JP4072702B2 - Acid and / or aldehyde adsorbing fiber and structure thereof - Google Patents

Acid and / or aldehyde adsorbing fiber and structure thereof Download PDF

Info

Publication number
JP4072702B2
JP4072702B2 JP24780798A JP24780798A JP4072702B2 JP 4072702 B2 JP4072702 B2 JP 4072702B2 JP 24780798 A JP24780798 A JP 24780798A JP 24780798 A JP24780798 A JP 24780798A JP 4072702 B2 JP4072702 B2 JP 4072702B2
Authority
JP
Japan
Prior art keywords
fiber
acid
aldehyde
weight
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24780798A
Other languages
Japanese (ja)
Other versions
JP2000064175A (en
Inventor
茂 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP24780798A priority Critical patent/JP4072702B2/en
Publication of JP2000064175A publication Critical patent/JP2000064175A/en
Application granted granted Critical
Publication of JP4072702B2 publication Critical patent/JP4072702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は酸及び又はアルデヒドを効率良く吸着し、紡績、不織布への加工工程を通るに十分な繊維強度と吸水性を兼ね備えた酸及び又はアルデヒド吸着性繊維ならびにその構造物に関するものである。
【0002】
【従来の技術】
近年、生活様式の変化、居住環境の高密度化や機密性の高まり等により、生活環境における快適性への関心が高まっている。中でも、シックハウス症候群の原因の一つと考えられているホルムアルデヒドや、家庭内又は自動車内における煙草臭の消臭がクロ−ズアップされており、その主要な成分である酸及び又はアルデヒドの除去が重要な問題となってきている。
【0003】
消臭性繊維としては消臭性物質を繊維表面に付着固定させたものや、活性炭繊維等が知られているが、前者は消臭性能の耐久性や風合いなどに問題があり、後者は価格やアルデヒドに対する消臭性能に問題がある。またアミノ基を有する塩基性イオン交換樹脂も酢酸やアセトアルデヒドの吸着剤として知られているが、繊維状でなく使用用途に制限がある。
【0004】
【発明が解決しようとする課題】
本発明の目的は、酸及び又はアルデヒドガスを大量に(飽和吸着量)且つ高吸着速度で吸着し、しかも取り扱いが容易で、且つ各種形態に容易に加工し得る機械的物性と吸水性を有し、その上容易に吸着性能を再生し得る酸及び又はアルデヒド吸着性繊維ならびにその構造物を提供することである。
【0005】
【課題を解決するための手段】
上記目的を達成するため鋭意検討した結果、本発明の完成に至った。即ち、本発明は、アクリル繊維のニトリル基をアミノ化剤でアミノ化処理してなる酸及び又はアルデヒド吸着性繊維において、原料繊維がアミノ化処理温度より5〜30℃高い温度の熱処理を施されたアクリル繊維であり、アミノ化処理により該繊維中のニトリル基の10〜50モル%が変性され、且つ該処理による重量増加率が10〜100重量%である酸及び又はアルデヒド吸着性繊維、により好適に達成される。
【0006】
更に、アミノ化剤が、ポリエチレンポリアミンより選ばれる1種以上、又はアミノ化剤が、分子量200〜10000のポリエチレンイミンであるものからなる酸及び又はアルデヒド吸着性繊維により好結果が得られる。
又更に、アクリル繊維が、10〜100nmの細孔径を有する細孔が連結し、さらに繊維表面に開孔してなる多孔質繊維であり、且つその吸水率が20〜100重量%である酸及び又はアルデヒド吸着性繊維により好結果が得られる。又本発明は、かかる酸及び又はアルデヒド吸着性繊維を5重量%以上含有する繊維構造物を包含する。
【0007】
【発明の実施の形態】
以下、本願発明を詳述する。まず本発明は原料アクリル繊維のニトリル基に対してアミノ化剤でアミノ化処理してなる酸及び又はアルデヒド吸着性繊維であるが、その原料繊維としてはアミノ化処理温度より5〜30℃高い温度の熱処理を施されたアクリル繊維を採用する。即ち、原料繊維の製造の段階から、酸及び又はアルデヒド吸着性繊維の製造に際して採用するアミノ化処理温度を想定して、熱処理温度を設定するのである。アミノ化処理温度は後述するように大概70〜120℃であるから、原料アクリル繊維製造における熱処理温度は大体100〜130℃となる。
【0008】
かかる原料アクリル繊維製造の為の熱処理温度が、アミノ化処理温度よりも5℃未満高い温度にとどまる場合には繊維の配向が高くてアミノ化処理が起こり難く、得られたアミノ化処理繊維の酸及び又はアルデヒドの吸着性が十分発現しない。一方熱処理温度として30℃を超えて高い温度を採用していた場合は、副反応である原料アクリル繊維中のニトリル基の加水分解によるカルボン酸の生成によってアミノ基とのコンバイン等が起って酸及び又はアルデヒドの吸着性が阻害されるだけでなく、得られた繊維の強度が低下して加工に耐えるものとならない。原料アクリル繊維への熱処理の方法には特に限定は認められず、湿熱又は乾熱で、延伸状態下,定長下あるいは弛緩状態下で行われる。これらの条件は熱処理済の原料アクリル繊維の性状、あるいは次のアミノ化処理の施し易さ等を勘案して適宜決定すればよい。
【0009】
尚、かかる原料アクリル繊維製造における熱処理工程以前の工程の条件についても特に限定はなく、アクリル系重合体を常法に従って湿式または乾式あるいは乾湿式の紡糸方法で紡糸,水洗,延伸して製造する。
【0010】
本発明におけるアクリル繊維としてはアクリロニトリル(以下、ANという)を40重量%以上、好ましくは50重量%以上含有するAN系重合体により形成された繊維であり、短繊維、トウ、糸、編織物、不織布等いずれの形態のものでもよく、また、製造工程途中品、廃繊維などでも構わない。AN系重合体は、AN単独重合体、ANと他のモノマーとの共重合体のいずれでも良く、他のモノマーとしては、ハロゲン化ビニル及びハロゲン化ビニリデン;(メタ)アクリル酸エステル(なお(メタ)の表記は、該メタの語の付いたもの及び付かないものの両方を表す);メタリルスルホン酸、p−スチレンスルホン酸等のスルホン酸含有モノマー及びその塩;(メタ)アクリル酸、イタコン酸等のカルボン酸基含有モノマー及びその塩;アクリルアミド、スチレン、酢酸ビニル等のその他のモノマーが挙げられる。
【0011】
又、本発明の吸着性繊維の原料アクリル繊維として、10〜100nmの細孔径を有する細孔が連結し、それが繊維表面に開孔しており且つその吸水率が20〜100重量%である多孔質繊維を採用すると、表面開孔細孔の効果で繊維表面積が増大するので、アミノ化処理が均一に進行するだけでなく、該アミノ化処理繊維に吸水性が付与され、酸及び又はアルデヒド吸着性も増大する点で優れている。かかる多孔質繊維は上述の紡糸方法の中でも、湿式あるいは乾湿式紡糸方法を採用し、紡糸原液濃度の低下、凝固浴温度の上昇、凝固浴濃度の低下あるいは水洗温度の上昇等の方向の条件を採ることにより好適に作製することができる。
かかる細孔の細孔径が10nm未満の場合は吸水性、酸及び又はアルデヒドの吸着性能という基本特性が十分でない。細孔径が100nmを越える場合はアクリル繊維そのものおよびアミノ化処理繊維の強度等の十分な繊維物性を得る事ができない。さらに該細孔が繊維表面に開孔していない場合は、繊維表面積が増大しないために吸水性ならびに酸及び又はアルデヒドの吸着性の増大が期待できない。かかる原料アクリル繊維は例えば特開平7−150471号公報記載の方法等にて作製できる。
【0012】
なおここでいう吸水率は次の方法で測定される。
ハンドカ−ドにて解繊した繊維約10gを800mlの純水に浸漬して煮沸30分後30℃まで徐冷する。30℃で30分放置後繊維を国産遠心機(株)製遠心脱水機H−770A型を用い、遠心力1000G下3分間脱水する。脱水後重量を測定(W1とする)後、90℃にて乾燥して重量を測定(W0とする)して次式により計算する。
吸水率(%)= (W1−W0)/W0×100
【0013】
又、細孔径は後述するように水銀ポロシメ−タ−を使用して、繊維表面に開孔し外界と連通している細孔の平均細孔径を印加圧(MAX):30000Psiaで測定されるものである。尚、本発明の目的をより良く達成するため、多孔質繊維の細孔は繊維表面に開孔しているものを用いるが、表面に開孔するとは、該細孔が繊維内部に埋没しているのではなく、外界と連通している事を言う。即ち外界との連絡の無い所謂独立細孔は、本発明でいう細孔にはあたらない。
【0014】
次にかかる原料アクリル繊維にアミノ化剤を用いて該繊維中のニトリル基の10〜50モル%が変性されかつ重量増加率が10〜100重量%となるよう、アミノ化処理を施す。アミノ化処理温度は上述の如く原料アクリル繊維の製造に採用された熱処理温度の他、その種類、形態、組成及び採用するアミノ化剤等によって左右されるが、ニトリル基の10〜50モル%が変性され、且つ該処理による重量増加率が10〜100重量%とする事が重要である。
【0015】
ニトリル基の変性が10モル%未満、且つ重量増加率が10重量%未満であると被処理繊維へのアミノ基導入量が少なくて酸及び又はアルデヒドの吸着量(飽和吸着量)が低く、吸着速度も遅くなる。ニトリル基の変性が50モル%を越え、且つ重量増加率が100重量%を越えると導入アミノ基量は増大するが、繊維が水に膨潤する等の欠点を生じ、紡績、不織布等への加工工程を通るに十分な繊維強度を持つ繊維とならない。
本発明の該アミノ化の程度である、ニトリル基の10〜50モル%が変性され、且つ該処理による重量増加率が10〜100重量%となる条件については、反応の温度、濃度、時間等の反応因子と窒素含有量の増加の関係を実験で明らかにすることにより、容易に決定出来る。
【0016】
本発明におけるアミノ化剤としては、2官能基以上の塩置換していないアミノ基を持った化合物であり、例えばエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等のポリエチレンポリアミンより選ばれる1種以上が挙げられる。更には、塩置換していないアミノ基を持った分子量が200〜10000であるポリエチレンイミンもより好適なアミノ化剤として挙げられる。かかるイミンの例としては、ポリエチレンイミン600、ポリエチレンイミン1800、ポリエチレンイミン10000等が挙げられる。
【0017】
本発明でいう酸及び又はアルデヒド吸着性繊維の吸着する酸とは例えばタバコ臭に含まれる成分である蟻酸、酢酸、プロピオン酸、汗臭に含まれる低級カルボン酸、酪酸、イソ吉草酸、カプロン酸、カプリン酸、ペラルゴン酸の如きカルボン酸類、塩酸、硝酸、硫酸等の無機酸が挙げられ、アルデヒドとはホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等アルデヒド基を有するアルデヒド類が挙げられる。
【0018】
これらのアミノ化剤を用いてのアミノ化処理は、特に限定するものではないが以下の様にして行われる。即ち、ポンプ循環系を備えた容器内に原料アクリル繊維を充填し、アミノ化剤濃度100%あるいは水溶液を張込んで加熱処理する。浴比は容器の大きさ等により適宜決定されるが、原料アクリル繊維に対して3〜10倍重量が好適に採用される。また処理温度によっては、加圧下で行う場合もあり得る。かかる装置(ポンプ循環系を備えた容器)の代表例としては、加圧型オ−バ−マイヤ染色機等が挙げられる。
【0019】
本発明は酸及び又はアルデヒド吸着性繊維を構成の一部として5重量%以上含有する酸及び又はアルデヒド吸着性繊維構造物を包含する。本願構造物の外観形態としては、糸、ヤ−ン(ラップヤ−ンも含む)、フィラメント、織物、編物、不織布、紙状物、シ−ト状物、積層体、綿状体(球状や塊状のものを含む)等があり、さらにはそれらに外被を設けたものもある。該構造物内における本発明繊維の含有形態としては、他素材との混合により、実質的に均一に分布せしめたもの、複数の層を有する構造の場合には、いずれかの層(単数でも複数でも良い)に集中して存在せしめたものや、夫々の層に特定比率で分布せしめるもの等がある。したがって本発明の構造物は、上記に例示した外観形態及び含有形態の組合わせとして、無数のものが存在する。いかなる構造物とするかは、本発明の繊維が既述の如く多くの機能を有するので、最終製品の使用態様(例えばシ−ズン性、運動性や内衣か中衣か外衣か、カ−テンやカ−ペット、寝具やクッション、インソ−ルや空調器等としての利用の仕方など)、要求される機能、かかる機能を発現することへの本発明繊維の寄与の仕方等を勘案して適宜決定される。
【0020】
さらに構造物を細かく見れば、本発明の繊維単独で又は他の素材とほぼ均一に混合した状態のものだけでなるもの、これに他の素材を貼付、接着、融着、挟み付け等で積層あるいはラミネ−トなど行い、2〜5の複数層の積層状でなるものがある。また積層状ではあるが、積極的な接合は行わず支持体で積層状を維持するものもある。
【0021】
本発明の構造物を利用した最終製品の用途としては、先にも触れたように、大別すると人が着用して利用するもの、布団や枕,クッションの様な寝具類、カ−テン,カ−ペットに代表されるインテリア製品、家具、建材から発生するホルマリン等の有害ガスの吸着,消臭材等その他の分野がある。
そして夫々の用途に応じ、要求される機能を満たすべく単一層から複数層まで、さらにそれを含んで外被を施すなど、最適の構造を選択する訳である。
【0022】
本発明の構造物は本発明の酸及び又はアルデヒド吸着性繊維を5重量%以上含有してなるものである。したがって他の素材たとえば繊維、ラバ−、ゴム、樹脂、プラスチック等は、全体の95重量%以下の割合で併用されるが、構造物が本発明の繊維単独即ち100重量%でなる場合は、当然のことながら他の素材の併用は無い。通常他の繊維との混紡によって構造物とする場合、本発明繊維の使用量は5重量%以上、好ましくは10重量%以上である。5重量%未満では本発明繊維といえども、十分なレベルの機能が発現出来ない。
【0023】
他の素材を併用するのは、構造物の機能をさらに高めるのに有用である。即ち本発明の繊維は前述の通りの機能を備えるものではあるが、構造物とすることにより、さらに高機能を付与する、好ましい風合いを与える、鮮明な染色性などいわゆるファッション性を高める等が出来るのである。また、混紡等の加工性を改善する効果も期待できる。また従来より知られている消臭性繊維、防臭性繊維、抗菌性繊維等と混用する事によりさらなる効果を付与でき更に望ましい。
構造物において併用する他繊維としては何等の限定も認められず、公用されている天然繊維、有機繊維、半合成繊維、合成繊維が用いられ、さらには無機繊維、ガラス繊維等も用途によっては採用し得る。また併用し得る素材は繊維に限らず、前述したようにフィルムとラミネ−トする、あるいはフィルムに埋設して構造物とするなど、プラスチック、ゴム等も採用し得る。特に好ましい他の繊維を例示すれば、羊毛やコットン等の天然繊維、ポリエステル、ポリアミド、ポリアクリル繊維等の合成繊維あるいはレ−ヨン、ポリノジック繊維等である。
【0024】
すなわち、本発明の繊維を5重量%以上含有する繊維構造物は、併用する相手素材と協同する事により本発明の繊維の少量使用でも十分機能を発現したり、さらに別の機能を併せ有するようにし得るので、多くの最終製品を提供することができるのである。
【0025】
よく採用する構造物である不織布、紙、シ−トとして、本発明の繊維を使用する場合は本発明の吸着性繊維を短繊維とし、セルロ−ス系繊維、パルプ、合成繊維等と適宜混用して使用することができる。特に寸法安定性が求められる用途においては、本発明の繊維と熱接着性繊維(好ましくは5〜80重量%の混用率)とからなる構造物が推奨される。なお熱接着性繊維としては、熱接着性を備えている限り使用でき、例えば、ポリエチレン−ポリプロピレン、ポリエチレン−ポリエステル、ポリエステル−ポリエステル等の低融点−高融点成分からなる繊維が挙げられる。本発明の繊維を用いた構造物は、酸及び又はアルデヒド吸着性を発揮させる用途に好適であり、例えば箪笥の中敷、畳の中敷、壁紙、床材、天井クロス、等にも有用である。
【0026】
本発明の酸及び又はアルデヒド吸着性繊維は高い吸着能力即ち飽和吸着量及び吸着速度を持っているが、その再生も容易である。一度吸着した酸及び又はアルデヒドは、清浄な空気をあてることにより放出し、該繊維の吸着能力を容易に再生することが出来るが、より効率良く再生するために、例えばアンモニア水、水酸化ナトリウムの如きアルカリ性化合物の希薄水溶液で処理し、水洗する方法も採用できる。
【0027】
【実施例】
以下実施例により本発明を具体的に説明する。実施例中の部及び百分率は断りのない限り重量基準で示す。なお、実施例において記述する平均細孔径、吸水率、
酸又はアルデヒド吸着能力、アミノ基量を表す指標としてのHCl消費量(meq/g)、H型カルボキシル基量を表す指標としてのNaOH消費量(meq/g)、ニトリル基変性率は以下の方法により求めた。またガスの吸着実験は全て大気圧下(1.01×105Pa)で行なった。
【0028】
(1)平均細孔径(nm)
水銀ポロシメ−タ−を使用して、繊維表面に開孔し外界と連通している細孔の平均細孔径を印加圧(MAX):30000Psiaで測定した。
(2)吸水率
ハンドカ−ドにて解繊したアクリル繊維約10gを800mlの純水に浸漬して煮沸30分後30℃まで徐冷する。30℃で30分放置後繊維を国産遠心機(株)製遠心脱水機H−770A型を用い、遠心力1000G下3分間脱水する。脱水後重量を測定(W1とする)後、90℃にて乾燥して重量を測定(W0とする)して次式により計算する。
吸水率(%)= (W1−W0)/W0×100
【0029】
(3)HCl消費量(meq/g)
十分乾燥した供試繊維約1gを精秤し(X1)g、これに200mlの水と、0.1NHCl水溶液(Y1)20mlを添加し、1時間撹拌する。ガラスフィルタ−で繊維を濾別し、濾液を0.1N−NaOH水溶液で、メチルレッドを指示薬として常法により中和滴定する。中和するに要したNaOH水溶液消費量(Y2)mlを求め、次式によってHCl消費量を算出する。
HCl消費量(meq/g)=(0.1(Y1−Y2))/X1
この方法は塩基性基を測定するものであるので、上記の値は繊維中のアミノ基の存在量の指標となり得るものである。
【0030】
(4)NaOH消費量(meq/g)
十分乾燥した供試繊維約1gを精秤し(X2)g、これに200mlの水と、0.1N苛性ソ−ダ水溶液(Z1)20mlを添加し、1時間撹拌する。ガラスフィルタ−で繊維を濾別し、濾液を0.1N−塩酸水溶液で、フェノ−ルフタレンを指示薬として常法により中和滴定する。消費された塩酸水溶液消費量(Z2)mlを求め、次式によってNaOH消費量を算出する。
NaOH消費量(meq/g)=(0.1(Z1−Z2))/X2
この方法は酸性基を測定するものであるので、上記の値は副反応生成物である繊維中のH型カルボキシル基量の存在量の指標となり得るものである。
【0031】
(5)ニトリル基の変性率(モル%)
(株)柳本製作所製CHNコ−ダ−MT3により、原料アクリル繊維のN%を測定し、ニトリル基モル量に換算する。次いで原料アクリル繊維と該原料からなるアミノ化処理繊維のそれぞれについて、細かく切断した繊維2.0mgとKBr200.0mgを秤取しメノウ乳鉢を用いて十分粉砕混合し、錠剤成型機に入れ、圧力98MPaで成型する。得られた錠剤に対し島津製作所製FTIR、Type−8700にて2250cm-1のニトリル基の吸収強度を測定し、原料アクリル繊維に対するアミノ化処理繊維の吸収強度比を求め、これをニトリル基の変性率(モル%)とする。
【0032】
(6)酸性ガス吸着能力
105℃で絶乾した供試繊維1gを20℃65%RH標準状態雰囲気に10時間以上静置して調温・調湿する。この繊維をテドラバッグに入れ、密閉して酢酸ガスを濃度30ppmとなるよう注入し、2時間、20℃中に放置した後、ガス検知管によって容器内のガス濃度を測定する。この残ガス濃度と初期ガス濃度から吸着率を計算する。
(7)アルデヒド吸着能力
105℃で絶乾した供試繊維1gを20℃65%RH標準状態雰囲気に10時間以上静置して調温・調湿する。この繊維をテドラバッグに入れ、密閉してアセトアルデヒドまたはホルムアルデヒドガスを濃度30ppmとなるよう注入し、2時間、20℃中に放置した後、ガス検知管によって容器内のガス濃度を測定する。この残ガス濃度と初期ガス濃度から吸着率を計算する。
【0033】
実施例1〜6および比較例1〜2
表1に示すようにアクリロニトリル(AN)、アクリル酸メチル(MA)及びメタアリルスルホン酸ソ−ダ(MAS)を用い重合体組成を種々変えて作成した4種類のAN重合体を用い、それぞれ濃厚ロダン酸ソ−ダ水溶液に溶解して紡糸原液を作成した。これらの紡糸原液を用いて、表1に示す凝固温度、12%ロダン酸ソ−ダ水溶液を凝固浴として紡出し、次いで水洗、10倍延伸を施し、得られた未乾燥繊維を120℃、10分間の条件でスチ−ムを用いて弛緩熱処理し、更に100℃で20分間乾燥して5種類の原料アクリル繊維No.1〜5を作成した。各々のアクリル繊維の性状を表1に示す。
【0034】
【表1】

Figure 0004072702
【0035】
作成した原料アクリル繊維を表2に示すようにアミノ化剤の種類、濃度、温度、時間のアミノ化処理条件を変化させ、アミノ化処理を実施した。各々のアミノ化処理繊維の性能を表2に示す。また原料アクリル繊維No.1,No.2,No.5を使用しアミノ化処理を表3に示す条件で行った実施例5,6及び比較例1,2の結果を表3に示す。
【0036】
【表2】
Figure 0004072702
【0037】
【表3】
Figure 0004072702
【0038】
表2に示すごとく、原料アクリル繊維の熱処理温度としてアミノ化処理温度より5〜25℃高い温度を採用しており、アミノ化処理によるニトリル基の変性率や重量増加率も適当である実施例1〜4の本発明吸着性繊維は、繊維強度の低下が少なく、酸性ガスおよびアルデヒドの吸着性も高い繊維であることが理解される。実質的に細孔を持たないアクリル繊維No.1を用いた実施例5でもガス消臭性を示したが、アミノ化処理によるニトリル基の変性や重量増加が十分でなく、高い消臭性能力を要求されるような用途には制限され、汎用性が十分でないものであった。更に平均細孔径の大きい原料アクリル繊維No.5を用いた実施例6はアミノ化処理により強度の低い繊維とはなったが、十分なガス吸着性が認められ、繊維強度への要求が低く加工度合も少ない分野には十分適用し得るものである。一方、熱処理温度より30℃以上低いアミノ化処理温度で行った比較例1は重量増加はそこそこであるものの、ニトリル基の変性率及び結果としてガス吸着性が低いものであった。またアミノ化処理温度が高く、熱処理温度に近い比較例2は脆い繊維で性能評価にさえ供し得るものでなかった。
【0039】
実施例7
実施例2で作成した本発明吸着性繊維10部とアクリル繊維(エクスランK891−3d×V64)90部から、均一に混紡した1/52メ−トル番手(撚数360T/M)を、定法に従って紡績した。この糸を綛染色機を用いて染色、柔軟処理し、編み機で定法に従い鹿子地に編み、その後ポロシャツに縫製した。
このポロシャツを5名の女性パネラ−に渡し1ケ月間の着用試験を実施した後、アンケ−ト方式で着用感をまとめた結果、特に喫煙者からは嫌なたばこ臭が少なくなるとの回答を得た。また汗臭も少ないとの回答があった。このことから酸、アルデヒドに起因するタバコ臭に対して本発明の吸着性繊維の消臭性が有効であることが判る。
【0040】
【発明の効果】
本発明の出現により、実用上問題のない繊維物性を維持した、酸及び又はアルデヒドガス吸着性繊維を工業的有利に提供し得た点が本発明の特筆すべき効果である。
さらに、不織布,編物,織物などさまざまな形態に加工し得るため、酸及び又はアルデヒドガスの吸着が求められる様々な用途分野に広く用いられる。例えば下着、肌着、ランジェリ−、パジャマ、乳児製品、ガ−ドル、ブラジャ−、靴下、タイツ、レオタ−ド、トランクス等衣料品全般、セ−タ−、トレ−ナ−、ス−ツ、スポ−ツウェア、スカ−フ、ハンカチ、マフラ−、人工毛皮、乳児製品等の中外衣料用途、布団地、布団、枕、ぬいぐるみ等の中綿、詰め綿、シ−ツ、毛布、クッション等の寝装寝具、カ−テン、カ−ペット、マット、壁紙、ぬいぐるみ、造花、造木等のインテリア用品、マスク、失禁ショ−ツ、濡れティッシュ等の衛生材料、車のシ−ト、内装等の車内用品、トイレカバ−、トイレマット、ペット用トイレ等のトイレ用品、冷蔵庫、ごみ箱の内張り等の台所用品、鑑賞魚及び養魚槽用フィルタ−、風呂用フィルタ−、排水処理フィルタ−等の水浄化エレメント、エアコンフィルタ−、空気清浄機フィルタ−、クリ−ンル−ム用エア−フィルタ−、除湿機用フィルタ−、業務用ガス処理フィルタ−等の空調機器用エレメント、ガス吸着塔充填物等の産業資材、その他、靴の中敷き、スリッパ、手袋、タオル、雑巾、ゴム手袋の内張り、長靴の内張り、貼付材、生ゴミ処理装置、吸着材、サポ−タ−、汗取りパット、芯地等が挙げられる。
【0041】
該繊維は単独でも勿論使用出来るが、他の繊維等と混紡または混合して使用することにより、上記のような分野でより有効に用いられる。例えば、布団等の中綿や不織布として使用する場合にはポリエステル等の他繊維と混紡して使用することにより、バルキ−性等の性能が付与される。また、酸及び又はアルデヒドガス以外の吸着材等の他の吸着材と混合して用いることにより、より広範囲のものを対象とした吸着材が得られる。このように、他の機能を付与する目的で、また、該繊維の混率を下げる目的で、この他種々のものと組み合わせて使用することが可能である。また、イオン交換体として、水処理剤、金属吸着体等に使用することも可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an acid and / or aldehyde-adsorbing fiber having a sufficient fiber strength and water-absorbing property to absorb acid and / or aldehyde efficiently and pass through spinning and processing into a nonwoven fabric, and a structure thereof.
[0002]
[Prior art]
In recent years, interest in comfort in the living environment has increased due to changes in lifestyle, higher density in the living environment, and increased confidentiality. Among them, formaldehyde, which is considered to be one of the causes of sick house syndrome, and the deodorization of cigarette odors in the home or automobile have been closed up, and it is important to remove acid and / or aldehyde as its main components. It has become a problem.
[0003]
As deodorant fibers, there are known deodorant substances adhered and fixed to the fiber surface, activated carbon fibers, etc., but the former has problems with durability and texture of deodorant performance, the latter is price There is a problem in deodorizing performance against aldehydes. A basic ion exchange resin having an amino group is also known as an adsorbent for acetic acid or acetaldehyde, but is not fibrous and has limited use.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to adsorb a large amount of acid and / or aldehyde gas (saturated adsorption amount) and at a high adsorption rate, and is easy to handle and has mechanical properties and water absorption properties that can be easily processed into various forms. Furthermore, it is to provide an acid and / or aldehyde adsorbing fiber and a structure thereof that can easily regenerate the adsorption performance.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present invention has been completed. That is, according to the present invention, in an acid and / or aldehyde adsorbing fiber obtained by aminating a nitrile group of an acrylic fiber with an aminating agent, the raw fiber is subjected to a heat treatment at a temperature 5 to 30 ° C. higher than the amination temperature. Acrylic fiber, 10-50 mol% of the nitrile group in the fiber is modified by the amination treatment, and the acid and / or aldehyde adsorbing fiber has a weight increase rate of 10-100 wt% by the treatment, Preferably achieved.
[0006]
Further, good results can be obtained by using an acid and / or aldehyde adsorbing fiber in which the aminating agent is one or more selected from polyethylene polyamines, or the aminating agent is polyethyleneimine having a molecular weight of 200 to 10,000.
Furthermore, the acrylic fiber is a porous fiber in which pores having a pore diameter of 10 to 100 nm are connected and further opened on the fiber surface, and the water absorption is 20 to 100% by weight. Alternatively, good results can be obtained with aldehyde adsorbing fibers. The present invention also includes a fiber structure containing 5% by weight or more of such acid and / or aldehyde adsorbing fibers.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. First, the present invention is an acid and / or aldehyde-adsorbing fiber obtained by aminating a nitrile group of a raw acrylic fiber with an aminating agent, and the raw fiber is a temperature 5-30 ° C. higher than the amination temperature. Adopted acrylic fiber that has been heat-treated. That is, the heat treatment temperature is set from the stage of production of the raw fiber, assuming the amination treatment temperature employed in the production of the acid and / or aldehyde adsorbing fiber. Since the amination treatment temperature is generally 70 to 120 ° C. as will be described later, the heat treatment temperature in the production of the raw acrylic fiber is about 100 to 130 ° C.
[0008]
When the heat treatment temperature for producing the raw acrylic fiber remains at a temperature lower than 5 ° C. higher than the amination temperature, the fiber orientation is high and the amination treatment hardly occurs. And or the adsorptivity of aldehyde is not sufficiently developed. On the other hand, when a high temperature exceeding 30 ° C. is adopted as the heat treatment temperature, the acid is generated by combining with the amino group due to the formation of carboxylic acid by hydrolysis of the nitrile group in the raw acrylic fiber, which is a side reaction. In addition, not only is the aldehyde adsorptivity impaired, but the strength of the resulting fiber is not reduced to withstand processing. There is no particular limitation on the method of heat treatment of the raw acrylic fibers, and the heat treatment is performed under wet, dry heat, in a stretched state, under a constant length, or in a relaxed state. These conditions may be appropriately determined in consideration of the properties of the heat-treated raw acrylic fiber or the ease of performing the next amination treatment.
[0009]
In addition, the conditions of the process before the heat treatment process in the production of the raw material acrylic fiber are not particularly limited, and the acrylic polymer is produced by spinning, rinsing and drawing according to a conventional method by a wet, dry or dry-wet spinning method.
[0010]
The acrylic fiber in the present invention is a fiber formed of an AN-based polymer containing acrylonitrile (hereinafter referred to as AN) in an amount of 40% by weight or more, preferably 50% by weight or more, short fiber, tow, yarn, knitted fabric, Any form such as a non-woven fabric may be used, and it may be a product in the middle of a manufacturing process, waste fiber, or the like. The AN polymer may be either an AN homopolymer or a copolymer of AN and another monomer. Examples of the other monomer include vinyl halide and vinylidene halide; (meth) acrylic acid ester ( ) Represents both those with and without the meta word); sulfonic acid-containing monomers such as methallylsulfonic acid and p-styrenesulfonic acid and salts thereof; (meth) acrylic acid, itaconic acid And other monomers such as acrylamide, styrene, vinyl acetate and the like.
[0011]
Further, as the raw material acrylic fiber of the adsorptive fiber of the present invention, pores having a pore diameter of 10 to 100 nm are connected and open on the fiber surface, and the water absorption is 20 to 100% by weight. When the porous fiber is used, the surface area of the fiber increases due to the effect of the surface pores, so that not only the amination treatment proceeds uniformly, but also the amination treatment fiber is given water absorption, and acid and / or aldehyde It is excellent in that the adsorptivity is also increased. Such a porous fiber adopts a wet or dry wet spinning method among the above-described spinning methods, and has conditions such as a decrease in spinning stock concentration, an increase in coagulation bath temperature, a decrease in coagulation bath concentration, or an increase in washing temperature. By taking it, it can be suitably produced.
When the pore diameter of such pores is less than 10 nm, basic characteristics such as water absorption, acid and / or aldehyde adsorption performance are not sufficient. When the pore diameter exceeds 100 nm, sufficient fiber properties such as the strength of the acrylic fiber itself and the aminated fiber cannot be obtained. Further, when the pores are not opened on the fiber surface, the fiber surface area does not increase, so that it is not possible to expect an increase in water absorption and acid and / or aldehyde adsorption. Such a raw acrylic fiber can be produced, for example, by the method described in JP-A-7-150471.
[0012]
Here, the water absorption rate is measured by the following method.
About 10 g of fibers defibrated with a hand card are immersed in 800 ml of pure water, boiled for 30 minutes, and then slowly cooled to 30 ° C. After leaving at 30 ° C. for 30 minutes, the fiber is dehydrated for 3 minutes under a centrifugal force of 1000 G using a centrifugal dehydrator H-770A type manufactured by Japan-made centrifuge. After dehydration, the weight is measured (W1), dried at 90 ° C., and the weight is measured (W0).
Water absorption rate (%) = (W1-W0) / W0 × 100
[0013]
As described later, the pore diameter is measured using an mercury porosimeter, and the average pore diameter of pores opened on the fiber surface and communicating with the outside world is measured at an applied pressure (MAX) of 30000 Psia. It is. In order to better achieve the object of the present invention, the porous fiber has pores that are open on the surface of the fiber. However, when the surface is open, the pores are buried inside the fiber. It means not communicating but communicating with the outside world. That is, so-called independent pores having no communication with the outside world do not correspond to the pores referred to in the present invention.
[0014]
Next, the raw acrylic fiber is subjected to an amination treatment using an aminating agent so that 10 to 50 mol% of the nitrile group in the fiber is modified and the weight increase rate is 10 to 100 wt%. The amination temperature depends on the heat treatment temperature employed in the production of the raw acrylic fiber as described above, as well as the type, form, composition and aminating agent employed, but 10-50 mol% of the nitrile group is present. It is important that the rate of weight increase due to the modification is 10 to 100% by weight.
[0015]
If the modification of the nitrile group is less than 10 mol% and the weight increase rate is less than 10 wt%, the amount of amino groups introduced into the fiber to be treated is small and the adsorption amount of acid and / or aldehyde (saturated adsorption amount) is low. The speed is also slowed down. When the nitrile group modification exceeds 50 mol% and the weight increase rate exceeds 100 wt%, the amount of introduced amino groups increases, but the fiber swells in water, resulting in defects such as spinning and processing into nonwoven fabrics. The fiber does not have sufficient fiber strength to pass through the process.
With respect to the conditions in which 10 to 50 mol% of the nitrile group is modified and the weight increase rate by the treatment is 10 to 100 wt%, which is the degree of amination according to the present invention, the reaction temperature, concentration, time, etc. The relationship between the reaction factor and the increase in nitrogen content can be easily determined by clarifying the relationship through experiments.
[0016]
The aminating agent in the present invention is a compound having an amino group which is not substituted with two or more functional groups. For example, from a polyethylene polyamine such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, etc. One or more selected may be mentioned. Furthermore, a polyethyleneimine having a molecular weight of 200 to 10,000 having an amino group that is not salt-substituted is also a more suitable aminating agent. Examples of such imines include polyethyleneimine 600, polyethyleneimine 1800, polyethyleneimine 10000, and the like.
[0017]
Examples of the acid adsorbed by the acid and / or aldehyde-adsorbing fiber in the present invention include formic acid, acetic acid, propionic acid, lower carboxylic acid contained in sweat odor, butyric acid, isovaleric acid, and caproic acid. Carboxylic acids such as capric acid and pelargonic acid, and inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid, and aldehydes include aldehydes having an aldehyde group such as formaldehyde, acetaldehyde and propionaldehyde.
[0018]
The amination treatment using these aminating agents is not particularly limited, but is performed as follows. That is, a raw material acrylic fiber is filled in a container equipped with a pump circulation system, and a heat treatment is carried out with an aminating agent concentration of 100% or an aqueous solution. The bath ratio is appropriately determined depending on the size of the container and the like, but a weight of 3 to 10 times the raw acrylic fiber is suitably employed. Moreover, depending on processing temperature, it may carry out under pressurization. A typical example of such a device (a container equipped with a pump circulation system) is a pressure-type over-myel dyeing machine.
[0019]
The present invention includes an acid and / or aldehyde adsorbing fiber structure containing 5% by weight or more of acid and / or aldehyde adsorbing fiber as a part of the constitution. Appearance forms of the structure of the present application include yarns, yarns (including wrap yarns), filaments, woven fabrics, knitted fabrics, non-woven fabrics, paper-like materials, sheet-like materials, laminates, and cotton-like materials (spherical and massive shapes) Etc.), and some of them have a jacket. The inclusion form of the fiber of the present invention in the structure is substantially uniformly distributed by mixing with other materials, or in the case of a structure having a plurality of layers, any layer (single or plural) However, there are things that are concentrated on the other) and things that are distributed at a specific ratio in each layer. Therefore, the structure of the present invention has innumerable combinations of the appearance form and the inclusion form exemplified above. Since the fiber of the present invention has many functions as described above, the structure of the final product (such as seasoning, mobility, inner garment, inner garment or outer garment, curtain And how to use it as a carpet, bedding, cushion, insole, air conditioner, etc.), required functions, and how the fiber of the present invention contributes to developing such functions, etc. It is determined.
[0020]
If you look further at the structure, the fibers of the present invention alone or those that are almost uniformly mixed with other materials, and other materials are laminated, pasted, adhered, fused, sandwiched, etc. Alternatively, there is a laminate formed of 2 to 5 layers by laminating or the like. In addition, although there is a laminated shape, there is a case in which the laminated shape is maintained by a support without performing aggressive bonding.
[0021]
As described above, the final product using the structure of the present invention can be roughly worn by people, bedding, pillows, bedding such as cushions, curtains, There are other fields such as adsorption of harmful gases such as formalin generated from interior products such as carpets, furniture, and building materials, and deodorizing materials.
Then, according to each application, an optimal structure is selected, for example, a single layer to a plurality of layers and a jacket including the layers are provided so as to satisfy a required function.
[0022]
The structure of the present invention contains 5% by weight or more of the acid and / or aldehyde adsorbing fiber of the present invention. Therefore, other materials such as fiber, rubber, rubber, resin, plastic, etc. are used in a proportion of 95% by weight or less of the whole. However, when the structure is composed of the fiber of the present invention alone, that is, 100% by weight, naturally However, there is no combination of other materials. Usually, when a structure is formed by blending with other fibers, the amount of the present invention used is 5% by weight or more, preferably 10% by weight or more. If it is less than 5% by weight, even a fiber of the present invention cannot exhibit a sufficient level of function.
[0023]
Use of other materials in combination is useful for further enhancing the function of the structure. That is, the fiber of the present invention has the functions as described above, but by making it a structure, it is possible to enhance the so-called fashionability such as imparting a higher function, giving a preferable texture, and vivid dyeability. It is. In addition, an effect of improving processability such as blending can be expected. Further, it is more desirable that it can be imparted with further effects by being mixed with conventionally known deodorant fibers, deodorant fibers, antibacterial fibers and the like.
There are no limitations on other fibers used together in the structure. Natural fibers, organic fibers, semi-synthetic fibers, and synthetic fibers that are used in public are used, and inorganic fibers and glass fibers are also used depending on the application. Can do. The materials that can be used in combination are not limited to fibers, and plastics, rubber, etc., such as laminating with a film as described above or embedding in a film to form a structure, can also be used. Examples of other particularly preferable fibers include natural fibers such as wool and cotton, synthetic fibers such as polyester, polyamide and polyacrylic fibers, rayon and polynosic fibers.
[0024]
That is, the fiber structure containing 5% by weight or more of the fiber of the present invention may sufficiently function even when used in a small amount of the fiber of the present invention by cooperating with the partner material to be used together, or may have another function. So many end products can be provided.
[0025]
When using the fiber of the present invention as a nonwoven fabric, paper, or sheet that is often employed, the adsorptive fiber of the present invention is a short fiber, and is appropriately mixed with cellulose fiber, pulp, synthetic fiber, etc. Can be used. In particular, in applications where dimensional stability is required, a structure composed of the fiber of the present invention and a heat-adhesive fiber (preferably mixed ratio of 5 to 80% by weight) is recommended. The heat-adhesive fiber can be used as long as it has heat-adhesive properties, and examples thereof include fibers composed of low melting point-high melting point components such as polyethylene-polypropylene, polyethylene-polyester, polyester-polyester. The structure using the fiber of the present invention is suitable for applications that exhibit acid and / or aldehyde adsorptivity, and is also useful, for example, for insoles, tatami insoles, wallpaper, flooring, ceiling cloth, etc. is there.
[0026]
The acid and / or aldehyde adsorbing fiber of the present invention has a high adsorption capacity, that is, a saturated adsorption amount and an adsorption rate, but its regeneration is easy. The acid and / or aldehyde once adsorbed can be released by applying clean air, and the adsorption capacity of the fiber can be easily regenerated, but in order to regenerate more efficiently, for example, ammonia water, sodium hydroxide, etc. A method of treating with a dilute aqueous solution of such an alkaline compound and washing with water can also be employed.
[0027]
【Example】
The present invention will be specifically described below with reference to examples. Parts and percentages in the examples are on a weight basis unless otherwise indicated. In addition, the average pore diameter described in the examples, water absorption,
Acid or aldehyde adsorption capacity, HCl consumption (meq / g) as an index representing the amount of amino groups, NaOH consumption (meq / g) as an index representing the amount of H-type carboxyl groups, and nitrile group modification rate are as follows: Determined by All gas adsorption experiments were performed under atmospheric pressure (1.01 × 10 5 Pa).
[0028]
(1) Average pore diameter (nm)
Using a mercury porosimeter, the average pore diameter of pores opened on the fiber surface and communicating with the outside was measured at an applied pressure (MAX) of 30000 Psia.
(2) About 10 g of acrylic fiber defibrated with a water absorption rate hand card is immersed in 800 ml of pure water, and after 30 minutes of boiling, gradually cooled to 30 ° C. After leaving at 30 ° C. for 30 minutes, the fiber is dehydrated for 3 minutes under a centrifugal force of 1000 G using a centrifugal dehydrator H-770A type manufactured by Japan-made centrifuge. After dehydration, the weight is measured (W1), dried at 90 ° C., and the weight is measured (W0).
Water absorption rate (%) = (W1-W0) / W0 × 100
[0029]
(3) HCl consumption (meq / g)
About 1 g of sufficiently dried test fiber is precisely weighed (X1) g, and 200 ml of water and 20 ml of 0.1N HCl aqueous solution (Y1) are added thereto, and stirred for 1 hour. The fibers are filtered off with a glass filter, and the filtrate is neutralized and titrated with a 0.1N-NaOH aqueous solution and methyl red as an indicator by a conventional method. The consumption amount of NaOH aqueous solution (Y2) ml required for neutralization is obtained, and the HCl consumption amount is calculated by the following formula.
HCl consumption (meq / g) = (0.1 (Y1-Y2)) / X1
Since this method measures basic groups, the above value can be an indicator of the amount of amino groups present in the fiber.
[0030]
(4) NaOH consumption (meq / g)
About 1 g of sufficiently dried test fiber is precisely weighed (X2) g, and 200 ml of water and 20 ml of 0.1N sodium hydroxide aqueous solution (Z1) are added thereto and stirred for 1 hour. The fibers are separated by filtration with a glass filter, and the filtrate is neutralized and titrated with a 0.1N aqueous hydrochloric acid solution using phenolphthalene as an indicator by a conventional method. The consumed hydrochloric acid aqueous solution consumption (Z2) ml is obtained, and the NaOH consumption is calculated by the following formula.
NaOH consumption (meq / g) = (0.1 (Z1-Z2)) / X2
Since this method measures acidic groups, the above value can be used as an indicator of the amount of H-type carboxyl groups present in the fiber as a side reaction product.
[0031]
(5) Nitrile group modification rate (mol%)
Using a CHN coder MT3 manufactured by Yanagimoto Seisakusho, N% of the raw acrylic fiber is measured and converted to a nitrile group molar amount. Next, 2.0 mg of finely cut fibers and 200.0 mg of KBr were weighed and mixed sufficiently using an agate mortar for each of the raw acrylic fiber and the aminated fiber made of the raw material, and placed in a tablet molding machine, and the pressure was 98 MPa. Mold with. The absorption strength of the nitrile group of 2250 cm −1 was measured with Shimadzu Corporation FTIR, Type-8700 for the obtained tablets, and the absorption strength ratio of the aminated fiber to the raw acrylic fiber was determined. The rate (mol%).
[0032]
(6) Acid gas adsorption capacity 1 g of test fiber dried at 105 ° C. is allowed to stand in a 20 ° C. and 65% RH standard state atmosphere for 10 hours or more to adjust the temperature and humidity. This fiber is put in a tedlar bag, sealed, and acetic acid gas is injected to a concentration of 30 ppm. After standing at 20 ° C. for 2 hours, the gas concentration in the container is measured by a gas detector tube. The adsorption rate is calculated from the residual gas concentration and the initial gas concentration.
(7) Aldehyde adsorption capacity 1 g of the test fiber dried at 105 ° C. is allowed to stand in a standard state atmosphere at 20 ° C. and 65% RH for 10 hours or more to adjust the temperature and humidity. This fiber is put in a tedlar bag, sealed, and acetaldehyde or formaldehyde gas is injected to a concentration of 30 ppm. After standing for 2 hours at 20 ° C., the gas concentration in the container is measured with a gas detector tube. The adsorption rate is calculated from the residual gas concentration and the initial gas concentration.
[0033]
Examples 1-6 and Comparative Examples 1-2
As shown in Table 1, using four types of AN polymers prepared by variously changing the polymer composition using acrylonitrile (AN), methyl acrylate (MA) and methallyl sulfonic acid soda (MAS) A stock solution for spinning was prepared by dissolving in a sodium rhodanate solution. Using these spinning stock solutions, the coagulation temperature shown in Table 1 and a 12% sodium rhodanate aqueous solution were spun as a coagulation bath, then washed with water and subjected to 10-fold stretching. For 5 minutes using a steam, followed by drying at 100 ° C. for 20 minutes. 1-5 were created. Table 1 shows the properties of each acrylic fiber.
[0034]
[Table 1]
Figure 0004072702
[0035]
As shown in Table 2, the raw material acrylic fiber thus prepared was subjected to amination treatment by changing the amination treatment conditions such as the type, concentration, temperature and time of the amination agent. Table 2 shows the performance of each aminated fiber. In addition, raw acrylic fiber No. 1, No. 1 2, no. Table 3 shows the results of Examples 5 and 6 and Comparative Examples 1 and 2 in which the amination treatment was performed under the conditions shown in Table 3.
[0036]
[Table 2]
Figure 0004072702
[0037]
[Table 3]
Figure 0004072702
[0038]
As shown in Table 2, the heat treatment temperature of the raw acrylic fiber is 5 to 25 ° C. higher than the amination treatment temperature, and the modification rate and weight increase rate of the nitrile group by the amination treatment are also appropriate. It is understood that the present invention adsorptive fibers of 4 to 4 are fibers with little decrease in fiber strength and high adsorptivity of acid gas and aldehyde. Acrylic fiber no. Example 5 using 1 also showed gas deodorization property, but the nitrile group modification and weight increase due to amination treatment were not sufficient, and it was limited to applications requiring high deodorization ability, The versatility was not sufficient. Furthermore, raw acrylic fiber No. 1 having a large average pore diameter. Example 6 using No. 5 became a fiber with low strength by amination treatment, but sufficient gas adsorbability was observed, and it was sufficiently applicable to fields where the demand for fiber strength was low and the degree of processing was low It is. On the other hand, Comparative Example 1 performed at an amination temperature lower by 30 ° C. or more than the heat treatment temperature had a moderate increase in weight, but had a low nitrile group modification rate and consequently low gas adsorption. Further, Comparative Example 2 having a high amination temperature and close to the heat treatment temperature was a brittle fiber and could not be used for performance evaluation.
[0039]
Example 7
1/52 meter count (twisting number 360 T / M) uniformly blended from 10 parts of the present invention adsorbing fiber and 90 parts of acrylic fiber (Exlan K891-3d × V64) prepared in Example 2 according to a conventional method Spinned. The yarn was dyed and softened using a cocoon dyeing machine, knitted in a lacquered cloth according to a standard method with a knitting machine, and then sewn into a polo shirt.
After handing this polo shirt to five female panelists and carrying out a wearing test for one month, the result of putting together a feeling of wearing in an questionnaire system was obtained, especially from smokers, saying that there was less unpleasant tobacco odor. It was. There was also a reply that there was little sweat odor. This shows that the deodorizing property of the adsorptive fiber of the present invention is effective against tobacco odor caused by acid and aldehyde.
[0040]
【The invention's effect】
With the advent of the present invention, it is a remarkable effect of the present invention that an acid and / or aldehyde gas-adsorbing fiber that maintains fiber properties that have no practical problems can be provided industrially advantageously.
Furthermore, since it can be processed into various forms such as non-woven fabrics, knitted fabrics, and woven fabrics, it is widely used in various application fields that require adsorption of acid and / or aldehyde gas. For example, underwear, underwear, langerie, pajamas, baby products, girdle, brassiere, socks, tights, leotards, trunks and other general clothing, setters, trainers, sportswear, sports Use of inner and outer garments such as shoes, scuff, handkerchief, muffler, artificial fur, baby products, padding, futon, pillow, stuffed animal, padded bedding such as padded cotton, sheets, blanket, cushion, etc. Interior goods such as curtains, carpets, mats, wallpaper, plush toys, artificial flowers, and wood, sanitary materials such as masks, incontinence shorts, wet tissues, car seats, interior goods such as interiors, toilet covers -Toilet mats such as toilet mats, toilets for pets, kitchen items such as refrigerators, trash can liners, water filters for appreciation fish and fish tanks, filters for baths, wastewater treatment filters, etc. Air conditioner elements such as filters, air purifier filters, clean room air filters, dehumidifier filters, commercial gas treatment filters, industrial materials such as gas adsorption tower packing, etc. Shoe insole, slippers, gloves, towels, rags, rubber glove linings, boots linings, adhesive materials, garbage disposal devices, adsorbents, supporters, sweat pads, interlinings and the like.
[0041]
Of course, the fibers can be used alone, but they can be used more effectively in the above-mentioned fields by being blended or mixed with other fibers. For example, when used as a batting or non-woven fabric such as a futon, performance such as bulkiness is imparted by blending with other fibers such as polyester. Moreover, adsorbents for a wider range can be obtained by mixing with other adsorbents such as adsorbents other than acid and / or aldehyde gas. As described above, it can be used in combination with various other objects for the purpose of imparting other functions and for the purpose of reducing the mixing ratio of the fibers. Moreover, it is also possible to use it as a water treatment agent, a metal adsorbent, etc. as an ion exchanger.

Claims (5)

アクリル繊維のニトリル基をアミノ化剤でアミノ化処理してなる酸及び又はアルデヒド吸着性繊維において、原料繊維がアミノ化処理温度より5〜30℃高い温度の熱処理を施されたアクリル繊維であり、アミノ化処理により該繊維中のニトリル基の10〜50モル%が変性され、且つ該処理による重量増加率が10〜100重量%である事を特徴とする酸及び又はアルデヒド吸着性繊維。In the acid and / or aldehyde adsorbing fiber formed by aminating the nitrile group of the acrylic fiber with an aminating agent, the raw fiber is an acrylic fiber subjected to a heat treatment at a temperature 5 to 30 ° C. higher than the amination temperature, An acid and / or aldehyde adsorbing fiber characterized in that 10 to 50 mol% of nitrile groups in the fiber are modified by amination treatment, and the weight increase rate by the treatment is 10 to 100 wt%. アミノ化剤が、ポリエチレンポリアミンより選ばれる1種以上である事を特徴とする請求項1に記載の酸及び又はアルデヒド吸着性繊維。The acid and / or aldehyde adsorbing fiber according to claim 1, wherein the aminating agent is at least one selected from polyethylene polyamines. アミノ化剤が、分子量200〜10000であるポリエチレンイミンである事を特徴とする請求項1に記載の酸及び又はアルデヒド吸着性繊維。The acid and / or aldehyde adsorbing fiber according to claim 1, wherein the aminating agent is polyethyleneimine having a molecular weight of 200 to 10,000. アクリル繊維が、10〜100nmの細孔径を有する細孔が連結し、さらに繊維表面に開孔してなる多孔質繊維であり、且つその吸水率が20〜100重量%である事を特徴とする請求項1〜3のいずれかに記載の酸及び又はアルデヒド吸着性繊維。Acrylic fiber is a porous fiber in which pores having a pore diameter of 10 to 100 nm are connected and further opened on the fiber surface, and its water absorption is 20 to 100% by weight. The acid and / or aldehyde adsorptive fiber according to claim 1. 請求項1から4のいずれかに記載の酸及び又はアルデヒド吸着性繊維を5重量%以上含有することを特徴とする酸及び又はアルデヒド吸着性繊維構造物。An acid and / or aldehyde-adsorbing fiber structure containing 5% by weight or more of the acid and / or aldehyde-adsorbing fiber according to any one of claims 1 to 4.
JP24780798A 1998-08-17 1998-08-17 Acid and / or aldehyde adsorbing fiber and structure thereof Expired - Fee Related JP4072702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24780798A JP4072702B2 (en) 1998-08-17 1998-08-17 Acid and / or aldehyde adsorbing fiber and structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24780798A JP4072702B2 (en) 1998-08-17 1998-08-17 Acid and / or aldehyde adsorbing fiber and structure thereof

Publications (2)

Publication Number Publication Date
JP2000064175A JP2000064175A (en) 2000-02-29
JP4072702B2 true JP4072702B2 (en) 2008-04-09

Family

ID=17168963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24780798A Expired - Fee Related JP4072702B2 (en) 1998-08-17 1998-08-17 Acid and / or aldehyde adsorbing fiber and structure thereof

Country Status (1)

Country Link
JP (1) JP4072702B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364938B1 (en) * 2000-08-17 2002-04-02 Hamilton Sundstrand Corporation Sorbent system and method for absorbing carbon dioxide (CO2) from the atmosphere of a closed habitable environment
JP5051544B2 (en) * 2007-05-31 2012-10-17 日本エクスラン工業株式会社 Amino group-containing fiber, method for producing the same, and fiber structure containing the fiber
JP5088581B2 (en) * 2008-11-25 2012-12-05 日本エクスラン工業株式会社 Antiviral fiber and fiber structure containing the fiber
JP6152636B2 (en) * 2012-11-09 2017-06-28 日本エクスラン工業株式会社 Porous acrylic single fiber and cesium ion adsorbent containing the fiber
CN108103771B (en) * 2017-11-28 2020-10-30 东华大学 Reduced graphene oxide assembled polyacrylonitrile fiber and preparation method thereof
CN113826848A (en) * 2021-10-25 2021-12-24 北京一轻研究院有限公司 Citrus pulp powder with enhanced flavor and preparation method and application thereof
CN116178211A (en) * 2022-12-10 2023-05-30 昊华气体有限公司 Method for removing high-content acidic impurities in perfluoroisobutyronitrile crude gas

Also Published As

Publication number Publication date
JP2000064175A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
JP3248401B2 (en) Hygroscopic cross-linked acrylic fiber and fiber structure using the fiber
JP2004052208A (en) Deodorizing textile product
US9254345B2 (en) Moisture-absorbing and deodorizing fiber, method for manufacturing the same, and fiber structure containing the same
TW438923B (en) Deodorant fibrous material and method of producing the same
JPWO2010074311A1 (en) Deodorant fiber products
JP4072702B2 (en) Acid and / or aldehyde adsorbing fiber and structure thereof
CN103243557B (en) Oxidized sodium alginate modified textile fiber as well as preparation method and application thereof
JP3695604B2 (en) Deodorant
JP2014012915A (en) Crosslinked acrylate based super extra fine fiber structure
JP3765147B2 (en) Deodorant molded product and method for producing the same
JP3271692B2 (en) Acid / basic gas absorbing fiber and its structure
JP4873907B2 (en) Allergen-inactivated fiber, method for producing the fiber, and fiber product using the fiber
JP2005213686A (en) Fiber material containing regenerated cellulose fiber
JP4114057B2 (en) Hygroscopic fiber
JP3369508B2 (en) Hygroscopic fiber
JP6877700B2 (en) High-bulk, high-heat-sustaining fibers, and fiber structures, deodorant materials, and batting containing the fibers.
JP2000064149A (en) Structure containing fiber for preventing sweat odor and body odor
JPH10226962A (en) Deodorant molding product and its production
JPH10245778A (en) Alkaline gas absorbing textile product
JP3235092B2 (en) Basic gas absorbing fiber and method for producing the same
JP2000093493A (en) Deodorant
CN213861113U (en) Jacquard cloth with antibacterial and mildew-proof functions
JP2005273055A (en) Textile structure
JP3716984B2 (en) Method for producing hygroscopic fiber
CN117802784A (en) Base material with antibacterial function, preparation method thereof and prepared product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees