JP4264800B2 - Moisture absorption / water absorption exothermic structure - Google Patents

Moisture absorption / water absorption exothermic structure Download PDF

Info

Publication number
JP4264800B2
JP4264800B2 JP2002230391A JP2002230391A JP4264800B2 JP 4264800 B2 JP4264800 B2 JP 4264800B2 JP 2002230391 A JP2002230391 A JP 2002230391A JP 2002230391 A JP2002230391 A JP 2002230391A JP 4264800 B2 JP4264800 B2 JP 4264800B2
Authority
JP
Japan
Prior art keywords
exothermic
hydrophilic
water
resin
water absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002230391A
Other languages
Japanese (ja)
Other versions
JP2003147680A (en
Inventor
清一 越智
明久 中川
浩之 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002230391A priority Critical patent/JP4264800B2/en
Publication of JP2003147680A publication Critical patent/JP2003147680A/en
Application granted granted Critical
Publication of JP4264800B2 publication Critical patent/JP4264800B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明が属する技術分野】
本発明は、飛行服、救命衣、登山装備品、キャンプ装備品、低温倉庫用ユニホームなど緊急時に、急激な人体体温低下を防止する各種救命装備品、もしくは冬季などの冷温環境下で効果的な蓄熱保温性が要求されるスポーツ衣料及び靴インソール部材、マフラー、手袋、オムツなどの生活資材製品、もしくはカーテン、ふとん、壁紙などの蓄熱保温または結露防止性が要求される寝装インテリア資材、もしくは急速な加温発汗性を改良した美容、スポーツ減量衣料、もしくは急速な加温治療が要求される医用資材、もしくは紐及びロープなどの製紐品及びネット、網などの蓄熱保温性が要求される産業資材及びフィルム、樹脂成形品などに好適な吸湿/吸水発熱性構造体に関する。
【0002】
【従来の技術】
保温性に着目した一般衣料、防寒衣料、スポーツ衣料や低温倉庫用ユニホームなどが種々実用化されている。従来の保温性改善手段としては、熱伝導度の小さい空気層を増やすための中空断面繊維や極細繊維を活用する方法、体熱を反射するアルミ蒸着、コーティングもしくは金属スパッタリングの活用する方法、金属酸化物やセラミックス練り込みによる遠赤外線効果を期待する方法(特開昭63−105107号、特開昭7−331584号など)、吸湿発熱性繊維を紡績、混繊等により布帛、中綿に混用する方法(特開平6−294006号、特開平8−197661号ほか)やアクリル酸、メタクリル酸などのビニル系モノマーのグラフト重合法でカルボン酸末端を繊維表面もしくは内部に導入し、ナトリウム塩化など金属塩化することで吸湿発熱性を付与する方法などが種々提案されている。しかしながらこれらの方法はいずれも、発熱加温性(発熱速度、発熱温度、発熱保持時間)が不十分であり、緊急時に人体体温低下を迅速に防止すべき各種救命装備品や、低温環境下で高度の保温性が要求されるスポーツ衣料資材や、蓄熱保温性もしくは結露防止性が要求される生活資材製品、寝装インテリア資材、急速な加温発汗性を要求される美容、スポーツ減量衣料もしくは急速な加温治療が要求される医用資材、もしくは蓄熱保温性、結露防止性が要求される産業資材としての発熱加温性もしくは結露防止性に欠けるものである。特に、吸湿だけでなく吸水発熱性を兼備させた発熱加温性(発熱速度、発熱温度、発熱保持時間)の構造体は提案されていない。加えて、かかる吸湿/吸水発熱性を切り口とした効果的な蓄熱保温性、結露防止性を発現するフィルム及び樹脂成形品も提案されていない。
【0003】
【発明が解決しようとする課題】
本発明は、各種救命装備品や防寒衣料、防寒生活資材、寝装インテリア資材、美容、スポーツ減量用衣料もしくは加温治療用の医療資材、もしくはフィルム、各種産業資材として好適な、吸湿もしくは吸水時の発熱速度、発熱温度、発熱保持性、結露防止性に優れる吸湿/吸水発熱性構造体を提供するものである。
【0004】
【課題を解決するための手段】
本発明は上記課題を解決するための技術構成は次のとおりである。すなわち、
1.高吸湿性微粒子が付着されてなる構造体であり、吸湿及び/又は吸水時の最大温度上昇が3℃以上であり、高吸湿性微粒子は平均粒子径が2μm未満の有機微粒子であり、親水性樹脂を介して構造体に固定化され、かつ高吸湿性微粒子と親水性樹脂の質量比が18/3.44〜19/1であることを特徴とする吸湿/吸水発熱性構造体。
【0005】
2.吸湿時の発熱が30分以上、吸水時の発熱が1分以上保持されることを特徴とする第1に記載の吸湿/吸水発熱性構造体。
【0006】
3.吸水時の最大温度上昇が8℃以上であることを特徴とする第1又は2に記載の吸湿/吸水発熱性構造体。
【0007】
4.親水性樹脂が、ポリアルキレンオキサイド付加型、スルホン酸塩、カルボン酸塩等の極性親水基型、アミド変成型から選択される親水性セグメントを導入した親水性シリコーン系樹脂、親水性ウレタン系樹脂、親水性ポリアミド系樹脂、または親水性ポリエチレンオキサイド系樹脂であることを特徴とする第1〜3のいずれかに記載の吸湿/吸水発熱性構造体。
【0008】
5.高吸湿性有機微粒子がポリスチレン系、ポリアクリロニトリル系、ポリアクリル酸エステル系、ポリメタクリル酸エステル系のいずれかのビニル系重合体で、スルホン酸基、カルボン酸基、リン酸基あるいは、それらの金属塩の少なくとも1種の親水基を有し、かつジビニルベンゼン、トリアリルイソシアネートまたはヒドラジンのいずれかで架橋された架橋重合体である第1〜3のいずれかに記載の吸湿/吸水発熱性構造体。
【0009】
6.親水性樹脂に、イソシアネート系、メチロール系、エチレンイミン系、多官能アジリジニル系、金属塩系から選択される架橋剤が併用されていることを特徴とする請求項1〜5のいずれかに記載の吸湿/吸水発熱性構造体。
【0012】
.構造体が天然繊維、化合繊もしくはこれらの混用繊維で構成される編物、織物、不織布、フリース、紐状体またはフィルムまたは樹脂成形体であることを特徴とする請求項1〜のいずれかに記載の吸湿/吸水発熱性構造体。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する.
本発明に用いる構造体とは、ポリエステル系、ポリアミド系、ポリアクリルニトリル系、ポリエチレン系、ポリプロピレン系、ポリブチレンテレフタレート系、ポリテトラメチレンテレフタレート系、ポリウレタン系、ポリフェニレンサルファイド系等の合成繊維、レーヨン、アセテート等の化学繊維、木綿、麻、シルク、ウール、羽毛などの天然繊維もしくはこれらの混用素材からなる編物、織物、不織布、フリース、紐状体またはフィルムまたは樹脂成形体などで構成される構造体である。
【0014】
