JP3369508B2 - Hygroscopic fiber - Google Patents

Hygroscopic fiber

Info

Publication number
JP3369508B2
JP3369508B2 JP12001999A JP12001999A JP3369508B2 JP 3369508 B2 JP3369508 B2 JP 3369508B2 JP 12001999 A JP12001999 A JP 12001999A JP 12001999 A JP12001999 A JP 12001999A JP 3369508 B2 JP3369508 B2 JP 3369508B2
Authority
JP
Japan
Prior art keywords
fiber
moisture absorption
moisture
carboxyl group
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12001999A
Other languages
Japanese (ja)
Other versions
JP2000314082A (en
Inventor
正雄 家野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP12001999A priority Critical patent/JP3369508B2/en
Publication of JP2000314082A publication Critical patent/JP2000314082A/en
Application granted granted Critical
Publication of JP3369508B2 publication Critical patent/JP3369508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は吸放湿性繊維に関す
る。さらに詳しくは、調湿材として実用性能上要求され
るRH50%〜95%の湿度範囲で水蒸気吸着等温線が
急峻に立ち上がっていることにより、その湿度範囲にお
いて優れた調湿機能を有し、かつ抗菌性を有するとも
に、加工性も優れた吸放湿性繊維及びその製造方法に関
する。 【0002】 【従来の技術】シリカゲル,ゼオライト,硫酸ナトリウ
ム,活性アルミナ,活性炭等の吸湿剤は、吸湿量が少な
く吸湿速度が遅く再生に高温を要するという欠点があ
り、いずれも種々の用途に実用化するには問題があっ
た。またB型シリカゲルは高い吸湿率差を有するが、ヒ
ステリシス現象があることや球状形態のために該吸湿剤
が脱落し易いために不織布等に加工するには繁雑な工程
を要する等の問題がある。 【0003】この問題点を解決する方法として、潮解性
塩類を高吸水性繊維に含浸させた特許第2623771
号公報の手段を提案したが、この手段により得られた繊
維は、編物・織物・不織布等への加工が容易で吸放湿速
度が速く、さらに吸湿剤の脱落もない実用性能を備えた
ものではあるが、繊維表面がヒドロゲルであるため、吸
湿すると粘着性を帯び、特に壁紙やふとん綿への適用が
困難であること、及び最近社会的ニーズとして高まりつ
つある抗菌性を満たすものではなかった。 【0004】東洋紡績(株)製の高吸湿性繊維(N−3
8)は特開平9ー158040号公報の手段で提案さ
れ、吸湿性と放湿性を有し繰り返し使用に耐え、かつ抗
菌性も兼ね備え、加工性が良好な高吸放湿性繊維であ
る。しかしながらこの繊維は、調湿材の分野で実用性能
上の要求はRH50%〜95%の湿度範囲での吸湿率差
が大きいことと言うのに対し、わずか吸湿率差が35%
しかないという問題点があった。 【0005】鐘紡(株)製のベルオアシスは高い吸湿率
差を有するが、調湿材の一用途である畳表中敷き等では
水をこぼすと繊維が膨潤して畳表が盛り上がる、また一
度膨潤すると乾燥しない等の問題があり、かつ繊維物性
が低く不織布等に加工するには繁雑な工程を要する等の
問題がある。 【0006】 【発明が解決しようとする課題】本発明はこのような従
来の調湿材が抱える課題を解消したものであり、低湿度
と高湿度の環境間で従来品よりも非常に高い吸湿率差を
示し、吸放湿速度が速く、しかも取扱が容易で、吸湿後
の形態保持性に優れ、容易に再生し得る、さらに抗菌性
も兼ね備えた改善された調湿材に適する吸放湿性繊維及
びその製造方法を提供することである。 【0007】 【課題を解決するための手段】本発明者は高い繊維物性
を有し、調湿材で実用性能上要求される吸湿率差の大き
い吸放湿性繊維について鋭意研究を続けてきた。即ち本
発明は、膨潤度が1.7g/g以下、減菌率が90%以
上で、且つ20℃×50%RH条件と20℃×95%R
H条件との吸湿率差が50重量%以上150%重量以下
の架橋アクリル系繊維であることを特徴とする吸放湿性
繊維である。 【0008】かかる吸放湿性繊維は、アクリロニトリル
含有率が85〜95重量%であるアクリル系繊維にヒド
ラジン系化合物による架橋処理を行い、この架橋結合の
導入による窒素含有量の増加が、1.0〜5.0重量%
の範囲内となるように調整し、引き続き酸処理、次いで
アルカリによる加水分解を行うことによって、残存して
いるニトリル基の一部を3.0〜6.0meq/gのア
ルカリ金属塩型カルボキシル基に変換すること、により
製造することができる。 【0009】 【発明の実施の形態】以下、本発明を詳述する。本発明
は架橋アクリル系繊維であるが、その出発アクリル系繊
維としてはアクリロニトリル(以下、ANという)を8
5〜95重量%含有するAN系重合体により形成された
繊維であり、短繊維、トウ、糸、編織物、不織布等いず
れの形態のものでも良く、また、製造工程中途品、廃繊
維などでも構わない。AN系重合体は、AN単独重合
体、ANと他の単量体との共重合体のいずれでも良く、
他の単量体としては、ハロゲン化ビニル及びハロゲン化
ビニリデン;(メタ)アクリル酸エステル;メタリルス
ルホン酸、pースチレンスルホン酸等のスルホン酸含有
単量体及びその塩;(メタ)アクリル酸、イタコン酸等
のカルボン酸含有単量体及びその塩;アクリルアミド、
スチレン、酢酸ビニル等の単量体が挙げられるが、AN
と共重合可能な単量体であれば特に限定されない。 【0010】該アクリル系繊維に、ヒドラジン系化合物
による架橋を導入する方法としては、窒素含有量の増加
が1.0〜5.0重量%の範囲内に調整し得る手段であ
る限り採用できるが、ヒドラジン系化合物の濃度5〜6
0%,温度50〜120℃で5時間以内で処理する手段
が工業的に好ましい。ここで、窒素含有量の増加とは原
料アクリル系繊維の窒素含有量とヒドラジン系化合物に
よる架橋が導入されたアクリル系繊維の窒素含有量との
差をいう。 【0011】なお、窒素含有量の増加が上記下限に満た
ない場合には、最終的に実用上満足し得る物性の繊維が
得られず、上限を越えると繊維の膨潤率が低くなり、吸
湿率差の大きい吸放湿性繊維が得られない。ここに使用
するヒドラジン系化合物としては、水加ヒドラジン、硫
酸ヒドラジン、塩酸ヒドラジン、臭素酸ヒドラジン、ヒ
ドラジンカーボネート等、この他エチレンジアミン、硫
酸グアニジン、塩酸グアニジン、リン酸グアニジン、メ
ラミン等のアミノ基を複数含有する化合物が例示され
る。 【0012】本発明者は、ヒドラジン系化合物による架
橋処理後の残存ニトリル基の一部を3.0〜6.0me
q/gのアルカリ金属塩型カルボキシル基に変換する方
法として、ヒドラジン系化合物処理による架橋結合導入
の後、引き続き酸処理A、次いでアルカリ化合物による
加水分解を行うことによって上述の課題を達成するに到
った。この方法によれば、架橋結合の導入後の酸処理A
の酸濃度、次工程のアルカリ化合物濃度のいずれもを一
段階でアルカリ加水分解するという従来の方法よりも低
くすることができ、容易に多量のアルカリ金属塩型カル
ボキシル基に変換でき、加工に耐えうる強度を維持した
吸放湿性繊維が与えられる。 【0013】ここに使用する酸としては、硝酸、硫酸、
塩酸等の鉱酸の水溶液、有機酸等が挙げられるが特に限
定されない。この処理の前に架橋処理で残留したヒドラ
ジン系化合物は、十分に除去しておく。また、加水分解
を行うのに使用するアルカリとしては、アルカリ金属水
酸化物、アルカリ土類金属水酸化物、アンモニア等の塩
基性水溶液等が挙げられるが、加水分解可能なアルカリ
であれば特に限定されない。使用する酸、アルカリの濃
度についても特に限定されないが、ともに1〜10重量
%、温度50〜120℃で2時間以内で処理する手段が
工業的、繊維物性的にも好ましい。 【0014】加水分解によって生成するカルボキシル基
をアルカリ金属塩型に変換する方法としては、大別して
2つある。その1つは、アルカリ金属水酸化物による加
水分解であり、直接アルカリ金属塩型カルボキシル基を
生成させるものである。第2はアルカリ土類金属水酸化
物やアンモニア等により加水分解して一旦目的とは異な
る型のカルボキシル基を生成させ、次いで該基を目的の
アルカリ金属塩型に置換するという方法である。 【0015】第2の方法におけるカルボキシル基の塩型
の置換には、アルカリ金属の水酸化物や該金属の塩化合
物により直ちにアルカリ金属塩型にする手段や、一旦酸
処理(前述の酸処理Aと区別して酸処理B)してカルボ
キシル基をH(酸)型にした後上記のアルカリ金属化合
物によりアルカリ金属塩型にする手段がある。尚本願発
明が必要とするアルカリ金属塩型カルボキシル基の量は
3.0〜6.0meq/gであるので、この量が確保さ
れれば、残余のカルボキシル基の「型」は問わない。 【0016】アルカリ金属塩型としては文字通りLi,
Na,Kであり、かかる塩型カルボキシル基が上述の量
形成されていると、繊維は1.0〜3.0g/gの膨潤
度を有するものとなる。尚カルボキシル基の塩の種類は
Li,Na,Kであるが、この中のいずれか1種類に限
定される訳ではなく、同一の製品繊維にこれらの2種以
上が混在していても構わない。又、膨潤度の評価手段は
後述する。かかるアルカリ金属塩型への変換処理の後
は、被処理繊維は水洗,乾燥や必要に応じ油剤処理等を
施す。 【0017】なお、アルカリ金属塩型カルボキシル基が
3.0meq/gに満たない場合には吸放湿性が得られ
ず、また6.0meq/gを越えると、実用上満足し得
る繊維物性が得られない。架橋の導入が適正に行われ、
ニトリル基の一部がアルカリ金属塩型カルボキシル基
3.0〜6.0meq/gに変換された結果、発明の繊
維の膨潤度は1.0〜3.0g/gを示し、引張強度も
0.7dN/tex以上,減菌率も90%以上を有する
ものとなる。かかる繊維は従来技術である特開平9−1
58040号公報が開示する発明では得られなかった、
20℃×50%RH条件と20℃×95%RH条件との
吸湿率差が50重量%以上150重量%以下という吸湿
率差の大きい繊維であり、従来の繊維あるいは方法より
も実用性能上有効な吸湿率差が大幅に改善される。 【0018】本発明の繊維は製造工程中のアルカリ金属
塩型カルボキシル基形成されたところで膨潤しているの
で、乾燥工程での負荷を軽減するためや、最終製品に向
けての加工例えば不織布にするための加工性を向上する
目的で油剤付着をするが、油剤としてアルキルアミド第
4級カチオン油剤を1.0〜2.5%omfの範囲で繊
維に付着すると、前記した異なる条件間での吸湿率差は
変わらないで繊維の膨潤度が1g/g低下することを見
出した。 【0019】本知見は本発明繊維の工業的有利な製造方
法を与える。油剤付着量が1.0%omf未満では膨潤
度は低下しない。また油剤付着量が2.5%omf以上
ではかえって不織布等への加工性が悪くなる等の問題点
が発生する。かかるアルキルアミド第4級カチオン油剤
として好ましい例はアルキルアミドプロピルジメチルβ
−ヒドロキシエチルアンモニウム硝酸塩R=(C16〜
C18),ステアリルアミドエチルジメチルヒドロキシ
エチルアンモニウムクロライド,セチルアミドエチルジ
エチルメチルアンモニウムメチルサルフェート等が挙げ
られる。本発明により、引張強度が0.7dN/tex
以上で、吸放湿速度が速く、吸湿率差が大きくて抗菌性
を兼備する繊維を提供することが出来る。 【0020】本発明の出発繊維は前述の通り、アクリル
系繊維製造工程途中のものであっても、繊維に紡績加工
等を施した後のものでも良い。出発アクリル系繊維とし
て、延伸後熱処理前の繊維(AN系重合体の紡糸原液を
常法に従って紡糸し、延伸配向され、乾燥緻密化、湿熱
緩和処理等の熱処理の施されていない繊維、中でも湿式
又は乾/湿式紡糸、延伸後の水膨潤ゲル状繊維:水膨潤
度 30〜150%)を使用することにより、反応液中
への繊維の分散性、繊維中への反応液の浸透性などが改
善され、以て架橋結合の導入や加水分解反応が均一かつ
速やかに行われるので望ましい。 【0021】なお、これらの出発アクリル系繊維を、ポ
ンプ循環系を備えた容器内に充填し、上記架橋結合の導
入、酸処理A、アルカリ処理、及びアルカリ金属塩型カ
ルボキシル基の形成、水洗、油剤処理等の手段をとるこ
とが、装置上、安全性、均一反応性等の諸点から望まし
い。かかる装置(ポンプ循環系を備えた容器)としては
染色機が例示される。 【0022】このように大きな吸湿率差があることによ
り、本発明の繊維は、従来なかった用途、或いは、従来
繊維では要求に応えられなかった用途に適用できる。例
えば、結露する前の水蒸気を吸湿し、また吸水する作用
による結露防止素材、水蒸気を吸収する事を利用した吸
放湿素材(衣服、建材、壁紙、中綿等)、環境の調湿,
調温素材等が挙げられる。また、高い吸湿率差性能を利
用した、押入れ,地下室,床下,浴室等の乾燥,除湿素
材や、水分を非常に嫌う電子材料等の被覆素材の一部と
して使う等の使用方法も例示できる。また、この繊維は
親水性が高いので、水分を吸収,水蒸気を放出する様な
