0028】本発明の繊維 No.1〜4は、優れた塩基性
ガス吸収能力と繊維物性を兼ね備える繊維であることが
分かる。これに対して、ヒドラジン処理による窒素増加
量の少ない比較例繊維 No.5は、優れた塩基性ガス吸収
能力を有するものの、引張強度が 0.8g/d と低く脆い繊
維であり、カード掛け等の加工に耐える物性を有するも
のではなかった。また、加水分解処理が不十分である繊
維 No.6及び過度の架橋処理のために加水分解が不十分
になる繊維 No.7は、カルボキシル基量が少ないために
塩基性ガス吸収能力の低いものであった。It can be seen that the fibers Nos. 1 to 4 of the present invention are fibers having both excellent basic gas absorbing ability and fiber physical properties. In contrast, Comparative Example Fiber No. 5, in which the amount of nitrogen increased by hydrazine treatment was small, had excellent basic gas absorption capacity, but had a low tensile strength of 0.8 g / d and was brittle. It did not have physical properties to withstand processing. Fiber No. 6 with insufficient hydrolysis treatment and Fiber No. 7 with insufficient hydrolysis due to excessive crosslinking treatment have low basic gas absorption capacity due to a small amount of carboxyl groups. Met.
【0029】実施例 2 実施例1で得られた繊維 No.1のアンモニア吸収速度
を、アンモニアガス濃度を時間を追って測定することに
より評価した。なお、繊維重量 0.3g 、アンモニアガス
初濃度 10000ppm 、容器容量 1400ml とした。結果を図
1に示す。Example 2 The ammonia absorption rate of the fiber No. 1 obtained in Example 1 was evaluated by measuring the ammonia gas concentration over time. The fiber weight was 0.3 g, the initial concentration of ammonia gas was 10000 ppm, and the container capacity was 1400 ml. The results are shown in FIG.
【0030】[0030]
【図1】FIG.
【0031】20℃、相対湿度65%において、気中アンモ
ニア濃度は20分足らずで平行値に達しており、吸収速度
が非常に早いことが分かる。At 20 ° C. and 65% relative humidity, the concentration of airborne ammonia reached a parallel value in less than 20 minutes, indicating that the absorption rate was very fast.
【0032】実施例 3 実施例1で得られた繊維 No.1のアンモニアガス吸収能
力を測定した後3時間日干しにし、再び吸収能力を測定
した。この操作を3回繰り返し、該繊維の再生能力を調
べた。なお、繊維重量 0.46g 、アンモニアガス初濃度
44000ppm 、容器容量 1400ml とした。結果を表3に示
す。Example 3 After measuring the ammonia gas absorption capacity of the fiber No. 1 obtained in Example 1, the fiber was dried for 3 hours and then again measured for absorption capacity. This operation was repeated three times, and the regeneration ability of the fiber was examined. In addition, fiber weight 0.46g, ammonia gas initial concentration
It was 44000 ppm and the container capacity was 1400 ml. Table 3 shows the results.
【0033】[0033]
【表3】 [Table 3]
【0034】再生により吸収能力は約80%となるもの
の、2回目の再生以降はその能力が変化しないこと、ま
た、日干しにより容易に再生されることが分かる。Although the absorption capacity is reduced to about 80% by the regeneration, it can be seen that the capacity does not change after the second regeneration, and that it is easily regenerated by sun drying.
【0035】実施例 4 MAにかえて塩化ビニリデンを使用する以外は実施例1
と同様にして原料繊維II(CR二色性比 0.55 )を得、
これを実施例1の繊維 No.1と同様に処理した。Example 4 Example 1 except that vinylidene chloride was used instead of MA.
The raw material fiber II (CR dichroic ratio 0.55) was obtained in the same manner as described above.
This was treated in the same manner as in Fiber No. 1 of Example 1.
【0036】得られた繊維は窒素増加分 4.0%、カルボ
キシル基量 4.8m mol/g 、引張強度1.6g/dで、前述の方
法による塩基性ガス吸収能力は前記測定条件で吸収後の
容器内のガス濃度が、アンモニア;検知されず、トリメ
チルアミン;49ppm であり、繊維物性を兼ね備える優れ
た塩基性ガス吸収繊維であった。The obtained fiber had a nitrogen increase of 4.0%, a carboxyl group content of 4.8 mmol / g, and a tensile strength of 1.6 g / d. The basic gas absorption capacity according to the above-described method was measured in the container after absorption under the above measurement conditions. The gas concentration of ammonia was not detected, and trimethylamine was 49 ppm. Thus, it was an excellent basic gas-absorbing fiber having fiber physical properties.