本発明の高吸湿/吸水発熱性微粒子とは、吸湿又は吸水時に発熱性を示す微粒子であれば、特に化学構造的に限定されるものではない。例えば、吸湿性シリカなどの無機系、もしくは吸湿性ポリウレタン系、ポリアミド系、ポリエステル系およびポリアクリレート系などの種々の有機系微粒子の適用が可能であるが、特に、高吸湿/吸水発熱性有機微粒子が好ましく、例えば、ポリスチレン系、ポリアクリロニトリル系、ポリアクリル酸エステル系、ポリメタクリル酸エステル系のいずれかのビニル系重合体で、スルホン酸基、カルボン酸基、リン酸基あるいは、それらの金属塩の少なくとも1種の親水基を有し、かつジビニルベンゼン、トリアリルイソシアネートまたはヒドラジンのいずれかで架橋された架橋重合体微粒子である。
【0015】
高吸湿性微粒子の粒度は、吸湿/吸水発熱速度/発熱効率、均一付着性、風合い及び耐磨耗性の点から細かいほど望ましく、平均粒子径2μm未満がより好ましい。
【0016】
本発明の高吸湿/吸水発熱性微粒子の付与方法は、繊維、フィルムもしくは樹脂層に直接練り込む方法や編物、織物、不織布、フリース、紐状物、フィルム及び樹脂成形品などの表層にバインダー樹脂を介して付着させる方法が挙げられるが、吸湿/吸水発熱速度/発熱効率の点から後者のバインダー樹脂を介する付着方法が好ましい。
【0017】
バインダー樹脂としては、通常の含浸法、パディング法、コーティング法、スプレー法に適用できるシリコン系、ウレタン系、アクリル系、ポリエステル系、ポリアミド系、ポリエチレンオキサイド系などの樹脂が挙げられ、特に限定されないが、親水性、すなわち、吸湿性、吸水性、透湿性に優れ、高吸湿/吸水発熱性微粒子の優れた吸湿性、吸水性を阻害せず、しかも高吸湿/吸水発熱性微粒子と構造体を効果的に接着固定化できるバインダー機能に優れるタイプが望ましい。特に好ましい親水性樹脂バインダーとしては、親水性セグメントとして、ポリアルキレンオキサイド付加型、スルホン酸塩、カルボン酸塩等の極性親水基型、アミド変成型などを導入した親水性シリコーン系樹脂、親水性ウレタン系樹脂、親水性ポリアミド系樹脂、親水性ポリエチレンオキサイド系樹脂で、樹脂自身の吸湿性、透湿性が高く、吸水性を阻害しないものがあげられる。ここで言う樹脂の透湿性とは無孔膜状態での透湿性を意味する。微多孔膜で発現する透湿性が高い樹脂でも、樹脂自身の吸湿性、吸水性が低いバインダー樹脂では、高吸湿/吸水発熱性微粒子の優れた吸湿発熱もしくは吸水発熱性をマスキングし、低下させる。また、これら高吸湿/吸水発熱性微粒子と親水性樹脂バインダーの系に耐久性向上のために、イソシアネート系、メチロール系、エチレンイミン系、多官能アジリジニル系、金属塩系など各種架橋剤を、併用微粒子本来の吸湿/吸水性を低下させない範囲で併用しても良い。
【0018】
本発明における高吸湿/吸水発熱性微粒子と親水性樹脂の配合比及びこれらの付着量は、吸湿/吸水発熱性に大きく影響する。親水性樹脂の親水レベルにより高吸湿/吸水発熱性微粒子と親水性樹脂の配合比は多少異なるが、通常1/1〜19/1の配合使用が望ましく、好ましくは、10/1〜19/1の配合比が、さらに好ましくは、15/1〜19/1の配合比などの、特に親水性樹脂の配合比率の小さいものほど、優れた吸湿/吸水発熱性を発現させることができる。但し、親水性樹脂が極端に少ない場合、もしくは併用しない場合は構造物表面に付着した高吸湿/吸水発熱性微粒子の磨耗耐久性が低下し、脱落し易くなる。逆に、親水性樹脂の配合比が多い場合は、親水性樹脂といえども、高吸湿/吸水発熱性微粒子本来の保有する吸湿/吸水性を阻害するケースが多いため、マスキング効果により吸湿/吸水発熱速度及び発熱量が極端に低下する。もちろん、親水性樹脂の吸湿/吸水性が高吸湿/吸水発熱性微粒子と同等以上の場合は、親水性樹脂の配合比を増加することができる。
【0019】
本発明の吸湿/吸水発熱性構造体の発熱性は、物質の吸湿もしくは吸水時に産出する吸着反応熱に基づくもので、構造体に含まれる高吸湿/吸水性微粒子及び併用親水性樹脂バインダーの吸湿性能力及び又は吸水性能力及び付着量に依存する。すなわち、高吸湿/吸水性微粒子で、しかも細かいほど、吸湿もしくは吸水レベルの高い親水性樹脂バインダーほど、吸着水分による産熱は大きく、発熱速度も早く、発熱保持時間も長くなる。もちろん、かかる吸湿/吸水性は構造体基材単独でも保有するため、より効果的な吸湿/吸水発熱性を実現させるためには適用吸湿/吸水発熱性微粒子の吸湿率(20℃、65%RH)は25%以上が望ましく、さらに好ましくは40%以上である。また、併用親水性樹脂はかかる吸湿/吸水発熱性微粒子の吸湿性/吸水性をできるだけ阻害しない少なくとも吸湿率(20℃、65%RH)3〜50%のものが好ましい。すなわち、効果的な吸湿/吸水発熱性を得るためには、本発明の高度な吸湿/吸水発熱性を保有する構造体を出来るだけ低吸湿率、更に好ましくは完全乾燥(絶乾)状態に近い状態で保管することが肝要である。逆に、飽和吸湿率以上に水分を吸着し、発熱が完了した構造体は、放熱冷却され当初の温度まで低下するが、再度、乾燥して吸着水を取り除けば、元来の優れた吸湿/吸水発熱性が再発現する。
【0020】
気相状態の吸湿発熱性が適度な速度で発熱し、比較的長く発熱性を維持するのに対して、液相の吸水発熱性は急速な発熱性が得られる反面、付着水の量が多すぎると顕著な発熱効果が得られない場合もあるので、付着水量の管理が質要となる。特に、緊急時など急速に加温したい場合は、本発明の吸水発熱機能が有効であり、発熱保持時間の長い吸湿発熱機能と組合せれば更に高度の吸湿/吸水発熱性構造体の商品設計が可能となる。
【0021】
本発明によれば、高吸湿/吸水発熱性微粒子の種類及び付着量を最適化し、適正な親水性樹脂バインダーを介して付着させた構造体は、吸湿及び又は吸水時の最大温度上昇が3℃以上、吸水時の最大温度上昇が8℃以上であり、しかも吸湿時の発熱保持時間が30分以上、吸水時の発熱保持時間が30秒以上より好ましくは1分以上保持される等、吸湿/吸水発熱速度、発熱量、発熱保持時間の総合発熱性能面で、従来にない優れた吸湿/吸水発熱性が得られる。
【0022】
本発明の構造体は、これらの優れた高吸湿/吸水発熱性に加えて、抗菌防臭性、制菌性、消臭性、ノネナール消臭性、pH緩衝性、制電性、SR防汚性、耐酸性雨性の多機能性を発現させることもできる。
【0023】
【実施例】
以下に実施例により本発明を詳細に説明するが、本発明は、何らこれらに限定するものではない。以下で、単に部、%と記載したものは、質量基準を意味する。また、本実施例における構造体の測定、評価は次の方法で行った。
【0024】
<絶乾質量>
サンプルを110℃×6時間乾燥後、シリカゲル入りデシケータに入れ、20℃、65%RH環境下で調温後、質量測定を行った。
<吸湿性>
20℃、65%RH環境下で24時間調温調湿後の質量測定を行い、下記式から算出した。
吸湿率(%)={(吸湿質量−絶乾質量)/絶乾質量}×100
【0025】
<吸湿発熱性>
110℃×6時間乾燥後、シリカゲル入りデシケータに入れ、絶乾状態とした5cm×5cmの測定サンプルに温度センサー(例えば安立計器(株)製;540K MD−5型)を装着後、20℃、95%RH環境下(例えば硫酸カリウム飽和水溶液入りデシケータ)での吸湿発熱性を温度記録計(例えば安立計器(株)製;DATA COLLECTOR AM−7052型)で計測した。
<吸水発熱性>
前記絶乾状態の5cm×5cmの測定サンプルに温度センサーを装着後、20℃、65%RH環境下で、サンプル質量の50%相当量のイオン交換水を均一に噴霧後、吸水発熱性を温度記録計にて計測した。最大吸水発熱温度及び吸水前サンプル温度以上の吸水発熱保持時間(分)で評価した。
【0026】
<結露性>
10〜15リットルの内体積を有するデシケーターに5cm×5cmのサンプルを投入し、ふたを開けた状態で20℃、80%の室内に放置し、調湿・調温した。24時間後、デシケーターのふたを閉めて10℃に保たれた環境下に5分以内に移動させる。その1時間後にふたを開けサンプルの結露状態を確認した。
【0027】
[実施例1]
ポリエチレンテレフタレート系ポリエステル長繊維加工糸(165dtex/48f)からなるダブルニット(目付=200g/m2)を通常リラックス精練、分散染色、乾燥後、本発明の高吸湿/吸水発熱性構造体の基布として用いた。
【0028】
次に高吸湿/吸水発熱性有機微粒子の製造を次の方法で行った。
メタクリル酸/p−スチレンスルホン酸ソーダ=70/30の水溶性重合体350部及び硫酸ナトリウム35部を6500部の水に溶解し、櫂型攪拌機付きの重合槽に仕込んだ。次に、アクリル酸メチル2750部及びジビニルベンゼン330部に2,2'−アゾビス−(2,4−ジメチルバレロニトリル)15部を溶解して重合槽に仕込み、400rpmの攪拌下、60℃で2時間重合し、重合率88%の共重合体を得た。該重合体100部を水900部中に分散し、これに110部の苛性ソーダを添加し、90℃、2.5時間反応を行い、アクリル酸メチルのメチルエステル部を加水分解することによりカルボキシル基4.6ミリ当量/gを有した架橋重合体を得た。得られた重合体を水中に分散し、洗浄、脱水後、粉砕、分級もしくはろ過し、高吸湿/吸水発熱性微粒子を得た。得られた高吸湿/吸水発熱性有機微粒子の20℃、65%RH下での吸湿率は50%、平均粒子径は0.8μmであった。
【0029】
かかる高吸湿/吸水発熱性微粒子20%を含む水分散体95部に親水性樹脂バインダーとして、TF−3500(花王社製親水性シリコン系バインダー;固形分40%)4部およびアクアプレンWS105(明成化学工業社製親水性ウレタン系バインダー;固形分40%)1部を加えた加工パディング液に基布を浸漬し、マングルにて加工液ウエットピックアップ率100%になるよう絞った後、120℃で乾燥後、180℃で1分間乾熱セットして構造体を得た。
得られた構造体の吸湿/吸水発熱性の特性を表1に示す。未加工品に比べ発熱速度、発熱温度、発熱保持時間の優れた吸湿発熱性/吸水発熱性が得られた。
【0030】
[実施例2]
実施例2で用いる基布は、前記実施例1と同じものを用いた。
【0031】
実施例2で用いる高吸湿/吸水発熱性有機微粒子の製造を次の方法で行った。アクリロニトリル450部、アクリル酸メチル40部、p−スチレンスルホン酸ソーダ16部及び水1180部をオートクレーブに仕込み、重合開始剤としてジ−tert−ブチルパーオキサイドを単量体全体に対して0.5%添加した後、密閉し、次いで攪拌下において150℃で20分間重合反応後、攪拌しながら約90℃まで冷却し、平均粒子径1.4μm(光散乱光度計測定)の原料微粒子の水分散体を得た。この水分散体に浴中濃度が35%になるようヒドラジンを加え、102℃で2時間架橋処理を行い、続いて浴中濃度が10%になるよう苛性ソーダを加えて、102℃で5時間加水分解処理を行った後、pH調整、分級もしくはろ過後、高吸湿/吸水発熱性有機微粒子分散体を得た。得られた高吸湿/吸水発熱性有機微粒子の20℃、65%RH下での吸湿性は51%、平均粒子径は0.5μmであった。
【0032】
かかる高吸湿/吸水発熱性微粒子20%を含む水分散体95部に親水性樹脂バインダーとして、TF−3500(花王社製アルキレングリコール変成親水性シリコン系バインダー;固形分40%)5部を加えた加工パディング液に基布を浸漬し、マングルにて加工液ウエットピックアップ率120%になるよう絞った後、120℃で乾燥後、170℃で1分間乾熱セットして構造体を得た。得られた構造体の吸湿/吸水発熱性の特性を表1に示す。未加工品に比べ発熱速度、発熱温度/発熱保持時間の優れた吸湿発熱性/吸水発熱性が得られた。
【0033】
[実施例3]
2.8デシテックス、繊維長38mmカットの中空ポリエステル短繊維(機械捲縮糸)を開繊、カード後、通常のニードルパンチ不織布(目付け=100g/m2)を得た。
【0034】
次いで、実施例1で得られた高吸湿/吸水発熱性有機微粒子20%を含む水分散体95部に、親水性バインダーとして、TF−3500(花王社製アルキレングリコール変成親水性シリコン系バインダー;固形分40%)5部を加えた加工パッディング液に基布を浸漬し、マングルにて加工液ウエットピックアップ率100%になるよう絞った後、120℃で乾燥後、170℃で1分間乾熱セットして構造体を得た。得られた構造体の吸湿/吸水発熱性の特性を表1に示す。未加工品に比べ発熱速度、発熱温度/時間の優れた吸湿発熱性/吸水発熱性が得られた。
【0035】
[実施例4]
10番手綿紡績糸100%からなるパイル織物を通常のり抜き精練、過酸化水素漂白、シルケット加工後、反応染料により染色、洗浄、乾燥セットした織物を構造体基布として用いた。
【0036】
次いで、実施例1で得られた高吸湿/吸水発熱性有機微粒子20%を含む水分散体90部に、親水性バインダーとして、TF−3500(花王社製アルキレングリコール変成親水性シリコン系バインダー;固形分40%)3.5部および繊維素反応型グリオキザール系樹脂(ジメチロールヒドロキシエチレン尿素;固形分80%)6部、塩化マグネシウム系酸性触媒0.5部を加えた加工パディング液に基布を浸漬し、マングルにて加工液ピックアップ率100%になるよう絞った後、120℃で乾燥後、170℃で1分間乾熱セットして構造体を得た。得られた構造体の吸湿/吸水発熱性の特性を表1に示す。未加工品に比べ発熱速度、発熱温度、発熱保持時間のいずれも優れた吸湿発熱性/吸水発熱性が得られた。
【0037】
[実施例5]
ポリエステル長繊維加工糸275dtex/48fからなる直径2mmの製紐品を、常法で精練、染色、乾燥して得られた紐状物を構造体として用いた。
【0038】
次いで、実施例1で得られた高吸湿/吸水発熱性有機微粒子20%を含む水分散体90部に、親水性バインダーとして、TF−3500(花王社製アルキレングリコール変成親水性シリコン系バインダー;固形分40%)5部及びアルキレングリコール変成水溶性ポリウレタン樹脂(固形分30%)4.8及びジイソシアネート系架橋剤(固形分100%)0.2部を加えた加工液に基布を浸漬し、マングルにて加工液ウエットピックアップ率100%になるよう絞った後、120℃で乾燥後、170℃で1分間乾熱セットして構造体を得た。得られた構造体の吸湿/吸水発熱性の特性を表1に示す。未加工品に比べ発熱速度、発熱温度、発熱保持時間のいずれも優れた吸湿発熱性/吸水発熱性が得られた。
【0039】
[比較例1]
実施例1に記載のポリエステル長繊維加工糸使いダブルニット単独での結果を表1に示す。
実施例1、2に比べ吸湿/吸水発熱効果は見られなかった。
【0040】
[比較例2]
実施例3に記載の中空ポリエステル短繊維製ニードルパンチ不織布単独での結果を表1に示す。実施例3に比べ吸湿/吸水発熱効果は見られなかった。
【0041】
[比較例3]
実施例4に記載の綿紡績糸100%パイル織物単独での結果を表1に示す。多少の吸湿/吸水発熱性が見られるものの実施例4に比べ劣るものであった。
【0042】
[比較例4]
実施例5に記載のポリエステル長繊維加工糸使い製紐品単独の結果を表1に示す。実施例5に比べ吸湿/吸水発熱効果は見られなかった。
【0043】
[比較例5]
実施例1のポリエステル・ダブルニットを用い、高吸湿/吸水発熱性微粒子20%を含む水分散体95部にアミノ変成シリコン樹脂バインダー(固形分40%)5部を加えた加工液に基布を浸漬し、マングルにて加工液ウエットピックアップ率100%になるよう絞った後、120℃で乾燥後、180℃で1分間乾熱セットして構造体を得た。得られた構造体の吸湿/吸水発熱性の特性を表1に示す。実施例に比べ吸湿発熱性/吸水発熱性が劣るものであった。
【0044】
[比較例6]
実施例1のポリエステル・ダブルニットを用い、高吸湿/吸水発熱性微粒子20%を含む水分散体60部に自己架橋型アクリル樹脂(固形分30%、透湿度60g/m2・hr)38部、無機金属系触媒2部を加えた加工液を加工液ウエットピックアップ率100%になるよう付与した後、120℃で乾燥後、180℃で1分間乾熱セットして構造体を得た。得られた構造体の吸湿/吸水発熱性の特性を表1に示す。実施例に比べ樹脂バインダーのマスキング効果により、極端に吸湿発熱性/吸水発熱性が劣るものであった。
【0045】
[比較例7]
実施例2において高吸湿/吸水発熱性微粒子20%を含む水分散体50部に親水性樹脂バインダーとして、TF−3500(花王社製アルキレングリコール変成親水性シリコン系バインダー;固形分40%)50部を加えた加工パディング液を使用する以外は実施例2と同じ方法にて構造体を得た。得られた構造体の吸湿/吸水発熱性の特性を表1に示す。実施例に比べ吸湿発熱性/吸水発熱性が劣るものであった。
【0046】
【表1】

Figure 0004264800
【0047】
【発明の効果】
本発明によれば、高吸湿発熱性微粒子を少量の親水性樹脂を介して編物、織物、不織布、フリース、紐状物、フィルムもしくは樹脂成形品に付着させることで、外部環境、人体もしくは人工的な湿気(水蒸気)や水分(液体)を吸収して迅速かつ安定に発熱することで、緊急時の体温低下防止用救命装備品や優れた防寒衣料/資材、寝装インテリア資材、加熱発汗を促進する美容、スポーツ減量用衣料もしくは加温治療に好適な医療資材用、産業資材に好適な吸湿/吸水発熱性構造体を簡便に、かつ安定に得ることができる。[0001]
[Technical field to which the invention belongs]
The present invention is effective in a variety of life-saving equipment that prevents a sudden drop in human body temperature in an emergency such as flying clothes, life-saving clothing, mountaineering equipment, camping equipment, cold warehouse uniforms, or in cold environments such as winter. Sports clothing and shoe insole members that require heat storage and heat retention, living material products such as mufflers, gloves, and diapers, or bedding interior materials that require heat storage heat insulation or anti-condensation properties such as curtains, futons, and wallpaper, or rapid Beauty with improved warming and sweating, sports weight loss clothing, or medical materials that require rapid warming treatment, or string products such as strings and ropes, and industries that require heat storage and heat retention such as nets and nets The present invention relates to a hygroscopic / water-absorbing exothermic structure suitable for materials, films, resin molded articles, and the like.
[0002]
[Prior art]
Various types of clothing such as general clothing, cold clothing, sports clothing, and cold storage uniforms that focus on heat retention have been put into practical use. Conventional means for improving heat retention include methods using hollow cross-section fibers and ultrafine fibers to increase the air layer with low thermal conductivity, aluminum deposition reflecting body heat, coating or metal sputtering, metal oxidation A method of expecting a far-infrared effect by kneading an object or ceramics (Japanese Patent Laid-Open No. 63-105107, Japanese Patent Laid-Open No. 7-331484, etc.), a method of mixing moisture-exothermic exothermic fibers into a fabric or batting by spinning, blending, etc. (JP-A-6-294006, JP-A-8-197661, etc.) and the graft polymerization method of vinyl monomers such as acrylic acid and methacrylic acid, the carboxylic acid terminal is introduced into the fiber surface or inside, and metal chloride such as sodium chloride is performed. Various methods have been proposed for imparting moisture absorption exotherm. However, all of these methods have insufficient heat-generating and warming properties (heat generation rate, heat generation temperature, heat generation retention time), and various life-saving equipment that should quickly prevent a decrease in human body temperature in an emergency or in a low-temperature environment Sports clothing materials that require a high degree of heat retention, living material products that require heat storage heat retention or anti-condensation properties, bedding interior materials, beauty products that require rapid warming sweating, sports weight loss clothing or rapid It lacks exothermic warming property or anti-condensation property as a medical material that requires a warm treatment or an industrial material that requires heat storage heat retention and anti-condensation property. In particular, there has not been proposed a structure of exothermic warming (exothermic speed, exothermic temperature, exothermic holding time) that combines not only moisture absorption but also water absorption exothermicity. In addition, a film and a resin molded product that exhibit effective heat storage heat retention and anti-condensation properties based on such moisture absorption / water absorption exothermic properties have not been proposed.
[0003]
[Problems to be solved by the invention]
The present invention is suitable for various life-saving equipment, cold clothing, cold clothing materials, bedding interior materials, beauty, sports weight loss clothing or medical materials for warming treatments, films, and various industrial materials. It is an object of the present invention to provide a hygroscopic / water-absorbing exothermic structure excellent in heat generation rate, heat generation temperature, heat generation retention, and dew condensation prevention.
[0004]
[Means for Solving the Problems]
The technical configuration of the present invention for solving the above-described problems is as follows. That is,
1. It is a structure to which highly hygroscopic fine particles are adhered, the maximum temperature rise at the time of moisture absorption and / or water absorption is 3 ° C. or higher, and the high hygroscopic fine particles are organic fine particles having an average particle diameter of less than 2 μm, and are hydrophilic. A moisture-absorbing / water-absorbing exothermic structure characterized in that the mass ratio of the highly hygroscopic fine particles to the hydrophilic resin is 18 / 3.44 to 19/1 and is fixed to the structure via a resin .
[0005]
2. 2. The hygroscopic / water-absorbing exothermic structure according to the first aspect, wherein heat generation during moisture absorption is maintained for 30 minutes or more and heat generation during water absorption is maintained for 1 minute or more.
[0006]
3. The moisture absorption / water absorption exothermic structure according to 1 or 2, wherein the maximum temperature rise during water absorption is 8 ° C or more.
[0007]
4). The hydrophilic resin is a hydrophilic group selected from a polar hydrophilic group type such as polyalkylene oxide addition type, sulfonate, carboxylate, etc., amide modification, hydrophilic urethane type resin, hydrophilic urethane type resin, The hygroscopic / water-absorbing exothermic structure according to any one of the first to third aspects, which is a hydrophilic polyamide-based resin or a hydrophilic polyethylene oxide-based resin .
[0008]
5. Highly hygroscopic organic fine particles are polystyrene type, polyacrylonitrile type, polyacrylic acid ester type, polymethacrylic acid ester type vinyl polymer, sulfonic acid group, carboxylic acid group, phosphoric acid group or their metal The moisture-absorbing / water-absorbing exothermic structure according to any one of 1 to 3, which is a crosslinked polymer having at least one hydrophilic group of a salt and crosslinked with either divinylbenzene, triallyl isocyanate, or hydrazine .
[0009]
6). A hydrophilic resin, isocyanate, methylol, ethylene imine, polyfunctional aziridinyl system, according to any one of claims 1 to 5, wherein the Rukoto crosslinking agent selected from a metal salt systems have been used in combination Moisture absorption / water absorption exothermic structure.
[0012]
7 . Natural fibers structure, of synthetic or knitted consists of these mix fibers, fabrics, non-woven, fleece, to any one of claims 1 to 6, characterized in that a string-like body or a film or resin moldings Moisture absorption / water absorption exothermic structure as described.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
The structure used in the present invention includes polyester, polyamide, polyacrylonitrile, polyethylene, polypropylene, polybutylene terephthalate, polytetramethylene terephthalate, polyurethane, polyphenylene sulfide, and other synthetic fibers, rayon, Structures composed of chemical fibers such as acetate, natural fibers such as cotton, hemp, silk, wool, feathers, or knitted fabric, nonwoven fabric, fleece, string-like body, film or resin molded body made of these mixed materials It is.
[0014]
The high moisture absorption / water absorption exothermic fine particles of the present invention are not particularly limited in terms of chemical structure as long as they are fine particles that exhibit exothermic properties during moisture absorption or water absorption. For example, various organic fine particles such as inorganic type such as hygroscopic silica, or hygroscopic polyurethane type, polyamide type, polyester type and polyacrylate type can be applied. Particularly, highly hygroscopic / absorbing exothermic organic fine particles. Preferably, for example, any vinyl polymer of polystyrene, polyacrylonitrile, polyacrylate, polymethacrylate, sulfonic acid group, carboxylic acid group, phosphoric acid group, or a metal salt thereof The crosslinked polymer fine particles having at least one kind of hydrophilic group and crosslinked with either divinylbenzene, triallyl isocyanate or hydrazine.
[0015]
The particle size of the highly hygroscopic fine particles is preferably as fine as possible from the viewpoint of moisture absorption / water absorption heat generation rate / heat generation efficiency, uniform adhesion, texture and wear resistance, and more preferably an average particle diameter of less than 2 μm.
[0016]
The method for applying the highly hygroscopic / water-absorbing exothermic fine particles of the present invention is a method of kneading directly into a fiber, film or resin layer, or a binder resin on the surface layer of a knitted fabric, woven fabric, non-woven fabric, fleece, string-like product, film or resin molded product. However, the latter attachment method using a binder resin is preferable from the viewpoint of moisture absorption / water absorption heat generation rate / heat generation efficiency.
[0017]
Examples of the binder resin include resins such as silicon-based, urethane-based, acrylic-based, polyester-based, polyamide-based, and polyethylene oxide-based resins that can be applied to a normal impregnation method, padding method, coating method, and spray method. Excellent hydrophilicity, that is, hygroscopicity, water absorption, moisture permeability, high moisture absorption / water absorption exothermic fine particles, excellent hygroscopicity, water absorption, and high absorption / water absorption exothermic fine particles and structure are effective It is desirable to use a type that has an excellent binder function that can be adhesively fixed. Particularly preferred hydrophilic resin binders include hydrophilic silicone-based resins, hydrophilic urethane resins in which a polyalkylene oxide addition type, polar hydrophilic group type such as sulfonate and carboxylate, amide modification, etc. are introduced as hydrophilic segments. Resin, hydrophilic polyamide resin, and hydrophilic polyethylene oxide resin, which have high moisture absorption and moisture permeability and do not inhibit water absorption. Here, the moisture permeability of the resin means the moisture permeability in a non-porous film state. Even in a resin having high moisture permeability expressed in a microporous film, a binder resin having low hygroscopicity and water absorption of the resin itself masks and reduces the excellent hygroscopic heat generation or water absorption exothermic property of the high moisture absorption / water absorption exothermic fine particles. In order to improve the durability of these highly hygroscopic / water-absorbing exothermic fine particles and hydrophilic resin binders, various crosslinking agents such as isocyanate, methylol, ethyleneimine, polyfunctional aziridinyl, and metal salt are used in combination. You may use together in the range which does not reduce the original moisture absorption / water absorption of microparticles | fine-particles.
[0018]
In the present invention, the mixing ratio of the highly hygroscopic / water-absorbing exothermic fine particles and the hydrophilic resin and the amount of adhesion thereof greatly affect the hygroscopic / absorbing exothermic property. Although the blending ratio of the highly hygroscopic / water-absorbing exothermic fine particles and the hydrophilic resin is somewhat different depending on the hydrophilic level of the hydrophilic resin, it is usually desirable to use a blending ratio of 1/1 to 19/1, preferably 10/1 to 19/1. More preferably, the smaller the blending ratio of the hydrophilic resin, such as the blending ratio of 15/1 to 19/1, the more excellent moisture absorption / water absorption exothermicity can be expressed. However, if the amount of hydrophilic resin is extremely small or not used in combination, the wear durability of the highly hygroscopic / water absorbing exothermic fine particles adhering to the surface of the structure is lowered, and it tends to fall off. On the other hand, when the blending ratio of the hydrophilic resin is large, even if the hydrophilic resin is used, the high moisture absorption / water absorption exothermic fine particles often inhibit the inherent moisture absorption / water absorption. The heat generation rate and the heat generation amount are extremely reduced. Of course, when the moisture absorption / water absorption of the hydrophilic resin is equal to or higher than the high moisture absorption / water absorption exothermic fine particles, the blending ratio of the hydrophilic resin can be increased.
[0019]
The exothermic property of the hygroscopic / water-absorbing exothermic structure of the present invention is based on the heat of adsorption reaction generated when the material absorbs or absorbs water, and the hygroscopicity of the highly hygroscopic / absorbent fine particles contained in the structure and the combined hydrophilic resin binder. Depends on sexual ability and / or water absorption ability and adhesion amount. That is, the higher the hygroscopic / water-absorbing fine particles, the finer the hydrophilic resin binder with higher moisture absorption or water absorption level, the greater the heat generated by the adsorbed moisture, the faster the heat generation rate, and the longer the heat generation holding time. Of course, since such moisture absorption / water absorption is retained even by the structure base material alone, in order to realize more effective moisture absorption / water absorption exothermic property, the moisture absorption rate of applied moisture absorption / water absorption exothermic fine particles (20 ° C., 65% RH). ) Is preferably 25% or more, more preferably 40% or more. Further, the combined hydrophilic resin preferably has at least a hygroscopic rate (20 ° C., 65% RH) of 3 to 50% which does not inhibit the hygroscopicity / water absorption of the hygroscopic / water-absorbing exothermic fine particles as much as possible. That is, in order to obtain an effective moisture absorption / water absorption exothermic property, the structure having the high moisture absorption / water absorption exothermic property of the present invention has a low moisture absorption rate as much as possible, more preferably close to a completely dry (absolute dry) state. It is important to keep it in a state. Conversely, a structure that has adsorbed moisture above the saturated moisture absorption rate and has generated heat is cooled by heat dissipation and drops to the original temperature. However, if it is dried again and the adsorbed water is removed, the original excellent moisture absorption / Water absorption exotherm reappears.
[0020]
While the moisture absorption exotherm in the gas phase generates heat at an appropriate rate and maintains the exotherm for a relatively long time, the water absorption exotherm in the liquid phase provides rapid exotherm, but the amount of adhering water is large. If the amount is too large, a remarkable exothermic effect may not be obtained, and therefore management of the amount of attached water is important. In particular, the water absorption heat generation function of the present invention is effective for rapid heating such as in an emergency, and when combined with a moisture absorption heat generation function with a long heat generation retention time, a more advanced moisture absorption / water absorption heat generation structure can be designed. It becomes possible.
[0021]
According to the present invention, the structure and the amount of the highly hygroscopic / water-absorbing exothermic fine particles are optimized and adhered via an appropriate hydrophilic resin binder, and the maximum temperature rise upon moisture absorption and / or water absorption is 3 ° C. As described above, the maximum temperature rise at the time of water absorption is 8 ° C. or more, and the heat generation retention time at the time of moisture absorption is 30 minutes or more, the heat generation retention time at the time of water absorption is 30 seconds or more, preferably 1 minute or more. Excellent hygroscopic / water absorption exothermic properties that are unprecedented in terms of overall heat generation performance in terms of water absorption heat generation rate, heat generation amount, and heat generation retention time can be obtained.
[0022]
In addition to these excellent high moisture absorption / water absorption exothermic properties, the structure of the present invention has antibacterial and deodorant properties, antibacterial properties, deodorant properties, nonenal deodorant properties, pH buffer properties, antistatic properties, and SR antifouling properties. Moreover, acid rain resistant multi-functionality can be expressed.
[0023]
【Example】
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. Below, what was described as a part and% means a mass reference | standard. In addition, the measurement and evaluation of the structure in this example were performed by the following methods.
[0024]
<Absolute mass>
The sample was dried at 110 ° C. for 6 hours, placed in a desiccator containing silica gel, and the temperature was measured in an environment of 20 ° C. and 65% RH, followed by mass measurement.
<Hygroscopicity>
Mass measurement after temperature control and humidity control at 20 ° C. and 65% RH for 24 hours was performed and calculated from the following formula.
Moisture absorption rate (%) = {(hygroscopic mass−absolute dry mass) / absolute dry mass} × 100
[0025]
<Hygroscopic heat generation>
After drying at 110 ° C. for 6 hours, put in a desiccator containing silica gel, and attach a temperature sensor (for example, manufactured by Anri Keiki Co., Ltd .; 540K MD-5) to a completely dried 5 cm × 5 cm measurement sample, then 20 ° C. The hygroscopic exothermic property in a 95% RH environment (for example, a desiccator containing a saturated aqueous solution of potassium sulfate) was measured with a temperature recorder (for example, manufactured by Anritsu Keiki Co., Ltd .; DATA COLLECTOR AM-7052).
<Water absorption exothermic property>
After mounting a temperature sensor on the 5 cm x 5 cm measurement sample in the absolutely dry state, ion exchange water equivalent to 50% of the sample mass is uniformly sprayed in an environment of 20 ° C and 65% RH, and the water absorption exothermicity is It was measured with a recorder. Evaluation was made based on the maximum water absorption exothermic temperature and the water absorption exothermic holding time (min) above the sample temperature before water absorption.
[0026]
<Condensation>
A sample of 5 cm × 5 cm was put into a desiccator having an internal volume of 10 to 15 liters, left in a room at 20 ° C. and 80% with the lid opened, and the humidity and temperature were adjusted. After 24 hours, the lid of the desiccator is closed and moved to an environment kept at 10 ° C. within 5 minutes. One hour later, the lid was opened and the condensation state of the sample was confirmed.
[0027]
[Example 1]
As a base fabric for the highly hygroscopic / water-absorbing exothermic structure of the present invention, a double knit made of polyethylene terephthalate polyester long fiber processed yarn (165 dtex / 48 f) (basis weight = 200 g / m 2) is usually subjected to relaxing scouring, disperse dyeing and drying. Using.
[0028]
Next, high moisture absorption / water absorption exothermic organic fine particles were produced by the following method.
350 parts of a water-soluble polymer of methacrylic acid / p-sodium styrenesulfonate = 70/30 and 35 parts of sodium sulfate were dissolved in 6500 parts of water and charged into a polymerization tank equipped with a vertical stirrer. Next, 15 parts of 2,2′-azobis- (2,4-dimethylvaleronitrile) was dissolved in 2750 parts of methyl acrylate and 330 parts of divinylbenzene and charged into the polymerization tank. Polymerization was performed for a time to obtain a copolymer having a polymerization rate of 88%. Disperse 100 parts of the polymer in 900 parts of water, add 110 parts of caustic soda to this, react at 90 ° C. for 2.5 hours, and hydrolyze the methyl ester part of methyl acrylate. A crosslinked polymer having 4.6 meq / g was obtained. The obtained polymer was dispersed in water, washed, dehydrated, pulverized, classified or filtered to obtain highly hygroscopic / water absorbing exothermic fine particles. The resulting highly hygroscopic / water-absorbing exothermic organic fine particles had a moisture absorption rate of 50% and an average particle size of 0.8 μm at 20 ° C. and 65% RH.
[0029]
As a hydrophilic resin binder, 95 parts of an aqueous dispersion containing 20% of such highly hygroscopic / absorbent exothermic fine particles, 4 parts of TF-3500 (Kao hydrophilic hydrophilic silicon binder; solid content 40%) and Aquaprene WS105 (Meisei Chemical) Immerse the base fabric in a processing padding solution to which 1 part of a hydrophilic urethane-based binder (manufactured by Kogyo Co., Ltd .; solid content 40%) is added, squeeze it with a mangle to a processing solution wet pick-up rate of 100%, and then dry at 120 ° C. Thereafter, dry heat setting was performed at 180 ° C. for 1 minute to obtain a structure.
Table 1 shows the moisture absorption / water absorption exothermic characteristics of the obtained structure. The moisture absorption exothermic property / water absorption exothermic property with excellent exothermic rate, exothermic temperature, and exothermic retention time was obtained as compared with the unprocessed product.
[0030]
[Example 2]
The same base fabric as used in Example 1 was used as the base fabric used in Example 2.
[0031]
Production of highly hygroscopic / water-absorbing exothermic organic fine particles used in Example 2 was carried out by the following method. 450 parts of acrylonitrile, 40 parts of methyl acrylate, 16 parts of p-styrene sulfonic acid soda and 1180 parts of water were charged into an autoclave, and di-tert-butyl peroxide as a polymerization initiator was 0.5% based on the whole monomer. After the addition, the mixture is sealed, and after a polymerization reaction at 150 ° C. for 20 minutes under stirring, the mixture is cooled to about 90 ° C. with stirring, and an aqueous dispersion of raw material fine particles having an average particle size of 1.4 μm (measured by a light scattering photometer) Got. To this aqueous dispersion, hydrazine was added so that the concentration in the bath was 35%, and a crosslinking treatment was performed at 102 ° C. for 2 hours. Subsequently, caustic soda was added so that the concentration in the bath was 10%, and water was added at 102 ° C. for 5 hours. After the decomposition treatment, a highly hygroscopic / water-absorbing exothermic organic fine particle dispersion was obtained after pH adjustment, classification or filtration. The obtained highly hygroscopic / water-absorbing exothermic organic fine particles had a hygroscopic property of 51% at 20 ° C. and 65% RH, and an average particle size of 0.5 μm.
[0032]
As a hydrophilic resin binder, 5 parts of TF-3500 (alkylene glycol modified hydrophilic silicon binder; solid content 40%) 5 parts was added as a hydrophilic resin binder to 95 parts of an aqueous dispersion containing 20% of such highly hygroscopic / absorbent exothermic fine particles. The base fabric was dipped in the processing padding solution, squeezed with a mangle so that the processing solution wet pick-up rate was 120%, dried at 120 ° C., and then set at 170 ° C. for 1 minute to obtain a structure. Table 1 shows the moisture absorption / water absorption exothermic characteristics of the obtained structure. The moisture absorption exothermic property / water absorption exothermic property, excelling in heat generation rate, exothermic temperature / exothermic holding time as compared with the unprocessed product, was obtained.
[0033]
[Example 3]
A hollow polyester short fiber (mechanically crimped yarn) having a cut length of 2.8 dtex and a fiber length of 38 mm was opened, and a normal needle punched nonwoven fabric (mesh weight = 100 g / m 2) was obtained after carding.
[0034]
Next, 95 parts of the aqueous dispersion containing 20% of the highly hygroscopic / water-absorbing exothermic organic fine particles obtained in Example 1 was mixed with TF-3500 (an alkylene glycol modified hydrophilic silicon binder manufactured by Kao Corporation; solid; (40% min.) Immerse the base fabric in a processing padding solution with 5 parts added, squeeze it with a mangle to make the processing liquid wet pickup rate 100%, dry at 120 ° C, and dry heat at 170 ° C for 1 minute. The structure was obtained by setting. Table 1 shows the moisture absorption / water absorption exothermic characteristics of the obtained structure. The moisture absorption exothermic property / water absorption exothermic property with excellent heat generation rate and heat generation temperature / time was obtained as compared with the unprocessed product.
[0035]
[Example 4]
A pile fabric made of 10% cotton spun yarn 100% was subjected to normal scouring, hydrogen peroxide bleaching, mercerizing, dyed with reactive dyes, washed and dried, and then used as a structure base fabric.
[0036]
Next, 90 parts of an aqueous dispersion containing 20% of the highly hygroscopic / water-absorbing exothermic organic fine particles obtained in Example 1 was mixed with TF-3500 (an alkylene glycol modified hydrophilic silicon binder produced by Kao Corporation; solid; 40%) and 3.5 parts of fiber-reactive glyoxal resin (dimethylol hydroxyethylene urea; solid content of 80%), and a processed padding solution containing 0.5 parts of magnesium chloride acidic catalyst. After dipping and squeezing with a mangle to obtain a processing liquid pick-up rate of 100%, the film was dried at 120 ° C. and then set to dry heat at 170 ° C. for 1 minute to obtain a structure. Table 1 shows the moisture absorption / water absorption exothermic characteristics of the obtained structure. Compared to the unprocessed product, the moisture absorption exothermic property / water absorption exothermic property was excellent in terms of exothermic rate, exothermic temperature, and exothermic retention time.
[0037]
[Example 5]
A string-like product obtained by scouring, dyeing and drying a 2 mm-diameter string product made of polyester long fiber processed yarn 275 dtex / 48f was used as a structure.
[0038]
Next, 90 parts of an aqueous dispersion containing 20% of the highly hygroscopic / water-absorbing exothermic organic fine particles obtained in Example 1 was mixed with TF-3500 (an alkylene glycol modified hydrophilic silicon binder produced by Kao Corporation; solid; 40%) and 5 parts of alkylene glycol-modified water-soluble polyurethane resin (solid content 30%) 4.8 and diisocyanate crosslinking agent (solid content 100%) 0.2 parts of the base cloth is immersed in a processing solution, After squeezing with a mangle to a processing liquid wet pick-up rate of 100%, it was dried at 120 ° C. and then set at 170 ° C. for 1 minute to obtain a structure. Table 1 shows the moisture absorption / water absorption exothermic characteristics of the obtained structure. Compared to the unprocessed product, the moisture absorption exothermic property / water absorption exothermic property was excellent in terms of exothermic rate, exothermic temperature, and exothermic retention time.
[0039]
[Comparative Example 1]
Table 1 shows the result of the double knit using polyester long fiber processed yarn described in Example 1 alone.
Compared to Examples 1 and 2, no moisture absorption / water absorption exothermic effect was observed.
[0040]
[Comparative Example 2]
Table 1 shows the result of the hollow polyester short fiber needle punched nonwoven fabric described in Example 3 alone. Compared to Example 3, no moisture absorption / water absorption heat generation effect was observed.
[0041]
[Comparative Example 3]
Table 1 shows the results of the cotton spun yarn 100% pile fabric described in Example 4 alone. Although some moisture absorption / water absorption exotherm was observed, it was inferior to Example 4.
[0042]
[Comparative Example 4]
Table 1 shows the results of the polyester long fiber processed yarn-use string product alone described in Example 5. Compared with Example 5, no moisture absorption / water absorption exothermic effect was observed.
[0043]
[Comparative Example 5]
Using the polyester double knit of Example 1, a base fabric was prepared by adding 5 parts of an amino-modified silicone resin binder (solid content 40%) to 95 parts of an aqueous dispersion containing 20% of highly hygroscopic / absorbent exothermic fine particles. After dipping and squeezing with a mangle to a wet pick-up rate of 100%, the structure was obtained by drying at 120 ° C. and then setting at 180 ° C. for 1 minute. Table 1 shows the moisture absorption / water absorption exothermic characteristics of the obtained structure. The moisture absorption exothermic property / water absorption exothermic property was inferior to the examples.
[0044]
[Comparative Example 6]
Using the polyester double knit of Example 1, 60 parts of a water dispersion containing 20% of highly hygroscopic / absorbent exothermic fine particles and 38 parts of a self-crosslinking acrylic resin (solid content 30%, moisture permeability 60 g / m 2 · hr), A processing liquid to which 2 parts of an inorganic metal catalyst was added was applied so that the wet pick-up rate of the processing liquid was 100%, dried at 120 ° C., and then set to dry heat at 180 ° C. for 1 minute to obtain a structure. Table 1 shows the moisture absorption / water absorption exothermic characteristics of the obtained structure. Compared to the examples, the moisture absorption exothermic property / water absorption exothermic property was extremely inferior due to the masking effect of the resin binder.
[0045]
[Comparative Example 7]
In Example 2, 50 parts of TF-3500 (Kao Co., Ltd. alkylene glycol modified hydrophilic silicon binder; solid content 40%) as a hydrophilic resin binder in 50 parts of an aqueous dispersion containing 20% of highly hygroscopic / absorbent exothermic fine particles A structure was obtained in the same manner as in Example 2 except that the processing padding solution to which was added was used. Table 1 shows the moisture absorption / water absorption exothermic characteristics of the obtained structure. The moisture absorption exothermic property / water absorption exothermic property was inferior to the examples.
[0046]
[Table 1]
Figure 0004264800
[0047]
【The invention's effect】
According to the present invention, high moisture-absorbing exothermic fine particles are attached to a knitted fabric, woven fabric, non-woven fabric, fleece, string-like material, film or resin molded product via a small amount of hydrophilic resin, so that the external environment, human body or artificial Absorbs moisture (water vapor) and moisture (liquid) quickly and stably to generate heat, thereby promoting lifesaving equipment for preventing body temperature drop in emergency situations, excellent cold clothing / materials, bedding interior materials, and heat sweating It is possible to easily and stably obtain a hygroscopic / water-absorbing exothermic structure suitable for beauty, sports weight loss clothing, medical materials suitable for warming treatment, and industrial materials.

Claims (7)

高吸湿性微粒子が付着されてなる構造体であり、吸湿及び/又は吸水時の最大温度上昇が3℃以上であり、高吸湿性微粒子は平均粒子径が2μm未満の有機微粒子であり、親水性樹脂を介して構造体に固定化され、かつ高吸湿性微粒子と親水性樹脂の質量比が18/3.44〜19/1であることを特徴とする吸湿/吸水発熱性構造体。It is a structure to which highly hygroscopic fine particles are adhered, the maximum temperature rise at the time of moisture absorption and / or water absorption is 3 ° C. or higher, and the high hygroscopic fine particles are organic fine particles having an average particle diameter of less than 2 μm, and are hydrophilic. A moisture-absorbing / water-absorbing exothermic structure characterized in that the mass ratio of the highly hygroscopic fine particles to the hydrophilic resin is 18 / 3.44 to 19/1 and is fixed to the structure via a resin . 吸湿時の発熱が30分以上、吸水時の発熱が1分以上保持されることを特徴とする請求項1に記載の吸湿/吸水発熱性構造体。 The heat-absorbing / water-absorbing exothermic structure according to claim 1, wherein heat generation during moisture absorption is maintained for 30 minutes or more and heat generation during water absorption is maintained for 1 minute or more. 吸水時の最大温度上昇が8℃以上であることを特徴とする請求項1又は2に記載の吸湿/吸水発熱性構造体。 The moisture absorption / water absorption exothermic structure according to claim 1 or 2, wherein the maximum temperature rise during water absorption is 8 ° C or more. 親水性樹脂が、ポリアルキレンオキサイド付加型、スルホン酸塩、カルボン酸塩等の極性親水基型、アミド変成型から選択される親水性セグメントを導入した親水性シリコーン系樹脂、親水性ウレタン系樹脂、親水性ポリアミド系樹脂、または親水性ポリエチレンオキサイド系樹脂であることを特徴とする請求項1〜3のいずれかに記載の吸湿/吸水発熱性構造体。 The hydrophilic resin is a hydrophilic group selected from a polar hydrophilic group type such as polyalkylene oxide addition type, sulfonate, carboxylate, etc., amide modification, hydrophilic urethane type resin, hydrophilic urethane type resin, The moisture-absorbing / water-absorbing exothermic structure according to any one of claims 1 to 3, which is a hydrophilic polyamide-based resin or a hydrophilic polyethylene oxide-based resin . 高吸湿性有機微粒子がポリスチレン系、ポリアクリロニトリル系、ポリアクリル酸エステル系、ポリメタクリル酸エステル系のいずれかのビニル系重合体で、スルホン酸基、カルボン酸基、リン酸基あるいは、それらの金属塩の少なくとも1種の親水基を有し、かつジビニルベンゼン、トリアリルイソシアネートまたはヒドラジンのいずれかで架橋された架橋重合体である請求項1〜3のいずれかに記載の吸湿/吸水発熱性構造体。Highly hygroscopic organic fine particles are polystyrene type, polyacrylonitrile type, polyacrylic acid ester type, polymethacrylic acid ester type vinyl polymer, sulfonic acid group, carboxylic acid group, phosphoric acid group or their metal The moisture-absorbing / water-absorbing exothermic structure according to any one of claims 1 to 3, which is a crosslinked polymer having at least one hydrophilic group of a salt and crosslinked with any of divinylbenzene, triallyl isocyanate, or hydrazine. body. 親水性樹脂に、イソシアネート系、メチロール系、エチレンイミン系、多官能アジリジニル系、金属塩系から選択される架橋剤が併用されていることを特徴とする請求項1〜5のいずれかに記載の吸湿/吸水発熱性構造体。 A hydrophilic resin, isocyanate, methylol, ethylene imine, polyfunctional aziridinyl system, according to any one of claims 1 to 5, wherein the Rukoto crosslinking agent selected from a metal salt systems have been used in combination Moisture absorption / water absorption exothermic structure. 構造体が天然繊維、化合繊もしくはこれらの混用繊維で構成される編物、織物、不織布、フリース、紐状体またはフィルムまたは樹脂成形体であることを特徴とする請求項1〜のいずれかに記載の吸湿/吸水発熱性構造体。Natural fibers structure, of synthetic or knitted consists of these mix fibers, fabrics, non-woven, fleece, to any one of claims 1 to 6, characterized in that a string-like body or a film or resin moldings Moisture absorption / water absorption exothermic structure as described.
JP2002230391A 2001-08-30 2002-08-07 Moisture absorption / water absorption exothermic structure Expired - Lifetime JP4264800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002230391A JP4264800B2 (en) 2001-08-30 2002-08-07 Moisture absorption / water absorption exothermic structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001260952 2001-08-30
JP2001-260952 2001-08-30
JP2002230391A JP4264800B2 (en) 2001-08-30 2002-08-07 Moisture absorption / water absorption exothermic structure

Publications (2)

Publication Number Publication Date
JP2003147680A JP2003147680A (en) 2003-05-21
JP4264800B2 true JP4264800B2 (en) 2009-05-20

Family

ID=26621270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230391A Expired - Lifetime JP4264800B2 (en) 2001-08-30 2002-08-07 Moisture absorption / water absorption exothermic structure

Country Status (1)

Country Link
JP (1) JP4264800B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105606A (en) * 2001-09-27 2003-04-09 Toyobo Co Ltd Swimming suit

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923391B2 (en) * 2004-08-04 2012-04-25 パナソニック株式会社 HYGROSCOPIC FILTER, MANUFACTURING METHOD AND REPRODUCTION METHOD, HUMIDATOR
JP4715122B2 (en) * 2004-08-04 2011-07-06 パナソニック株式会社 HYGROSCOPIC FILTER, ITS MANUFACTURING METHOD, REPRODUCTION METHOD, HUMIDATING DEVICE, AND HUMIDATING DEVICE
JP5213238B2 (en) * 2008-04-24 2013-06-19 住江織物株式会社 Moisture absorption fever carpet
JP5686584B2 (en) * 2010-12-01 2015-03-18 住江織物株式会社 Moisture absorption fever carpet
JP5835793B2 (en) * 2011-04-15 2015-12-24 住江織物株式会社 Carpet with warmth
CN103952845B (en) * 2014-02-17 2015-10-28 武汉爱帝高级服饰有限公司 Moisture absorption heating quick-drying moisturizing thermal fabric and preparation method thereof
CN110055670A (en) * 2019-04-30 2019-07-26 江苏红豆实业股份有限公司 Chinese yew moisture absorption heating fabric
CN114214763A (en) * 2021-12-20 2022-03-22 安踏(中国)有限公司 High-hydrophilicity spun yarn, comfortable fabric with temperature and humidity adjusting function and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105606A (en) * 2001-09-27 2003-04-09 Toyobo Co Ltd Swimming suit

Also Published As

Publication number Publication date
JP2003147680A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JP4264800B2 (en) Moisture absorption / water absorption exothermic structure
JPS6047954B2 (en) Coating fabric and its manufacturing method
JP2003193371A (en) Textile product for bedding or interior
JP2010515836A (en) Method for functionalizing fabric substrates by cross-linking under ionizing radiation
JP3912578B2 (en) Moisture absorption / water absorption exothermic structure for interlining
JP4759898B2 (en) Diving suit
JP2003093529A (en) Hygroscopic/water absorbing heating mask
TWI739033B (en) Moisture-absorptive acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP3849854B2 (en) Anti-frosting material
JPH10219569A (en) Material resistant to odor-impartment
JP2003102784A (en) Moisture/water absorbing exothermic diaper
JP3369508B2 (en) Hygroscopic fiber
JP2002235278A (en) Contact cold sensory fiber, textile product, and method for producing the same
JP2003129312A (en) Ski suit
JP2004169240A (en) Fiber structure
JP2003119606A (en) Sportswear
JP2003102594A (en) Vapor/liquid water absorption heat-generating bedding
JP4967213B2 (en) Swimsuit
JP2003096610A (en) Moisture/water-absorbing exothermic cold proofing outfit
JPH09228240A (en) Acidic/basic gas absorbing fiber and its structure
JP2003155609A (en) Emergency human body warming garment for prevention from death by drowning
JP2003147679A (en) Emergent body-heating structure for preventing freezing death in winter season
JP2003129313A (en) Work clothing for cold storage warehouse
JP2003093427A (en) Medical heating poultice cloth material
JP3716984B2 (en) Method for producing hygroscopic fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090204

R151 Written notification of patent or utility model registration

Ref document number: 4264800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

EXPY Cancellation because of completion of term