用途にも適用できる。このような効果は、出発繊維を細
デニール糸にする、中空糸にする、多孔繊維とする等で
更に高めることができる。また、フィブリル化繊維形
態、起毛或いは植毛した布や紙等にすることも有効であ
る。 【0023】また、本発明の繊維は吸放湿性繊維である
が、吸湿したときの繊維の状態がべとつかずに、適度に
湿り気があり、かつ適度な伸度も有している。このた
め、しっとりとしていてしなやかな繊維である。この性
質を利用して、保湿素材、美容素材、高風合い素材等へ
の適用もできる。また、親水性の薬品等をしみ込ませた
布、紙等へ適用した場合にも、保湿性が高いため含浸量
が高く、乾きにくい素材にできるといった効果がある。
このような例としては、消毒液、化粧水、芳香剤、消臭
剤、殺菌剤、防虫剤等を含浸させたものが例示できる。 【0024】本発明の繊維の吸放湿性は、主にアルカリ
金属塩型カルボキシル基によって発現する。この量を制
御する事によって吸放湿性を制御できる。例えば、加水
分解により多量のカルボキシル基を導入し、アルカリ金
属塩型カルボキシル基への変換量を制御して吸放湿性を
制御する等の方法も行い得る。このような方法を採用す
る場合には、アルカリによる加水分解に次いで酸処理を
行う等種々の方法があるが、アルカリ金属塩型カルボキ
シル基を3.0〜6.0meq/g存在せしめられる方
法であれば特に限定されない。しかし、工業的には前述
の第2の方法である、アルカリによる加水分解に次い
で、酸処理Bを行ってからアルカリ金属塩処理を行って
アルカリ金属塩型カルボキシル基の量を制御するという
方法が好ましい。 【0025】本発明の繊維は吸放湿速度が速いが、この
速度も繊維自体や繊維でなる成形体の密度などによって
制御することができる。非常に速い吸放湿速度が要求さ
れる場合には、細い吸放湿性繊維を用いたり、フィブリ
ル化した吸放湿性繊維を用いたり、繊維密度を低くした
り、起毛,植毛等を行い、吸放湿性繊維と湿分含有気体
と接触する面積を大きくする等の方法を採用する事がで
きる。また、緩慢な吸放湿速度が要求される場合には、
不織布、紙への加工の密度を高める或いは紡績時に高い
撚り数にする等により繊維密度を高くしたり、太い吸放
湿性繊維を用いたり、本発明の繊維を水蒸気を透過する
事のできる他の物質で覆う等の方法が採用できる。 【0026】本発明の繊維は先に述べたように高い吸湿
率差及び吸放湿性、抗菌性も有する。抗菌性とは、実施
例に示すようなシェークフラスコ法で測定した時の減菌
率で示すが、本発明繊維は90%以上の減菌率を示す。 【0027】本発明の繊維は、これらの特性を有する
為、非常に安全に取り扱うことができる。通常の繊維は
水分を吸収すると菌の発生し易い環境になるため、衛生
上、抗菌性を付与した繊維等の併用が必要になる事が多
いが、特にこれを行う必要がないという優れた性能を持
ち合わせているのである。また難燃性を有する為、再生
等で高温を適用するような事を行っても、出火の心配は
殆ど無く家庭で使用しても非常に安全な素材である。 【0028】本発明の素材は、耐薬品性に優れた架橋構
造を有しているため、種々の薬品による処理を行っても
繊維形態を保持することができる。よって、酸やアルカ
リ等を含む構造材料の構造保持材等としても適用でき
る。 【0029】 【作用】本発明に係る吸放湿性繊維並びに該製造方法
が、抗菌性を有しつつ高い吸湿率差及び吸放湿性を兼ね
備える理由は、十分に解明するに至っていないが、概ね
次のように考えられる。 【0030】即ち、本発明に係る繊維は、AN系重合体
から出発していながら、実質的にニトリル基が減少して
いる所から、ポリマー鎖に結合している側鎖は、ヒドラ
ジン系化合物との反応により生成した窒素を含有する架
橋構造と、ニトリル基の加水分解反応により生成したア
ルカリ金属塩型カルボキシル基が大部分を占めていると
考えられる。 【0031】一般にアルカリ金属塩型カルボキシル基は
吸湿性を有するが、本発明はこの量が非常に多いことに
加え、窒素の多い架橋構造を有するため吸湿性を更に高
めていると考えている。また、カルボキシル基がアルカ
リ金属塩型であることと、適度な架橋構造があることに
より、吸湿性に関与するはずの官能基同士が水素結合し
てしまい吸湿性に寄与しないといった機構が抑制され、
非常に高い吸湿率差及び吸放湿性を持つと推定してい
る。 【0032】本発明の繊維はアルカリ金属塩型カルボキ
シル基を多量に含んでいても、種々の加工に耐えうる繊
維強度を持つ。このことについては次のように推定して
いる。即ち、酸処理A、アルカリ処理と二段階の加水分
解を行うので、反応試薬の濃度が非常に低く且つ処理時
間が短縮できる。このため苛酷な処理をうけず、アルカ
リ金属塩型カルボキシル基の量が多くても高い繊維強度
を有すると推定している。当然、架橋構造を有している
ことにも起因していよう。 【0033】抗菌性は窒素を含有する架橋構造によりも
たらされていると推定される。さらに、吸湿時でもべと
つき感がないのは高度に架橋されていること並びに油剤
の効果のためであろう。 【0034】 【実施例】以下実施例により本発明を具体的に説明す
る。実施例中の部及び百分率は、断りのない限り重量基
準で示す。なお、繊維中のアルカリ金属塩型カルボキシ
ル基量、吸湿率、膨潤度、油剤付着率及び抗菌性は以下
の方法により求めた。 【0035】(1)アルカリ金属塩型カルボキシル基量
(meq/g) 十分乾燥した供試繊維約1gを精秤し(Xg )、これに
200mlの水を加えた後、50℃に加温しながら1N
塩酸水溶液を添加してpH2にし、次いで0.1N苛性
ソーダ水溶液で常法に従って滴定曲線を求めた。該滴定
曲線から全カルボキシル基に消費された苛性ソーダ水溶
液消費量(Ycc)を求め、次式によって全カルボキシ
ル基量(meq/g)を算出した。 (全カルボキシル基量)=0.1Y/X 【0036】別途、上述の全カルボキシル基量測定操作
中の1N塩酸水溶液の添加によるpH2への調整をする
ことなく同様に滴定曲線を求め酸型カルボキシル基量
(meq/g)を求めた。これらの結果から次式により
アルカリ金属塩型カルボキシル基量を算出した。 (アルカリ金属塩型カルボキシル基量)=(全カルボキ
シル基量)−(酸型カルボキシル基量) 【0037】(2) 吸湿率(%) 試料繊維約5.0gを熱風乾燥機で120℃、5時間乾
燥して重量を測定する(W1g)。次に試料を温度20
℃で所定の恒湿槽(50%RH及び95%RH)に24時
間入れておく。このようにして吸湿した試料の重量を測
定する(W2g)。以上の測定結果から、次式によって
算出した。 (吸湿率)=(W2−W1)/W1×100 吸湿率差とは、かくして得た20℃における50%RH
と95%RHの吸湿率の差を言う。 【0038】(3) 膨潤度(g/g) 試料繊維約3gを熱風乾燥機で70℃、3時間乾燥して
重量を測定する(W1g)。次に試料を水が300ml
入ったビーカーに30分間浸漬した後、膨潤した試料を
卓上遠心脱水機(160G×5分)で脱水した後の試料
の重量を測定する(W2g)。 (膨潤度)=(W2−W1)/W1 【0039】(4) 油剤付着率(%omf) 試料繊維約3gを精秤(W1)してガラス円筒濾紙に入
れ、これを抽出円筒に入れ予め溶剤(1級エチルアルコ
ール)100〜120mlが入ったコルベンを接合す
る。更に、冷却菅を接合し、ウォーターバス上で97℃
以上で2時間抽出する。コルベンの中の溶剤を抽出円筒
に充分上げた時点でコルベンを外し、溶剤をシャーレに
入れ、これをウォーターバスで蒸発乾固する。シャーレ
に残留した油剤の重量(W2)を求め次式により算出す
る。 (油剤付着率)=W2/(W1−W2)×100 【0040】(5) 抗菌性 試験菌を肺炎桿菌とし、抗菌防臭加工製品の加工効果評
価試験マニュアル・シェークフラスコ法(繊維製品衛生
加工協議会,昭和63年)により試験し、減菌率%で示
した。 【0041】実施例1 AN90%及びアクリル酸メチル(以下、MAという)
10%からなるAN系重合体(30℃ジメチルホルムア
ミド中での極限粘度〔η〕:1.2)10部を48%の
ロダンソーダ水溶液90部に溶解した紡糸原液を、常法
に従って紡糸、延伸(全延伸倍率;10倍)した後、乾
球/湿球=120℃/60℃の雰囲気下で乾燥(工程収
縮率14%)して単繊維繊度1.5dの原料繊維Iを得
た。 【0042】原料繊維Iを、表1に示した条件で架橋処
理及びニトリル基のアルカリ金属塩型カルボキシル基へ
の変換を行った後、脱水、水洗、乾燥を行い繊維No.
1〜8を得た。得られた繊維の特性を調べ、その結果を
表1に併記した。 【0043】 【表1】 【0044】窒素増加量が1.0〜5.0重量%の範囲
にあってNa型カルボキシル基が3.0〜6.0meq
/gの範囲である本発明例の繊維No.1〜4は、膨潤
度1.0〜3.0g/gと高い吸湿率差を示し、高い引
張強度と抗菌性も兼ね備えていることが判る。 【0045】これらに対して、繊維No.5は窒素増加
量が1.0重量%未満のため、Na型カルボキシル基量
は本願が推奨する範囲にあり吸湿率差も大きいが、引張
強度が0.2dN/texと低い値である。このため繊
維が脆く、カード掛け等の加工に耐える物性を有するも
のではなかった。また、同様にNa型カルボキシル基量
は満たすものの窒素増加量が本発明の推奨量より過大で
ある繊維No.6は、十分な引張強度を有するものの繊
維の膨潤度、吸湿率差共に目的が達成されない。 【0046】一方、窒素増加量は満たすもののNa型カ
ルボキシル基への変換が本発明の推奨量より少ない繊維
No.7は、引張強度はあるが繊維の膨潤度、吸湿率差
共に目的を達するものではない。また、同様に窒素増加
量は適当であるもののNa型カルボキシル基への変換が
本発明の推奨量より大きい繊維No.8は吸湿率差は十
分であるが、繊維の膨潤度が高く、引張強度が0.4d
N/texと低い値である。このため繊維が脆く、カー
ド掛け等の加工に耐える物性を有するものではなかっ
た。 【0047】実施例2 実施例1で得られたNo.1の繊維5gを、表2に示し
たアルカリ金属化合物又はアルカリ土類金属化合物の5
%水溶液1Lに温度40℃で5時間浸漬した後水洗、乾
燥し、塩型の異なる繊維No.9〜11を得た。得られ
た繊維の特性を調べ、その結果を表2に併記した。 【0048】 【表2】 【0049】本発明例繊維No.1のNa型に変換され
た繊維やLi型であるNo.9,K型であるNo.10
の繊維と比較すると、繊維No.11のCa型カルボキ
シル基を有する繊維は繊維の膨潤度が低くなり、引張強
度は向上するが、吸湿率差が低くて目的を達せず、カル
ボキシル基の塩型としてはアルカリ金属が有効であるこ
とが判る。 【0050】実施例3 実施例1で得られたNo.1の繊維5gを、アルキルア
ミド第4級カチオン油剤であるアルキルアミドプロピル
ジメチルβ−ヒドロキシエチルアンモニウム硝酸塩(R
=C16〜C18)の0.5%水溶液と1.5%水溶液
に40℃で1時間浸漬した後脱水、乾燥し、表3に示す
油剤付着量の異なる繊維No.12、13を得た。得ら
れた繊維の特性を調べ、その結果を表3に併記した。 【0051】 【表3】【0052】アルキルアミド第4級カチオン油剤付着量
1.5%の繊維No.12と同油剤付着量0.5%の繊
維No.13とを比較すると、吸湿率差は変わらない
が、No.12では繊維の膨潤度が低下することにより
製造工程で繊維の乾燥負担が軽減されるため、工業的有
利に製造し得ることが判る。一方油剤付着量0.5%で
は、繊維No.1と較べて膨潤度に差がなく、乾燥負担
軽減の目的には1.0%以上の付着が必要であることが
理解される。 【0053】 【発明の効果】加工上問題のない繊維物性を有し、調湿
材で実用性能上必要とされる吸湿率差の大きい吸放湿性
繊維を、工業的に有利に製造する手段を提供し得た点が
本発明の特筆すべき効果である。このようにして得られ
た吸放湿性繊維は、吸放湿性が向上したばかりでなく吸
湿率差が大幅に改善された為、従来適用できなかった用
途にも展開できる。そして、抗菌性をも兼ね備えている
こと、再生温度が低いこと、さらに、繊維状であるため
に、不織布,編物,織物などさまざまな形態に加工で
き、アルカリ金属塩型カルボキシル基量、繊維の太さ、
密度等の制御により吸放湿速度も制御することができる
ため、吸放湿性、或いは吸湿による発熱性が求められる
分野に広く展開することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moisture absorbing / releasing fiber. More specifically, the water vapor adsorption isotherm steeply rises in a humidity range of 50% to 95% RH required for practical performance as a humidity control material, and has an excellent humidity control function in the humidity range, and The present invention relates to a moisture-absorbing and desorbing fiber having antibacterial properties and excellent processability, and a method for producing the same. 2. Description of the Related Art Hygroscopic agents such as silica gel, zeolite, sodium sulfate, activated alumina and activated carbon have the disadvantage that they have a small amount of moisture absorption, have a low moisture absorption rate and require high temperatures for regeneration, and are all practical for various uses. There was a problem to make it. B-type silica gel has a high difference in moisture absorption rate, but has a problem that a complicated process is required for processing into a nonwoven fabric or the like because of the hysteresis phenomenon and the spherical shape of the hygroscopic agent which is easy to fall off. . [0003] As a method of solving this problem, Japanese Patent No. 2623771 in which a deliquescent salt is impregnated into superabsorbent fibers.
The fiber obtained by this method is easy to process into a knit, woven or non-woven fabric, has a high moisture absorption and desorption rate, and has practical performance with no loss of the moisture absorbent. However, because the fiber surface is a hydrogel, it becomes tacky when it absorbs moisture, it is difficult to apply especially to wallpaper and futon, and it does not meet the antibacterial properties that have recently been increasing as social needs . A highly hygroscopic fiber (N-3) manufactured by Toyobo Co., Ltd.
No. 8) is a highly moisture-absorbing and desorbing fiber which has been proposed by means of Japanese Patent Application Laid-Open No. 9-158040, has hygroscopicity and moisture releasing properties, withstands repeated use, has antibacterial properties, and has good workability. However, this fiber has a large difference in moisture absorption in a humidity range of 50% to 95% in practical use in the field of a humidity control material, whereas a slight difference in moisture absorption is 35%.
There was a problem that there is only. [0005] Bell Oasis manufactured by Kanebo Co., Ltd. has a high difference in moisture absorption. However, when water is spilled, fibers swell and the tatami surface rises when the water is spilled. In addition, there is a problem that a complicated process is required for processing into a nonwoven fabric or the like having low fiber properties. SUMMARY OF THE INVENTION The present invention has solved the above-mentioned problems of the conventional humidity control material, and has a much higher moisture absorption between low humidity and high humidity environments than conventional products. Shows rate difference, fast moisture absorption and desorption rate, and is easy to handle, has excellent shape retention after moisture absorption, can be easily regenerated, and is suitable for improved moisture conditioning material that also has antibacterial properties An object of the present invention is to provide a fiber and a method for producing the fiber. [0007] The present inventors have intensively studied moisture-absorbing and desorbing fibers which have high fiber properties and have a large difference in moisture absorption required for practical performance of a humidity control material. That is, according to the present invention, the degree of swelling is 1.7 g / g or less, the sterilization rate is 90% or more, and the conditions of 20 ° C. × 50% RH and 20 ° C. × 95% R
A moisture-absorbing / desorbing fiber characterized in that the moisture-absorbing / desorbing fiber is a crosslinked acrylic fiber having a difference in moisture absorption from the H condition of 50 % by weight or more and 150% by weight or less . In the moisture absorbing and releasing fiber, an acrylic fiber having an acrylonitrile content of 85 to 95% by weight is subjected to a crosslinking treatment with a hydrazine-based compound, and the introduction of the crosslinking bond increases the nitrogen content by 1.0%. ~ 5.0% by weight
And then hydrolyzed with an alkali to partially remove the remaining nitrile groups from 3.0 to 6.0 meq / g of an alkali metal salt-type carboxyl group. Can be produced by converting to The present invention will be described below in detail. The present invention is a crosslinked acrylic fiber, and acrylonitrile (hereinafter referred to as AN) is used as the starting acrylic fiber.
It is a fiber formed of an AN-based polymer containing 5 to 95% by weight, and may be in any form such as a short fiber, a tow, a thread, a knitted woven fabric, a nonwoven fabric, or in the middle of a production process, a waste fiber, or the like. I do not care. The AN-based polymer may be any of an AN homopolymer, a copolymer of AN and another monomer,
Other monomers include vinyl halide and vinylidene halide; (meth) acrylic acid ester; sulfonic acid-containing monomers such as methallyl sulfonic acid and p-styrene sulfonic acid and salts thereof; (meth) acrylic acid , Carboxylic acid-containing monomers such as itaconic acid and salts thereof; acrylamide,
Examples include monomers such as styrene and vinyl acetate.
The monomer is not particularly limited as long as it is a copolymerizable monomer. As a method for introducing cross-linking with the hydrazine compound into the acrylic fiber, any method can be employed as long as the increase in the nitrogen content can be adjusted within the range of 1.0 to 5.0% by weight. , Hydrazine compound concentration 5-6
Means of treating at 0% at a temperature of 50 to 120 ° C. within 5 hours is industrially preferable. Here, an increase in the nitrogen content refers to a difference between the nitrogen content of the raw acrylic fiber and the nitrogen content of the acrylic fiber into which the crosslinking with the hydrazine compound has been introduced. If the increase in the nitrogen content is less than the above lower limit, a fiber having physical properties satisfactory for practical use cannot be finally obtained, and if it exceeds the upper limit, the swelling rate of the fiber becomes low, and the moisture absorption rate decreases. Moisture-absorbing fibers having a large difference cannot be obtained. The hydrazine compound used here includes hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine bromide, hydrazine carbonate, etc., and also contains plural amino groups such as ethylenediamine, guanidine sulfate, guanidine hydrochloride, guanidine phosphate, melamine, etc. Are exemplified. The present inventor has proposed that a part of the residual nitrile group after the crosslinking treatment with the hydrazine compound is 3.0 to 6.0 me.
As a method of converting into a q / g alkali metal salt-type carboxyl group, the above-mentioned subject is achieved by performing acid treatment A, followed by hydrolysis with an alkali compound after introduction of a cross-linking bond by treatment with a hydrazine-based compound. Was. According to this method, the acid treatment A after the introduction of the cross-linking A
Both the acid concentration and the alkali compound concentration in the next step can be made lower than the conventional method in which alkali hydrolysis is performed in one step, and can be easily converted into a large amount of alkali metal salt-type carboxyl groups, and can withstand processing. A moisture-absorbing / desorbing fiber is provided that maintains the desired strength. The acids used here are nitric acid, sulfuric acid,
Examples thereof include an aqueous solution of a mineral acid such as hydrochloric acid, an organic acid, and the like, but are not particularly limited. Before this treatment, the hydrazine-based compound remaining in the crosslinking treatment is sufficiently removed. Examples of the alkali used for performing the hydrolysis include a basic aqueous solution such as an alkali metal hydroxide, an alkaline earth metal hydroxide, and ammonia. Not done. The concentration of the acid or alkali used is not particularly limited, either, but a means for treating at 1 to 10% by weight at a temperature of 50 to 120 ° C within 2 hours is preferable from the industrial and fiber properties. There are roughly two methods for converting a carboxyl group generated by hydrolysis into an alkali metal salt type. One of them is hydrolysis with an alkali metal hydroxide, which directly generates an alkali metal salt type carboxyl group. The second is a method of hydrolyzing with an alkaline earth metal hydroxide, ammonia or the like to once generate a different type of carboxyl group, and then replacing the group with a desired alkali metal salt type. The substitution of the salt form of the carboxyl group in the second method may be carried out by means of alkali metal hydroxide or a salt compound of the metal to immediately convert to the alkali metal salt form, or by an acid treatment (the above-mentioned acid treatment A). There is a means for converting the carboxyl group to H (acid) form by acid treatment B) and then converting the carboxyl group to an alkali metal salt form with the above alkali metal compound. Since the amount of the alkali metal salt type carboxyl group required by the present invention is 3.0 to 6.0 meq / g, the "type" of the remaining carboxyl group is not limited as long as this amount is secured. As the alkali metal salt type, Li,
Na and K, and when the salt type carboxyl groups are formed in the above-described amounts, the fiber has a swelling degree of 1.0 to 3.0 g / g. The types of the salt of the carboxyl group are Li, Na, and K, but are not limited to any one of them, and two or more of these may be mixed in the same product fiber. . The means for evaluating the degree of swelling will be described later. After the conversion treatment to the alkali metal salt type, the fiber to be treated is subjected to washing with water, drying and, if necessary, oil treatment. If the alkali metal salt type carboxyl group is less than 3.0 meq / g, moisture absorption / desorption cannot be obtained, and if it exceeds 6.0 meq / g, fiber properties satisfactory for practical use are obtained. I can't. The introduction of crosslinks is performed properly,
As a result of a part of the nitrile group being converted to an alkali metal salt type carboxyl group of 3.0 to 6.0 meq / g, the swelling degree of the fiber of the invention is 1.0 to 3.0 g / g, and the tensile strength is also 0. 0.7dN / tex or more, and the sterilization rate is 90% or more. Such a fiber is disclosed in Japanese Patent Application Laid-Open No.
No. 58040 could not obtain the invention disclosed,
Fiber with a large difference in moisture absorption between 50% by weight and 150% by weight or less under the conditions of 20 ° C. × 50% RH and 20 ° C. × 95% RH, which is more effective in practical performance than conventional fibers or methods. Large difference in moisture absorption rate is greatly improved. Since the fiber of the present invention swells where the alkali metal salt-type carboxyl group is formed during the manufacturing process, it is used to reduce the load in the drying process and to process the final product such as a nonwoven fabric. Oil is attached for the purpose of improving the processability of the oil, but if an alkylamide quaternary cationic oil is attached to the fiber in the range of 1.0 to 2.5% omf as the oil, moisture absorption between the above-mentioned different conditions can be achieved. It was found that the degree of swelling of the fiber was reduced by 1 g / g without changing the rate difference. The present findings provide an industrially advantageous method for producing the fiber of the present invention. If the amount of the oil agent is less than 1.0% omf, the degree of swelling does not decrease. On the other hand, if the amount of the oil agent adhered is 2.5% omf or more, problems such as deterioration in workability to a nonwoven fabric or the like occur. Preferred examples of such alkylamide quaternary cationic oils include alkylamidopropyldimethyl β
-Hydroxyethylammonium nitrate R = (C16-
C18), stearylamidoethyldimethylhydroxyethylammonium chloride, cetylamidoethyldiethylmethylammonium methylsulfate and the like. According to the present invention, the tensile strength is 0.7 dN / tex.
As described above, it is possible to provide a fiber having a high moisture absorption / release rate, a large difference in moisture absorption rate, and also having antibacterial properties. As described above, the starting fiber of the present invention may be in the middle of an acrylic fiber production process or may be obtained after the fiber is subjected to spinning or the like. As the starting acrylic fiber, a fiber after drawing and before heat treatment (a fiber which is spun from a spinning solution of an AN polymer in accordance with a conventional method, drawn and oriented, and which has not been subjected to heat treatment such as dry densification and wet heat relaxation treatment; Alternatively, by using a water-swellable gel-like fiber after dry / wet spinning and stretching: a degree of water swelling of 30 to 150%), the dispersibility of the fiber in the reaction solution, the permeability of the reaction solution into the fiber, and the like are improved. This is desirable because the introduction of the crosslinking bond and the hydrolysis reaction can be performed uniformly and promptly. These starting acrylic fibers are filled in a vessel equipped with a pump circulation system, and the above-mentioned cross-linking is introduced, acid treatment A, alkali treatment, formation of an alkali metal salt type carboxyl group, washing with water, It is desirable to take measures such as oil treatment from the viewpoints of safety, uniform reactivity, etc. on the apparatus. A dyeing machine is exemplified as such a device (a container provided with a pump circulation system). Due to such a large difference in moisture absorption, the fiber of the present invention can be applied to applications that have not been used conventionally or applications that cannot be met with conventional fibers. For example, moisture-absorbing and moisture-absorbing materials (clothing, building materials, wallpaper, batting, etc.) that absorb water vapor before dew condensation and absorb water vapor.
Temperature control materials and the like. In addition, examples of use methods such as drying in a closet, a basement, a floor, a bathroom, etc., and using as a part of a coating material such as an electronic material that dislikes moisture very much, and a high moisture absorption rate difference performance can be exemplified. Further, since this fiber has high hydrophilicity, it can be applied to uses such as absorbing moisture and releasing water vapor. Such an effect can be further enhanced by using fine denier yarn, hollow fiber, or porous fiber as the starting fiber. It is also effective to use fibrillated fiber form, raised or planted cloth or paper. Although the fiber of the present invention is a moisture-absorbing and desorbing fiber, the fiber does not have a tacky state when it absorbs moisture, has a moderate wetness, and has an appropriate elongation. For this reason, it is a moist and supple fiber. Utilizing this property, it can be applied to moisturizing materials, beauty materials, high texture materials, and the like. Also, when applied to a cloth or paper impregnated with a hydrophilic chemical or the like, there is an effect that a material having a high moisture retention and a high impregnation amount can be used to make the material difficult to dry.
Such examples include those impregnated with a disinfecting solution, lotion, fragrance, deodorant, bactericide, insect repellent, and the like. The moisture absorption / release properties of the fiber of the present invention are mainly exhibited by the alkali metal salt type carboxyl group. By controlling this amount, the moisture absorption / release properties can be controlled. For example, a method in which a large amount of a carboxyl group is introduced by hydrolysis, and the amount of conversion into an alkali metal salt-type carboxyl group is controlled to control the moisture absorption / release properties can be performed. When such a method is employed, there are various methods such as an acid treatment followed by hydrolysis with an alkali, but a method in which an alkali metal salt-type carboxyl group can be present at 3.0 to 6.0 meq / g. There is no particular limitation if it exists. However, industrially, there is a method of controlling the amount of the alkali metal salt-type carboxyl group by performing the acid treatment B and then performing the alkali metal salt treatment, which is the second method described above, which is followed by hydrolysis with an alkali, followed by treatment with an alkali metal salt. preferable. Although the fiber of the present invention has a high moisture absorption / release rate, this rate can also be controlled by the fiber itself or the density of a molded article made of the fiber. When a very high moisture absorption / release rate is required, use thin moisture absorption / release fibers, use fibrillated moisture absorption / release fibers, reduce the fiber density, raise the hair, and plant hair. For example, a method of increasing the area of contact between the moisture-releasing fiber and the moisture-containing gas can be employed. Also, when a slow moisture absorption and desorption rate is required,
Non-woven fabric, to increase the fiber density by increasing the processing density to paper or by increasing the number of twists during spinning, or to use thick moisture-absorbing and desorbing fibers, or other fibers that can transmit water vapor through the fibers of the present invention A method such as covering with a substance can be adopted. The fibers of the present invention also have a high difference in moisture absorption, moisture absorption and desorption, and antibacterial properties as described above. The antibacterial property is indicated by a sterilization rate measured by a shake flask method as described in Examples, and the fiber of the present invention exhibits a sterilization rate of 90% or more. The fibers of the present invention have these properties and can be handled very safely. Since ordinary fibers are in an environment where bacteria are likely to be generated when they absorb moisture, it is often necessary to use antibacterial fibers in combination for hygiene purposes. You have. In addition, since it has flame retardancy, it is a very safe material to be used at home with almost no risk of fire even when high temperatures are applied for regeneration or the like. Since the material of the present invention has a crosslinked structure having excellent chemical resistance, the fiber form can be maintained even when treated with various chemicals. Therefore, it can be applied as a structure holding material of a structural material containing an acid, an alkali or the like. The reason why the moisture-absorbing / desorbing fiber according to the present invention and the production method have both a high moisture-absorbing rate difference and a high moisture-absorbing / desorbing property while having antibacterial properties has not been sufficiently elucidated. Think like. That is, although the fiber according to the present invention starts from an AN-based polymer, the side chain bonded to the polymer chain has a hydrazine-based compound because the nitrile group is substantially reduced. It is considered that the nitrogen-containing cross-linking structure formed by the above reaction and the alkali metal salt-type carboxyl group formed by the hydrolysis reaction of the nitrile group occupy the majority. In general, the alkali metal salt-type carboxyl group has a hygroscopic property, and it is considered that the present invention further enhances the hygroscopic property by having a very large amount and a cross-linked structure containing a large amount of nitrogen. In addition, since the carboxyl group is of an alkali metal salt type and has an appropriate cross-linking structure, a mechanism in which functional groups that should be involved in hygroscopicity do not contribute to hygroscopicity due to hydrogen bonding between the functional groups is suppressed,
It is estimated to have a very high difference in moisture absorption rate and moisture absorption / release properties. The fiber of the present invention has a fiber strength that can withstand various processes even if it contains a large amount of an alkali metal salt type carboxyl group. This is estimated as follows. In other words, since the acid treatment A and the alkali treatment are performed in two stages of hydrolysis, the concentration of the reaction reagent is extremely low and the treatment time can be shortened. For this reason, it is presumed that the fiber does not undergo severe treatment and has high fiber strength even if the amount of the alkali metal salt type carboxyl group is large. Naturally, it may be caused by having a crosslinked structure. It is presumed that the antibacterial property is provided by a crosslinked structure containing nitrogen. Furthermore, the absence of stickiness even when absorbing moisture may be due to the high degree of crosslinking and the effect of the oil agent. The present invention will be specifically described below with reference to examples. Parts and percentages in the examples are on a weight basis unless otherwise specified. The amount of alkali metal salt-type carboxyl groups in the fiber, the moisture absorption, the degree of swelling, the oil adhesion and the antibacterial activity were determined by the following methods. (1) Alkali metal salt type carboxyl group content (meq / g) About 1 g of sufficiently dried test fiber was precisely weighed (Xg), and 200 ml of water was added thereto, followed by heating to 50 ° C. While 1N
An aqueous hydrochloric acid solution was added to adjust the pH to 2, and then a titration curve was obtained with a 0.1N aqueous sodium hydroxide solution according to a conventional method. From the titration curve, the consumed amount of aqueous caustic soda (Ycc) consumed by all the carboxyl groups was determined, and the total carboxyl group amount (meq / g) was calculated by the following equation. (Total carboxyl group content) = 0.1 Y / X Separately, a titration curve was obtained in the same manner without adjusting the pH to 2 by adding a 1N aqueous hydrochloric acid solution during the above-mentioned total carboxyl group content measurement operation. The basis weight (meq / g) was determined. From these results, the amount of the alkali metal salt-type carboxyl group was calculated by the following equation. (Amount of alkali metal salt type carboxyl group) = (Total carboxyl group amount) − (Amount of acid type carboxyl group) (2) Moisture Absorption Rate (%) About 5.0 g of sample fiber was dried at 120 ° C. with a hot air drier. After drying for an hour, the weight is measured (W1 g). Next, the sample was heated to a temperature of 20.
The sample is placed in a predetermined humidity chamber (50% RH and 95% RH) at 24 ° C. for 24 hours. The weight of the sample thus absorbed is measured (W2 g). From the above measurement results, it was calculated by the following equation. (Moisture absorption) = (W2−W1) / W1 × 100 The difference in moisture absorption is the 50% RH at 20 ° C. thus obtained.
And 95% RH. (3) Degree of swelling (g / g) About 3 g of the sample fiber is dried at 70 ° C. for 3 hours using a hot air drier, and the weight is measured (W1 g). Next, the sample was
After being immersed in a beaker for 30 minutes, the swollen sample is dehydrated with a desktop centrifugal dehydrator (160 G × 5 minutes), and the weight of the sample is measured (W2 g). (Swelling degree) = (W2-W1) / W1 (4) Adhesion rate of oil agent (% omf) About 3 g of the sample fiber is precisely weighed (W1), put into a glass cylindrical filter paper, and put into an extraction cylinder. A kolben containing 100 to 120 ml of a solvent (primary ethyl alcohol) is joined. Furthermore, the cooling tube was joined and 97 ° C on a water bath.
The above is extracted for 2 hours. When the solvent in the kolben is sufficiently raised to the extraction cylinder, the kolben is removed, the solvent is put into a petri dish, and this is evaporated to dryness in a water bath. The weight (W2) of the oil agent remaining in the petri dish is obtained and calculated by the following equation. (Oil agent adhesion rate) = W2 / (W1−W2) × 100 (5) The antibacterial test bacterium was Klebsiella pneumoniae, and the processing effect evaluation test of the antibacterial and deodorant processed product, the manual shake flask method (Fiber product sanitary processing consultation) Society, 1988), and the results are shown in terms of% of sterilization. Example 1 AN 90% and methyl acrylate (hereinafter referred to as MA)
A spinning stock solution obtained by dissolving 10 parts of 10% AN polymer (intrinsic viscosity [η]: 1.2 in dimethylformamide at 30 ° C .: 1.2) in 90 parts of a 48% aqueous solution of rhoda soda was spun and drawn according to a conventional method. After performing a total draw ratio of 10 times), drying was performed in an atmosphere of dry bulb / wet bulb = 120 ° C./60° C. (process shrinkage: 14%) to obtain a raw fiber I having a single fiber fineness of 1.5d. The raw material fiber I was subjected to crosslinking treatment and conversion of a nitrile group into an alkali metal salt type carboxyl group under the conditions shown in Table 1, followed by dehydration, washing and drying to obtain a fiber No. 1.
1-8 were obtained. The properties of the obtained fiber were examined, and the results are shown in Table 1. [Table 1] The amount of increase in nitrogen is in the range of 1.0 to 5.0% by weight, and the amount of the Na-type carboxyl group is 3.0 to 6.0 meq.
/ G of the fiber of the present invention example. Nos. 1 to 4 show a high difference in moisture absorption with a degree of swelling of 1.0 to 3.0 g / g, and it can be seen that the samples have both high tensile strength and antibacterial properties. On the other hand, fiber No. In No. 5, since the amount of increase in nitrogen was less than 1.0% by weight, the amount of Na-type carboxyl groups was within the range recommended by the present application and the difference in moisture absorption was large, but the tensile strength was as low as 0.2 dN / tex. For this reason, the fibers were brittle and did not have physical properties that could withstand processing such as card hanging. Similarly, the fiber No. which satisfies the amount of Na-type carboxyl groups but has an increased amount of nitrogen exceeding the recommended amount of the present invention. No. 6 has sufficient tensile strength, but the purpose is not achieved with respect to the degree of swelling of the fiber and the difference in moisture absorption. On the other hand, the fiber No. which satisfies the increased amount of nitrogen but has less conversion to the Na-type carboxyl group than the recommended amount of the present invention. No. 7 has a tensile strength but does not achieve the purpose in terms of both the degree of swelling of the fiber and the difference in moisture absorption. Similarly, although the amount of increase in nitrogen is appropriate, the fiber No. whose conversion to Na-type carboxyl groups is larger than the recommended amount of the present invention. No. 8 has a sufficient difference in moisture absorption, but has a high degree of fiber swelling and a tensile strength of 0.4 d
The value is as low as N / tex. For this reason, the fibers were brittle and did not have physical properties that could withstand processing such as card hanging. Example 2 No. 2 obtained in Example 1 5 g of the fiber of Example 1 was replaced with 5 g of the alkali metal compound or alkaline earth metal compound shown in Table 2.
% Aqueous solution at a temperature of 40 ° C. for 5 hours, followed by washing with water and drying. 9-11 were obtained. The characteristics of the obtained fiber were examined, and the results are shown in Table 2. [Table 2] Inventive fiber No. 1 No. 1 which is a fiber converted into Na type or Li type. No. 9, K type. 10
Fiber No. The fiber having a Ca-type carboxyl group of No. 11 has a low degree of swelling of the fiber and an improved tensile strength, but the difference in moisture absorption rate is low and the purpose is not achieved, and alkali metal is effective as a salt type of the carboxyl group. I understand. Example 3 No. 3 obtained in Example 1 5 g of one fiber was treated with alkylamidopropyldimethyl β-hydroxyethylammonium nitrate (R
= C16 to C18) in a 0.5% aqueous solution and a 1.5% aqueous solution at 40 ° C. for 1 hour, followed by dehydration and drying. 12, 13 were obtained. The properties of the obtained fiber were examined, and the results are shown in Table 3. [Table 3] Fiber No. 1 having an alkylamide quaternary cation oil adhering amount of 1.5% was used. Fiber No. 12 having the same oil agent adhesion amount of 0.5% as that of No. 12 As compared with No. 13, the difference in the moisture absorption rate did not change, but No. In the case of No. 12, since the degree of swelling of the fiber is reduced, the burden of drying the fiber in the manufacturing process is reduced, and it can be seen that the fiber can be manufactured industrially advantageously. On the other hand, when the oil agent adhesion amount is 0.5%, the fiber No. There is no difference in the degree of swelling as compared with No. 1, and it is understood that the adhesion of 1.0% or more is necessary for the purpose of reducing the drying load. According to the present invention, there is provided a means for industrially advantageously producing moisture-absorbing and desorbing fibers having a large difference in moisture absorption required for practical use as a humidity control material, having fiber properties which are not problematic in processing. What can be provided is a remarkable effect of the present invention. The moisture-absorbing and desorbing fiber thus obtained has not only improved moisture-absorbing and desorbing properties, but also has a greatly improved difference in moisture-absorbing rate. It also has antibacterial properties, has a low regeneration temperature, and is fibrous, so it can be processed into various forms such as non-woven fabric, knitted fabric, and woven fabric. Well,
Since the rate of moisture absorption and desorption can also be controlled by controlling the density and the like, it can be widely applied to fields where moisture absorption and desorption properties or heat generation due to moisture absorption are required.

Claims (1)

(57)【特許請求の範囲】 【請求項1】 膨潤度が1.7g/g以下、減菌率が9
0%以上で、且つ20℃×50%RH条件と20℃×9
5%RH条件との吸湿率差が50重量%以上150%重
量以下の架橋アクリル系繊維であることを特徴とする吸
放湿性繊維。
(57) [Claims] [Claim 1] Swelling degree is 1.7 g / g or less, and sterilization rate is 9
0% or more, 20 ° C. × 50% RH condition and 20 ° C. × 9
Difference in moisture absorption rate from 5% RH condition is 50% by weight or more and 150% by weight
Moisture-absorbing / desorbing fiber, characterized in that it is a crosslinked acrylic fiber of not more than the amount .
JP12001999A 1999-04-27 1999-04-27 Hygroscopic fiber Expired - Lifetime JP3369508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12001999A JP3369508B2 (en) 1999-04-27 1999-04-27 Hygroscopic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12001999A JP3369508B2 (en) 1999-04-27 1999-04-27 Hygroscopic fiber

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002258051A Division JP3716984B2 (en) 2002-09-03 2002-09-03 Method for producing hygroscopic fiber

Publications (2)

Publication Number Publication Date
JP2000314082A JP2000314082A (en) 2000-11-14
JP3369508B2 true JP3369508B2 (en) 2003-01-20

Family

ID=14775904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12001999A Expired - Lifetime JP3369508B2 (en) 1999-04-27 1999-04-27 Hygroscopic fiber

Country Status (1)

Country Link
JP (1) JP3369508B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110306335A (en) * 2019-05-10 2019-10-08 海盐县硕创服装研究所 Moisture-absorption polyacrylonitrile fiber

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674429B2 (en) * 2001-09-18 2011-04-20 日本エクスラン工業株式会社 Black high moisture absorbing / releasing fiber
KR100556711B1 (en) 2004-11-17 2006-03-10 동일방직주식회사 Moisture absorbing and heat generating acryl-based textile product having good dyeability
JP5947136B2 (en) * 2012-07-24 2016-07-06 国立大学法人九州大学 Anticorrosive
JP6043452B1 (en) * 2016-03-29 2016-12-14 東洋紡株式会社 Nonwoven fabric for bedding
CN110512421A (en) * 2019-07-25 2019-11-29 温州珍瑾服装有限公司 A kind of moisture absorption finishing technique of polyester fabric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110306335A (en) * 2019-05-10 2019-10-08 海盐县硕创服装研究所 Moisture-absorption polyacrylonitrile fiber

Also Published As

Publication number Publication date
JP2000314082A (en) 2000-11-14

Similar Documents

Publication Publication Date Title
JP3369380B2 (en) Improved moisture absorption / desorption fiber and method for producing the same
WO2006027910A1 (en) Slowly moisture-absorbing and -releasing crosslinked acrylic fiber
JPH05132858A (en) Highly moisture absorbing and releasing fiber and its production
WO2018047344A1 (en) Modified acrylonitrile-based fiber, method for producing said fiber, and fibrous structure containing said fiber
KR20140091015A (en) Moisture-absorbing deodorizing fibers, method for producing fibers, and fiber structure comprising fibers
JP6315302B2 (en) Cross-linked acrylate-based ultrafine fiber structure
JP3369508B2 (en) Hygroscopic fiber
JP6101429B2 (en) Multifunctional regenerated cellulose fiber, fiber structure containing the same, and production method thereof
JP2998958B1 (en) Crosslinked acrylic hygroscopic fiber and method for producing the same
JP5051544B2 (en) Amino group-containing fiber, method for producing the same, and fiber structure containing the fiber
JP3716984B2 (en) Method for producing hygroscopic fiber
JP4264800B2 (en) Moisture absorption / water absorption exothermic structure
JP3271692B2 (en) Acid / basic gas absorbing fiber and its structure
JP3191278B2 (en) pH buffering fiber and method for producing the same
JPH08325940A (en) Production of crosslinked acrylic fiber
JP7177982B2 (en) Hygroscopic acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP3235092B2 (en) Basic gas absorbing fiber and method for producing the same
JP7177986B2 (en) Shrinkable, moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JPH08325938A (en) Hygroscopic acrylic fiber having ph buffering property and its production
JP3698204B2 (en) High whiteness hygroscopic synthetic fiber and method for producing the fiber
JP2000064175A (en) Fiber absorbing acid or aldehyde, and its structure
JP2009167574A (en) Hygroscopic conjugate fiber
JP7177988B2 (en) Water-repellent and moisture-absorbing acrylonitrile-based fiber, method for producing said fiber, and fiber structure containing said fiber
JP7177987B2 (en) Easily de-crimpable and moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JPH10245778A (en) Alkaline gas absorbing textile product

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

EXPY Cancellation because of completion of term