【0037】[0037]
【発明の効果】本発明の出現により、実用上問題のない
繊維物性を維持しつつ、優れた塩基性ガス吸収能力を有
する繊維並びに該繊維を工業的有利に製造する手段を提
供し得た点が本発明の特筆すべき効果である。かかる繊
維は例えばアンモニアガスであれば、kg-fiber当り 30
〜100gr を吸収する能力を示すのである。With the advent of the present invention, it is possible to provide a fiber having an excellent basic gas absorption capacity and a means for producing the fiber in an industrially advantageous manner while maintaining fiber properties which are practically satisfactory. Are the remarkable effects of the present invention. Such fiber is, for example, 30% per kg-fiber if it is ammonia gas.
It shows the ability to absorb ~ 100gr.
【0038】本発明の塩基性ガス吸収繊維は、飽和吸収
した後も清浄な空気下に置くことによって容易に再生す
ることが可能であり、繰り返し使用することが出来る。
また、繊維状であり、不織布、織物、編物、紙、あるい
は基材への植毛など様々な形態に加工できるため、塩基
性ガスの吸収が求められる様々な用途分野に広く用いら
れる。例えば鑑賞魚及び養魚槽用フィルタ−、風呂用フ
ィルタ−、排水処理フィルタ−等の水浄化エレメント、
エアコンフィルタ−、空気清浄機フィルタ−、クリ−ン
ル−ム用エア−フィルタ−、除湿機用フィルタ−、業務
用塩基性ガス処理フィルタ−等の空調機器用エレメント
の他、下着、靴下等衣料品全般、布団、枕、シ−ツ、毛
布、クッション等の寝装寝具、カ−テン、カ−ペット、
マット、壁紙、ぬいぐるみ、造花、造木等のインテリア
用品、マスク、失禁ショ−ツ、濡れティッシュ等の衛生
材料、車のシ−ト、内装等の車内用品、トイレカバ−、
トイレマット、ペット用トイレ等のトイレ用品、冷蔵
庫、ごみ箱の内張り等の台所用品、その他、靴の中敷
き、スリッパ、手袋、タオル、雑巾、ゴム手袋の内張
り、長靴の内張り、貼付材、生ゴミ処理装置等が挙げら
れる。The basic gas-absorbing fiber of the present invention can be easily regenerated by placing it in clean air even after it has been saturated and absorbed, and can be used repeatedly.
Further, since it is fibrous and can be processed into various forms such as a nonwoven fabric, a woven fabric, a knitted fabric, a paper, or a flocking on a substrate, it is widely used in various application fields which require absorption of a basic gas. For example, water purification elements such as filter for appreciation fish and fish tank-filter for bath-filter for wastewater treatment-
In addition to air conditioner elements such as air conditioner filters, air purifier filters, clean room air filters, dehumidifier filters, and commercial basic gas treatment filters, clothing such as underwear and socks Bedding, pillows, sheets, blankets, cushions and other bedding, curtains, carpets,
Interior goods such as mats, wallpapers, stuffed animals, artificial flowers, artificial trees, etc., hygiene materials such as masks, incontinence shorts, wet tissues, etc., car seats, interior goods such as interiors, toilet covers,
Toilet articles such as toilet mats, pet restrooms, kitchenware such as refrigerators and garbage cans, linings for shoes, slippers, gloves, towels, rags, rubber gloves, rubber boots, adhesives, garbage disposal And the like.
【0039】該繊維は単独でも勿論使用出来るが、他の
繊維等と混紡または混合して使用することにより、上記
のような分野でより有効に用いられる。例えば、布団等
の中綿や不織布として使用する場合にはポリエステル等
の他繊維と混紡して使用することにより、バルキ−性等
の性能が付与される。また、酸性ガス吸収材等の他の吸
収材と混合して用いることにより、より広範囲のものを
対象とした吸収材が得られる。このように、他の機能を
付与する目的で、また、該繊維の混率を下げる目的で、
この他種々のものと組み合わせて使用することが可能で
ある。また、イオン交換体として、水処理剤、金属吸着
体等に使用することも可能である。The fiber can be used alone or of course, but it can be more effectively used in the above fields by blending or mixing with other fibers. For example, when used as a batting or nonwoven fabric such as a futon, by blending with other fibers such as polyester, performance such as bulkiness is imparted. In addition, by using a mixture with another absorbent such as an acidic gas absorbent, an absorbent for a wider range can be obtained. Thus, for the purpose of providing other functions, and for the purpose of reducing the mixing ratio of the fiber,
In addition, it can be used in combination with various kinds. Further, as an ion exchanger, it can be used for a water treatment agent, a metal adsorbent, and the like.
【図1】本図は、本発明の繊維によるアンモニア吸収速
度を、経過時間に対し被験気体中のアンモニア濃度で表
した図である。FIG. 1 is a diagram showing the ammonia absorption rate of the fiber of the present invention expressed by the ammonia concentration in a test gas with respect to the elapsed time.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI D06M 11/38 D06M 3/18 // D06M 101:28 3/20 11/04 G ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification symbol FI D06M 11/38 D06M 3/18 // D06M 101: 28 3/20 11/04 G
Claims (2)
が 1.0〜8.0 重量%である架橋アクリル系繊維であっ
て、残存ニトリル基の一部に 2.0〜6.0m mol/gのカルボ
キシル基が、残部にはアミド基が導入されており、1g/d
以上の引張強度を有する塩基性ガス吸収繊維。1. A crosslinked acrylic fiber in which the increase in nitrogen content due to hydrazine crosslinking is 1.0 to 8.0% by weight, and a carboxyl group of 2.0 to 6.0 mmol / g is partially contained in a residual nitrile group and a carboxyl group in a remaining part. Has an amide group introduced, 1 g / d
A basic gas absorbing fiber having the above tensile strength.
架橋結合を導入して窒素含有量の増加を 1.0〜8.0 重量
%の範囲に調整し、加水分解反応により、残存している
ニトリル基の 2.0〜6.0m mol/gにカルボキシル基を残部
にはアミド基を導入することを特徴とする塩基性ガス吸
収繊維の製造方法。2. A crosslink is introduced into the acrylic fiber by hydrazine treatment to adjust the increase in nitrogen content to a range of 1.0 to 8.0% by weight, and a hydrolysis reaction causes the remaining nitrile group to be 2.0 to 6.0% by weight. A method for producing a basic gas-absorbing fiber, wherein a carboxyl group is introduced into mmol / g and an amide group is introduced into the remainder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02183996A JP3235092B2 (en) | 1995-01-13 | 1996-01-11 | Basic gas absorbing fiber and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2130695 | 1995-01-13 | ||
JP7-21306 | 1995-01-13 | ||
JP02183996A JP3235092B2 (en) | 1995-01-13 | 1996-01-11 | Basic gas absorbing fiber and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08246342A JPH08246342A (en) | 1996-09-24 |
JP3235092B2 true JP3235092B2 (en) | 2001-12-04 |
Family
ID=26358345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02183996A Expired - Fee Related JP3235092B2 (en) | 1995-01-13 | 1996-01-11 | Basic gas absorbing fiber and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3235092B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013204205A (en) * | 2012-03-29 | 2013-10-07 | Daiwabo Holdings Co Ltd | Deodorant regenerated cellulosic fiber, method for producing the same, and fiber structure |
JP2013204204A (en) * | 2012-03-29 | 2013-10-07 | Daiwabo Holdings Co Ltd | Deodorant regenerated cellulosic fiber, method for producing the same, and fiber structure |
-
1996
- 1996-01-11 JP JP02183996A patent/JP3235092B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08246342A (en) | 1996-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3196855B2 (en) | High moisture absorption and release fiber | |
JP5051544B2 (en) | Amino group-containing fiber, method for producing the same, and fiber structure containing the fiber | |
JP6101429B2 (en) | Multifunctional regenerated cellulose fiber, fiber structure containing the same, and production method thereof | |
JP3271692B2 (en) | Acid / basic gas absorbing fiber and its structure | |
JP3235092B2 (en) | Basic gas absorbing fiber and method for producing the same | |
JP3369508B2 (en) | Hygroscopic fiber | |
JP3191278B2 (en) | pH buffering fiber and method for producing the same | |
JP4072702B2 (en) | Acid and / or aldehyde adsorbing fiber and structure thereof | |
JP2003147680A (en) | Hygroscopic/water-absorbing heat-generation structure | |
JP2002066315A (en) | Adsorbent material for harmful substance, harmful substance desorption process and method for quantitative determination of endocrine disruptor | |
JPH0268117A (en) | Deodorizing air filter | |
EP0722004B1 (en) | Basic gas absorptive fiber and production thereof | |
JP3716984B2 (en) | Method for producing hygroscopic fiber | |
JP3684269B2 (en) | Deodorant fiber products | |
JPH10245778A (en) | Alkaline gas absorbing textile product | |
JP6877700B2 (en) | High-bulk, high-heat-sustaining fibers, and fiber structures, deodorant materials, and batting containing the fibers. | |
WO1997034040A1 (en) | Deororizing fiber, process for preparing the same, and deodorizing fiber product | |
JP3990028B2 (en) | Deodorizing fiber and method for deodorizing fiber | |
JP3650976B2 (en) | Acid / aldehyde absorbent material and method for producing the same | |
JP3651700B2 (en) | Ammonia adsorption filter cloth | |
JP2000093493A (en) | Deodorant | |
JPH0874177A (en) | Deodorizing yarn and its production | |
JP2003102594A (en) | Vapor/liquid water absorption heat-generating bedding | |
JPH0874131A (en) | Deodorizing fiber, its production, and deodorizing fiber product using the same | |
JP2001040576A (en) | Highly water-absorptive fiber and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070928 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080928 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080928 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090928 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100928 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100928 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120928 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130928 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130928 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |